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Fréchet and Bonferroni Bounds for Multi-way
Tables of Counts With Applications to Disclosure
Limitation

Stephen E. Fienberg
Department of Statistics, Carnegie Mellon University
Pittsburgh, PA 15213, USA.

Abstract: Upper and lower bounds on cell counts in cross-classifications of positive
counts play important roles in a number of the disclosure limitation procedures, e.g., cell
suppression and data swapping. Some features of the Fréchet bounds are well-known, intu-
itive, and are regularly used by those working on disclosure limitation methods, especially
usose for two-dimensional tables. The multivariate versions of these bounds and other related
bounds such as those calculated using the Bonferroni approach are more complex, however,
but they have potentially great import for current disclosure limitation methodology. The
purpose of this paper is to describe the key results on this topic.

Keywords: Contingency tables; Copulas; Loglinear models; Marginal bounds.

1. Introduction

Upper and lower bounds on cell counts in cross-classifications of positive counts play important
roles in a number of the disclosure limitation procedures, e.g., see the discussion in Cox [6]
[7], Dalenius and Reiss [8], Duncan and Fienberg [11], Fienberg [12], Fienberg et al. [14], and
Fischetti and Salazar [15]. The purpose of this paper is to introduce the key results on Fréchet
and Bonferroni bounds and to link them to problems in disclosure limitation. For related details
on bounds, see Joe [22], Kwerel [23], Riischendorf [28] [29], and Warmuth [32].

For most problems of interest in the disclosure limitation context, we begin by knowing that
there exists a table with the known marginals, i.e., it is the one for whose entries we want to
“protect.” Thus many of the deep probabilistic results about the existence of multi-dimensional
distributions with fixed marginals are not of direct concern to us. While the terminology we will
use in this paper is that for tables of counts, i.e., “unweighted” contingency tables, virtually all of
the results are applicable to general positive or “weighted” tables of counts.

The class of bounds we focus largely upon is usually attributed to Fréchet [16] (thus the
name Fréchet bound), but Riischendorf et al. {30] suggest co-attribution to Hoeffding [21]. The
simplicity of the bounds has led many others to rediscover them repeatedly in the context of data
security and contingency tables (e.g., see Gusfield [19]). Fréchet’s original presentation (and
many subsequent ones) was in terms of cumulative distribution functions (c.d.f.) for a random
vector (D1, D, ..., Dy) in R*:

Fira  k(z1,z2,...,2k) = Pr(Dy < 1,D9 < 29,...,Dp, < zy), 1
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which are essentially equivalent to contingency tables when the underlying variables are categori-
cal. For example, suppose we have a two-dimensional table of counts, {n;;} adding up to the total
n4+ = n. If we normalize each entry by dividing by n and then create a table of partial sums,
by cumulating the proportions from the first row and first column to the present ones, we have a
set of values of the form (1). Thus, for the purposes of converting the Fréchet bound results for
distribution functions to those for tables of counts, the values {z;} in (1) represent*“cut-points”
between categories for the ¢-th categorical variable.

We present the bound results here in their contingency table form (c.f., Fréchet’s presentation
in [17]) for tables of counts in large part to emphasize close linkages to the theory of loglinear
models for the analysis of contingency table data. Further, we illustrate the results using an
‘example of data from the 1990 U.S. decennial census public use sample for a local area,in the
form of a 3 x 3 x 2 table of counts given in Table 1, as well as a collapsed 2 x 2 x 2 table version
of 1t given in Table 2. Table 1 has some noteworthy features. First, it includes three counts of “17,
or sample uniques. Second, there are counts of “1” in two of the three two-way marginal totals.
Thus, if we think in terms of constraining the interior cells of the table given the margins, we can
expect to get tight bounds for some of the cell entries.

Gender = Male
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 96 72 161 329
Black 10 7 6 23
Chinese 1 1 2 4

{Total 107 80 169 356 ]
Gender = Female
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 186 127 51 364
Black Il 7 3 21
Chinese 0 1 0 1

| Total 197 135 54 386 |

Table |: Three-way cross-classification of Gender, Race, and Income for a selected U.S. census
tract. (Source: 1990 Census Public Use Microdata Files)

2. Some Preliminary Considerations for 2 x 2 x 2 Tables

We begin by illustrating the basic bound notions using the collapsed 2 x 2 x 2 table in Table 2.
If we consider layers 1 and 2 separately, then we have a pair of 2 x 2 tables. Thus the simple

Fréchet bounds, given by

min{n;y,ny;} > ny; > max{n;y +ny; —n,0}, 2
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Male

Income Level

Race < $10,000 { > $10000 || Total
White 96 233 329
Black/Chinese 11 16 27
[ Total ] 107 249 l 356 ]
Female
Income Level
Race < $16,000 | > $10000 || Total
White 186 178 364
Black/Chinese 11 11 22
| Total | 197 | 189 ] 386 |

Table 2: Collapsed 2 x 2 x 2 version of cell counts in Table 1.

fore,5 = 1,2, are directly applicable. These bounds, given in Table 3, in effect fix the entries in
two of the three 2-way margins of the full 2 x 2 x 2 table.

Male
Income Level
Race < $10,000 | > $10000 || Total*
White 107,80 249,222 329
Black/Chinese 27,0 27,0 27
[ Total* 107 l 249 |[ 356 |
Female
Income Level
Race < $10,000 | > $10000 |I Total*
White 197,175 189,167 364
Black/Chinese 22,0 22,0 22
| Total* [ 197 189 || 386 |

Table 3: Fréchet bounds fixing the 1-way margins for each layer of Table 2.

Next we consider fixing all three 2-way margins. This problem has a simple generic form.
In effect, we are given 7 values: the sums for each of the (1,1) cells of the three 2-way margins,
the sums for the 1st entry in each of the three 1-way margins and the grand total. All of the other
marginal values can be computed from these. Thus we need only one more quantity to determine
the entries of the full table. Let z be the true but unknown value of the count in the (1,1, 1) cell.

1/
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Male

Income Level

Race < $10,000 | > $10000 || Total*
White 107, 85 244, 222 329
Black/Chinese 22,0 27,5 27

| Total* [ 107 ] 249 | 356 |
Female
Income Level

Race < $10,000 | > $10000 || Total*
White 197, 175 189, 167 364
Black/Chinese 22,0 22,0 22

[ Total* 197 189 ” 386 ]

Table 4: Upper and lower bounds for entries in Table 2 given all three 2-way margins.

We thus have:

nina = T

n121 ni4+1 — 2

ni2 = N+ — 2

n2l = Ny — 7

n122 N4+ — N4l — N4 + 2 3
N1z = Nyl — N+ — N4+ 7T

N2 = Nigs — N4l — N4 + 2

Ny22 = N — Nigg — Nilt — Mgyl T Nt + 41 040 — T

Now if we add the non-negativity constraint for cell counts in a contingency table, i.e., n;jx 2>
0 for 1,7,k = 1,2, we get 4 upper bounds and 4 lower bounds. Three of the 4 upper bounds
components involve the 2-way marginal totals corresponding to the (1,1,1) cell of the table and
the fourth can be written as the sum of the diagonally opposite or complementary cells, i.e.,

N — N4y = N4 — Mgl + 0114 + N4l + Nyl = N + Nage. 4)

The result is the following bounds on z:

min{niy1+, Ni+1,N+11 0111 + N222} 2 T (5)

> max{ni44 — N4l = N1+ Dpl+ — N1+ =~ Nl N4+ — Ngll — ni41,0}.

For the counts in Table 2, the upper and lower bounds of the form (5) yield the values in Table 4.

Despite the existence of explicit upper and lower bounds in the case of the 2 x 2 x 2 contin-
gency table with fixed 2-way margins various authors have suggested the need to resort to linear
programming and other indirect methods to find the tightest possible bounds (e.g., see de Vries
[31] and Chowdhury et al. [5]). In the following sections, we address the formal structure of the
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types of bounds explored here and we give formulas that allow the computation of sharp bounds
in many problems of interest, thus obviating the need for linear programming or even network
models. In the second last section we consider the relationship between these bounds and a sim-
ple alternation scheme proposed by Buzzigoli and Giusti [4], which they conjectures requires
only a finite number of steps, as well as a network algorithm proposed by Roehrig et al. [26].

3. 1-Dimensional Fréchet Bounds for £-Way Tables

Consider a k-way contingency table with entries {n;;, ; } where i; = 1,2,...,I; for j =
1.2,..., k. Then if we know the 1-way margins, the entries in the tables are bounded above and
below by:

min{nil+...+, Mgty ,n+...+,~k}
> Niyig. dy = max{n¢1+...+ F it o T gy, — n(k‘ - 1),0}. 6)

This re<ult, which also coincides with the standard Bonferroni bounds [2] for the cell counts,
can be found in a variety of sources (e.g., see Kwerel [23], Warmuth [32], or Riischendorf [28]).
Setting £ = 2 in (6) yields the 1-dimensional bounds for 2-way tables given in equation (2),
which we rewrite following Mardia [25] as

1 1
§{nz+ Fri= i —ng [} 20 2 5{n1+ +n4; —n+ | nip +ngj—n |} (7

Note that the lower bound in (6) involves the sum of all of the 1-way margins associated with
the cell (71,19,...,17¢). Because we will have occasion to use such sums again in other bounds
we label this as Sy; ;,. i}, and rewrite (6) as

min{nil+...+, Mgty e v vy n+‘..+ik}
> Migipg, 2 Max{S)4,..4,) — n(k = 1),0}. ®)

We note that the upper and lower bounds cannot be reached simultaneously and thus they do not
add up to the corresponding marginal totals.

In Table 5 we illustrate the upper and lower Fréchet bounds for the cell counts in Table 1,
where we use only the information in the 1-way margins, which are included here (in the lower
layer) and denoted by an * for reference. The upper and lower bounds are the same in both layers,
because the gender totals both exceed all other marginal totals. By applying the Fréchet bounds
for 2-way tables separately for each layer of the table, we get the sharper bounds in Table 6. This
approach fixes the 2-way margins for Race x Income and Race x Gender in the full 3-way table.
Now there are some non-zero lower bounds in the first row of each layer only, as expected, and
the bounds for the two layers differ.

The statistical and probabilistic literature on multidimensional distributions with given 1-
dimensional marginals is now quite extensive and functions that describe such distributions are
referred to as copulas, e.g., see DallAglio et al. [9]. Further, the Fréchet bounds in this case are
sharp, i.e. they are attained and thus there exist copulas which achieve them (see Riischendorf [27]
for details). For us, this means that there exist contingency tables with the appropriate marginal
totals achieving the specified upper and lower bounds.

Other results for Fréchet bounds for contingency tables with given 1-way margins are also
relatively easy to derive. For example, there are at most (Z§=0 I;) — 1 distinct upper bounds for
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Gender = Male

Income Level

Race [ < $10,000 | > $10000 and < $25000 | > $25000 || Total*
White 304,0 215,0 2230 -
Black 440 44,0 44,0 -
Chinese 5,0 50 50 -

[ Total* - - - ] 356 ]
Gender = Female
Income Level

Race [ < $10,000 | > $10000 and < $25000 | > $25000 |} Total*
White 304, 0 215,0 223,0 693
Black 44,0 44,0 44,0 44
Chinese 5,0 50 50 5

[ Total* 304 135 54 [ 38 |

Table 5: Fréchet bounds for entries in Table 1 given all 1-way margins. (The totals given in the
table are for the 1-way margins.)

the Hf':o I; cells in the table, and the minimum in the lower bound can be nonzero only for those
cells in the largest, row, column, layer, etc., provided that the corresponding sum is greater than
(k — 1)n/k. In Table 5 we see that only those cells in row 1 (Race = White) could have non-zero
lower bounds because only their 1-way total is greater than 2(742)/3 = 495, but because the
other margins are more evenly spread, the realized lower bounds are still zero. Finally, if all of
the cell counts are positive, the upper bound always exceeds the lower bound. For proofs of these
results when k = 2, see Gusfield [19]. The generalizations for k > 2 are direct.

4. m-Dimensional Fréchet Marginal Bounds for k-Way Tables

The bounds associated with the fixing of the m-way margins of a k-way table are more complex
than those of the preceding subsection and for the lower bounds we need to proceed through iter-
ation, beginning with (k — 1)-dimensional bounds, and doing successive substitution. Moreover
the bounds take a different form depending on whether k is even or odd.

We begin with the upper bound, which is straight forward and intuitively exactly what one
might guess it to be:

mln{niliz...ik_1+a Titig...tg—p+igr " n+i2...ik} Z Niyig..igo (9)

where the minimum is taken over all (k—1)-dimensional margins associated with the (iy,%2,...,%k)
cell. Clearly the upper bound gets tighter as n increases. Unfortunately, despite the claim in War-
muth {32}, the upper bound does not always corresponds to an actual k-dimensional distribution
function with the specified m-dimensional marginal distributions. Thus there does not always
exists a contingency table specified by this upper bound with the appropriate marginal totals.
Riischendorf [28] gives alternative upper bounds based on the Bonferroni inequality which may
be sharper, at least in some circumstances, and o which we return in Section 3..
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Gender = Male
Income Level

Race | < $10,000 | > $10u00 and < $25000 | > $25000 || Total*
White 107, 80 80, 53 169, 142 329
Black 23,0 23,0 23,0 23
Chinese 4,0 4,0 4,0 4

| Total* 107 80 [ 169 [ 356 ]
Gender = Female
Income Level

Race | < $10,000 | > $10000 and < $25000 { > $25000 || Total*
White 197, 175 135, 113 54, 32 364
Black 21,0 21,0 21,0 21
Chinese 1,0 1,0 1,0 i

| Total* | 197 | 135 54 | 38 |

Table 6: Upper and lower Fréchet bounds for entries in Table I using Race x Income and Race
x Gender margins from the “conditional independence” model.

The upper bound idea in equation (9) extends immediately to bounds based on other collec-
tions of possible overlapping marginals and we describe these extensions and their relationship
to the theory of loglinear models briefly in Section 7. below.

We now need some additional notation. Let I, = (i, 19, .
where m = 1,2,...,k — 1. Further, let

cytm) fori) < ip < -0 <y

Sm[ilig...ik] = z Nirigedm+-+
Im

(10)

where the summation in (10) is over similar ordered m-tuples defining all of the m-dimensional
marginal totals of n;,;, ;. Thus Sl[iliz___,-k] is, as we defined above, the sum of all 1-dimensional
marginal totals, etc. These sums of marginal totals play a crucial role in the lower bounds. Further,
we let

- k
Rivig.ix = T~ Siig..ix] T 2figiz.is] — - T (1) Nirig.is

(11

i.e., 74,4, is the diagonally complementary count opposite n;,,..;, in the 2% table formed
by collapsing all of the remaining categories for each of the k variables in the table into a single
complementary category (i.e., noti; for j = 1,2,..., k). We can define marginals of the 7;,4,..,,

Sm[iliz...ik]a

(12)

by summing over subscripts as usual (although there is the need to remove a common multiplica-
tion factor resulting from the use of multiple collapsed cells). Because the {7;,;,..; k} themselves
form a table of counts, the bounds described in this paper hold for them as well.

The lower bound for the cell entries given by Warmuth {32] now depends on whether k is
even or odd, and they result from a fairly direct application of Poincaré’s theorem which is a

1/
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basic inclusion/exclusion alternation result. Suppose first that k = 2p, i.e., k is even. Then we
have that
Miyig.dp 2 MAX{S)[i1i,. 4] ~ Sofiyin..ip] + - + Sp=% n,0}. (13)

Wrda.d] —

For k = 2p + 1, i.e,, k is odd, and we have

Miriz,iy 2 MAX{N = Sifii,. 00 + Sofivig.ig) =
+SET - rr;jn{ﬁiliz...ij-l+ij+1...ik}70}' (14)

i ia...ix]

To get the lower bound for fixed m-dimensional margins where m < (k — 1), we substitute

for the marginal sums in the lower bounds alternating between versions equations (13) and (14)

applied to successive margins of lower dimension. In Section 6., we illustrate this approach for

3-way tables. As with the upper bound, Riischendorf [28] gives alternative lower bounds for fixed

m-dimensional marginals derived based on a Bonferroni approach which may be sharper, at least
in some circumstances. We now turn to this topic.

5. m-Dimensional Bonferroni Marginal Bounds

Unless we are in the special case of margins that correspond to decomposable loglinear models the
bounds in the preceding section are not sharp, i.e., there is not necessarily a set of extremal tables
corresponding to the bounds (see Section 7.). Riischendorf [28] gives alternative bounds based
on an approach that uses the same Bonferroni inequalities as are commonly used in statistics to
derive simultaneous confidence intervals. Bonferroni’s classic paper [2] appeared in 1936, prior
to Fréchet [16] and Hoeffding [21], so perhaps we should be referring to Bonferroni-Fréchet-
Hoeffding bounds. Galambos and Simonelli [18] give a detailed modem treatment of Bonferroni
inequalities and their application.

The basic Bonferroni inequalities come from an inclusion-exclusion identity from probability.
For independent sets A; for i = 1,2,...,.:, with 4; representing the complementary event,
following Galambos and Simonelli [18] we can write:

P(

3.

A)=1-"kP(Aj)+ Y P(AiNA;)~---. (15)
1 j=1 1<i,5<k ,

1
Then, for m < k, if we let
Qc= "P(A; NA;pN---NA;) (16)

where the summation is over all i; < i3 < --- < i,,, equation (15) becomes

P((MA)=1-Q1+Q2 - Q3 +---(—1)kQ. (17

5.

1

1

Clearly, we can set bounds on P((\5_, A;) by stopping at Q,, in equation (17). If m is even, then
the result is a lower bound, whereas if m is odd, we get an upper bound.
Now if we reinterpret the Bonferroni equation in terms of counts instead of probabilities, we

can rewrite equation (17) for the entry in the (iy,12,...,1) cell, i.e., Tijig-niy» @S
k -
Nijig..dp = Z (_l)msm[ilig...ik] (18)
m=0
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where Sm[inz..‘ik} is defined above in equation (12) above. Truncating (18) at S'm[l-l,-,z__ik] when
m is even (odd) produces an upper (lower) bound. Suppose m is even (odd), then we also have
a lower (upper) bound by truncating (18) at the (m — 1)st term. Ruschendorf gives a result that
sharpens this bound using a supremum over the class of minimal spanning trees involving subsets
of the Qs, which turns out to be very helpful.

There 1s an intimate link between these bounds and maximum likelihood estimates under
the loglinear model whose minimal sufficient statistics are the m-dimensional marginal totals,
especially when m = k — 1 and k is odd. We illustrate the link explicitly in the next section.

6. Re-examining Bounds for 3-Way Tables
From Section 3., the Fréchet bounds for a 3-way table of counts with given 1-way margins are:
min{ni++, Tl+j+,n++k} Z N5k Z maX{ni++ + Nyj+ + Ny+k — 271,0}. (19)

Following Warmuth [32], we can derive (19) by substitution in the following bounds from Sec-
tion 4.. Since k = 3 is odd we need to use equations (9) and (14):

min{nij+, Nivk, Npjk} > Nijk, (20)

Nijk = max{n — Sl[ijk] + SQ[ijk.] - min{ﬁi1+,ﬁ+1k,fli+k},0}. 21)

Suppose the minimum in the lower bound in equation (21) occurs for the margins for variables
1 and 2 adding across 3, i.e.,

min{ﬁi]+v ﬁ+]kaﬁi+k} = Thj+ — Mg —Ngjp + 10 (22)
Then the upper and lower bounds for fixed 2-dimensional margins take the form:
min{nj4, Nigk, Nagk} > Nijk 2 Max{—ny x + N4k + Nijk, 0}. (23)

Recall that the Fréchet bounds have a useful substitution property as we move from higher dimen-
sions to lower ones. Thus, by substituting in equation (23) using the bounds for 2-way margins
given 1-way margins. we get equation (19).

In Table 7 we give the upper and lower Fréchet bounds for entries in Table 1 using all three
2-way margins. The upper values are somewhat tighter than those in Table 6, which were based
only on a pair of 2-way margins, and there is a non-zero lower bound for the count of “2” in the
last row of the first layer.

Since k = 3 and we are working with all margins of dimension m = 2, the Bonferroni
approach from the previous section in this situation yields an extra component for the upper
bound of the form:

M= Nipy — Najy = Npgk + Nyjp + Mgk + gk = Ny + Rk (24)

This bound is explicitly the one applicable for 2° tables. When the size of a dimension (variable)
exceeds 2, we need to consider all possible 23 tables that can be formed by partitioning the cate-
gories of these variables and then compute upper bounds of the form (24) for the sum including
the (2, 7, k) cell in each such partition.

The lower bounds from the simple Bonferroni approach involve only 1-way margins and thus
are not helpful since the Fréchet lower bounds have already incorporated information from 2-way

/
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Gender = Male
Income Level

Race | < $10,000 | > $iC000 and < $25000 | > $25000 || Total*
White 107, 80 80, 53 169, 142 329
Black 21,0 14,0 9,0 23
Chinese 1,0 2,0 2,0 4

| Total* | 107 80 169 ] 356 |
Gender = Female
Income Level

Race | < $10,000 { > $10000 and < $25000 | > $25000 || Total*
White 197, 175 135, 113 54, 32 364
Black 21,0 14,0 9,0 21
Chinese 1,0 1,0 1,0 1

| Total* 197 135 [ 54 T 38 |

Table 7: Upper and lower Fréchei bounds for entries in Table 1 using all three 2-way margins
from the “no 2nd-order interaction” model.

margins. But the sharpening approach adds additional lower bounds by utilizes the margins as-
sociated with the three possible conditional independence models produced by dropping a single
interaction term from the no 2nd-order interaction model.

The Boaferroni upper bound component in (24) is directly related to the a result on the exis-
tence of maximum likelihood estimates under the no Znd-order interaction logliner model for a
2% contingency table. It is well-known that there is a special problem of “non-existence” for this
model that occurs when the (1,1,1) and (2,2,2) cells contain sampling zeros and the remaining 6
cell counts are positive (e.g., see Haberman [20]). The bound in (24) would in this case be 0, and
thus it is telling us that there exists only one table with the three sets of 2-way margins, i.e., the
original table which contains sampling zeros in the (1,1,1) and (2,2,2) cells. It then follows that
the 2-way margins reveal the contents of the remaining cells, and thus disclosure for all cells is
exact. The same result holds for all pairs of diagonally complementary cells containing sampling
zeros, and generalizes to all three-way tables via the partitioning idea mentioned above. There
1s a similar connection for the bounds of a k-way table given its (k — 1)-way margins and the
“non-existence” of the corresponding no kth-order interaction loglinear model.

In Table 8 we have the full sharp bounds on the counts in Table 1, given the three two-way
marginals. The extra upper and lower values that come from the Bonferroni bound results narrow
the differences between the upper and lower bounds in 5 of the 18 cells in the table.

7. Decomposable and Graphical Loglinear Models

The explicit role of marginal totals in the calculation of the bounds in the multi-way cases, sug-
gests that their is a natural link with results on loglinear models. This is indeed the case. For
example, the lower bound in equation (23) is working with the minimal sufficient statistics on
a linear scale in a way that parallels the way that maximum likelihood estimates (MLEs) work
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Gender = Male
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total*
White 107, 85 79, 64 168, 158 329
Black 21,0 14,0 9,0 23
Chinese 1,0 2,1 2,1 4

{ Total* 107 80 169 ” 356 ]
Gender = Female
income Level

Race | < $10,000 { > $10000 and < $25000 | > $25000 || Total*
White 197, 175 135, 120 54, 44 364
Black 21,0 14,0 9,0 21
Chinese 1,0 1,0 1,0 1

[ Total* | 197 ] 135 } 54 386 ]

Table 8: Combined Fréchet and Bonferroni bounds for entries in Table 1 using all three two-way
margins from the “no 2nd-order interaction” model.

with them multiplicatively. There is also a link here to the recent work on the exact distribution
of a contingency table under a loglinear model given its minimal sufficient statistics, e.g., see
Diaconis and Sturmfels [10] and Fienberg et al. [13].

Using very different language, Riischendorf [28] describes bounds for “decomposable (regu-
lar) system([s].” These turn out to involve margins that would correspond to a directly estimable
or decomposable loglinear model (e.g., see Bishop et al. [1] and Lauritzen [24]). Riischendorf’s
approach presents a characterization of the class of all distributions with margins that correspond
to decomposable MLEs as a mechanism for computing Fréchet-like bounds similar to those de-
scribed above which are sharp. In the nondecomposable case, as in the preceding section, he uses
bounds constructed from implied decomposable models. It remains to be seen if and how these
results simplify for the class of graphical loglinear models, which includes the decomposable
models as special cases.

Riischendorf [29] has also made links between the theory of upper and lower bounds and gen-
eralizations of the iterative proportional scaling algorithm, which is widely used in contingency
table estimation for loglinear models.

8. Alternative Approaches to Calculating Bounds

Buzzigoli and Giusti [4] have suggested a simple alternation scheme for computing the upper
and lower bounds for a k-way contingency table given all (k — 1)-way margins. Their heuristic
argument is quite simple. For a given cell to take its maximum possible value, all others with
which it is added to form a given marginal total should take their minimum possible values.
Similarly, for a given cell to take its minimum possible value, all others with which it is added
to form a given marginal total should take their maximum possible values. Thus they begin with
a simple set of bounds and then alternately adjust these to take into account the estimated upper

7
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and lower constraints from the preceding step.
Letn¥ , andnf_, be the desired Upper and Lower bounds, respectively. Begin with the

o
upper Fréchet bounds from (9) and a lower bound of zero:

U ; . L.
Ny i — mln(n+i2...ik P TN TR IR nll...zk_1+)a (25)
nk = 0. (26)

1.k

Then the shuttle algorithm alternates between

U o o L o L
i, = mln{n+12...lk - Z niiz...ik’nll'f'zs---lk Z nilii3...ik’
i#i i7is _
o L
sy Mg+ — Z nil...ik_li}v 27
iy
L — o U L U
Tydy = max{0, N4ip..4p — z LOTPTRRLTE S W% My Z T iy
1#14) i#i2
iyt = 3 T8 i i} (28)
DERENA TR PR o 11-elp=11)"
£k

Buzzigoli and Giusti show that this algorithm produces the bounds in (5) for the 2 x 2 x 2
table with given 2-way totals, and they conjecture that it works more generally, stopping after a
finite set of adjustments to the initial estimates.

We have applied the shuttle algorithm to the the 3 x 3 x 2 table of counts in Table 1 and
have verified the computation of the bounds reported in Table 8. The alternation of Bonferroni
bounds between the upper and lower limits depending upon whether k is even or odd may have
something to do with whether or not the algorithm does in fact converge in a finite number of
steps.

Roehrig et. al [26] describe a network algorithm approach to calculating upper and lower
bounds. For 3-way tables their approach computes precisely the bounds presented here and
achieved by the shuttle algorithm, but further work is required to determine how generalizations
of their method to k-way tables relate to the formal bounds described in this paper.

9. Discussion

Many proposals for disclosure limitation deal with queries that arrive sequentially, and thus it
is important to ask the relevance of the results on bounds described in the foregoing section for
disclosure limitation in such circumstance (e.g., see Buzzigoli and Giusti [3]). In fact the results
on upper and lower bounds apply directly. Suppose that an agency has responded to a sequence
of queries, by releasing g different but possibly overlapping sets of marginal totals, involving k
variables having determined that the risk of disclosure is acceptable. Now the agency receives a
new query, for the (g + 1)st set of marginal totals involving a different subset of the k variables
(and possibly some additional ones). To determine whether the new request is safe the agency
need only compute the upper and lower bounds associated with holding the (g + 1) different
margins fixed.

An interesting and related problem is the extent to which one can draw inferences about
“unreleased” marginal tables from that contained in overlapping released margins. To address
this problem, one needs to proceed as above for each new margin of interest, and then collapse
the upper and lower bounds so computed to get bounds for the entries in the unobserved margins.
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The bounds for each cell entry in a contingency table described in this paper are essentially
each computed separately, and thus they cannot all be achieved simultaneously. The bounds
represent values associated with extremal tables that lie on the boundaries of a convex polytope
and we typically get an upper bound occurring simultaneously with lower bounds for other cells,
etc. This in fact is the whole idea underlying the Buzzigoli-Giusti “shuttle™ algorithm.

Cell suppression algorithms typically proceed by first identifying unsafe cells using these
types of marginal bounds, and then chooses an “optimal” pattern of complementary suppres-
sions. The bounds initially computed are then not the ones of interest. What we want to do is
reformulate the bounding problem for the incomplete contingency table resulting from the choice
of suppressed cells. How to do this in a sensible fashion remains an open research problem.
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