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Disclosure Limitation Using Perturbation and Related
Methods for Categorical Data

Stephen E. Fienberg'. Udi E. Makov’, and Russell J. Sreele’

During the past twenty-five years, the field of disclosure protection has undergone a “‘statistical
transformation’’ and has begun to utilize the advances that have occurred within the field of
ctatistics itself as well as in a variety of areas of application. This article reexamines some
of the approaches currently employed in statistical disclosure limitation methodology for
categorical data. e.g.. cell suppression and data swapping, and relates them to the more
conventional statistical methods associated with loglinear models and the simulation of exact
distributions. It ties this perturbation approach to a general framework for the use of simulated
data which we described earlier in Fienberg (1996) and Fienberg, Steele, and Makov (1996).

Kev words: Bootstrap: cell suppression: contidentiality: contingency table analysis: data
swapping: loglinear models: multiple imputaton.

1. Introduction

Disclosure avoidance methodology has developed over the past 20 years as a major area of
government statistics research and activity. The advances are impressive (e.g.. see the pro-
gress chronicled in Subcommittee on Disclosure-Avoidance Techniques, 1994, especially
when compared with the methodology described in Subcommittee on Disclosure-Avoidance
Techniques. 1978). But all too often these advances appear to be unlinked to the analytical
uses to which most census and survey data are put and to the evolving methods of statis-
tical analysis. During this same 20-year period there have also been major advances in sta-
tistical methodology and theory. A theme of this article is that many of these statistical
tools that come from these latter developments have relevance to the area of disclosure
limitation methodology. For a number of reasons situations involving categorical data
in the form of a contingency table offer an excellent venue for such consideration.
In this article we:

e Review some current statistical ideas in use for data disclosure avoidance for categorical
variables.
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o Present a new statistical framework for data release.
e Relate these ideas and approaches to ““traditional™” statistical methodology associated
with loglinear models for cross-classified categorical data and to the simulation of

associated exact distributions.

Before doing so. we outline a framework in which the problem of data-disclosure avoid-
ance methodology can be viewed. We consider four different parties: the agency or data
collector: the respondents or data providers: an intruder who wants to learn about one or
more data providers via the data to be released by the agency: users or secondary analysts
of the agency data. The question of interest to us is: What data can the agency release for
analysis by the users while protecting the respondents from the intruder (i.e., preserving
their confidentiality)? The practical way in which this question has been answered is
through the application of some disclosure limitation methodojogy that the agency hopes
achieves the desired goals.

For most data releases. especially those from censuses. the U.S. Bureau of the Census
has either released data at high levels of aggregation or applied a data disclosure avoidance
procedure such as data swapping or cell suppression before preparing micro-data or tables
ror release.

Consider a sample of # observations on p variables. which may be discrete or continu-
ous. Our general characterization is in terms of the smoothing of a multi-dimensional
empincal distribution function (an ordered version of the data). and sampling from it using
bootstrap-like selection. Both the smoothing and the sampling introduce alterations to the
data and thus a bootstrap sample will not necessarily be the same as the original sample —
this works to preserve the confidentiality of individuals providing the original data. Two
obvious questions are: How well is confidentiality preserved by such a process? Have
the smoothing and sampling disguised fundamental relationships among the p variables
of interest to others who will work only with the altered data? In this article we focus
primarily on the second of these questions but we do discuss ways to approach answering
the first.

In the next section we review some of the specific methods for disclosure avoidance
that have been proposed in the literature. and that fit under the broad rubric of " matrix
masking.”” In particular we describe two specific methods for ‘ matrix masking'™ when
all of the variables are categorical — a special case of cell suppression and data swapping.
Then. in Section 3. we explain how we view these methods in the context of the users’
analytical goals. In Section 4, we suggest a general strategy for disclosure limitation
that attends to the proposed goals in a non-standard fashion, and we relate the strategy
to some modern approaches from the statistical methodology literature. In Section 5,
we describe in further detail our current efforts at implementing a perturbation method
related to this general strategy in the context of contingency table problems. We end
with an outline of research that would put the general strategy suggested on a firm
theoretical foundation.

There are a number of excellent articles that attempt to bridge the gap between the
literature on disclosure avoidance and more general statistical methodology, beginning
with the pioneering work of Duncan and Lambert (1986) and (1989), and continuing with
contributions to the special 1993 issue of the Journal of Official Statistics on confidentiality
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and data access. This article builds both directly and indirectly on a number of these earlier
ctforts.

The general strategy proposed here has appeared in other articles in the past; see €.2.,
Liew. Choi and Liew (1985). Little (1993). Rubin (1993), and Fienberg (1994b). Heer
(1993) has suggested a bootstrap method for contingency tables which is related to but dif-
ferent from our proposals for the use of exact distributions in Section 5. Finally, Kennick-
ell (1997) has recently reported on results of a multiple imputation approach to disclosure
limitation. To our knowledge, no previous authors have integrated these ideas with both
the full literature on loglinear mode! methods and that on disclosure limitation.

2. Matrix Masking for Micro-data

Duncan and Pearson (1991) give an excellent description of approaches to the masking of
microdata. Suppose that X is an » by p matrix representing the microdata for n individuals
or cases on p variables or attributes. Then matrix masking of the microdata file X provides
the user with the transformed file Z = AXB + C in lieu of X. The matrix A transforms
cases. B transforms variables. and C blurs the entries of AXB. Cox (1995) explicitly links
ceveral of these methods. especially data swapping, to the matrix masking approach, and
Fienberg (1994a, 1997) provides a more detailed discussion of the link between matrix
masking and a number of proposed disclosure limitation methodologies. Fuller (1993)
and Sullivan (1989) provide an informative presentation of the effect of some specific
implementations.

A special case involving the deletion of rows is the method of cell suppression. Suppose
we are interested in summarizing a set of data in the form of a cross-classification of
counts or nonnegative aggregates. Deleting or suppressing a cell value is equivalent to
the deletion of those rows of X for which the entries in columns corresponding to the
cross-classifying variables assume the values that specify the cell in question. Cell
suppression is widely used for data on establishments because counts of “*1’7 or 2"
may uniquely identity a respondent. or one or two establishments dominate an industry,
and thus their ““share’” comprises a large fraction of a weighted total. For simplicity
here we focus on the version of cell suppression that weights the respondents equally
and thus acts directly on a table of unweighted counts.

In the case of a simple table of counts, current practice at the U.S. Census Bureau and
clsewhere would reduce to the suppression of any cell where k = 3 or fewer respondents
make up that cell’s value. Such cells are referred to as primary suppressions. Typically an
agency using such a rule keeps the value of k as well as the method used for selection of
cells confidential.

Because reported cross-classifications usually include the corresponding marginal
{otals, suppressing a single cell produces multiple masks for the same matrix and, taken
together, these masks do not disguise the data — the value of a deleted cell in a two-way
array can be retrieved from the other entries in the same row Of column combined with
the corresponding marginal total. Thus methods for cell suppression in cross-classifications
also choose other cell values for suppression; these are often referred to as complementary
suppressions. Determining " “desirable’” patterns of complementary suppressions is an active
area of research, especially for multi-way cross-classifications (see €.g-, Cox (1995)).
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It is important to note for the present context that the basic approach in cell suppression
is one involving margin preservation, i.e., in the 2-way table the method for suppression
preserves both sets of one-dimensional marginal totals, {n;,} and {n;}, by design. In
higher dimensions, cell suppression also preserves marginal totals but possibly those of
highest order. The principal problem we have with cell suppression as a method is
that it intentionally *‘distorts™” the information in the table by purposely selecting cells
to suppress. As a consequence, users can be led into misleading and, in particular, biased
inferences on the basis of the cell values that are reported.

In 1978. Dalenius and Reiss (1978) proposed a method for “swapping’’ observations
while preserving marginal totals. According to Dalenius and Reiss’s definition of a k-order
swap. all k-way marginals are preserved. No higher order marginals are guaranteed to be
preserved. They present no algorithm for doing these swaps or finding which ones are
available. They do. however. present theorems and statements about the probabilities of
there being swaps. We can view data swapping as a special case of matrix masking at least
in its simplest forms as noted above.

To understand the idea of data swapping. we consider a 3-way contingency table with
entries {11} as in Table 1. We want to track what happens when we swap the value in the
(1.2.1) cell of layer 1 of Table 1 with the (3.1.2) cell in layer 2. Table 2 shows the result.
Note that the 2-dimensional total for the first two variables (adding over layers of Table 2)
is unchanged. as is the I-dimensional total for the 3rd variable.

Thus in moving from the original table to the table with the swapped pair of observa-
tions we end up by perturbing the data. in a 2x2 subtable using a ““local move™
pair of observations in a way that preserves the two-way totals, {n;, }, and the one-way
totals. {n, ). Data swapping involves the repeated application of such moves of pairs

of a

of randomly selected observations.

The U.S. Census Bureau actually used a variant of data swapping for the release of 1990
Census microdata, swapping a somewhat small percentage of records between *‘nearby’’
census blocks (see Griffin, Navarro, and Flores-Baez (1989), Navarro, Flores-Baez, and
Thompson (1988). as well as Subcommittee on Disclosure Avoidance Techniques,
(1994), and Fienberg, Steele, and Makov (1996)). The results were considered to be a suc-
cess and essentially the same methodology has been proposed for data releases from the
2000 Census. As used in this context, data swapping also distorts the data to some extent

Table 2. Altered 3 x 2 X 2 table with marginals; (1,2.1) cell swapped with (3,1,2) cell
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because the number of swaps is not released and the resulting increase in the variability
associated with the perturbations cannot easily be incorporated by the user into analyses
without full information on the extent of swapping and the margins that are preserved.
But if we view data swapping as a first approximation to the method proposed in Section
S below. then one can show that it is at least consistent. Thus the distortion is only an
increase in variance and not the systematic bias that might result from using data to which
cell suppression has been applied.

Both the method of cell suppression and the method of data swapping preserve marginal
totals in contingency tables. But this is also a property associated with loglinear model
methods. What is interesting is that despite the fact that cell suppression and data swapping
have been presented in the same sessions in various forums (see e.g., Cox and Sande
(1978) and Dalenius and Reiss (1978) and the discussion of the two articles by Zalkind
(1978)). previous authors have failed to note this clear relationship between these methods
a5 well as to methods in the contingency table literature. Reviewers and others have
questioned whether the preservation of marginal totals is a statistical necessity. In fact.
from a modeling perspective one can argue over the desirability of working with fixed
margins. but as a practical matter it is consistent with the practice of many statistical
agencies, especially when the margins are matched with those from censal records or a
baseline survey. through poststratification and/or raking. For us margin preservation in
tables is intimately linked to loglinear models. as we have noted, and working with the
“exact’” distribution for a given loglinear model given its minimal sufficient statistics,
4s we do in Section 5. is 1 convenience that matches the practicalities of current agency
practices.

More recently, Gouweleeuw et al. (1998) propose a postrandomization method (PRAM)
for data perturbation that fits. at least approximately, into the class of matrix masking
approaches. PRAM applies a randomization to selected variables in the dataset but in a
form that allows the user to draw proper statistical inferences. In PRAM, the equivalent
of the matrix A is stochastic and, instead of an additive matrix C, there is a sampling error
associated with each case whose variance depends on the parameters underlying A.
Gouweleeuw et al.’s version PRAM acts on individual or blocks of variables indepen-
dently. and is applied independently to each variable in a microdata file. Duncan and
Fienberg (1998) have proposed a generalization of PRAM to allow for multi-way depen-
dencies that preserve specified marginal totals, in a fashion that is closely linked to the
methods described in Section 5.

3. Perspective on Data Release and Disclosure Limitation

Typical users of government statistical data are interested in relationships and causal
connections for policy choices. They use statistical models to describe such relationships.
Often their view of *‘error’” is akin to including an error component in an analytical model
(such as a regression error term ¢ in the equation Y = By + 81X + €). Otherwise, the user
has limited ways to address the multiplicity of information on uncertainty and error
coming from the statistical agency that produces the data.

Most users are interested in analytical models, and especially ones with causal implications.
Thus we can think of the users’ objectives as involving the linking of response variables,
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Y. and explanatory variables, X, through a statistical model that attempts (o represent
«ome underlying substantive phenomenon. Unfortunately we rarely get to observe or
measure Y and X directly. What is produced through a census or a survey questionnaire
is often a related but fallible measure of the quantities of real interest. These we label
Y* and X*.

We can take as the user's objective the estimation of a multivariate cumulative distribution
function (c.d.f.), of the forms Fy x or Fyx ¢ for various values of X, or at least characteristics of
such a multivariate c.d.f. Here the parameter § might be a population mean or variance, ,uora ,
ora parameter(s) inastatistical model suchasaregressioncoefficient, 8, probably multidimen-
sional in form. In the ensuing discussion we ignore those sources of measurement error in X
beyond these forms captured in the agency’s own evaluation and data preparation activities.

Fstimation of a multivariate ¢.d.f. is a general statistical problem that includes a number
of interesting special cases. For example, suppose that all of the variables in the user’'s
model and in the data set are categorical in nature, as is often the case in censal and survey
settings. Then the ¢.d.f. is essentially equivalent to the table of conditional probabilities
tfor Y given X) that correspond to the cross-classification of the variables in contingency
table form (cf. Bishop. Fienberg. and Holland (1975)). We refer to this special case again
in Section 5 and provide an extended set of references and notes on it.

At the risk of oversimplification. we can characterize the standard approach to data
collection, processing and release roughly as follows:

e Collect and “clean up™” the raw data. This includes editing, matching and all other

preliminary processing.

e Protect the data by applying some form of data disclosure avoidance methodology.

e Release the resulting data either as set of marginal tables for some larger cross-

classification, or as micro-data files for the variables related to the ones of user interest
(Y* X*).

» Estimate 6 directly using a sample-based quantity, 6.

In effect. the user then follows the agency's lead and estimates the c.d.f. directly from
the released data using the ““empirical” ¢.d.f. (suitably weighted to take into account
the impact of the survey design), Fy.x« OF possibly a more elaborate and smoother
parametric estimate based on the estimated parameter, i.e. FYHX*'g,.

While this approach might make considerable sense for some descriptive statistical
problems, the fact is that me* and wa*@ rarely reflect fully aspects of sampling error
such as clustering, which many believe to be important, and they almost never reflect the
other sources of error listed above that typically dwarf sampling error. Further, given the
current state of the art of statistical disclosure limitation methodology, the user may still

be able to *‘identify’" individuals in the relcased data. One way to overcome these short-
comings is to continue to address the various components of error and to separately
improve the approach to data disclosure avoidance. Alternatively, we can attempt to
reconceptualize the data reporting problem in a new and integrated fashion.

4. Alternative Strategy and Framework

Here we propose an alternative approach to the release of survey data that we described
earlier in Fienberg et al. (1996). We begin with the goals of the users and ask how agencies
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should organize the data of interest in order to provide data that fit with the user goals. Our
approuach is cast in terms of the release of a public-use micro-data file that is intended
to support analyses for the conditional distribution of Y* given X*. The first step in our

Prescriplion Is:

1. Combine the census or survey data that the agency would normally have chosen to
release, in the form Fy, x. and Fy, x, 3 with formal statistical information on error,
e.g¢.. form editing, matching, nonresponse. etc. and apply some form of parametric or
semi-parametric technique to estimate Fy,x and Fyx, using all available data by
Fyx and ﬁwx,é respectively, where 8 is a new estimate of 8 cast in terms of the
distribution of the variables of actual user interest, Y given X.

For non-parametric estimation of Fy x we can either think in terms of a classical statis-
tical approach using some type of kernel density estimator or a related type of “*smooth’™
estimate. or in terms of a Bayesian approach based on the mixture of Dirichlet processes
ivee o, West, Miiller. and Escobar (1994)) or the use of Polya trees (Lavine (1992)).
These tools. however. have been used primarily in low-dimensional problems and thus
there needs to be additional research to study their adaptation to the high-dimensional
censal and survey problems which are the focus of this article. Even if these methods
are not especially etficient for statistical estimation purposes, thev may serve the needs
of data disclosure avoidance which are crucial to the strategy outlined here.

In what wayvs does this new smoothed estimate of Fy y differ from the one that is explicit
orimplicit in the current approach? We offer three examples. First, consider the release of
decennial census data. In both the U.S. and Canada. there has been extensive documenta-
tion of the extent of census undercoverage and how the resulting undercount is distributed
across groups in the population and across geographical areas. Failure to correct for
such undercoverage in the release of data leads to biased estimates of the true quantity
of interest. Fy x. Second. by smoothing data to reflect regression-like relationships we
can tvpically achieve improved estimates with much lower variances, although at the price
of some potential bias. Finally, by incorporating agency information on components of
error (which tends to increase vartances) into the statistical estimation process, we produce
a new smoothed estimator of £y x.

We hasten to add that this smoothing process should not be viewed simply as standard
model selection and fitting. for the goals here are different. The smoothing process possi-
bly involves models but should not be carried out in a way that “‘oversmooths’’ the data.
Thus the results of smoothing should ideally be compatible with competing models for the
data which subsequent analysts could produce by working with the smoothed c.d.f.’s.

The next steps in our prescription are:

2. Instead of releasing the c.d.f. estimated in step 1 above, the agency now *‘samples™
from it to create a ““pseudo’” micro-data file which we label as I:"Y@x and IA-"Y‘X‘(;. We
use the overbar to indicate a sample from the smoothed c.d.f."s in accord with our
earlier notation for the empirical c.d.f., which corresponds to a sample, and the
hat to indicate that we are sampling from the smoothed or estimated c.d.f.

3. The agency repeats the process of “'sampling”” and then releases the resulting replicate

“pseudo’’ micro-data tiles.
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The *'pseudo’’ micro-data files created in the approach outlined above have several
interesting features.

First, if we think of them as consisting of a set of released records for individuals,
then these “individuals’™ do not necessarily correspond to any of those in the original
sample survey. This fact enhances the public notion of the protection of confidentiality
of responses even if an intruder might still be able to indirectly make inferences about
individuals in the original sample. This point is especially important from the perspective
of data disclosure avoidance. Since the individuals in the pseudo micro-data file are not
typically those from the original sample, we have at least in part addressed confidentiality
concerns. After all, we no longer even appear to be releasing data for any individual from
the original sample. But this discussion of data disclosure avoidance is somewhat illusory.
It remains possible that individuals, whose values on Y and X are far from those for the rest
of the sample, may still in effect be regenerated through this complex statistical estimation
process and reemerge virtually intact in the pseudo micro-data file. Thus we would argue
that empirical checks on the effectiveness of data disclosure avoidance are still necessary
and. in particular, we would advocate examining the issue from the perspective of an intruder
(see e.g., Fienberg, Makov, and Sanil (1997). or Lambert (1993)).

Second. there is close connection here with two recently developed statistical methods:
(1) the bootstrap (Efron (1979), Efron and Tibshirani (1993)) which is a classical method
involving repeated sampling (with replacement) from an empirical distribution function;
{2) multipie imputation (Rubin (1987) and (1993)) which is a Bayesian method for gen-
erating values that are sampled from a posterior distribution. Our preference is to think
about the estimation implicit in the approach outlined here from a Bayesian point of
view. Thus, in effect, we are proposing that agencies should first estimate the empirical
distribution tunction, generating the full posterior distribution of Fyx or Fyxy and
then sample from it using Rubin’s multiple imputation approach. From this perspective,
the bootstrap can be viewed as a way to sample trom something approximately akin to
the mean of the posterior distribution.

Third. the sample design for the released records need not be the same as that for the
original sample survey. Thus, at least in principle, the agency could use simple random
sampling, or even sampling with replacement from i:Y\x or i“ygxig, Rubin (1993) empha-
sizes this point without explaining exactly how to determine what we might call the
“equivalent’’ sample size for the released data files. The heuristic idea is that there is
only so much information available in the data and the resampling process cannot increase
this. To preserve the appropriate level of accuracy in the data we need to have a bootstrap
sample size that at least is conceptually equivalent to the ‘“effective sample size’’ of the
complex sample design, thus reflecting a design effect. This notion is somewhat proble-
matic, however, as the “‘effective sample size’” might well vary from one analytical set-
ting to another!

But perhaps the most important feature of the approach is that users can now analyze
pseudo micro-data files to estimate specific quantities of interest, e.g., 8, using standard
statistical methodology. In essence the idea is that we can use a standard statistical method
such as regression analysis or something more elaborate and thus will produce consistent
estimates of the coefficients of interest. What we cannot do, however, is use the usual

estimates of standard errors that result from the standard analysis tools.
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One of the lessons from both the bootstrap and multiple imputation is that while we can
estimate 6 using standard statistical methodology applied to the generated bootstrap or
multiple imputation sample. we cannot get a proper handle on the variability of our esti-
mates without using replicate versions of the pseudo micro-data file. Generating multiple
replicates. however. is a relatively simple task. and estimating variances using the multiple
versions of estimated parameters is then straightforward and does not necessarily require
special computer programs. This technique of using replicate samples can be exploited for
model selection as well, although that process would obviously be superior if done with
the full posterior distribution.

5. A Related Approach for the Categorical Data Case

Here we outline the estimation and simulation process of Section 4 for the special case of
categorical variables and cross-classification. Our focus is on parametric estimation of
the ¢.d.I.. which as we note above is equivalent to estimating the cell probabilities in a
contingency table.

The most common class of statistical models used in connection with contingency table
data is the loglinear model and for a set of basic sampling schemes (see e.g.. Bishop. Fienberg,
and Holland (1973) and Whittaker (1990)) there is a direct relationship between a specific
hicrarchical loglinear model and a set of marginal tables that correspond to the minimal
sutficient statistics associated with the model. If we report only those marginal totals
appropriate for a loglinear model that fits the data well. then another investigator can,
in effect. reconstruct the cell probabilities for the full contingency table (cf., Fienberg
(1975)1. Further. reporting only a specific set of marginal tables is saying that these are
the only totals needed for inference. and this is implicitly suggesting the appropriateness
of a specitic loglinear model.

As we noted in Section 2. cell suppression and data swapping are in common use as
methods for disclosure limitation in categorical variable settings. Unfortunately there
weems 1o be a total disconnect between the literature on disclosure limitation for catego-
rical variables and the now standard literature on loglinear models for categorical data.
This is rather unfortunate since. as we noted in Section 2. the notion of margin preservation
is fundamental to both cell suppression and data swapping. In the former, cells are
suppressed subject to marginal constraints, and in the latter. individuals with one set of
margins fixed are swapped between cells, thus preserving other totals. Thus key features
of these methods can be embedded in the loglinear model framework, thereby suggesting
alternative ways to approach disclosure avoidance. Further results from the loglinear
model literature may well be of value in understanding the properties of methods such
as cell suppression and data swapping (cf. the discussion in Fienberg (1995) and
(1997)). but here we pursue an alternative approach linked to the general strategy
described in Section 4.

Our approach needs to be embedded in a model selection and estimation framework
where the goal is to develop a replacement table for the original one whose entries are

“compatible” with those in the original table, and which. when analyzed would allow
the user to draw inferences similar to those drawn from the original table. The first step
in such a process is deciding on a model that captures the essential features of the data.
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Consistent with the initial smoothing stage of the general strategy proposed in Section 4.
we would advocate a model which “overfits™ the data. i.e.. whose corresponding marginal
totals are more extensive than those that might result from a detailed analysis by a specitic
user. This means that users who analyze the replacement table will be able to search
for models and relationships that remain when we preserve the marginal totals and are
contatned within the model used to generate the replacement table.

Generating the distribution of all cross-classified tables of counts that satisfies a given
set of marginal constraints is a problem which has occupied the attention of a substantial
number of statisticians in recent years (e.g.. see Agresti (1992)). A number of algorithms
have been proposed but they have been implemented primarily for two- and three-way
cross-classifications. New ideas from the literature on graphical loglinear models suggest
that implementation for higher dimensions may at least become feasible (see e.g., Lauritzen
(1996). or Whittaker (1990) for details of graphical models). The framework we outline in
Section 3 requires us to produce a smooth c.d.f. and then sample from it. In the present
context, this seems to suggest, at least heuristically. that we should consider making draws
from the exact distribution conditional on a fixed set of marginal totals.

Consider a three-dimensional contingency table with cell counts {#,;} and expected cell
values {m,,; }. We can fit loghnear models to the expected cell values such as the model of

ne 2nd-order interaction.
]Og M=t + 1y, + s oy, + 2 + R + ul3ljk) (1)

with appropriate side-constraints for identification purposes. The minimal sufficient statis-
tics or “tully efficient staustics™ for this model are the margins that correspond to highest
order terms: (| {ng b g

A special case of Model (1), in which uas ) = 0 for all j and £, is interpretable as
the conditional independence of Variables 2 and 3 given Variable 1. All conditional
independence models for a multidimensional contingency table are loglinear models.

In unpublished work. John Darroch and Gary Glonek attempted to construct a Markov
chain algorithm for generating draws from the conditional distribution given the margins
imphied by a loglinear model. The transitions of their Markov chain in effect involved one-
step data swaps. Diaconis and Sturmfels (1998) show how to implement a generalization
of the Darroch and Glonek approach using the method of Grobner bases and provide a
proof of the convergence of the algorithm through the irreducibility of the Markov chain.
The important thing to note for the present circumstances is that simple data swaps are not
sufficient to “‘reach’’ all possible tables. The method of Grobner bases gets around this
problem by introducing *‘generalized data swaps’’ that combine specific pairs, triples,
ete. of data swaps in very specific forms. Fienberg et al. (1997) explore this methodology
in connection with a number of different non-decomposable graphical loglinear models
and we illustrate results from this approach in the example below.

In order to ensure some level of smoothness in the resulting tables associated with
random draws from the exact distributions discussed above, we can retain only those
draws “"compatible’” with a more complex loglinear model. Note that the vanability of
the perturbation methodology used here is directly accessible to the user. since anyone
can begin with the reported table and information about the margins that are held
fixed. and then run to Diaconis Sturmfels Markov chain algorithm to regenerate the full
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distribution of 4l possible tables with those margins. This then allows the user to make
inferences about the added variability in a formal modeling context in a form that is similar
to the upproach to inference in PRAM hy Gouweleeuw et al. (1998). As a consequence.
the procedure proposed here. and variants on it. represent a major improvement from
the perspective of access to data over cell suppression and data swapping.

An intruder can follow the user in attempting to identify individuals represented in the
cross-classification. The principal tool at the intruder’s disposal from the released data is
the information from the released marginal totals. These can be used to compute upper and
lower bounds on the table entries and thus to determine the disclosure exposure of the
release (see e.g.. Fienberg (1998)). If the upper and lower bounds for some cells are
“'too close™ to one another then the agency must suppress marginal information relevant
to the user’s needs, thus restricting the utility of the released data. But then the decision to
suppress becomes a conscious one and its implications for the subsequent analyses by
others can be explored. and perhaps mitigated by instructions or information provided
to secondary analysts.

The intruder can alternatively use the information on the released marginals to generate
the relevant Grobner basis and then run the Markov chain procedure to yield all possible
tables with the fixed margins. If cells with entries of 17 or **2."" for example. are almost
always unchanged across tables, this information is akin to that from the bounds. and the
responsce to it must be similar.

An alternative to the procedure outlined in this section would be the generation of a full
posterior distribution for the cell probabilities in the table, e.g.. using the methods of
Epstein and Fienberg (1992) and/or Madigan and York (1995). and then sampling from
that posterior distribution as in multiple imputation. We hope to explore this approach
in a tuture article.

6. An Example

The following 3-way table example gives the cross-classification of individuals by race,
gender. and income (collapsed into three categories) drawn from the 1990 U.S. Decennial
Census Public Use Files (see Table 3).

In Table 4 we present the maximum likelihood estimates for the expected counts
corresponding to the entries in Table 3 under the no 2nd-order interaction model with
multinomial sampling. We computed these in S-plus. The likelihood ratio chi-squared value
tor the fit of this model was 2.89 on 4 d.f. This is indicative of a moderately good model fit,
although it is actually somewhat difficult to assess the fit given the sparseness of the row in
the first layer which has a total count of 1 in it.

Then we generated 1,000,000 tables with the same 2-way margins, using the Diaconis and
Sturmfels (1998) algorithm (see the Appendix for details). For each table, we calculated
the likelihood ratio chi-squared goodness-of-fit value based on the maximum likelihood
estimates for these margins under the no 2nd-order interaction model. In Figure 1, we
have plotted the ordered likelihood-ratio chi-squared values against the cumulative values
from the corresponding x2 distribution with 4 d.f. A good fit to the )(2 distribution would
be represented by a straight line. We can see by the plot that the distribution of our simulated
tables does not fit the x~ distribution as well as we might have hoped. This is due again to the
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Labie 3. Three-way cross-classification of gender. race, and income for u census tract. (Source: 1990 Census

Pubie Use Microdata Files)

Gender = Male

Race Income level

<$10.000 >$10.00 and < $25.000 > $25.000 Total
White 96 72 161 329
Black 10 7 6 23
Chinese I | 2 4
Total 107 80 169 356
Gender = Female
Race Income level

<$10.000 >$10.00 and < $25.000 > $25.000 Total
White 186 127 51 364
Black 11 7 3 21
Chinese 0 1 0 1
Total B 197 135 54 386

sparse nature of the table. Because the maximum likelihood estimates for the sparse cells are
not whole numbers, we cannot reach tables that have very low-chi-squared values. because
we cannot get close enough to the maximum likelihood estimates. Yet, other than the bias at
the low end of the distribution, the distribution seems to be approximately chi-squared.
Clearly the selection of a single table from the distribution of all possible tables,
cxemplified by the simulation study reported on in this section, poses a problem and we

Table 40 Maximum likelihood estimates for data in Table 3 under the no 2nd-order interaction model

Gender = Male

Race Income level

= $10.000 > $10.00 and = $25.000 >$25,000 Total
White 97.09 72.15 159.76 329
Black 9.21 6.41 7.38 23
Chinese 0.70 1.44 1.86 4
Total 107 80 169 356
Gender = Female
Race Income level

= $10.,000 >$10.00 and = $25.000 > $25,000 Total
White 184.91 126.85 52.24 364
Black 11.79 7.58 1.62 21
Chinese 0.30 0.56 0.14 1
Total 197 135 54 386
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Chi-squared fit for Census Table
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Fig. 1. Chi-squared goodness-of-fit plot for simulated values using the data in Table 3

need 1o consider “rejecting”” those tables far from the original data. We can do this using
some type of chi-squared distance measure (see e.g., those described in Bishop et al.
(1975) or in Read and Cressie (1988)), although we have not implemented such a rejection
process here to select a single table or even a set of tables to report.

The dimensionality of the table in this example has simplified our task of implementing
the exact table methodology outlined in Section 5. Implementation for high-dimensional
tables would be computationally intensive, with the most difficult task being the genera-
tion of the Grobner basis used in the Markov chain. We continue to explore this methodol-
ogy for simplifications.

Finally, there is level of disclosure risk associated with this table, because of the two
counts of **1"" in the marginal totals that are held fixed. Fienberg (1998) computes the
upper and lower bounds for the cell entries in this example given the two-way margins,
and Fienberg and Makov (1998) discuss the same example in the context of estimating
the existence of *‘population uniques.”

7. Discussion and Further Research

It is important to distinguish between the idea of generating public-case micro-data
files based on real people and real data through a statistical simulation process, such as
we have outlined in this article, and the typical micro-simulation model, which may rely
indirectly on data via statistical models but which does not correspond to data on real
people. There is a serious difference between “*pseudo people’” who resemble individuals
from whom we have actually collected data of interest, and *‘imaginary people”” for whom
we have invented data through a stochastic or nonstochastic modeling process. In this
article we propose the former, not the latter. There are, of course alternatives such as
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aggregation and collapsing. which fit the matrix masking framework outlined in Section 2.
and comparisons with them do need to be made in practice.

There are several virtues of the proposed framework outlined above. First. we believe that
it would force agencies to take their own data and their sources of error more seriously. as
these are key inputs to the modeling effort outlined in Section 4. Second. we believe that it
would solve a large part of the data disclosure avoidance problem. Third, the framework
would generate public-use micro-data files of a form that would allow users to apply
standard statistical methodology and model search methods (cf.. Gouweleeuw et al. (1998).

There are a number of formidable technical details that need to be addressed before an
agency could properly implement the proposed framework in a systematic fashion. For the
exact distribution method for contingency tables outlined in Section 5, the computational
details for high dimensions remain problematic. For the general perturbation approach of
Section 4, examples of technical issues include:

e How should an agency combine the multiple sources of error and uncertainty?

e What smoothing methods should be used and how much smoothing is appropriate?

e How do we determine “effective’” sample size for pseudo micro-data files? The
application of bootstrap ideas relies on certain series expansions (see e.g.. Hall
(1992)), and these typically require the use of a bootstrap sample of the same size
as the original sample. What is the equivalent notion here?

e How many replicates are required for variance estimation? Rubin (1993) suggests the
use of four or five replicates in the multiple imputation context. Efron and Tibshirani
(1993) use very large numbers of bootstrap replications. Multiple imputation gains its
power in this regard trom the parametric specification of the full posterior distribution.
Will a smaller number of replicates suffice for either approach?

Further. the actual implementation of algorithms of the highly multidimensional
situations involved in censal and survey data may require new statistical methods and
theory. For example, as we suggested in Section 5, the problem of simulating from
distributions for multidimensional contingency tables subject to marginal constraints
has been implemented primarily for two- and three-dimensional tables. Implementation
for higher dimensions requires new strategies and algorithms. These are at the forefront
of current statistical and mathematical research.

Finally. we may need to think about the statistical estimation problems outlined here
in a form different from that which we usually find in the methodological literature. It
would be wrong, however, to think of the approach suggested here as being rooted solely
in bootstrap theory or as relying on Bayesian multiple imputation, as that would in essence
be expecting to get usable perturbed data at “‘no cost’ in terms of bias and variability.
There is a price to pay for disclosure limitation, and the more restrictions one places on
the release of data the bigger the price. Moreover. because of the multiplicity of goals
that we are attempting to address, we may need to think in terms of providing the users
with data that enable them to approximate the conditional distributions Fyx and Fy;xg
rather than reproduce them in a precise statistical fashion. This relates to Meng's
(1994) notion of uncongeniality between an imputer’s assessment and those assessments
of the users.

In this article, we have tried to suggest that both government agencies and users bear
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responsibility when it comes to utilizing census and survey data. It is no longer enough for
agencies to prepare public-use files and extensive sets of tabulations as they have in the
past. Nor can they continue to ignore the analytical goals of the users of their data. At
the same time, the users must learn how various sources of survey error affect their ana-
lytical goals. and to build such information into the statistical procedures they use. We
have argued that, by looking to and utilizing recent developments in statistical methodol-
ogy. we may be able to develop an integrated approach to the release and analysis of survey
data which will help us all learn to take uncertainty and error seriously. Perhaps the frame-
work proposed in this article will be the first step towards this goal.

Appendix: Algorithm Used to Generate Chi-Squared Values in Example of Section 5

In Section 6. we used the Grobner bases generated for various examples as input to the
generation of values from the exact distribution using the Monte Carlo algorithm proposed
i Diaconis and Sturmfels (1998). and described in Fienberg et al. (1997). Sampling
irom the output generated by the Markov chain involves some care since we need to avoid
the dependence associated with persistence in low probability states. We replicated the
following detailed approach used by Diaconis and Sturmfels (1998) in their contingency

rable example.

Read real wable, mie table and moves into respective structures
tfor i := | to (number of tables x 500)
rl : = randomiy gencrated number from | to number of moves
temporarily make move rl to find table probability
r2 ;= randomly generated number from Unif{0,1]
it table probability > r2 and move creates no negative cells
then make the move permanently
else do not make the move permanently
it i mod 500 =0
then print current tables’ chisquared value
next i
This algorithm is straighttorward. In order to keep from oversampling tables that have a
low transition probability, the algornithm samples every 500th table, therefore requiring
500 x the number of desired tables iterations to run. The step which avoids the creation
of negative cell values was actually coded into the function that changed the table only to
make it obvious that one would not want to allow a table with negative cells. Another
way to do it would have been to assign zero probability to any table with negative cells.
The chi-squared value of the table was based on G* = —2log\, where \ is the likelihood
ratio using the user supplied maximum likelihood estimates (MLEs) for the table cell entries,
under the multinomial sampling model. These are functions of the fixed margins, and can be
computed using standard algorithms, e.g., we used the routine for MLEs in S-plus.
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Comment

. /
Peter Kooiman

One person’s noise is another person’s signal
(Gary S. Brown, 1998)

1. Introduction

The study by Fienberg et al. contains two lines of thought. Sections 2. 5. and 6 deal with
data swaps in cross tabulations of categorical variables. keeping certain margins intact. |
consider the log linear modeling approach advocated by the authors promising; it could
provide u sound statistical underpinning to such data swaps. However, in Sections 3
and 4 the authors extend their approach to a strategy for the release of survey microdata
sets broadly. For this type of data release 1 am quite skeptical about the feasibility of
the modeling strategy. Finally T draw a parallel with the Narional Accounts process.

2. Data Swapping in Cross Tabulations

The authors provide an interesting and innovative discussion of data swapping in cross
tabulations of categorical variables. Cross tabulations published by statistical agencies
typically involve only a few dimensions. Only when very detailed classifications are
used. or populations are very skew. disclosure problems may occur in such tables. Then
table cells have to be suppressed or data swaps have to be applied, moving table entries
from one cell to the other. Hitherto such swapping procedures have been applied rather
mechanically or deterministically. In my opinion the main virtue of the study is that it
opens up a line of research which could provide sound statistical underpinnings for
data swapping methodology. The idea is to first try and reduce the frequency table to
be protected by searching for a more parsimonious representation through log-linear
modeling. Assuming that a satisfactory model exists which is more economical than the
fully saturated one, we can separate off some noise from the signal present in the
frequency table. Keeping the signal intact, we can then concentrate our data swaps in
the noisy part. From the point of view of subsequent analysis this is harmless, provided
we apply the swaps in such a way that no artificial structure emerges where in the original
table no structure existed. If the model of the frequency table can be represented as a set of
marginal tables these tables contain all useful information there is in the original table, and
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Acknowledgments: The views expressed in this comment are those of the author and do not necessarily reflect
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it is then quite natural to devise procedures which keep these tables intact. As an alterna-
tive the agency might conclude that it should revise its set of tables to be published: when
ail useful information is contained in a subset of marginal tables, why not publish these
tables instead of the original higher-dimensional one, contaminated with uninformative
notse”?

In Section 4 and parts of Section 5 of their study the authors claim that the approach set
out above can be extended and developed into a new strategy for the release of survey
microdata files. Unfortunately it is not entirely clear to me how the two parts relate.
The general strategy is phrased in terms of the conditional distribution of Y given X.
Apart from this being very problematical for a statistical agency preparing a data file
for general use (almost any variable can act as Y or as X, depending on the research
question involved), it is at odds with the log linear modeling of frequency tables which
concentrates on the full joint distribution of all table entries, i.e., Fy y instead of Fy.
Also the general strategy nowhere mentions the problem of simulating from a data
model keeping certain margins intact, which is at the core of the other part of the study.
Indeed almost all of the technical problems arising in the data swapping part of the study
are precisely attributable to the fact that we have to simulate conditionally on given
margins. The authors implicitly admit the weak relationship between the two parts
when they state, a few lines before their Equation (1) in Section 5, that the general
strategy applied in the context of log linear modeling of categorical data sets *‘seems
to suggest, at least heuristically, that we should consider making draws from the exact
distribution conditional on a fixed set of margins’ (italics mine). This is indeed not a
very strong claim.

3. Releasing Microdata

In the remainder of this comment [ concentrate on the claim that the general modeling
strategy the authors present can provide a basis for the release of survey microdata
files. My frame of reference is a statistical agency that purports to provide the academic
community with general purpose microdata files for statistical research. The strategy
consists of a modeling step. in which the agency develops a data model which is more
parsimonious than the data set itself, and a simulation step in which a number of replicate
pseudo microdata files are created by drawing from the exact distribution associated with
the model. As I understand it, the authors have in mind a situation where a model can be
obtained which on the one hand *‘overfits’’ the data, so that it does not distort the relevant
data patterns, and, on the other hand, is economical enough to leave room for data swaps
orthogonal to these data patterns.

To fix ideas let us think of a data set of 10,000 records and 6 categorical variab'es
with 10 categories each. The fully saturated model has 10° cells, and clearly represen.s
a considerable overfit. No analyst is likely to be interested in fourth or fifth order interac-
tions; one would not even know how to interpret such effects. In practice almost all ana-
lysis concentrates on first order interactions, i.e., second moments of the data, and only
incidentally on second order interactions. So, if we represent the data s by a log linear
mode! leaving out all interactions of order three and higher, we wi:i not lose much.
This model involves 20 three-way tables with 10x 10 x 10 = 1,000 .ells, accounting
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for about 15,000 non-redundant restrictions on the data set. Representing each variable by
10 (0. 1)-dummies the data file contains 6 x 10,000 = 60, 000 non-zero entries, which we
can swap around a bit, provided we do not violate the 15,000 restrictions on the second
order interactions. So there is some hope that we have sufficient degrees of freedom to
make this a feasible exercise. At the risk of distorting the data for some subsequent ana-
lysis one might do a more thorough modeling, and throw out a number of the three-way
tables, thereby increasing the degrees of freedom available for data swaps.

Survey data sets associated with the large surveys that statistical agencies conduct are
much more detailed than in the example above. A typical data file may contain over 200
variables. These are recorded using very detailed classifications with hundreds or even
thousands of categories: location by ZIP-code, industrial activity, profession, educational
level. illnesses, causes of death in four of five digits, age in years, and so on. So, as a more
typical situation to cope with, we now consider a data file with 50,000 records, and 200
variables with 25 categories per variable. Representing each variable by a set of dummies
again, we now have 25x 200 = 5,000 dummies. If we restrict ourselves to first order
interactions only we have approximately 0.5 x 5,000° = 1.25x 107 cells, representing
1.15 x 107 non-redundant restrictions. There is no hope of keeping all of these intact
with only 50,000 x 200 = 107 non-zero entries to swap around. Things are even worse
when we consider a number of very detailed variables. If the file consists of 50,000 records
and 10 variables with 500 categories each we have approximately 1.12 X 107 restrictions
and 5 x 10° non-zero entries. If we were to include second order interactions, doing justice
to the idea of some overfitting of the data, the number of restrictions would explode. With
probability close to one, the only data configuration satisfying all these restrictions is the
original data set and nothing else. With typical survey data files the number of variables,
and the amount of detail about these variables, is such that non-distortive modeling is
entirely out of scope.

Researchers are eager to obtain as much detail as they can. They consistently express
their discomfort with reductions in detail statistical agencies impose in view of disclosure
protection. One of the puzzles here is why researchers want so much detail. Even enormous
amounts of records will not provide enough degrees of freedom to support valid statistical
inference at the very fine level of detail researchers require. Once they restrict themselves
to data patterns that can sensibly be investigated statistically they necessarily resort to far
lower dimensional spaces using subsets of variables at far more aggregated levels. This
seemns to support the modeling approach sketched by the authors. Details beyond a certain
level of aggregation will never contribute to valid inference, so what are we going to lose
when this is replaced by noise in the sampling process of the pseudo microdata files? The
answer is that researchers want to construct their own aggregates, tailor-made for the
specific research questions they want to investigate. For certain studies they need
age groups from 12-18, for others 17-21 is more appropriate. Having a model based
on 5-year classes, 10-15, 1620, ..., or a pseudo microdata file representing such a model,
is not helpful to them. Similarly, they want to be able to construct their own derived
variables. such as travelling distance between place of living and place of work. When
we aggregate such locational variables into relatively crude indicators, researchers can
no longer make such derivations. If we want to support all of these research needs, without
knowing beforehand the future use of the released microdata, the only solution is to provide
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as much detail as possible. I simply do not see how this could ever be accommodated
within the framework of the modeling approach advocated by the authors.

It is the task of official statistics to provide society with impartial and trustworthy data
reflecting the true state of society as closely as possible. These data constitute the basis
for social and scientific debate and subsequent decision making. Survey data collected
by statistical agencies constitute an extremely valuable resource for scientific and
policy research. The number of questions that can be addressed is enormous. An evolving
scientific and policy debate continuously generates new parameters of interest. It is hardly
conceivable how such a rich data mass could ever be summarized in a single statistical
model in an impartial way. Degrees of freedom considerations necessarily lead to a
very restrictive specification. Model selection is an art, and certainly proceeds in
crude ways when such masses or variables have to be analysed. Higher order interactions,
representing several hundreds or thousands of individual dummy variables, are included or
excluded all at once, neglecting underlying subtleties. Detailed classifications can be
aggregated in numerous ways, none being uniformly superior to the others. Without a
specific research question in mind there is no guidance as to which data patterns are
relevant or not. The probability that two equally qualified analysts end up with the
same model is close to zero. As long as this 1s true, a considerable amount of subjectivity
cannot be avoided. As a consequence multivariate statistical modeling of large survey data
sets cannot provide a foundation for the dissemination of general purpose survey data sets
by a statistical agency, bv principle.

Now. thinking the unthinkable, suppose we have obtained an unambiguously satisfactory
model. i.e.. one that properly represents all *"significant’” relationships in the survey data set.
When we generate pseudo microdata sets by sampling from this model the information in
the samples cannot be more than what was already contained in the model. Otherwise
stated: an analyst will at best be able to reconstruct the model underlying the data genera-
tion process (or some reduction thereof). If the analyst does not retrieve the true model he
or she errs, he or she will end up with invalid conclusions. If the analyst does, he or she
might ask why the statistical agency did not simply publish the model instead of disguising
it in the form of pseudo microdata files. If the agency does publish the model, or the
equivalent set of marginal tables. the knowledgeable analyst will not start analysing the
pseudo microdata files at all. It is like cross-word puzzles: nice for entertainment, but not
really of interest when the solution is on the back of the envelope. Following this line of
thought ad absurdum we clearly see the enormous difficulties of the modeling approach:
it really successful it would make superfluous any subsequent statistical analysis of the
pseudo microdata sets. Thus, it necessarily assumes that statistical offices are able and
qualified to extract any useful information there is from their survey data files. Needless
to say, they are not.

The main problem with the approach, which it shares with data swapping, is that it
tries to restrict disclosure protection measures to the noise in the data, thereby keeping
the signal intact. Swapping noise is harmless for statistical analysis, but can help to protect

individual records from re-identification by a data intruder. However, without a specific
model noise is hardly defined. Aiming at a general purpose microdata file we must recog-
nize that the only sufficient statistic for all the information that is present in a typical rich
survey data set is the data set itself. Adding noise to protect such data against disclosure
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necessarily distorts potentially relevant data patterns. For some analyses this may be
innocent. since these do not exploit the distorted part of the data patterns. Others are inevitably
affected. The alternative approach of Gouweleeuw et al. (1998) recognizes this and there-
fore no longer tries to keep data patterns intact. Instead it employs the known statistical
distribution of the data swaps (i.e.. misclassifications) to estimate the latent unperturbed
frequency table. Only when we know beforehand which data patterns to concentrate
upon, such as when a limited set of low dimensional tables is published from e.g., a census,
is 1t possible to control properly for the distortion due to data swaps. It is for such limited
applications that the modeling approach advocated by the authors may be appropriate,
especially when it is impractical to publish the set of marginal tables equivalent to the
data model employed.

An important remaining question, on which the study touches only briefly, is whether
the modeling approach provides sufficient protection against disclosure. The implicit
assumption seems to be that the log linear data reduction employed is sufficient to disguise
the identities of the subjects underlying the whole exercise. In practice it is difficult to
verify such an assumption. Indeed. it is not sufficient to check whether the marginal tables
representing the model employed are sate one by one. These tables are linked through their
common source. and it 1s the combination of the tables which matters. Jointly they define a
set of admissible solutions for the underlying microdata file. When degrees of freedom are
msufficient. as in one of the examples above. this set must degenerate locally (e.g.. the
General Motors record) or perhaps even globally into a single point. i.e.. the original micro
data set. So. apart from being a sufficiently rich data representation, we should add
the requirement that the log linear model employed entails enough degrees of freedom
to support a sufficiently broad set of admissible solutions, especially with respect to all
potential identification keys. Veritying this requirement involves very hard combinatorial
computations that are unfeasible given the size and the amount of detail of typical survey
data sets.

This 1s further complicated by the release of replicares of the data file. By matching
replicates an intruder can find clues as to which data fields in which records have been
swapped or not, especially when the set of admissible solutions for a specific record is
narrow. Using modern matching technology. and modest quantities of noise, almost
perfect matches can be obtained. given the large numbers of variables involved (see
e.g.. Winkler 1998). Perhaps. such matching exercises could be used by the agency to
check the safeness of the pseudo micro data files to be released.

4. National Accounts Process

The prescription, by the authors, to include all information the agency has about errors in
the data in the modeling exercise, reminds me of the data integration process typically
performed by National Accounts people. They try to reconcile conflicting information
from several surveys, using their accounting framework as a data model. Correcting for
differences in definitions of variables, and supplementing for missing subpopulations,
they exploit accounting restrictions, physical demand-supply equalities, and sampling
variances to construct a consistent picture of the national or regional economy. Similar
accounting systems have been worked out for other phenomena: labour accounts, tourism
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accounts. socio-economic and demographic accounts, environmental accounts (see e.g.,
Van Tuinen 1995). Typicaily these accounts are both prepared and published in the
form of tables at an intermediate level of aggregation. Although in many cases no tormal
statistical procedures are applied, the resulting figures can nevertheless be conceived of as
full information (gu)estimates based on all available evidence.

Within the general framework presented by the authors the National Accounts tables
can perhaps be identified with the model from which pseudo microdata files could be gen-
erated. At Statistics Netherlands a similar idea has been discussed in a quite different con-
text. Due to the corrections made to the primary survey data inputs in the course of the
National Accounts process, National Accounts tables are not numerically consistent
with tables the agency publishes from the primary survey data sets themselves. To solve
this problem it has been contemplated to reweight the surveys ex post, taking the National
Accounts outcomes as given. The formal underpinning of such a procedure was developed
by Renssen and Nieuwenbroek (1997). In following this line of thought we would end up
with microdata files consistent with a given set of tables, i.e., the National Accounts tables,
or any other applicable accounting framework used to reconcile conflicting survey out-
comes. Since we stick to the survey data itself. only adjusting the individual record
weights, this obviously would not contribute to the solution of the disclosure protection

problem. though.
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Rejoinder

Stephen E. Fienberg', Udi E. Makov®, and Russell J. Steele’

Kooiman oftfers insightful comments on our article and proposed disclosure limitation
methods. Our differences with him are largely a matter of perspective. He is associated
with a statistical agency while we are university based and focus on the desires of the
statistical users. In the Netherlands there is a tradition of limited releases for research
purposes which we contrast with the practice in the United States of the availability of
substantial public-use microdata files. In what follows, we attempt to provide answers
on four of the issues Kooiman raises.

First. Kooiman asks about the link between what he describes as the two parts of
the article. 1e.. the “general strategy™™ and the part based on the exact distribution of a
table under a toglinear model conditional on its margins. He describes the relationship
i weak: we think of it as strong and reasonably compelling. The interesting thing about
the categorical case is that the empirical cumulative distribution function is the contin-
gency table itself. Given the focus by many statistical agencies (e.g., Statistics Canada
and the .S, Bureau of the Census) on fixing selected marginal totals, and on the wide-
spread use of loglinear models for which selected marginal totals are minimal sufficient
statistics. then the exact distribution is an estimate for the empirical distribution function
i question. Whether it is a good one or not remains to be seen, but we note that many
statistical methodologists do recommend inference based on the conditional distribution
given the minimal sufficient statistics. How close such an approach is to a fully Bayesian
posterior distribution we also do not yet know.

Another reason for thinking about the fixing of marginal totals arises in the context of
i sequential query system of the sort described in Keller-McNulty and Unger (1998).
Envision a data base consisting of a large contingency table. Queries come in the form
of requests for selected marginal tables. Once a marginal table is released by such a
system, it remains available to others and so fixing it for all subsequent releases becomes
the most reasonable way to proceed.

Second. Kooiman goes on to envision a large example of a 10° table. The contingency
tables that we encounter in actual surveys have many more variables (as he notes) but
cach typically has fewer categories, often only two. So the difficulties regarding how to
proceed may not quite be as bad as he suggests. Nonetheless, we agree that asking an
agency to carry through our prescription with care for every such data set seems unreason-
able. But unless it thinks about the underlying phenomena and about models to describe
interrelationships. the agency will be totally ad hoc in its functioning and will either
release information it should not or severely impair the utility of released data. Thus
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the agency needs to use some combination of experience and methodological thinking. In
this sense. we agree with Kooiman that various forms of aggregation for key variables
such as geography and complex classification schemes is a necessity and loglinear
models will provide only limited help here. But from this point on. we disagree with
s assessment of how to proceed.

Kooiman focuses on the release of only limited amounts of data for restricted purposes.
to which he would apply his postrandomization method (PRAM) described in
Gouweleeuw et al. (1998). We think PRAM is an innovative technique, but it is very
limited. especially when it comes to the preparation of large public-use microdata files.
This is because its primary use is for only a small number of key variables, as Kooiman
himself notes. In the U.S. at least, such an approach would be unacceptable to the broad
group of public data users, and we believe rightfully so. Nonetheless, we recognize and
respect the different legal settings and the different expectations of both the public and
researchers n other countries around the world. It is for this reason that we hope to see
the evolution of a pluralistic approach to disclosure limitation that attempts to take
advantage of a range of methodoiogies, which might include ours, PRAM, Argus,
Hundepool et al. (1998a. b). etc.

Third. Kooiman questions the implications and reconciliation of alternative models for
our method. He argues that it is impossible to obtain an unambiguously satisfactory model
for a survey data set. Since our method depends on this it must be flawed. Perhaps so.
hut the 1ssue s how badly it is flawed. For complex high-dimensional tables, it is possible
to embed multiple user models and questions of interest in the context of some larger
statistical model (or at least approximately so). Sampling from the conditional distribution
assoctated with such an enlarged ““covering™” model is what we propose. If we could
achieve this aim only by making choices on aggregation of categories and through other
compromises, we believe that this would be far preferable to throwing our hands up in
despair or resorting to total ad hockery.

So we come down to the issues of access versus disclosure limitation, noise versus sig-
nal. and whether the noise associated with our method overwhelms the signal. Kooiman is
correct in noting that for the exact distribution method of Section S, disclosure is a problem
unless there is a sutficiently broad set of admissible solutions. But as long as the counts in
margins are sufficiently large. we think that there is promising evidence here that our
methods do limit disclosure, and that sufficient signal will remain to make resulting public
use data sets of great value to others. Kooiman is skeptical. On disclosure limitation he
refers to Winkler (1998), but a close reading of Winkler's results and a replication carried
out at Carnegie Mellon suggest that his concerns are generally of limited relevance to
the protection of large public use data sets unless there is an intruder with detailed and
accurate blocking information and files that allow for a 1-1 match. We suggest, therefore,
that the properties of our method are empirical matters worthy of continued investigation.
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