THE VOLUME OF DUALS AND SECTIONS
OF POLYTOPES

P. FILLIMAN+

Abstract.  An explicit formula is given for the volume of the polar dual
of a polytope. Using this formula, we prove a geometric criterion for critical
(w.r.t. volume) sections of a regular simplex.

Introduction. The aim of this paper is to develop new methods for the
study of isoperimetric problems for polytopes. Our major new result is a
geometric characterization of critical sections of certain polytopes. In the final
section, we shall briefly discuss how this method can be used to investigate
other isoperimetric problems. These ideas originally arose in the theory of
general hypergeometric functions recently introduced by Gel’'fand et al. (see
[10], [11] and [12]).

Let Q be a polytope in R" with O int Q, and let V(Q n L) be the volume
of the intersection of Q by a d-dimensional subspace L. We shall focus on
two problems about V(Qn L). _

1. Find a formula for V(Q n L) in terms of the Pliicker coordinates of L.

2. Find a geometric criterion for “critical sections”, i.e., a section Q L,

such that the function L+ V(Q n L) is differentiable and has a critical
point at the d-flat L,.

We shall see that the function V(Q n L) is piecewise rational in the Pliicker
coordinates of L, and so is not differentiable everywhere. A description of
where V(Qn L) is differentiable appears in the final section.

In Section 1, we prove the following theorem which can be used to solve
problem 1 (see also [16]).

THEOREM 1. The volume of the polar P* of a polytope P in R? can be
written as an alternating sum of the volumes of simplices “dual’ to those in a
triangulation of P. These volumes are expressed as quotients of d X d minors in
the coordinates of the vertices of P.

Given a formula for the volume of the polar dual, it is easy to get a formula
for sections. Let P =II(Q: L) be the orthogonal projection of Q into L. Then
the usual duality between sections and projections implies

P*=Q*n L.
The reason why Theorem 1 is so useful for sections is that it is much easier
to find coordinates for the vertices of P from a basis of L than those of the
section P*.

+ We regret to report that Professor P. Filliman died in February, 1992. The proofs have been
read by Professor P. McMullen.

[MATHEMATIKA, 39 (1992), 67-80]
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A complete solution to problem 2 when Q is a regular simplex is given in
Section 2.

THEOREM 8. If P* is a critical section of a regular simplex through its
centroid, then each facet F* of P* is normal to the line connecting the centroid
of F* to the centroid of P*.

Conditions similar to those in Theorem 8 have been discovered for related
extremum problems (see [4] and [15]).

§1. The volume of the dual. The goal of this section is to establish the
formula for the volume of the polar dual of a convex polytope. The formula
will be written in a bracket notation which is described below.

Let P=conv{u,,...,u,}, u;€R% be a convex polytope with Ocint P.
Associated to P is an n x(d +1) matrix

up, U 1
1

x=|" e 1.1)
Uy v Upg 1

whose i-th row, x;, contains the standard coordinates of wu;, together with a
final column of ones. Given

)\eA(",d+1)={(A1,--~,)‘d+1)|1$A1<--‘<Ad+1$”},
we denote the corresponding (d +1) % (d +1) minor of X by
Uy e.. Upa 1

[Al=det[x,,,..., X, ]=det . <. (1.2)

Ut --- u,\d+ld 1

The cofactors of [A] from its last column can also be written as (d +1) x (d +1)
determinants using the vector 6 =(0,...,0,1);

[AM\AT=det[xy,, ..., X s 0, Xays - s Xag, - (1.3)
If j = A;, we will often write [A\j] for [A\A;].
THeEOREM 1. Let A be a triangulation of P with vertices in {u,, ..., u,},

such that 0 does not belong to the union of the affine hyperplanes spanned by
vertices of A. Then

—1)¢ AT
V(P*)=%A§A5ignA)‘ﬁ?le[]X-\/\_-]’ (1.4)

where sign A, is the orientation of the labeled simplex A, = conv UV A

A triangulation of P satisfying the requirements of the theorem can always
be produced by triangulating the boundary of P and joining the boundary to
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one generic interior point. For such triangulations, (1.4) reduces to Lawrence’s
formula in [16]. .

We shall derive Theorem 1 as a corollary of a lemma about characteristic
functions of cells in a hyperplane arrangement in R%. The proof of this lemma
will be simplified by embedding P and P* in R‘*" so we can use the terminology
of dual cones. We begin with a few basic properties of dual cones which can
be found in [13].

If xeR*", let

H.={yeR""'|(x,y)=0},
H;={yeR""|(x,y)=<0}, and
Hi={yeR""'|(x,y)=0}.

If C is a closed, convex cone in R?*" with vertex at the origin, then the usual
polar dual of C in R**" can be written as

C*=() H; - (1.5)

xeC

(see [13, p. 49]). The set C* is also a closed, convex cone with vertex at the
origin. Some further properties of C* are

ze C*«<= Cc H;, (1.6)
zeimt C*&<= Ccint H;, (1.7)
C**=pos C. ' (1.8)

We may embed the d-dimensional polytope P in R?*! as a subset of 6 + H,
using the points

xiz(uil" -y Uig, 1)9

ie, the rows of X in (1.1). The cone over P will be denoted by
CP =pos {x,,..., x,}. Theusual polar polytope P* of P in R? can be identified
with

P*=CP*n{—6+ H,}. 1.9)
Given a triangulation A of P as in Theorem 1, we shall associate with each
A€ A aclosed simplex o, in aff P* = —604 H,. By assumption, the set of points

{xo=8,x,,,...,x,,,} has a unique Radon partition {0, A} ={0, A"} U{A"} so
that

conv {x;|ie{0, A }}~nconv{x;|iec A"} # .

The elements of these two sets are given opposite signs in the corresponding
circuit of the rank d oriented matroid on {6, x,, ..., x,}. If we set the sign of
6 to be —1 in this circuit, then by Cramer’s rule the sign of i€ A is
— [A\i]} . ; ,
L =sign {—=t =sign {x}, 0). 1.10
€, g { [A] gn({x,, 0) ( )
Here {x}} is the dual basis to {x;|ie A} in R**", ie.

b

(xh,x)=8;, Vi jea (1.11)
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Now, consider the cone
C,=pos {e)x;|ie A}. (1.12)
From (1.10), the Radon partition for {e}x;|i € {0, A}} is {0, A}={0} U {A}, which
implies @ cint C,. Hence by (1.7) and (1.8), C¥cint H,. The intersection
o, = C¥naff P* (1.13)

is therefore bounded and thus a simplex in aff P*.

In order to keep our notation from becoming unwieldy in Lemma 2, we
shall use the same symbol to represent a subset of R?*! and its characteristic
function.

LemMMA 2. Lerzeaff P* withzg H,, Vie{l,...,n}, and let

£, = H eh. (1.14)
Then
P¥z)= Y e0,(2). (1.15)

Similar results are proved in [12] and {17].
Before we prove Lemma 2, we shall show that it implies Theorem 1. The
vertices of o, are given by

i ﬂ i

T

(see (1.13)). It follows immediately that the volume of o,, denoted by |, is
(=1)“[A)*

d ! Hie/\ [A\i] ’

Note that one power of [A] has cancelled since the determinant of the dual
basis is

ieA (1.16)

sign g, |0, ] = (1.17)

1
det[x},..., x n]=—

(Al
From (1.10),

€, =sign { I1 —[—)i} =sign [A] sign {—LL}

iea [A\I] [Tica [AN]
=(-1)“ sign A, sign a,. (1.18)
Substituting (1.17) and (1.18) in (1.4), we may restate Theorem 1 as
V(P =¥ exlonl. (1.19)

However,

x GAIUAI'-‘ DI J UA(Z)dz=J ) EAUA(Z)dzzj P*(z)dz = V(P¥),

AeA A€l

by Lemma 2. This proves that Theorem 1 is a consequence of Lemma 2.
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Proof of Lemma 2. We first assume z & P*. For every A € A, define a new
cone

D, =pos{e;x;|iecA},  where (1.20)
€g; =sign {(x;, —z). (1.21)

According to (1.6), z€ C¥, if, and only if, C, < H;. Comparing (1.20) with
(1.12), it follows that

zeo, & C,=D, & 6eD,. (1.22)

The hypothesis of Lemma 2 implies that D, ~n H, = {0}, VA € A. Moreover,
z# P* implies H, nint P # (3. Since the number of cones D,, A €A, is finite,
there exists a vector 8’ R%*! such that

0'cint Pnint H, and (1.23)
0'¢D,, VAeA. (1.24)

Now consider the sum

§= Z e,D, (9", (1.25)
AcA
where
E, = H E;. (126)

ieA

Comparing (1.24) and (1.25), we see that s =0. The key idea in the proof is
to move 6' to 6 by a path in int Pnint H,, and show that s remains 0 after
6’ crosses the interior of any facet of {D,, A € A}. When 6’ reaches 6, the sums
in (1.15) and (1.25) are identical by (1.22).

Let we A(n, d) and let

D, =pos {e:x;|i e w} (1.27)

be a facet of some D,, A =(a, u)e A. If 6’ crosses D,, then there must exist
an adjacent cone D,,, A'=(b, u) € A, having D, as a facet. Since x, and x,
lie on opposite sides of lin D,,,

£y = &, &> sign(x,, z) =sign (x,, z) < int D, nint D,.=J and
£, = —€&, & sign(x,, z) #sign (x,, z) <= int D, nint D, . # .

This shows s remains 0 after ' crosses D,,, and that the sum in (1.15) equals
zero when z g P*.

In case zeint P* then by (1.7) Pcint H; and ¢ =1, Vie{l,...,n}.
Hence by (1.22), z € o,, if, and only if, 8 € pos {x;|i € A}. Since A is a triangula-
tion of P, there is exactly one simplex A, for which the latter holds. The
theorem is completed by noting that g,0=1. '

In the next section, we will need a generalization of Theorem 1 to the faces
of P*. This shall follow from a couple of simple corollaries of Lemma 2.
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Any sequence A € A has a unique partition A = A" U A~ (the Radon partition
of {8, x,,,...,x,,,}), where

AT={ier|ei>0} and AT ={ier|e\ <0}

This partition can be used to change o, (defined in (1.13)) into a half-open
simplex

&A=(ﬂ H:)n(ﬂ int H.-*)maﬂ P, (1.28)
iea® ieA”

where H; = H,,. Thatis, we obtain &, by removing the facets of o, correspond-
ing to the indices in A”. These modified simplices can be used to give an
expansion of the entire characteristic function of P*.

COROLLARY 3.

P*= z EA&A' (1.29)

A€l

Proof. Let #={H;naff P*|i=1,..., n} be the hyperplane arrangement
which has P* as a cell, and let H = U,Ll H;. Lemma 2 implies that both sides
of (1.29) match on {aff P*}\ H. It suffices therefore to prove (1.29) on any
face F* of #.

If

v={i|F*c H}, (1.30)
then every point z € rel int F* satisfies {(x;, z) =0 < i€ v. Thus the ray
R={az—(1-a)8|a<1}
lies in

Rc(int H;. (1.31)

iev
Moreover, we can find a point r€ R near enough to z so that
conv{z, r}tn H={z}.

The relationship of r to z allows us to compare &(z) and o(r). For example,
if A€ A and Anv=(, then

zed, &< conv{z, rlcinté, < reo, (1.32)

since int &, =int o,. On the other hand, if A n v # J, then (1.28) and (1.31)
imply

z€F, & zeo, and Anvert & rea,. (1.33)
Combining (1.32) and (1.33) gives
Z SA&/\(Z)= Z g o (r). (1.34)
A€A Aed

However, it follows from Lemma 2 that the second sum is 0 if F*Z P*, and
1if F*< P*. This completes the proof of (1.29).
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The next step is to generalize Corollary 3 to the faces of P*. In Section
2, P shall always be in general position. Thus we may greatly reduce our work
by assuming P is simplicial, or equivalently that the hyperplane arrangement
¥ is “simple”, i.e.,

{i| F*< H;}|=d — dim F* (1.35)
for any face F* of #. Suppose
Ff=P*ﬁ(m H,-) (1.36)
is a face of P* with dim F¥=d —|»|. If A€ A and v < A, we define
&*'”:( Q\ Hf)m(_ O\ intHf)m(ﬂ H,-)r\affP*. (1.37)
LEMMA 4.  If P is simplicial, then

Fr= 1 (1 e)en (138)

AeEAADY \ieA\v

Proof. The proof will be by induction on |v|. Let v={i} and let F*< H,
be a facet of #. We define three sets

A={reAlier"}, B={ieAlier} and C={relligr}.

Suppose first that F*¢ P*. Let zerelint F* and choose points z* € H}
near z on either side of H;. The simplicity of # implies thatfor A€ C, z" e o,,
if, and only if, z” € 0,. In this case, Lemma 2 gives

0= 2 GAO-A(Z+): Z SAU/\(ZA)’

AuC BLC

and

0=% 8A0'A(Z+)"Z £,0,(z7). (1.39)

Since rel int &,; = rel int o, » H,,

ZE Gy = AcA and z'eo,, or AeB and z eo,.
(1.40)
Substituting (1.40) in (1.39) yields
0= % E;‘s)«&ﬂi(z)- (1.41)
AcAADi

In the case when F* is a face of P*, a similar argument shows that the sum
in (1.41) is 1.

From (1.41) we can conclude that if v={i}, (1.38) holds on H;\H. The
proof that (1.38) holds on all of H; is identical to the proof of Corollary 3
with 3 replaced by its restriction to H,.

The argument above uses Corollary 3, which is (1.38) with » = J, to derive
(1.38) with |v| = 1. The general inductive step from |v|=r to |v| = r+1 follows
the same pattern.
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In [14], the following determinantal formula is given for the volume of o,

(-1)* sign AA[A]"_’_< ,-)bl,,_|
(d—r)Ten, [N ,-ﬂ\u ) Twl (1.42)

where |u,| is the volume of the parallelotope spanned by {u, s...,u, )
Combining Lemma 4 with (1.42), we obtain the generalization of Theorem 1.

THEOREM 5.  Suppose A is a triangulation of a simplicial polytope P satisfying
the conditions of Theorem 1. Then for any (r —1)-dimensional face F, of P, the
dual face in P* has volume

V(F}) _ (-D* S signA [AJ%
lu,|  (d=r)rcarss g "Mica, IANI]

(1.43)

§2. Sections of the regular simplex. The formula for the volume of the
dual in Theorem 1 allows us to transfer most of the theory of critical projections
of polytopes in [7] to critical sections. Here we shall deal only with sections
of a regular simplex through its centroid, and postpone remarks on sections
of other polytopes until Section 3.

Let {e,, ..., e,} be the standard basis of R". The set

T" '=convie,,...,e,}—{e;+...+e,}/n

is a regular (n —1)-dimensional simplex with centroid at the origin. In this
section, it is more convenient to work with P and P* as subsets of R?. Thus
we let P=conv{u,,...,u,} and let L be the d-dimensional subspace of R"
spanned by the first d columns of X in (1.1). If II(T""': L) is the orthogonal
projection of T""' into L, then [7, Theorem 4] implies

P=T(T" L) < X'X=[; :] (2.1)

In the case when (2.1) holds,
P*=(T"Y*AL=(-nT"" YL (2.2)

is a d-dimensional section of —nT""" through its centroid.
An immediate corollary of Theorem 1 is

THEOREM 6. The volume of T" ™' N L is a piecewise rational function in the
d x d minors of X in (1.1), homogeneous of degree —1.

These minors are the Pliicker coordinates of L in the usual embedding of
the Grassmannian G(d, n) of d-dimensional subspaces of R” into the exterior
algebra A4 R". The pieces described in Theorem 6 correspond to the open
regions in the decomposition of G(d, n+1) induced by the oriented matroid
of {0, u,,...,u,} (see [2], Chapter 4).

The remainder of this section is devoted to studying the critical conditions
for V(T" ' n L) on G(d, n). The proof of Proposition 9 in [7] (with ¢ replaced
by the gradient of V(T" '~ L)) shows that these critical conditions are
identical with the critical conditions for V(P*) under the restriction ¥, |u,[*=d.
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Setting up the appropriate Lagrange multiplier problem, the critical conditions
become

=y 3 W

ADi uC A, u3i [M]

[A]! I )
(d =D, [A\K] d!TL., [A\K])®
(2.3)

where |u|=d and a € R. The brackets [A] and [A\k] are defined in (1.2) and
(1.3). The remaining brackets are

[pl=det[u,,...,u,,l] (2.4)

and [u\il], the cofactor of u; in [w].

Since we hope to obtain geometric conditions on the polytope P* from
(2.3), we need to rewrite these equations using geometrically meaningful
quantities. First, note that

(—1)? sign A,\(

d
(u]= IZ uy[p\il]. (2.5)
=1
This implies the vector in R? whose I-th coordinate is [u\il]/[ 1] is u,,, where
(u,,, w)=8;, Vi, ke pu. (2.6)
Substituting u}, 7= A\j, and (1.42) in (2.3) gives
ag;=y Y u}(s{h o] a,\|crAl). 2.7)
ADijeA,j#i |uj!

Further simplification will require some equations relating the quantities
in each term of (2.7). Throughout this discussion A € A will be fixed, so our
notation may be condensed by letting

o=gjo, and (2.8)
o= sis,\|0',\|,»|. 2.9)
Comparing the right and left sides of (1.42), we obtain
g o __i(l
][] [wllaNsT [A

Recall that u; € R? is obtained by dropping the final coordinate of x; (see
(1.1)). Similarly, we define v’ by dropping the last coordinate of y}, a vertex
of o,. An example of dual simplices in R? appears in Fig. 1.

Equations (1.11) and (1.16) imply

L3}
[A\J]

Therefore, v’ is normal to the facet A; of A, opposite u;. Moreover, if i #j

(2.10)

(u;, v’) 8i+1, Vi jeA (2.11)

sign (v, u;— u;) = sign {[_A[\/\]]]} =—g]. (2.12)
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012372

T123/3

Figure 1

Thus &0’ is an outer normal of A,. Since the distance from A; to the origin
is 1/]v7],

Al _1

Applying Minkowski’s theorem to the outer “area’ normals of A,, we find that
J gyd
0=3 22lal,  0=3 oA\l and  0=F V7L, (213)
jea IU | je jeA |uj|

by (2.10) and (2.12).
We can now prove the geometric criterion for critical sections.

THEOREM 7. If P* is a critical section of T"™", then its centroid must lie
at the origin.

Proof. Since the vertices of T"' project onto the set {u,,..., u,}, we
have } u; =0. Therefore summing over i in (2.7) gives

0=~§uz";¢-(|gl_o>% /\ZA ZA Az-¢~(|_\da)u-

-3 5 (Z-0) 1 w=3 5 (G-o)e (2.14)

xea jea \|uy e T2 BN Tl
The last equality follows from (2.6) and (2.11) since
1=(v’, uk)=< Y u;'.,uk>, Vj,keA, k#j,
ieA,i®j
implies
vj=_ ¥ uj (2.15)
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Substituting (2.13) in (2.14) then gives

=X U(Z N)- (2.16)

AcA jeA

However, the term in parenthesis is (d + 1) times the centroid of o,. A similar
argument to the one following (1.19) shows that the right-hand side of (2.16)
is proportional to the centroid of P*.

TueoreM 8. If P* is a critical section of T"", then each facet of P* is
normal to the line from the origin to its centroid.

Proof. Suppose u; is a vertex of P. The critical equations (2.7) in our
condensed notation are

=y 3 (Zoohu=3( 1 Zu)-(s 1 W) e
ASijeA,jAi |uﬂ ASi jeAJ#iluA JeAjEI
In order to simplify these sums, note that
0=(“k9 u_ii>:<uk> vi_vj>’ VkE)‘\{l7 J}9

by (2.6) and (2.11). Thus u} must be parallel to v’ —v’. The equations

) S [A]
(u;, us)=1 and {u;, v' —v'y=- =,
! [A\i]
therefore imply
) [ANi], . .
u;=——=(v'-v’) and 2.18
; [A\J] ;
ul= u; 2.19
Nk (219)
This enables us to rewrite the first sum in (2.17) as
g a; [A\J] ; T; i g
z —Ju'_:— Z JI——_ u’;=———v' (220)
jEA*i |“j| - jeA,j#r| | [a\i] |ui|jeu¢i ‘uil
(see (2.10) and (2.15)).
The second sum in (2.17) is simplified using (2.18):
. [/\\l] ) .
o Y u;=- Y (v —v)=———(dv'—dw'), (2.21)
jeagEi [A] ]E/\,j"i dl i
where w' is the centroid of a,);.
Substituting (2.20) and (2.21) in (2.17) gives
au; =y — ~(dv' —dw') = ow'. (2.22)
et IuJ l i il i3

Lemma 4 implies that this last sum is proportional to the centroid of F¥
which completes the theorem.



78 P. FILLIMAN

It is easy to show that « in (2.22) equals — V(P*), so this equation reduces
to
V(F¥)ct
V(P*yu, = VD (2.23)
|“i|
where c¥ is the centroid of F¥. Equation (2.23) is our final simplification of
the critical equation (2.7).

§3. Comments. As one might expect, the duality between sections and
projections carries over to a duality of the corresponding extremum problems.
The following is a summary of those properties of extremal projections found
in {7} which have analogues for sections.

(a) Combinatorial regions. According to Theorem 6, the volume of a
section P*=T""'n L is a rational function on a region of G(d, n). The
hypothesis of Theorem 1 seems to indicate that this region depends on the
triangulation A of P. However, we can produce a triangulation that gives
V(P*) for all sections P* having the same combinatorial type. Just triangulate
the boundary of P and join the boundary to a generic interior point of P. This
shows V(T" '~ L) is a piecewise rational function on G(d, n), and the pieces
correspond to regions of G(d, n) in which the sections have the same com-
binatorial type. The open regions correspond to sections which are simple (or
projections which are simplicial [7, Theorem 1]).

(b) Isoperimetric problem. As mentioned in Section 2, the critical condi-
tions for generic sections of T"~! are identical with the critical conditions for
the volume of a simple d-polytope P* such that ¥ I =d, where 1/I; is the
distance from the origin to the i-th facet of P*. This fact, together with
Lindel6ff’s theorem (see [6]), implies that a minimal section circumscribed
about the sphere also solves the isoperimetric problem, i.e., it has the smallest
surface area among polytopes with a fixed volume and the same combinatorial
type as P*.

(c) Differentiability. Here we describe the differentiability of the function
S(LY=V{(T" ")*~ L). Clearly f is differentiable if L is in the open regions
of (a).

A plane L lies on the boundary of these open regions precisely when
P*=(T"""Y*A L is not simple. Equivalently, the projection P=TI(T""': L)
is not simplicial. Suppose distinct vertices of T" ! project to distinct vertices
or interior points of P. Let A be a triangulation of P. Then in any nearby
plane L*, 9A becomes a star-shaped set with respect to the origin. Thus, we
may triangulate P* by adding simplices A} in P* outside A. These simplices
will give rise to new terms containing |o'}| and |o}},| in the derivative (2.7) of
f. However, both |oy| and |oy;| approach 0 as L* approaches L, which shows
f is differentiable at L.
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The only case in which f fails to be differentiable is when two or more
vertices of T""! project to the same vertex of P. In this case the surface areas
lox;| do not all approach 0 as L* approaches L.

If f is differentiable at L and P is not simplicial, then the only place where
the proof of Theorem 8 must be modified is the step which uses Lemma 4.
However when |v|=1, a simple argument shows the conclusion of Lemma 4
holds unless P has doubled vertices. But this is not possible since f was
assumed to be differentiable at L. Therefore, Theorem 8 holds whenever f is
differentiable.

(d) Minimal sections. By analogy with [7], we expect that minimal sec-
tions occur in the open regions of (a), i.e.,, when P* is simple. Such sections
would satisfy the critical conditions in Theorems 7 and 8.

(e) Maximal sections. Maximal sections should occur at planes L where
V((T" Y)*A L) is not differentiable. This is true for the maximal sections of
the cube discovered by Ball in [1].

Comparing results in [8] on minimal projections, and results in [5] and
[18] on maximal sections, we conjecture that the maximum d-section and the
minimum d-projection of T"~' are always identical.

(f) Symmetrical sections. A trivial consequence of Theorem 8 is that any
polytope whose symmetry group is irreducible when restricted to each facet
must be a critical section of a regular simplex. This includes all the simple
regular polytopes and many semi-regular polytopes as well (see [3]). It may
be possible to show some of these polytopes are minimal sections (and thus
solve the isoperimetric problem) using the representation theoretic approach
found in [9].

(g) Planarsections. Using the critical condition in Theorem 8 and Jensen’s
inequality, it is easy to show that the minimum section of T" ' by a plane is
an equilateral triangle. The other regular polygons are critical points which
we expect to be saddle points (compare [9, Section 3]).

(h) Hyperplane sections. Section 3 of [7] implies that the volume of a
section P* of T"”' can be written entirely in terms of the coordinates of an
appropriate Gale transform of its polar dual P. This implies results on minimal
sections with small codimension should be fairly easy to obtain. Using this
method, it can be shown that the smallest hyperplane section of T" ' is a
regular (n —2)-simplex parallel to a facet of T" .

(i) Other polytopes. Theorem 1 can be used to give an explicit formula
for a d-dimensional section of any polytope in R" in terms of a basis of the
d-plane containing the section. However, simple geometric interpretations of
the critical conditions probably do not exist except for sections of the regular
cube and cross-polytope.
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