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Contingency Tables and Log-Linear Models:
Basic Results and New Developments

Stephen E. FIENBERG

1. HISTORICAL REMARKS ON CONTINGENCY
TABLE ANALYSIS

Contingency table analysis is rooted in the turn-of-the-
century work of Karl Pearson and George Udny Yule, who
introduced the cross-product, or odds ratio, as a formal sta-
tistical tool. The subsequent contributions by R. A. Fisher
linked their methods to basic statistical methodology and
theory, but it was not until 1935 that Maurice Bartlett, as
a result of a suggestion by Fisher, utilized Yule’s cross-
product ratio to define the notion of second-order interac-
tion in a 2 x 2 x 2 table and to develop an appropriate test for
the absence of such an interaction (Bartlett 1935). The mul-
tivariate generalizations of Bartlett’s work, beginning with
a 1956 article by Roy and Kastenbaum, form the basis of
the log-linear model approach to contingency tables, which
1s largely the focus of this vignette. Key articles in the 1960s
by M. W. Birch (1963), Yvonne Bishop (1975), John Dar-
roch (1962), 1. J. Good (1963), Leo Goodman (1963), and
Robin Plackett (1974), plus the availability of high-speed
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computers, led to an integrated theory and methodology for
the analysis of contingency tables based on log-linear mod-
els, culminating in a series of books published in the 1970s.
(Historical references can be found in various sources in-
cluding Bishop, Fienberg, and Holland 1975, Carriquiry and
Fienberg 1998, Fienberg 1980, and Haberman 1974.)

The next section outlines some of the basic results on
likelihood estimation for log-linear models used to describe
interactions in contingency tables, as the theory emerged
by the early 1970s. I then briefly describe some of the
major advances of the next three decades related to log-
linear models. There is now an extensive literature on other
classes of models and other methods of estimation, espe-
cially Bayesian, but I treat these only in passing, not be-
cause they are unimportant, but rather because they draw
on similar foundations. Finally, I outline some important
open research problems.

Many statisticians view the theory and methods of log-
linear models for contingency tables as a special case of ei-
ther exponential family theory or generalized linear models
(GLMs) (Christensen 1996; McCullagh and Nelder 1989).
It is true that computer programs for GLM often provide
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convenient and relatively efficient ways of implementing
basic estimation and goodness-of-fit assessment. But adopt-
ing such a GLM approach leads the researcher to ignore the
special features of log-linear models relating to interpreta-
tion in terms of cross-product ratios and their generaliza-
tions, crucial aspects of estimability and existence associ-
ated with patterns of zero cells, and the many innovative
representations that flow naturally from the basic results
linking sampling schemes. One very important development
that I do not cover (due mainly to a lack of space) is the
role of general estimating equations and marginal models
for longitudinal data within the GLM framework (see, e.g.,
Diggle, Liang, and Zeger 1996).

2. SAMPLING MODELS AND BASIC LOG-LINEAR
MODEL THEORY

Let x' = (z1,Z2,...,2¢) be a vector of observed counts
for ¢ cells, structured in the form of a cross-classification.
Now let m’ = (my,my,...,m;) be the vector of expected
values that are assumed to be functions of unknown param-
eters 8’ = (Ay,6,,...,6,), where s < t.

There are three standard sampling models for the ob-
served counts in contingency tables. In the Poisson model,
the {z,} are observations from independent Poisson ran-
dom variables with means {m,}, whereas in the multinomial
model, the total count N = S'__ z; is a random sample
from an infinite population where the underlying cell prob-
abilities are {m,;/N}. Finally, in the product-multinomial
model, the cells are partitioned into sets, and each set has
an independent multinomial structure, as in the multinomial
model.

The following results hold under the Poisson and multi-
nomial sampling schemes:

1. Corresponding to each parameter in 8 is a minimal
sufficient statistic (MSS) that is expressible as a linear com-
bination of the {«;}. More formally, if M is used to denote
the log-linear model specified by m = m(8), then the MSSs
are given by the projection of x onto M, Pyx.

2. The maximum likelihood estimator (MLE), r, of m,
if it exists, is unique and satisfies the likelihood equations

PMIi'lz PMX. (1)

Necessary and sufficient conditions for the existence of a
solution to the likelihood equations, (1), are relatively com-
plex (see, e.g., Haberman 1974). A sufficient condition is
that all cell counts be positive (i.e., x > 0), but MLEs for
log-linear models exist in many sparse situations where a
large fraction of the cells have zero counts.

For product-multinomial sampling situations, the basic
multinomial constraints (i.e., that the counts must add up
to the multinomial sample sizes) must be taken into ac-
count. Typically, some of the parameters in @ that specify
the log-linear model M [i.e., m = m(0)], are fixed by these
constraints.

More formally, let M be a log-linear model for m under
product-multinomial sampling that corresponds to a log-
linear model M under Poisson sampling such that the multi-
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nomial constraints “fix” a subset of the parameters, 6, used
to specify M. Then the following result holds:

3. The MLE of m under product-multinomial sampling
for the model M is the same as the MLE of m under Pois-
son sampling for the model M.

The final basic result relates to assessing the fit of log-
linear models:

4. Let ¢ be a real-valued parameter in the interval —oo <
¢ < oo. If m is the MLE of m under a log-linear model,
and if the model is correct, then for each value of ¢, the
goodness-of-fit statistic,

2 : z: \°
Kxm)=——=>3 =z [{ =] -1|, (2
G, ) $(d+1) ; (m,)
has an asymptotic chi-squared distribution with ¢ —s degrees
of freedom as sample sizes tend to infinity, where s is the
total number of independent constraints implied by the log-
linear model and the multinomial sampling constraints (if
any). If the model is not correct, then the distribution is

stochastically larger than x2__.

The usual Pearson chi-squared and likelihood-ratio chi-
squared statistics are special cases of the family of power-
divergence statistics defined by K(x,m) in (2). The Pear-
son statistic chi-squared statistics corresponds to ¢ = 1,
and the statistic G? corresponds to the limit as ¢ — 0.
(For further details on the properties of the general fam-
ily of power divergence statistics, see Read and Cressie
1988.)

In the late 1970s, several authors attempted to address the
problem of large sparse asymptotics, for example; for a se-
quence of multinomially structured tables in increasing size,
where the sample size n and the number of cells ¢ or the
number of parameters s go to infinity in some fixed ratio.
Results of Haberman (1977) and Koehler and Larntz (1980)
provide some guidance to statistical practice and suggest
that the usual advice that expected cell counts should be
>5 is far too conservative and wasteful of information in
large sparse tables.

Bartlett’s (1935) no—second-order interaction model for
the expected values in a 2 x 2 x 2 table, with entries m;;i.
is based on equating the values of the cross-product ratio,
a, in each layer of the table; that is,

m111M221
mi21mM211

_ M112M222 3)
m122M212

Expression (3) can be represented in log-linear form as
log miji = u + u1(s) + uz(j) + uUsk) + Ura(ij)
+ Urs(ik) + U23(k)s C)

with suitable linear side constraints on the sets of u terms
to achieve identifiability.

All of the parameters in (4) can be written as functions
of cross-product ratios (see Bishop et al. 1975). Apply-
ing the basic results for the basic sampling schemes ap-
plied to the 2 x 2 x 2 table, we have that the MSSs are
the two-dimensional marginal totals, {z;;,}, {zi1x}, and
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{1,k } (except for linearly redundant statistics included for
purposes of symmetry), where a “+” indicates summation
over the corresponding subscript. Further, the MLEs of the
{m;x} under model (4) must satisfy the likelihood equa-
tions

’Il"li]',u = .’L‘i]'+, Z,] = 1,2,
Mitk = Titks k=12,
and
Th—#—jk = Tyjk, ]ak = 1721 (5)

usually solved by some form of iterative procedure. For
the example actually considered by Bartlett, the third set
of equations in (5) corresponds to the binomial sampling
constraints.

The class of log-linear models just described for the
three-way table generalizes in a direct fashion to k¥ > 4
dimensions. As long as the models retain a hierarchical
structure (e.g., setting u;,(;;) = O for all ¢, j implies setting
12355 = O for all ¢, j, k), the MSSs are sets of marginal
totals of the full table. Further, all independence or condi-
tional independence relationships are representable as log-
linear models, and these models have estimated expected
values that can be computed directly. A somewhat larger
class of log-linear models with this direct, or decompos-
able, representation is described later. All log-linear models
that are not decomposable require an iterative solution of
likelihood equations.

In a multiway contingency table, the model that results
from setting exactly one two-factor term (and all of its
higher-order relatives) equal to 0 is called a partial associa-
tion model. For example, in four dimensions, if u;9(;;) =0
for all i, j, then the MSSs are {z;;x} and {z %}, and the
resulting partial association model corresponds to the con-
ditional independence of variables 1 and 2 given 3 and 4.
The corresponding MLEs for the expected cell frequencies
are

N LitkiT 5kt .
Mkl = ————— V4,5, k[ (6)
T4kl

Bishop et al. (1975) and Whitaker (1990) provided more
details on partial association models and their uses.

3. MAJOR SUBSEQUENT DEVELOPMENTS
3.1 The Graphical Subfamily of Log-Linear Models

A major innovation in log-linear model methods over the
past 20 years has been the development of methods associ-
ated with a subfamily of log-linear models known as graphi-
cal log-linear models. Darroch, Lauritzen, and Speed (1980)
first described these models, and the monographs by Lau-
ritzen (1996) and Whitaker (1990) made accessible most of
the subsequent results in the literature.

This approach uses the vertices of a graph to represent
variables and the edges among them to represent relation-
ships. Conditional independence relationships correspond
to the absence of edges in such an undirected graph. Mod-
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els defined solely in terms of such relationships are said to
be graphical. For categorical random variables, all graphi-
cal models are log-linear. The subfamily of graphical log-
linear models includes the class of decomposable models,
but not all nondecomposable models are graphical. Various
authors have used graphical log-linear models to simplify
approaches to model search, and they are intimately related
to an extensive literature on collapsibility and estimability
of parameters via marginal tables.

3.2 p, Models for Social Networks

Holland and Leinhardt (1981) introduced a log-linear
model for representing relationships among individuals in a
social network. Their model has a graphical representation,
but one that is different from that of the previous section,
in that it links individuals instead of variables. Fienberg,
Meyer, and Wasserman (1985) showed how to explicitly
handle social network data and the Holland—Leinhart model
and its extensions in contingency table form using basic log-
linear model tools. Wasserman and Pattison (1969) provided
related logistic representations.

3.3 Latent Trait and Rasch Models

In psychological tests or attitude studies, one often is
interested in quantifying the value of an unobservable larent
trait, such as mathematical ability or manual dexterity, on a
sample of individuals. Although latent traits are not directly
measurable, one can attempt to assess indirectly a person’s
value for the latent trait from his or her responses to a set of
well-chosen items on a test. The simplest model for doing
so was introduced by Rasch (1960). Given responses for n
individuals on k binary random variables, let X denote the
n X k matrix of responses for n individuals on k binary
variables, and let a and 8 denote the vectors of item and
individual parameters. Then the simple dichotomous Rasch
model states that

log[P (Xi]‘ = 1|9¢,aj)/P (Xij = OIOi,aJ-)] = 9,‘ —- aj. (7)

This is a logit model for the log odds for X;; = 1 versus
X;; = 0. We can recast the observed data x;; in the form of
a n x 2* array, with exactly one observation for each level
of the first variable.

In the 1980s, Duncan (1983) and Tjur (1982) recognized
an important relationship between the Rasch model and log-
linear models for the corresponding collapsed 2* contin-
gency table. Darroch (1986) and Fienberg and Meyer (1983)
represented these models in terms of the log-linear mod-
els of quasi-symmetry, but ignored the moment constraints
described by Cressie and Holland (1983). More recently,
Agresti ('993a, 1993b) and others have carried these ideas
further for other categorical data problems.

3.4 Multiple-Recapture Models for Population
Estimation

If the members of a population are sampled % different
times, the resulting recapture history data can be displayed
in the form of a 2* table with one missing cell, correspond-
ing to those never sampled. Such an array is amenable to
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log-linear model analysis, the results of which can be used
to project a value for the missing cell (as in Fienberg 1972).
Major applications of capture-recapture methodology in-
clude estimating the undercount in the U.S. decennial cen-
sus, where k = 2 (see, e.g., the articles in the special 1993
section of JASA), and the prevalence of various epidemio-
logical conditions, where typically k£ > 3.

The use of standard log-linear models in this context pre-
sumes that capture probabilities are constant across the pop-
ulation. Agresti (1994) and Darroch, Fienberg, Glonek, and
Junker (1993) used a variation of the Rasch model to al-
low for special multiplicative forms of heterogeneity. Fien-
berg, Johnson, and Junker (1999) integrated this form of
heterogeneity into the log-linear framework and explicitly
incorporated the moment constraints in a Bayesian imple-
mentation.

3.5 Association Models for Ordinal Variables

Log-linear models as described in this article ignore any
structure linking the categories of variables, yet biostatis-
tical problems often involve variables with ordered cate-
gories; for example, differing dosage levels for a drug or the
severity of symptoms or side effects. Goodman (1979) pro-
vided a framework for extending standard log-linear models
via muitiplicative interaction terms of the form

UL2(sj) = “;(i)ua(j) ®)

to represent a two-factor u-term. This extended class of
models, known as association models, have close parallels
with correspondence analysis models and both classes have
been developed and extended by Clogg, Gilula, Goodman,
and Haberman, among others. (For a detailed description of
these and other methods for ordinal variables, see Agresti
1990 and Clogg and Shidadeh 1994.)

3.6 Grobner Bases and Exact Distributions

Haberman (1974) actually gave the conditional distribu-
tion for a table under a log-linear model given the marginals
which are the MSSs under the model. But actually calculat-
ing that conditional distribution is quite complex and most
attempts to work with it have focused solely on the cal-
culation of specific quantiles such as p values (see, e.g.,
Agresti 1992). Diaconis and Sturmfels (1998) provided an
elegant solution to the computational problem of computing
such “exact” distributions for multiway contingency tables,
using the group theory structure of Grobner bases and a
Markov chain Monte Carlo algorithm. Applications of this
technology for disclosure limitation can be found in the re-
cent 1998 special issue of the Journal of Official Statistics,
but realistic implementation for high-dimensional tables is
still an open issue.

4. SOME CHALLENGING OPEN PROBLEMS

Although the basic theory of log-linear models and meth-
ods for the analysis of contingency tables was in place
over 20 years ago, and there have been major advances in
various related topics over the ensuing years, some prob-
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lems have eluded satisfactory solution. First and foremost
among these are diagnostics for model fit and graphical
representations for model search. Typical GLM diagnostics
are geared largely to the noncategorical data response sit-
uation and most of the other methods suggested to date
are ad hoc at best. Similarly, although graphical model
tools have helped to simplify model search, we have only
limited graphical representations to link to model search
methodologies.

Graphical log-linear models gave new impetus to the de-
velopments of log-linear model theory in the 1980s and
1990s, and there were related graphical representations for
social network models linking individuals. But these two
graphical representations remain unconnected. Elsewhere in
multivariate analysis, researchers have exploited the dual-
ity between representations in spaces for individuals and for
variables. Perhaps these ideas of duality of representations
might allow us to link the two types of graphical structures
into a new mathematical framework.

The problem of assessing bound for the entries of con-
tingency tables given a set of marginals has a long statis-
tical history going back to work done more than 50 years
ago independently by Bonferroni, Fréchet, and Hoeffding
on bounds for cumulative bivariate distribution functions
given their univariate marginals (see Fienberg 1999 for a
review of related literature). For the more general prob-
lem of a k-way contingency table given a set of possibly
overlapping marginal totals, there are tantalizing links to
the literature on log-linear models described in this arti-
cle, including to the recent work on exact distributions and
Grobner bases described earlier. Implementation of bounds
for large sparse tables is a special challenge.

More generally, as computer power and storage grows,
researchers are attempting to work with larger and larger
collections of categorical variables. We need new meth-
ods of model selection that scale up to situations where
the dimensionality k of the table may exceed 100, and we
need to revisit the asymptotics that are relevant for such
situations.
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