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Table 4: Bounds for cell counts in the 10% sample table given margins corresponding to
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The Diaconis-Sturmfels Algorithm (1998)

[This material is extracted from Fienberg, Makov, Meyer, and Steele (2001).]

Let nois the observed table, p is the table of expected values under the model, ¢ is the constraint
vector representing the conditioning involving marginal totals, and S(c) is the set of all nonnegative
tables satistying the marginal constraints. Let {f1, fo,. ..

S(e).

Lemma: Let o be a positive function on S(c).
,L} and e = £1 with probability 1/2 independently of

choosing I uniformly in {1,2,...

[. If the chain is currently at m it moves to m’ =

with probability min(1, o(m’)/o(m

, fr} be a generating set for the tables in

Generate a Markov chain on S(c¢) by

m + ef; (provided that m’ € S(c)

)). In all other cases the chain stays at m. Thisis a

connected. reversible Markov chain on S(c) with a stationary distribution proportional

to o(m).

By decoupling the “positive” and

“negative”

versions of the move to f; for ¢ = 1,2,..., L,

Diaconis and Sturmfels get transition probabilities that can be calculated for any model, even for
nondecomposable loglinear models, as long as the margins we condition on are those that correspond

to the minimal sufficient statistics. The argument is as follows.

From Haberman (1974), we know that the underlying hypergeometric distribution for the cxact
distribuation of the table under a loglinear model given a set of marginal constraints is
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The denominator in equation (2) is the same for each table with the specified margins and so
the ratio of two such probabilities is only a function of the corresponding numerators.

FFienberg, Makov and Steele (1998), and Fienberg, Makov, Meyer and Steele (2001) analyze the
following example in Table 5, drawn from data from the 1990 U.S. decennial census.

Gender = Male
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 96 72 161 329
Black 10 7 6 23
(Chinese 1 1 2 4

| ‘Total 107 80 169 || 356 |
Gender = Female
Income Level
Race < $10.000 | > $10000 and < $25000 | > $25000 || Total
" White 186 127 51 364
Black 11 3 21
Chinese 0 1 0 1
[Total [ 197 ] 135 | 54 | 386 |

Table 5: Three-way cross-classification of Gender, Race, and Income for a selected U.S. census
tract. (Source: 1990 Census Public Use Microdata Files)

In Table 6 we present the maximum likelihood estimates for the expected counts corresponding
to the entries in Table 5 under the no 2nd-order interaction model with multinomial sampling We
computed these in S-plus. The likelihood ratio chi-squared value for the fit of this model was 2.89
ou 4 d.f. This is indicative of a moderately good model fit, although it is actually somewhat difficult
to assess the fit given the sparseness of the row in the first layer which has a total count of 1 in it.



Gender = Male

Income Loevel

Race | < $10,000 | > $10000 and < $25000 | > $25000 [ Total
\White 97.09 72.15 159.76 329
%ﬂack 9.21 6.41 7.38 23
| Chinese | 0.70 1.44 1.86 4
[ Total | 107 ] 80 | 169 [ 356 |

Gender = Female
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total

White 184.91 126.85 52.24 364

Black 11.79 7.58 1.62 21

Chinese 0.30 0.56 0.14 1

| Total [ 197 ] 135 | 54 [ 386 |

Table 6: Maximum likelihood estimates for data in Table 5 under the no 2nd-order interaction
model.
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