CHAPTER ONE

Grassmann algebra

This chapter presents a systematic account of Grassmann (exterior)
algebra, with emphasis on aspects useful for geometric measure theory,
and with strict adherence to the principles of naturality. The reader is
assumed to be familiar with the category of vector spaces and linear maps,
but no knowledge of multilinear algebra (or determinants) is presup-
posed. The field of scalars will be the field R of real numbers, except
where another field is explicitly specified. Of course much of the theory
is applicable more generally, even to modules.

The development of exterior algebra was begun over a century ago by
H. Grassmann, and received its most significant impetus from the works of
E. Cartan. A sketch of the classical history may be found in [BO, Livre II,
Chapitre IIT]. Among the more recent improvements adopted here is
the treatment of the exterior algebra as a Hopf algebra; the diagonal
map was introduced in [CC] under the name “analyzing mapping”. The
concepts of mass and comass originated in [WH 4], the proof of Wir-
tinger’s inequality is taken from [F 20], and the content of 1.4.5 from
{F15].

The two concluding sections of this chapter treat symmetric algebra
by methods analogous to those used for exterior algebra in the earlier
part. The definition of polynomial function was taken from [GG].

L1. Tensor products
L.1.1. A function f which maps a cartesian product
VixVyx--xV,
of n vectorspaces V|, V5, ..., V, into some other vectorspace W is called
n linear if and only if, for any i and any v;e V] corresponding to all j+1i,

the function on V, carrying x into

\T\.T ..Jt.,lfxv C:.T ...,c:v

is a linear map of V into W.

L1 Tensor products 9

By the tensor product of ¥}, ..., V, one means a vectorspace
nhev,e--eb,
together with a particular n linear map
u: MixVox-xV,-Vel,e eV,

which are jointly characterized as follows:

For each n linear map f of V; x --- x V, into any vectorspace W there
exists a unique linear map g of Vi@ ---®V, into W such that f=gop.

It is customary to write
U1,®U,® B,

in place of u(vy, vy, ..., v,), whenever v;eV, for j=1,...,n

The uniqueness (up to a linear isomorphism) of the tensor product
follows immediately from the above characterization. To prove its
existence one considers the one to one map

¢: xVyx--xV,—F,

where F is the vectorspace consisting of those real valued functions
on W x.--xV, which vanish outside some (varying) finite set, and
¢(vy, ..., v,) is the function with value 1 at (v, ..., v,) and value O else-
where in V] x .- x V,. Letting G be the vectorsubspace of F generated
by all elements of the two types

SACT..JQTH,XW 5+T...,c=v+ﬁﬁc~v...“cml_u%u 5+T...vc=v
|AVAC~. ...,C_.ITX..T.%V C...TT ...QCL
and
QAC_V..Jle_uﬁcm.c.ﬁf:...vC:vlﬁ%ACHv...ucmlwwﬁ_.ur,m.f: ey C:v

with ceR, one defines V;® --- ® V,= F/G and takes u to be the composition
of ¢ and the canonical map of F onto F/G.
The construction of tensor products is natural in the sense that for

any linear maps
fu =W, V-V

there exists a unique linear map
ool Vool Ve o,
(fie-ef)(v,®--@v)=f(v))e e f()

whenever v;eV for j=1,...,n.

such that
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1.1.2. One frequently uses the following lincar isomorphisms:
For each permutation A of {l,...,n},

Ve--®V,~V,; ,® 8 Vi

where v, ® - ® v, is mapped onto v;;,® @ Uyp-
For m<n,
(Vie-eV,) eV, @ o)== Ve---eV,
where (1,8 - ® 1) ® (U 11 ® - @ 1)) is mapped onto v;® - @,
For each vectorspace V the scalar multiplication is a bilinear map

of Rx V into V, inducing the isomorphism ReV=V, where ¢®x is
mapped onto ¢ x.

If V~Pe Q ldirect sum), then
VeW~(PeW)e(QeW).
In fact,iff: V—P,¢: P—V,g: V=0, W: Q — Vare linear maps for which

fod=1p, goey=ly, dof+yeg=ly,
then f®ly, p®ly, goly, Y@l are linear maps for which

(fely)e(dely)=1lpew, gely)eWely)=1pew,
AAv@_s\voQ@?L;.Aﬂ@_:\voﬁw@_:\vﬂ—_éx\.

It follows that if B; is a basis of V; for cachj, then the elements b, @ ---® b,
with bje B;, form a basis of V1®:--® V,. Consequently

dim(V,@---eV,)=[[dim V}.
j=1

1.1.3. As an illustrative example we consider the special case where
each V; is the set of all real valued functions on some set S;, Wis the set
of all real valued functions on the cartesian product §; x - X S,, and

.\Ac: ey CLAMT ...,MLHGHAM»V.@NAMNV C:Am:v

whenever v;eV, and s;€8; for j=1,.... 1. Here the corresponding linear
map g is @ monomorphism, as seen by induction with respect to n;
in case n=2 one readily verifies that

S vy @, fkerg

k=1
whenever ¢, U 2, o, U A1 jinearly independent elements of ¥, for
j=1,2. We also observe that g is an epimorphism il and only il at least
n—1 of the n sets S; are finite.

1.2.2 Graded algebras 11

1.1.4. We will use the natural linear transformation
¢: Hom(V,R)e W— Hom(V, W),

for each linear function «: ¥V— R and each yeW, the lincar function
$(x®y): V— Wmaps xeV onto «(x) - ye W. Making use of a basis of W,
one readily sees that ¢ is always a monomorphism, and that ¢ is an
epimorphism unless dim V=00 =dim W.

We also recall that, if n=dim V<o and ¢, ..., ¢, form a basis of ¥,
then the dual basis of Hom(V, R) consists of the real valued linear func-

tions wy, ..., w, characterized by the conditions

wile)=1, w;(e)=0 for i/

1.2. Graded algebras

1.2.1. For the purpose of this book a graded algebra will be a vector-
space A with a specified direct sum decomposition

A= @ A,
m=0

and a bilinear function (multiplication) u: A x A — A such that
(A X A)E Ay

whenever m and n are nonnegative integers; we ordinarily usc a product
notation, like x -y, in place of u(x,y).
Usually the multiplication will be associative, and there will be a
linear isomorphism R~ A, mapping | onto a unit element of the ring A.
Several, but not all, of the algebras considered will satisfy the anti-
commutative law:

n-E=(=1""¢.n for Ced,, ned,.
1.2.2. If A and B are graded algebras, then the graded tensor product

AeB=@ @ 4,9B,

m=0 p+g=m

can be made a graded algebra with either of the following two standard
definitions of multiplication:

(1) To obtain the commutative product 4® B, let
(a@b)-lcod)=(a c)®(b-d)

whenever aeAd. beB, ceA, deB.
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(2) To obtain the anticommutative product 4® B, let
(a@b)-(ced)=(—1)""(a-c)e(b-d)

whenever aeA,, beB,, ced,, deB;.

These two definitions are motivated by the simple fact that the com-
mutative product of two commutative algebras is a commutative algebra,
while the anticommutative product of two anticommutative algebras is
an anticommutative algebra. (Nevertheless it is sometimes also useful
to consider the commutative product of two anticommutative algebras!)

The anticommutative products 4@ B and B® 4 are isomorphic; the
standard isomorphism maps a® b onto (- 1)??b® a, whenever ae A4, and
beB,. (The analogous isomorphism of commutative products omits the
factor (~ 1?4

For every graded algebra A there is a unique linear map
¢: AeA— A

such that ¢(x® y)=x-y whenever x,yeA. In case A is an associative
commutative (anticommutative) algebra, then ¢ is a graded algebra
homomorphism of the commutative (anticommutative) product A® A
into A.

1.2.3. We shall now construct, for each vectorspace V, a particular
graded algebra

®* V= @O@: m\,
called the tensor algebra of V. We let
® V=R, &V=V, &, V=VeV, ..,

in general ®,, Vis the m fold tensor product with all m factors equal to V.
We define multiplication in ®, V so that its restriction to ®, Vx ®,V
is simply the (bilinear) composition

B VX @, V= @ VE®, V=@, V.

One readily verifies the associative law and the fact that the element 1
of ®,Vis a unit element of the ring ®, V.

Among all graded associative algebras with a unit, whose direct
summand of index 1 is linearly isomorphic to ¥, the tensor algebra ®, V
is characterized (up to isomorphism) by the following universal mapping
property:

For every graded associative algebra A with a unit element, each linear
map of Vinto A, can be uniquely extended to a unit preserving algebra
homomorphism of ®, Vinto A, carrying ®,, Vinto A,, for each m.

1.3.1 The exterior algebra of a vectorspace 13

Finally we take note of the naturality of the oosw:cgo:. ®,: Each
linear map f: V— V' can be uniquely extended to a unit preserving algebra
homomorphism

®* \“ ®* V— ®* V.
Moreover [ is the direct sum of the linear maps

R, f: V- ®, V.

1.3. The exterior algebra of a vectorspace

1.3.1. In the associative tensor algebra ®*<.<<o consider the ﬁ.io
sided ideal 2 V generated by all the elements x® x in @, V corresponding
to xe V. The quotient algebra

A V=@, VAV

is called the exterior algebra of the vectorspace V. Clearly AVis a homo-
geneous ideal, in fact

AV= @ (®,VAUAV)
m=2

and therefore

where
A V=@uVI(@,VNUV);

in particular Ag¥V=R and A V= V. The elements of A,V are mm:oa m-
vectors of V. The multiplication in A, Vis called exterior multiplication
and denoted by the wedge symbol A . It follows that if vy, ..., v,€V, then
the canonical homomorphism maps the product v, ® 8V, E®,, Vonto

the product
P Uy A AURENL V.

Clearly A,,Vis the vectorspace generated by all such products.
If x and y belong to ¥, then

x®VTTz@xnﬁx+§®Q+Elx®xlw®xmﬁﬂ
hence y A x= —x A y. Therefore

Acui>:.>cuiv>€_>:.>cuv
HA|:2¢:>...>cL>€u+_>.:>ca+L

whenever vy, ..., U, €V, which implies that the anticommutative law holds
for exterior multiplication.
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Among all anticommutative associative algebras with a unit, whose
direct summand of index 1 is linearly isomorphic to V, the exterior
algebra A,V is characterized (up to isomorphism) by the following
property:

For every anticommutative associative algebra A with a unit element,
each linear map of Vinto A| can be uniquely extended to a unit preserving
algebra homomorphism of A,V into A, carrying A,V into A, for each m.

Such an extension is unique because the algebra A, Vis generated by
Vu{1}. To prove its existence, we recall that each linear map of Vinto
A, can be extended to an algebra homomorphism h of ®,V into A4;
since A is anticommutative and R has characteristic different from 2,
a*=0 whenever aed,, hence AV ckerh, and h is divisible by the
canonical homomorphism of ®, Vonto A V.

The construction A, is natural: Each linear map f: V-V’ can be
uniquely extended to a unit preserving algebra homomorphism

A [r NV ALV
Moreover A, fis the direct sum of the linear maps

Ay [ A V= ALV

1.3.2. The function A, converts direct sums of vectorspaces into anti-
commutative products of algebras: If V~Pe Q, then A, V=N, PeA, Q.

Infact, if f: V> P, ¢: P>V, g: V- Q, y: Q — Vare linear maps for
which
\o@”wwu Wo.\\uuau ﬂ.o\f_x.\\o%”r:
then there is a unique unit preserving algebra homomorphism

ar A V— A, PeA, Q (anticommutative product)

such that a(v)=f(v)® 1+ 1® g(v) whenever veV; moreover the compo-
sition f3 of algebra homomorphisms

A, PN, QL2220 A VoA V25NV

{where @ is induced by the multiplication of A, V) is inverse to «, because
fox and ao B induce identity maps on the direct summands of degree 1.
Since A, R=R @R, it follows that, if e, e,,es, ... form a basis of V,
then the products
€= mNein N AN Em

133 The exterior algebra of a vectorspace 15

corresponding to all increasing m termed sequences A form a basis of A\, V.
In case V has finite dimension #, this implies that

dim A, <HA=V for m<n, A, V={0} for m>n.
m
In fact A, V has a basis equipotent with the set
A(n, m)
of all increasing maps of {l,...,m} into {1, ..., n}.

1.3.3. The diagonal map of A, V is the unit preserving algebra homo-
morphism

P A V= A, VoA,V (anticommutative product)

such that Y(v)=ve 1 + l®v whenever veV.
For vy, ..., v,€V we compute the product

Pwynoav)=][]vel+18v)
i=1

using the rules
(vel)-(lev)=(;8v)=—(lov) (181).

The result can be conveniently expressed in terms of the notion of
shuffle of type (p, q), meaning a permutation of {1,2,..., p+g} which is
increasing on each of the two sets {1, ..., p} and {p+1,..., p+q}. Letting
Sh{p, q) be the set of all shuffles of type (p, g), we find that the product

equals

Y Y index(6) (Upay A AVep) @ (Vg(peny A A Ugimy)
p=0 geSh{p,m—p)
The index of any permutation ¢ equals (— 1), where N is the number
of pairs (i, j) such that i< j and a(i)> o ()).
The diagonal map ¥ of A,V is associative, which means that the
following diagram is commutative:

AV
ﬁ\ /»__\
A VOAY A VAV

f®_w ‘TM@%\

(A, VoA, V)@, VaA, VoA, Ve, V)

In facc the two vertical compositions of algebra homomorphisms agree
on V, mapping vonto relel+level+leler.
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The diagonal map ¥ of A,V is anticommutative, which means that
oo ¥ =Y, where a is the automorphism of the algebra A, Ve A, V which
maps x®y onto (— 1)’ y® x whenever xeA, V and yeA, V. This is true
because ao ¥ and ¥ agree on V.

The diagonal map is a natural transformation: If f is a linear map of V
into a vectorspace V', with diagonal map ¥, then

WoA, f=(A, feA, f)o¥.

1.34. We conclude this section by defining and computing the
determinant of a linear map f: V—V, where oo>dim ¥V=n. Since
dim A, V=1, there exists a unique real number det(f) such that

(A, f)E=det(f) & whenever £eA, V.

Relative to any choice of base vectors ey, ..., e, of ¥, the endomorphism f
can be described by the matrix a consisting of real coefficients g; ; such
that n

fle)=73 a; ;e for j=1,...,n.

j=1 '
Then we find that ‘\ Wy

3:is>s>£n>£>z>:£nMA ssgs.

A Ni=1

L

where the summation is over the set of all permutations 4 of {1, ..., n},
and since ¢;=index(4) e, A --- A e, we obtain

aQQVMM index(M)[ai 169

i=1

If g is another endomorphism of V, then

An(gof)=(A,8)o (N, ), hence det(gef)=det(g)- det(f).

Again using base vectors e, ...,e, of ¥V we associate with each
permutation A of {1, ..., n} the endomorphism ¢ (1) of V which maps e,
onto e,;. Since ¢ and det are multiplicative homomorphisms, so is
index=deto ¢.

1.4. Alternating forms and duality

1.4.1. An m linear function f which maps the m fold cartesian prod-
uct V™ of a vector space V into some other vectorspace W, is called
alternating if and only if f(v,, ..., v,)=0 whenever v,, ..., v, eVand v;=1;

for some i+ We let
NV, W)

1.4.1 Alternating forms and duality 17

be the vectorspace of all m linear alternating functions (forms) mapping
V™ into W If feAN"(V, W) and g: ®,, V— W is the corresponding linear
function, then AV ®,, V<kerg, hence there exists a unique linear
function h: A, V- W such that

7

Sy, ..yv)=h(v; A+ Av,) Whenever c::;csmu\. <3 * i)
Thus associating h with £, we obtain the linear isomorphism W | ) %\
A" (V, W)~ Hom(A,, V, W). AN ’ _\H._.,,
Moreover there is an obvious linear isomorphism . .
Hom(A,, V, W)~Hom™ (A, V, W), on T

where the right side means the set of those linear maps of A, V into W
which vanish on A, V whenever n£m. The above isomorphisms remain
true for m=0 with the convention A°(V, W)= W. We define

NV, W)= @ NV, W).

m=0

Most frequently we shall deal with the case when W=R; we therefore

abbreviate
ANV, R)y=N"V, \*(V,R)=A*V.

The elements of A" V are called m-covectors of V.
In an extension of the usual notation
& hy=h(§) for LeA, V, heHom(A, V, W),

we shall also write (&, f>={& h)={¢ k) whenever fe A"(V, W) and
keHom™(A, V, W) correspond to h under the above isomorphisms.

Each linear map f: V— V' induces a dual linear map
N(LW) AV, W) — AV, W)
which is the direct sum of the linear maps
N (LW): NV, W) — AV, W)
characterized by the equations

ENLWY D =An )) E b)
for eN,, Vand ¢ge A" (V', W)

2 Federer. Geometric Measure Theory
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We abbreviate A*(f, R)=A*f.
For example, in case V’'=V with co >dim V=n, then
(N'f)p=det(f) ¢ whenever peA*(V,W),

because, for each £eA, V,

CGNUW) ) =LA f) & @D =Cdet(f)- & ¢> =& det(f)- ¢

1.4.2, Whenever W is an (ungraded) algebra over R, we shall use
the diagonal map ¥ of A,V to turn the graded vectorspace A*(V, W)
into a graded algebra, called the alternating algebra of V with coeffi-
cients in W. Recalling that

A (V, W)~ @ Hom™(A, V, W)
m=0

we define, for aeHom?(A, ¥, W) and feHom?(A, ¥V, W), the product
oA feHom?+9 (A, V, W) to be the composition

A V-5 A VoA, V=220, we w—0 W,

where v(s®t)=s5-t for s,teW. Taking account of the associativity,
anticommutativity and naturality of ¥, one easily verifies:

If the multiplication of W is associative, then A is associative.

If the multiplication of W is commutative, then A is anticommutative.

A multiplicative unit element of W acts also as a unit element for .

For each linear map [ V— V', the linear map N*(f, W) is a multiplica-
tive homomorphism.

Thealternating producta A feA? 4V, W)ofae N (V, W)and BeN(V, W)
is defined through the isomorphisms A™(V, W)~Hom™(A, V, W). How-
ever, the shuffle formula for ¥(v; A+ Av,) leads immediately to the
following explicit formula for a A §:

AQ A \WVACT (R Cw.fav
= M WBQOXAQV.QAQQCT...VCQAEV..%ACQQ+:, ...,CQQL.QV
oeSh{p, q)
whenever v,.....v,, eV, Assuming the multiplication of W to be asso-

ciative, one readily obtains by induction a similar formula for the
product of m alternating forms

s, e NV W)
corresponding to i=1, ..., m. Abbreviating

s(iy="3 p(j).

jsi

144 Alternating forms and duality 19

one defines a shuffle of type [p(1),..., p(m)] as a permutation of the set

{1, ..., s(m)} which is increasing on each of the msets {s(i— 1)+ 1, ...,s(i)},
and one finds that
(ot A A (D, ey Vggmy)
m
= M index Aqv: R..Aci:_.n:)r:v o Ugs(in)
seShip(D),..., p(m)] i=1
whenever vy, ..., Uy €V.
Therefore, in case p(i)=1fori=1, ..., m, we have

(@A A ey 8= T index (@) T o000,

i=1
where the summation extends over all permutations ¢ of {1,...,m}.

In particular, if & (v;) =0 whenever j <i, we obtain [ ] o;(1;).

i=1

1.4.3. Next we take W=R and observe that, if w,, ..., ®, are linearly
independent in A!' V, and m < n, then the products

8»”8:5\/... >8»¢5

corresponding to all e A(n, m) are linearly independent in N" V. In fact,
choosing e;eV so that {e;,w;>=1 and {¢;, w;> =0 whenever i+j, we
find that {e,,w,;>=1 and {e,, w,> =0 whenever A5 ueA(n, m). In case
oo >dim V=n, then the products w, form a basis of A"V, because in this
case

dim A" V=dim A, <uA :vw
m

we also note the equations
¢= Y lenddw, for penv,?

Ae A(n, m)

E= Y (Ewpe, for EeALV.

AeA{n,m)

A

The coefficients {e,, ¢> and {w,, &) are called Grassmann coordinates
of ¢ and ¢, and will usually be denoted ¢, and ¢,.

1.4.4. The identity Hom(V,R)=A'V leads to a unique unit pre-
serving algebra homomorphism

Q: A, Hom(V,R) > A*V

such that Q(x)=o whenever xeHom(¥, R). We see that Q is a mono-
morphism, because for each choice of base elements of Hom(V,R),
2 maps their m-fold exterior products, which form a base of A, Hom (V, R),
onto their alternating products in A" V; which are linearly independent.

e
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Moreover Q is an epimorphism in case o« >dim V=n, because then

A, Hom(V,R) and A"V both have dimension Axv If oo =dim ¥, then
im € does not contain A® ¥ for any m> 2. m
(While the identity Hom (¥, W)=A!(V, W) allows one to define a
similar algebra homomorphism of A, Hom(V, W) into A*(V, W), for any
associative algebra W with a unit element, this homomorphism is not
injective unless dim W=1; it is surjective whenever dim V< c0. On the
other hand, in case W is also commutative, one obtains a W linear
homomorphism
Y Hom (V, W) — A*(V, W),

which is an isomorphism is case dim V' < oo. Here A% means the exterior
algebra constructed with W replacing R as coefficient ring)

1.4.5. For any two vectorspaces V and W the commutative product
A* Ve A, W is an associative algebra, which is neither commutative nor
anticommutative (unless V~R or W~R). However the subalgebra

A= @ N Ve A, W
mm=0

is commutative.
Assuming dim V=n< oo we recall (1.1.4) the natural isomorphism

A' Ve W= Hom (V, W),

whose inverse I can be computed as follows: If e,, ..., e, and w,, ..., w,
are dual basic sequences of V and A!'V, then to each feHom(V, W)
corresponds

I'(f)= M§®>m_.vm>~ VeW.

i=1
Using the multiplication in 4 we compute the divided m-th power

r(fyjm= % ;8\, f)e;=T(A, f),

Aed(n, m)

where the symbol I' on the right designates the inverse of the natural
isomorphisms

N Ve A, WA (A, V)e A, WxHom(A,V,A,W).
In case V=W we define trace e Hom (4, R) so that
trace(@p® &)=L, ¢ for peN"V, LeA,V,
and observe that

trace [C- I'(Ly,y)] = A: M Sv trace ({)

1.5.1 Interior multiplications 21

for {eN"Ve A,V and j=0,1,...,n—m. Moreover

trace [I°(f)"/n!] =trace[I"(A, f)]=det(f)
forfeHom(V, V). Using the binomial theorem we find that, whenever reR,

rely—fym!=0Iry)=I(f)]/n!= M () (= 1" TN, f),

m=0

hence the value of the characteristic polynomial of f at t equals

n

det(tl,—f)= Y "="™(=1)" trace [T(A,, f)].

m=0

Similarly one obtains the formula

det(ly+1 )= 3 ™ trace [T(A, f)].
0

me=

Hereafter we abbreviate trace [I'(f)] =trace(f).
If £, geHom (V, V), then

trace(fo g)=trace(go/f);

in fact this equation is bilinear, and in the special case when I'(f)=a® v,
I'(g)=pBew it holds because

I(fog)—T(gef)=a(w)Bev—f)aew.
If feHom (¥, V), then trace(Al f)=trace(f).

LS. Interior multiplications

1.5.1. These operations are bilinear maps
ANV XNV W) — MR (V, W)
L AVXNV=A,_V -

P
defined for p<gq, and characterized by the conditions:

&nd@>=LEAn,¢> whenever (e, _,V, neA,V, peN(V,W);
Cla, f=({,anpB) whenever {eA,V, acNV, fe NPV,

The interior multiplications _ and L may be constructed by essentially
dual procedures as follows:

Right exterior multiplication by n maps A,_, Vinto A, V; the induced
map

Hom (A, V, W)= A (V, W) — Hom(A,_, VW)~ "P(V, W)

p

carries ¢ onto n _J¢.
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The diagonal map ¥ of A,V and the map he Hom?(A
sponding to o lead to the composition

« V.R) corre-

A VeA, V2L,

AV ——ReA V=AV

which carries { onto {L«. Letting ke Hom?~?(A, ¥, R) correspond to f,
we derive the characteristic oosa_:os from the commutativity of the

diagram:

<Ilw®w R

hel %-@r ﬁ,w

ReA, VA,V

A VoA

We note that, whenever r+s<t, R
EAanmdp=E_dndd) for EeA,V, peNV;”
{L{anf)=(lLa)f for EeAV, aeNV, BeNV

T nelV,

152. If n=dimV< 0, ¢,,..., ¢, and w,,...,m, are dual bases of V
E.a A"V, Le A(n, p) and ueA(n,q), the characteristic conditions imme-
diately yield the following values of the interior products ¢;Jw, and
e,lw;

In case im A< im g, then

e; Jw,=0 and e,Lw,=0.
In case im Acim y, then
(=1 w, and

where veA(n, g—p), im Auim v=im y, and

e, Jdw,= e,Lw,=(—-1"
M =the number of pairs (i, j)eim A x im v with i< j,
N =the number of pairs (i, j)eim A x im v with i>}.
Note that M+ N=p(g—p).

In particular, in case 4 is the identity map of {1, ...,
right interior multiplication by w,
e,, give linear isomorphisms

D, A, V=A""?V and D7

n}, one finds that
, and left interior multiplication by

NV=A,_ V.

14

Moreover D, and D”"~7 are inverse to each other. Note that these iso-
morphisms depend only on the dual base vectors ¢, and o, of AV
and A"V

m
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The final equations of 1.5.1 imply, whenever r+s<n, that

D,,(&Aan=ECIDsn for LeAV, neAV;
D'+ (aAB)=D )L for aeNV, feNV

1.5.3. If veVand ae NV with {v,a) =1, then

d=v i(pra)+(vIP)A

whenever ¢eNV with j=1. One readily verifies this equation after
expressing ¢=pf Aa+y with BeN"IV, yeNV, v =0, v Jyy=0. The
equation implies that

G Aa=0 ifand only if =B A« for some BeN~'V,
v1¢=0 ifand only if d=v_ly for some yeN*'V,
and yields the direct sum decomposition

NV={Bra: BeN ' V}a{vly: yeNT V).

We also note the dual equation:

E=wadlat+va(lla) for eV

1.6. Simple m-vectors

1.6.1. An element of A, Vis called simple (or decomposable) if and
only if it equals the exterior product of m elements of V. We shall see
that there is a close connection between simple m-vectors and m dimen-
sional vectorsubspaces of V.

With each £e A, V we associate the vectorsubspace
T=Vn{v: EAv=0}.

Assuming &40, we claim that k=dimT<m and for any base vectors
ey, ..., e of Tthere exists a &'e,_, Vsuch that

E=e, A ngnll

We observe that it suffices to verify this assertion in case n=dim V< o,
and choose ¢, ,,..., e,eVso that e, ..., ¢, form a basis of V. Expanding
(=Y e

s
AeA(n, m)

and multiplying by ¢,, where i<k, we find that £, =0 unless ieim 2,
because the products ¢; A e; with i¢im 4 are lincarly independent.
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We deduce the following four corollaries:

A nonzero m-vector ¢ is simple if and only if its associated subspace T
has dimension m; in this case & equals the exterior product of m suitable
base vectors of T.

The associated subspaces of two nonzero simple m-vectors & and y are
equal if and only if é=cn with 0% ceR.

If & is a nonzero simple m-vector and n is a nonzero simple n-vector,
then { An=0 if and only if the subspace associated with & Ay is the direct
sum of the two subspaces associated with & and 1.

The subspace associated with a nonzero simple m-vector & is contained
in the subspace associated with a nonzero simple n-vector n if and only if
n=E&A{ for some (eN,_, V.

1.6.2. The above association maps the set of all nonzero simple m-
vectors of V onto the Grassmann manifold

G(l,m)

of all m dimensional subspaces of V. With respect to this map, ¢ and
are equivalent if and only if £ =c# for some nonzero real number c.

One also considers the following somewhat finer equivalence rela-
tion on the set of all nonzero simple m-vectors of V: ¢ and n are equi-
valent if and only if &= ¢ 5 for some positive number c. The equivalence
classes now obtained are called oriented m dimensional subspaces of V,
and the identification space will be denoted

Go(V,m).
We shall abbreviate
GR" mM=G(nm), GoR"' m=Gy(nm).
1.6.3. An element of A"V is called simple (or decomposable) if and

only if it equals the alternating product of m elements of A'V. In case
n=dim V< oo, the isomorphism (1.4.4)

Q: ANVAY
shows that simple m-covectors behave just like simple m-vectors; in
particular, for 0% ¢$eA™ ¥, the associated subspace
AMVA{a: pra=0}
has dimension <m, with equality holding if and only if ¢ is simple.

Moreover the isomorphisms D, and D? defined in 1.5.2 preserve simpli-
city. If T is the subspace associated with a nonzero simple p-vector &,
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then the subspace associated with the simple n—p covector D, (&) equals
AV {o: (v, ad>=0 for all veT},
the annihilator of T. This is obvious because
D,(eyn-Ae)=(=1P""Pw, A Aw,.

Since the annihilator of the intersection of two subspaces equals the
vector sum of their annihilators, we obtain the following corollary:

If Tand U are the subspaces associated with simple nonzero p- and
r-vectors & and n, then

dim(TA U)=p+r—n if and only if D,(E)AD,(n)*0;
when these conditions hold, then
TAU is associated with D2"=?~"[D,(£)AD,(n)].

1.6.4. Regarding the dual pairing of simple m-vectors and simple
m-covectors we shall prove:

Ife,..  encV,é=e A ne,£0and ay, ..., a0, V, then
Am,R—\/ >R§V”Q®~A.\,V,

where [ is the endomorphism of the subspace associated with & such that

m

fley=Y e, o> e for i=1,...,m.

j=1

By the naturality of ¢ , > we may assume that e, ..., ¢, form a

base of ¥, and choose §m>H Vso that {e;, w;> =1 and {¢;, w;» =0 when-
ever j#i. Then (A*f)w;=q;, hence

B A A Gy = (A )@y A A ) =det(f) @1 A Aw),

ooy A Aagy=det(f) (& oA Ao, =det(f).

1.6.5. Here we recall 1.5.2 and use the linear maps
P.VoVxV, Q:VoVV, g VoaVxV, f1VxV—oV,
P(x)=(x,0), Q(x)=(0,x), g(x)=(x,x), f(x,y)=x—y for x,yel.
If £eAVand yeA, Vwith k+1>n, then
(& AP A N Qg Ao nwy N
= (=1 PID2 D EAD ), Ay 8-

We observe that a change of dual bases multiplies both members of this
equation by the determinant of the corresponding automorphism of V.
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To verify the equation in case ¢ and 5 are simple with D, & A D, n+0
we choose ey, ..., e, and w,...,w, so that

ﬂ”m~>...>Q», 3”&=l~+—>...>ﬁ

no

and we compute

D"k (D EAD ) =¢L D,y

=(e A Ae)LWIA AW, =€, A Ae.
We also let a;=2""(¢;, —¢;) and bj=(e;, e;), note that

Ple)nQle)=a;nb; for je{l,...,n},

and infer that, for all peAN+!="(V x V),
(Plen-nPle)nQlesii) A AQ(en) (o f ) A Awyof ) A D
HAESV>:.>~uAm=Lv>m=L+H>...>$>FL+_>:.>F

AQ(e ) A AQ(e,), (o)A Alw,of) A )

(=) Dok
(—=1) WA A Al D

1.6.6. Assuming that ¥ and W are vectorspaces over the field C of
complex numbers we define

Ne(V, W)
as the subset of A"(V, W) consisting of those forms ¢ for which
POgs sy U D) =C P (0, Ll U,
whenever je{l,...,m}, ceCand v, ...,v,eV. We also let

NV W)= @ Ne(V,W).

m=0
Clearly AE(V,C) is a C subalgebra of A*(V,C).
moagmx conjugation is an automorphism of A*(¥,C). To each
ae N"(V, C) correspond o, 1e A*(V, Ry such thata =0 +i 1, =0 —i 1, hence

and=cno+tat foreven m, and=—2io 1 for odd m.

Ife), ... e, and o, ..., 2, are dual C bases of Vand A¢(¥,C), and if
Qx”q\lf—ﬂ.\ g:j O'\J ﬁkm\/uﬂﬂ\,zy :‘903

é,18y,...,¢,,1¢, and og,,1,,...,0,,7

n

are dual R bases for Vand A'(V,R). Moreover the products

iy AN ALy ALy A A
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corresponding to all AeA(n, p), peA(n,q) with p+g=m form a C base
of A"(V,C), and those products which correspond to p=m, g=0 form
a C base of A%(V,C). We also note that

CLATIA AT AT, =(1/2) g AG A AU AT
=2 (= 1) D2y A AL AR A AT

If fis any C linear endomorphism of V, then det(f)=0. To prove this
we choose bases as above and observe that

(o)A Ao f)=dayn-enay
for some complex number d (the C determinant of f), hence
@ of) A >Am=o\vﬂmmH> <o A Oy,
(N2 )0, AT A AT AT =ddO AT A AT AT,
and det(f)=dd=|d|*=0.
A nonzero simple m vector €A,V is called complex if and only if

the R vectorsubspace of Vassociated with & isa C vectorsubspace of V.
1t follows that & is complex if and only if m is even, say m=2p, and

E=rv Aivy A AL ALY,

for some reR and vy, ..., v,e V. Moreover sign(r) is uniquely determined
by &, because for any two C bases vy, ..., v, and wy, ..., w, of the vector-
space associated with & there exists a C linear automorphism g of this
vectorspace which maps v; onto w;, hence

5>m€_>.:>€m>m§wuam2mv§>m5>...>:u>m5:

with det(g)>0 according to the preceding paragraph. We term ¢ posi-
tive in case r>0.

1.7. Inner products

1.7.1. We recall that the bilinear functions
| B: VxV—-R
are in one to one correspondence with the linear maps
B: VALV
through the connecting formula
B(x,y)={x, f(y)> for x,yeV

One calls B symmetric if and only if B(x, y)=B(y, v) whenever x, yel”:
in this case we call the corresponding lincar map ff a polarity.



28 Grassmann algebra 1.7.2

An inner product is a symmetric bilinear function B satisfying the
condition

B(x,x)>0 if and only if O£ xeV.

When discussing a vectorspace V with a particular fixed inner product B,
we generally use the dot product notation x«y in place of B(x, y), and
also define the norm

x| = (x + x)*.

For example we usually write

xey= ) %y for x=(x,,...,x,) and y=(y,, ..., y,)eR".

i=1

Assuming henceforth that « is an inner product for ¥, wz use the fact
that
E(xex)+2(xey)+(yey)=(tx+y)e(t x+1)20

whenever teR to obtain the inequalities
xey<|x|-lyl, hence |x+y|<|x[+]|yl

for x, ye V; both inequalities are strict in case x and y are linearly inde-
pendent.

A sequence vy, ..., v, satisfying the conditions v;e v;=1, and v, « v;=0
for i# j, is called orthonormal. For every linearly independent sequence
U, ..., u,€V there exists an orthonormal sequence v,, ..., U, such that,
for k=1,...,p the sets {u,,...,u,} and {v,,...,v,} generate the same
vector subspace of V. Therefore, in case dim V < o0, V has an orthonormal
base.

We metrize V' so that the distance between x and y equals |x — y|.
It follows that V is boundedly compact if and only if dim V' < co.

1.7.2. A linear map f: V— V', where V' is another vectorspace with
an inner product (also denoted by ) is called an orthogonal injection if
and only if f(x)sf(y)=xey whenever x, yeV. The set of all orthogonal
injections of R™ into R" will be denoted

O(n.m).

Moreover O (n)= O (n, n) is the orthogonal group of R”.
In case dim V' <o, the polarity corresponding to the inner product
of Vis a linear isomorphism of ¥ onto A'V, and one endows A! V with

the inner product which makes this polarity orthogonal. The resulting
norms on Fand A' Vare dual, in the sense that

faf=sup{{x,a): xel, |xj<1}

1.7.3 Inner products 29

whenever aeA! V. Moreover the polarity maps each orthonormal basis
of V onto the dual basis of A! V.

1.7.3. Foreachsymmetricbilinear functionS:V x V— R,withdim V< o,
there exists an orthonormal base ey, ..., e, of V such that

S(e;, e)=S(e;,e) and S(e,e)=0 for i<j.

Proceeding inductively, one may choose ¢; in the compact set
Ci={x: |x|=1, xee,=0 whenever k<i}
so that S(e;, ;)= S(x, x) for xe C;; for i < j the fact that
le;+t e~ (e;+1te)eC;

whenever teR implies S(e;, ¢;)=0.
An endomorphism f of Vis called

symmetric in case f(x)s y=x+f(y) for x,yel,

skewsymmetric in case f(x)ey= —x+f(y) for x,yeV.

Every symmetric or skewsymmetric endomorphism f is orthogonally
reducible in the following sense: If Wis a subspace of V, with the ortho-
gonal complement

W' =Vn{x:xey=0 for all yeW},

then f(W)c W implies f(W')< W'. In case dim V< o0 it follows that Vis
the direct sum of finitely many mutually orthogonal subspaces W which
are minimal with respect to the property that f(W)c W.

In case f is symmetric, these minimal subspaces have dimension 1. One
associates with f the symmetric bilinear function S such that S(x,y)=
f(x)ey for x,yeV, and obtains an orthonormal base ey, ..., e, of ¥such
that f(e;)s ;=0 for i+ j, hence f(e)=1; ¢; with L,€R.

In case f is skewsymmetric, the minimal subspaces have dimension <2.
This is true because f2= fof is symmetric, and f2(e;)= 4; ¢; implies that
f maps the subspace generated by e; and f(e;) into itself. As a corollary
one obtains the following representation of alternating 2-forms:

If pe A2V, with dim V< oo, then there exists an orthonormal sequence
Wy Wyy ey Wym_1, W2, €NV and a sequence of nonnegative numbers
Alyeeny Am Such that

¢ = M_\“q Waj 1 AWy
=
This is trivial if dim V<2. To obtain the general case we consider the
skewsymmetric endomorphism f of V¥ such that f{x)ep=¢(x,)) flor



30 Grassmann algebra 1.7.4

x,yeV, we decompose V into the direct sum of mutually orthogonal
subspaces Wy, ..., W, with f(W)c W, and dim W;<2, and observe that
¢ (x,y)=0 whenever xeW,, yeW,, j*k.

If [ V== V' is a linear map of inner product spaces, with dim V< 5o,
then V has an orthonormal base ey, ..., e, such that f(e)sf(e)=0 for i=j.
In case dimV<dim V', there exists a symmetric endomorphism g of V and
an orthogonal injection h: V— V' such that ho g=f. Choosing e¢; adapted
to the symmetric bilinear function § such that S(x,y)=f(x)+f(y) for
x,yeV, one may define

gle)=|f(e)| -e; for alli,
and choose h so that

h(e)=1/(e)|™" f(e) whenever f(e)+0,

while h maps kerf orthogonally into the orthogonal complement of
imf in V' Similarly, in case dimV>dim V' there exists a symmetric
endomorphism k of V' and (see 1.7.4) an orthogonal projection p: V- » V'
such that ko p= f; this assertion may be proved by applying the preceding
proposition to f*.

1.7.4. Now suppose V and V' are finite dimensional vector spaces
with inner products, and with the corresponding polarities § and .
With each linear map f: V— V' one associates the adjoint linear map
S*: V=V by means of the commutative diagram

IR 7

L ?\

v Ny
or equivalently by the condition

Xof*¥(y)=f(x)ey for xeV, yeV"

If g: V' V" is also linear, then (gof)*= f*og*.

In case V=17, s symmetric if and only if f*=f fis skewsymmetric
if and only if f*= — .

Alwaysf** = f. The endomorphisms f *o f, fo [ * of ¥, V" are symmetric.

We observe that fis an orthogonal injection if and only if f*o /=1,
In case f'is an orthogonal injection, we call /* an orthogonal projection.
Hence a linear map g: V'-» Vis an orthogonal projection if and only if
gog*=1.. Wec shall frequently consider the set

O*(n,my={f* feO(n, m)}
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of all orthogonal projections of R" onto R™. In particular, to each
A€ A(n, m) corresponds the map p,e O* (n, m) such that

Pa(X)=(X51ys s Xz0m) fOr x=(x;,...,x,)eR".

If Wis any m dimensional vectorsubspace of R”, with the inclusion
map h: W—R", then A"h is an epimorphism, hence (\"h)w,=+0 for
some AeA(n,m), where w,,...,w, form the standard base of A'R";
since w; generates im A" p,, it follows that A"(p,oh)+0, p,oh is an
isomorphism, hence

Wnkerp,={0}.

If f:V—W, g:V-»W, are orthogonal projections and Wy is an
inner product space such that

dim W, +dim W, —dim V > dim W;,

then there exist orthogonal projections p: W, —» Wiy, g W, — W, with
pef=qeog. In fact, since dim(im f*~im g*)> dim W,, there exist ortho-
gonal injections u: Wy — W,, v: Wy — W, with f*ou=g*ov, and we can
take p=u*, g=0*

1.7.5. Next we discuss the manner in which inner products for the
spaces A,V are induced by the given inner product for V: The polarity
B:V— AV can be uniquely extended to a unit preserving algebra homo-
morphism y: A, V- A*V, which is the direct sum of linear maps

Vi ANy Vo A"V,
Composing y,, with A"VxA(A, V), we obtain linear maps
Bm: A V— N(A, V)
which satisfy the condition
(G Bm)d> =<, Bu(&)> for & neh, V.
It suffices to verify that this holds true if ¢ and # are simple, say

C=UA Aty and n=w A Aw,,

in which case the permutation formula for the alternating product of
I-forms (1.4.2) gives

Afm, \w-:?:v = A~._ A A [ \w:e__,v A A \wjﬁ:.vv

|

” m
=3 index(o) [T, o w =3 indexta Y]] ew, o
" [ ” j~1

= AI; A AW \wf_v A A \w:,:_vvu AQ” \w‘:AM\W\/.
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Thus 8,, is a polarity, and we define a symmetric bilinear function « on
AV x A,V by the formula

MoS”AmumiA:vv for N‘Jm\/i V.

We shall soon see that ¢ ¢&>0in case £+40, so that « is in fact an inner
product for A, V.

The above permutation formula shows that if some w; is orthogonal
to all v;, then (v, A - A U)o (Wi A - AW,)=0.

For any v,,...,v,€V we can express v;=u;+w;, where u; belongs
to the subspace generated by {v,: k<i} and w; is orthogonal to this
subspace; then v, A+ AV, =W A - Aw,, and the permutation formula
implies

m
(O A AV (O A A =[] viowi <[] viows,
i=1 i=1

equality holding if and only if v, ..., v,, are mutually orthogonal.

Therefore, if ¢, ..., e, form an orthonormal base for V, then the base
vectors e, of A, V, corresponding to A€ 4 (n, m), are likewise orthonormal.
For any m-vectors ¢ and 5 the representations

= M E,en, nN= M Nsé;
Aed(n, m) AeA(n, m)

and the bilinearity of « lead to the formula

Con= M €iMa

A€ A(n, m)

In case £=740, we obtain

Eel=7 (£)*>0.

A

One now readily estimates the norm of the exterior product of a
p-vector & and a g-vector #:

In case £ or n is simple, then |&An|<IE|-n].
In case both & and # are simple and nonzero, equality holds if and
only if the subspaces associated with ¢ and # are orthogonal.

Always s
, + .
Ennts(T0T) iel

To prove the last inequality we represent

N“ M M» €15 n= M :: Q:

AeAn, p) neAn q)
with &,,n,eR, we define

SW)={(A w): AeA(n, pl neAn g), e, ne,= +¢}
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whenever veA (n, p+q), and observe that

et vy (3 ,vs_vN

veA(n, p+q) M4, weS(v)

< Y cardS() Y (Gan)’

ved(n, p+q) (A, u)e S(v)
+4

(") T @ > o
b A€ A{n, p) neAn, q)

The maps B, ¥m, Bn occurring in the preceding construction are
related by the commutative diagram:

AV

2 T

ANV Loy~ ANAV

In case dim V< oo, the maps S, and 7, are linear isomorphisms,
and one endows Al A,, Vand A"V with inner product so that f3,, and y,,
become orthogonal. If e, ...,e, and w,,...,w, are dual orthogonal
bases of Vand AV, then y,,(e;)=w, for AeA(n,m). Also

[<E, ¢DI1<|E|- |¢] whenever EeA, V, peN" V]
equality holds if and only if y,,(¢) and ¢ are linearly dependent.

1.7.6. Suppose f: V— V' is a linear map, where Vand V' are finite
dimensional inner product spaces. From the commutative diagram

A VLB ANV > AV o= NALY

or] IV P

AV LB NNV > AV > AA, VY

we see that A, f*=(A, N*

In case V=V, det(f*)=det(f) and trace(f*)=trace(f). If f is
symmetric, so is A, /0 If f is skewsymmetric, then (A, I=(=1"A, [
If f is orthogonal, so is A,, f, hence det(f)*=1.

In general, if fis an orthogonal injection, so is A, /. Il f1s an ortho-
gonal projection so is A, f.

The norm of [ is defined by the formula

I S =sup{|f(x)|: xeVand
It follows that || fi| =1 f*| = [|A'fii and
IAw S = 1A S =A< for alt my

3 Federer, Geometric Measure Theory

xi< 1},
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To prove this we m:oo% an orthonormal base e, ..., e, of Vsuch that
.,\Amu.i@no for i#j; then the m-vectors (A, f)e, corresponding to
4€A(n,m) are mutually orthogonal, hence eA,, Vimplies

(An N)EP =T &M ) P =3 0P 1A N s < IE1 112
A A

In case m=dim V] then |A, fll=|(A, f)¢&| fo i
. » the m =1\, r every £eA, V with
|€l=1; hence [[A,, f1|>0 if and only if f is a monomorphism.

In case m=dim V', then |A"f|=|(A"f)¢| for i
‘ » the = every ¢pe/N" V', with
|¢|=1; hence {|A, f1>0 if and only if f is an epimorphism.

In case V=V"and m=dim V; then |A,, f| =|det(f)I.
1.7.7. If e A, R" and ¢ is simple, then
Icl=sup {|(A, g) |: g€ O*(n, m)}.

In fact ge O*(n, m) implies ||A = Fl<|é

; m &l =1, hence |(A,, g) &I <[¢]. In case ¢40
Mo can orwomm /€0 (n, m)so that im f is the subspace T associated with ¢,
_%_58\0\ IT=1rand (A, fo A, f*)E=¢;since A, fll=1,](A, f*) &=

Similarly, if ¢eA"R" and ¢ is simple, then
|¢1=sup{|(\"f) ¢|: feO(n, m)}.

- 1.7.8. Given n=dim V<o and EeA,V with |E|=1 we define linear
aps
1 AV A, LV, *E=ELy,(¢) for eV,

< NVoNTPV, x¢p=y, (EL@) for peNV.

‘Qomm maps equal DPoy, m.ma Yu-p° D?, where D? is defined as in 1.5.2
withe, =E, u=(1, ..., n); using the notation introduced there we find that

xe;=(—1Ve, and *w,=(—1)"w,,
xe,=(—1Me, and *w,=(—1)Mw,.
It follows that
xx (= 1pmm e
xxp=(—1)""rg,
Glxdr={E ¢,

ﬁ”\\/*S“Aﬁoxvmw:.::-:d
A\v\/*S”AA\vOF\\vﬁc:,:::.,

gy =(=1)" P« )

whenever Zpei Vand ¢, eV
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1.7.9. Whenever V and W are inner product spaces, the space Ve W
can be given an inner product such that

(vew)e (V'ew)=(vev) (Wwen) for v,v'eV and w,w'eW.

Clearly this equation characterizes a unique symmetric bilinear function.
Moreover, if vy, ..., v,eV and wy, ..., w,eW are orthonormal sequences,
then the vectors v;®w; are orthonormal. Therefore we have indeed
defined an inner product,

Assuming dimV=n<oo and f,geHom(V, W), hence I'(f), I'(g)e
A Ve W according to 1.4.5, we will apply the above definition with V
replaced by A'V to compute I'(f)sI'(g). Choosing dual orthonormal
bases ¢, ..., e, and oy, ..., w, of Vand AV we obtain

ﬁ W ;i ®>m.@ . ﬁM\wﬁ@ g 3@

i=1

r(f)-I(e)

n

M\Ammv.mﬁmbu.Mm_..ﬁ\*omvm_.

i=1 i=1

M:moa ﬁMSbQ* owv m_yn :momQ.*omv.
Replacing f,g by A, f; Ang we find that
(A f)e T(A, g)=trace[A,(f*° g)]
for every positive integer m; in particular
LA, f) e T(A, g)=det(f*eg),

IF(A, f)— (A, g)|* =det(f*o f)+det(g*o g)—2det(f*og).

We note the inequalities
FAFIACAIESZN AT

Also, if s and t are orthogonal automorphisms of Vand W, then (A' s)et
is an orthogonal automorphism of A'VeW mapping r'(f) onto I'(te
fes), hence |[I(f)i=II(tefo )l

Hereafter we abbreviate I'(f)e ['(g)=f+g, IF(NHI=1/].

i

1.7.10. In case Vis a finite dimensional inner product space we define
the discriminant and the trace of a bilinear function B:Vx V—R by

letting
diser(B)=det(J), trace(B)=trace(f)
where f is the linear endomorphism of Vsuch that

J(x)ey=B(x.y) for x,yel
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1.7.11. Assuming n=dimV<co, oceAV, teA,V, A=k+m-n=0,
o and 7 are simple, |o|=1=|t|, S and T are the vectorsubspaces of V
associated with o and 1, we consider here the linear map

S SxT-V, fi(x,y)=x—y for (x,y)eSxT.

We will prove that (see 1.7.8)
1A fI1 =222 |(x @) A (x T)].

For this purpose we select:

dual orthonormal bases ¢, ..., ¢, and w,, ..., w, of Vand A'V such
that ¢;eS for i<k;

dual orthonormal bases e, ..., ¢, and w}, ..., w, of Vand A'V such
that e;eT for i>n—-m.

Since dim(S nT)> A we may also require that
e;=e¢;, hence w,=w}, for n-m<i<k.

Using the orthonormal basis of S x T consisting of the vectors
2 %, e) and 27 *¥(e;, —e,) with n—m<i<k,

(e;,0) with i<n—m, (0, ¢}) with i>k,

and observing that (e;, e)eker f for n—-m<i<k, we compute

_;S_n?:ﬁﬁm:o? N 2R —edn A aa&

i=1 i=n—m+1 i=k+1
=242 _m~>...>m»>mw+g>...>mp_
=222 e A A A G A A, LA AW
=22 e A Ay, D A ALY
=22 e A A WA ADRA W A A,
=22 0L A o A AW A AWy
=22 WA AW,y AWk A AW, =22 (1) A (x ).

1.7.12. Iffis an endomorphism of a finite dimensional inner product

space, then
2 trace(A, f)=(trace f)* —trace(fo /),

trace [N, (f+ f*)]=2(trace f)* —trace(fo f)—trace(f*~ f).
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To verify the first formula we expand both sides of the equation
det(1+t f)det(1—t f)=det(1—1*fof)

in powers of t, using 1.4.5, and compare the coefficients of t?. We obtain
the second formula by applying the first to f+ f*.

1.7.13. Here we assume that Vis a Hilbert space, which means that
V has an inner product « and Vis complete relative to the metric with

value
x—y|=[x=y)e(x=y]* for (x,y)eVxV.

If aeV, C is a nonempty closed convex subset of V and
d=dist(a, C)=inf{la—x|: xeC},
then there exists a unique ce C with d=]a—c|. To prove this we consider

for 0 <eeR the nonempty closed set

C,=Cn{x: |x—al*<d*+¢%}

and observe that if x, ye C,, then (x+y)/2e C and
d*+erz>(x—al*+|y—al?)2
=(x+y=2al’+|x—yP)/d=d*+(x~yl/2)%,
hence |x — y| < 2¢; thus diam C,<2¢. Since Cy< C, for 0<d <e it follows

that () {C,: ¢>0} consists of a single point ce C. Moreover, in case C
is a vectorsubspace of V, then

(a—c)e x=0 whenever xeC,

because ¢+t xe C for all teR, and
2

la—(c+tx)P=la—c|*=2t{a—c)e x+1*|x

is smallest for t=0.

For every continuous linear map [ V- R there exists a wiique uel’
such that f(v)=usv for all veV. To prove this in case f+0 we choose
aeV with f(a)=1, apply the preceding proposition with C=ker/, let

u=|a—cl~Ha—rc)
and infer that if veV, then v— f(v)(a—c¢)e C,

(a—c)e[v=f()a=c)]=0,

e = f{r).
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1.8. Mass and comass

. 1.8.1. Consider a finite dimensional inner product space V, with the
induced dual inner products and norms (denoted « and | |) on the spaces
of m-vectors and m-covectors (see 1.7.5). In addition to these Euclidean
norms | | we shall use another pair »f dual norms (denoted || ||) on A, V
and A" V. These other norms are defined as follows:

For each ¢ e A"V, the comass of ¢ is

@l =sup {<& ¢>: LeA,V, s simple, [£[<1}.

1612 6] NA&a J-wa_.

Always

m

Moreover |¢|= ¢ if and only if ¢ is simple.
For each £eA,, V, the mass of ¢ is

1€ =sup {<&, d>: pen"V, [I4] <1}

3 +
_m_m:m__mAea J 1.

m

Always

Moreover [£|=[ & if and only if £ is simple.

.>: ES.BE@ more direct, characterization of the mass norm may be
derived, using some elementary properties of convex sets (for which see
[BF,pages 5,9]or [BO, Livre V, Chapitre I1,§ 1]Jor [EG 2, pages 23, 35]).
Since A" V~ Al A, V, the set

C=A,Vni&: Kl <1}
is the convex hull of the compact connected set
S=N, Vn{&: &is simple and |¢]< 1},

hence C consists of all finite sums

N N
Y ¢ & with £eS, ¢,>0, Y =1
i=1 {e=
and H
N<dimA, Ve Aea J.

m

[t follows that for each e, V there exist simple m-vectors &, ... £y with

J\(

yf‘m

N N \Q. e
. - . m
Mn [Ell=S &1, N< v
= i= 1 m /

1.8.2 Mass and comass

Consequently

& =inf M_m_ &, are simple and ¢= Mm

i=1 i=1

If EeA, Vand neA, ¥ then [EAni< il inil
If pe N’ Vand yeA V, then

_gé__mq:v__g_ Ik

in case ¢ or ¥ is simple, then ||¢p Ay <[l Il
If f: V— V' is a linear map of finite dimensional inner product spaces,

then
(Nl < fIm™- ] for geA™ V',
AL ENZIAIm-IEL for e, V.

1.8.2. We assume here that V is a vectorspace over the field C of
complex numbers, with a Hermitian product H. Thus

H: VxV-C
is bilinear with respect to R and satisfies the conditions
H(v,iw)=iH ? w),  H(w, v)=H(v,w), H(v,v)>0 in case v=+0,
" is complex conjugation. Expressing

H=B+iA,

where v, we V, i?= — 1 and

where B and A are real valued functions, we find that B is an inner product
(hereafter denoted +) and A is an alternating 2-form. Moreover

|H(v, w)| <] - Iw] for v,wel;

equality holds if and only if v and w are linearly dependent over n.
This follows from the inequality jve(cw)|<|v|-lcw|, when ceC i
chosen so that |c|=1 and H(v, c w)eR.

For example the vectorspace C* has the Hermitian product

H(v,w)= > t;w; for v,weC"
j=1
The inner product B corresponds to the standard inner product of R**
under the canonical isomorphism C'~R**. If Z,, ..., Z.eN(C, C) are
the usual coordinate functions on C*, then

A=Y Z,nZ;eN(C. 0.

j=1
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We shall now compute the comass of the p'th exterior power
A*e N** V, where p<dim¢ ¥V, by proving Wirtinger’s inequality:
If EeN,, Vand & is simple, then

&G, A <l |els
equality holds if and only if there exist vy, ..., v,€V such that
E=vin(iv)a-Av,Aliv,).

Consequently || A*|| = u!

We assume that |&|=1.

In case p=1, we let £=v A w, where v and w are orthonormal. Then
H(v,w)=1A(v, w), hence

(G AY=A(v,w)=H(iv,w)=(iv)ew<];

equality holds if and only if i v=w.

. In case p> 1, we consider the 2 4 dimensional subspace T associated
with ¢, the inclusion map f: T— V, and the 2-form (A2 f) 4eA? T. Then
we choose dual orthonormal bases e, ..., ¢,and w,,...,w,, of T and
A!' T, and nonnegative numbers 4,, ..., A, such that

u
(NfYA=Y Ajw,y_ 1 Awy)).
j=1
Noting that A;= A(e,;_y,e;;)<1 for each j, and that E=ce, A - ne,,
with ¢e= + 1, we compute

(N A= A A o n Ay, (EAD=epldy ., <ul;

‘o=

equality holds if and only ife=1 and A;=1, hence e;;=i¢,;_,, for each j.

1.8.3. Very little appears to be known about the structure of the
convex sets

AR {¢: ol <1}

What are their extreme points?

1.8.4. Suppose S and T are mutually orthogonal subspaces of an inner
product space V, s: S— V and t: T— V are the inclusion maps, {eim A, s
and neim A, t. The equation

I Anll=1H<l - linl

holds if either & or n is simple. In case & is simple one can choose an
orthonormal sequence wy, ..., w,eA' ¥ with

Ewin - rwpy=]¢ and Tckerw, for i=1, ..., p,

1.9.1 The symmetric algebra of a vectorspace 4]

as well as select e A?V with [y =1 and {n, > =|nll; it follows that
CEnmayn-nw,ngy=[&l-Inl

with A Aw, A<, hence [Sanllz K- nl. T do not know
whether the above equation holds always (in case neither & nor n is simple).

1.9. The symmetric algebra of a vectorspace

1.9.1. Proceding similarly as in 1.3, we now consider in the tensor
algebra ®, V of any vectorspace V the two sided ideal B V generated
by the elements

X®y—y®xe®,V

corresponding to all x, ye V. The quotient algebra

O, V=0Q,V/BV
is called the symmetric algebra of V. Clearly

m=2
is a homogeneous ideal, hence

O V=9 O,.V,
m=2

where

O V=@ VI VOB YV);

in particular ©y V=R and ©; V=V. The multiplication in O,V will
be denoted by the symbol ©. Therefore O, V is the vectorspace generated
by all the products v,0-+-© v, corresponding to v;,...,v,€V, and we
see from the definition of BV that the symmetric multiplication © is
commutative.

Among all commutative associative graded algebras with a unit,
whose direct summand of index I is isomorphic with V, the symmetric
algebra ©, V is characterized (up to isomorphism) by the following
property:

For every commutative associative graded algebra A with a unit
element, every linear map of V into A, can be uniquely extended to a
unit preserving algebra homomorphism of O,V into A, carrying O,V
into A,, for each m.
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It :.v:os\m that every linear map {2 V-V’ QS be uniquely exte
to a unit preserving algebra homomorphism pucly extended
Oxf: O VOV,
which is the direct sum of the linear maps
Omf: OuV—->0.,V"

H.@.N. H?O »CEOHOH @ converts thﬁ.m ums o tor .w_vhfmuw mt
* N vecto
commutative QWQR&QQMM 0‘\, QNWQWXQM. ,\4 ’

O PeQ)~0, P, 0.
If V has a basis consistin i
. 1S g of a single element >
basis consisting of the m’th symmetric power o e On ¥ has 2

m

x"=x0--0x (m factors).
Therefore, if V has ] isti '
o1 was a basis consisting of ¢ is of
The : 81 f ¢y ...,e,, then is
is formed by the products _ ' @ ol Ou ¥

mu”Am_vn_ 10) ...OAQ:V?.

corres ]
ponding to all n termed sequences o of nonnegative integers with

n
Ta= Y a;=m;

designating the set of all such sequences by

=(n, m
we conclude that )

dim ©,, V=card Z(n, ::HAE e Hv
n—-1 /
1.9.3. Suppose k and m are positive integers.
For 1=(t, t)eR* ¢ ;
, sl and v=(v,...,t,)eV* the k-nomial
(which holds in every commutative ring) :»:n:mw el theorem

(tyog+ o) ml= M !
xeZ(k,m)

where v*=(0,)" @ (1,7 0 -0 (t,)* and
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Taking k=m and letting T be the set of all functions mapping
{1,...,m} into {1, — 1} we obtain the polarization formula

m

m ™m m
D [T ) CSV\::HN:_ 0,0 O,

tel i=1 Jj=1

in fact the above sum equals

M M _N_HC.,%.I:H— cu\ol,

xeZ(m m) LteT i=1

and the bracketed term equals 0 whenever o;=0 for some i, because
summation over T is invariant under the permutation of T mapping !

onto (tyy -5 tio1s —lislivts ooyt

1.9.4. The diagonal map of O, V'is the unit preserving algebra homo-

morphism
YO,V O, Ve O,V (commutative product)

such that Y(v)=ve 1+ 1@v whenever veV.
For v,,...,y€V we compute the product

ZSO.:OFLHQ_®~+~®C;O...oAcs®~+_®cav

=3 b ?,i:o.:ocaiv@?iico:.ociév,
p=0 aeShip,m-p)

Therefore, if ¢,, ..., ¢, form a basis of V and aeZ(n,m), then

- - oy Ay -
Y(eh) = VA v}w% ",
M M.M:r P) mH hs

p=0 a2 fef
hence

Yem)=3S T [¢plele a—hl

p=0 azfeZ(n p)

We observe (in analogy with 1.3.3) that the diagonal map Y of O,V
is associative and commutative, and that it is a natural transformation.

1.10. Symmetric forms and polynomial functions
1.10.1. An m linear function f, which maps the m fold cartesian
product V™ of a vectorspace Vinto some other vectorspace W, is called
symmetric if and only if
\.AGQ:T ey r.i::v“.\,:,j ER] N.:_v
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whenever vy, ..., v,eVand ¢ is a permutation of {1, ..., m}. We let
omvw)

Um; p.:n vectorspace of all m lincar symmetric functions (forms) mapping
V™ into W. We shall use the linear isomorphism

O™(V,W)~Hom (O, ¥, W),

where the corresponding fe ©™(V, W) and heHom(©,, V, W) are related
by the condition

fley, o v)=h(v,0-00,) whenever v, ..., v, V;
when this is the case we write
G f>=LEh)y=h(¢) for (eO, V.
Moreover there is an obvious linear isomorphism
Hom(Q®,, ¥, W)=~Hom™ (0O, V, W),

frmﬁn the dm? member means the set of all those linear maps of ©, V
into Wwhich vanish on ©, V whenever n#m. "

We define O°(V,W)=W,
O VW)= ® O"(VW),

m=0
and abbreviate O™ (V,R)= 0"V, O*(V,R)=0O* V.
Each linear map f: V— V' induces a dual linear map
O*(LLW): OX(V', W) — O*(V,W)
which is the direct sum of the linear maps
QmULW): O™V, W)— O"(V,W)
characterized by the equations

&OMUAW) P> =L(On )& 0D
for (e, Vand ¢pe@™(V', W).
We abbreviate O*(/,R)=O* /.

~..5.N. Whenever Wis an (ungraded) algebra over R, we shall use
the diagonal map ¥ of O, V (in analogy with 1.4.2) to turn the graded

(_woﬁo;vmoo O*(V, W) into the graded algebra of symmetric forms of V
with coefficients in W For

$peHom” (O, VW) and yYeHom' (O, VW)
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we define the symmetric product
poyeHom™* (O, V, W)

to be the composition

O V-5 0, Ve O, V12 We W— 1,

where v corresponds to the multiplication of W.

If Wis associative, or commutative, or has a unit element, then O* (V, W)
has the same property. Each induced map Q*(f,W)isa homomorphism of
algebras.

From the shuffle formula for Y we see that

@O (01, s Vprgd= 2 DWairys oo Vaip) ¥ Cope1ys -3 Voto+a)
aeSh(p, q)

whenever peOP(V, W), yeQU(V,W) and vy, ..., 0,46V
Ife,,...,e,and ,, ..., w, form dual bases of V.and Hom(V,R)= o',

then the products
w'=(w)oe o(w,)ed"V

corresponding to all aeZ(n,m) form a basis of O™V, which is dual to
the base {e*/a!: aeZ(n,m)} of O, V.

In the definition of the symmetric product of forms the multiplication
of an algebra Wmay be replaced by any bilinear map p: Wy x W, — Wiy
thus one obtains

poye@P (VW) for e (V, W), e (VW)

1.10.3. Proceeding just as in 1.5.1 we define for p<gq the interior
multiplications

1O, Vx OV, W)— QUP(VW), L.:QO,VxOfV— Og-pV

Ife,...,e, and w,,...,w, are dual bases of Vand OV, and il «¢€
Z(n, p) and feZ(n,g), then

PN =0 " (p-n)t,  (PBHL =" (f—)!
in case a < f3; otherwise these interior products equal 0.

1.10.4. A map P: V— Wis called a homogeneous polynomial function
of degree m if and only if there exists a form ¢eQ™(V, W) such that

Pix)=<{x"m!, ¢> for xel.
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The polarization formula (1.9.3) shows that P=0 if and only if ¢ =0.
Thus O™ (V,W) is linearly isomorphic with the vectorspace of all homo-
geneous polynomial functions of degree m mapping V into W.

More generally, a map P:V— Wis called a polynomial function if
and only if there exists an integer M >0 and forms ¢,,e O™ (V, W) cor-
responding to m=0, ..., M such that

M
P(x)= Y (x"/m!,¢,> for xeV.
m=0
Since this formula implies

M
Pitx)= ) t"{x"/m!, ¢,> for xeV and teR,
m=0
we see that P=0 if and only if ¢,,=0 for m=0, ..., M. Thus O*(V, W)

is linearly isomorphic with the vectorspace of all polynomial maps of V
into W, and we can define

degree P=sup({m: ¢,,+0} C.mo:

whenever P and ¢y, ..., ¢y, are related as above. Morcover, in case W
is an algebra, the symmetric product © corresponds under the preceding
isomorphism to pointwise multiplication in the function space WY, hence
the algebra O*(V, W) is isomorphic with the algebra of polynomial maps
of Vinto W, in fact whenever ¢pe QP (V,W) and YO (V,W) the shuffle
formula shows that, for xeV,

(xP*(p+q)l, 0>
=card Sh(p,q) - {xP, > - XY /(p+q)! ={xP/pl, ¢ - {x¥/q!, ).

Whenever P and ¢, ..., ¢y are related as above we use the binomial
theorem to obtain for x,veV the Taylor formula

M m M
Px+uv)= Y Y &Yilex™"Hm=il, ¢,>= 3 &'il, S(x),
m=0 i=0 i=0
where
M A
Six)y=3 x""m—i)l J¢,.
We observe that S; is a polynomial function mapping Vinto OY(V, W);

¢ \
in 3.1.11 1t will be identified with the i-th differential of P. Here we also

M .
Sixeei= Y o™ =0t S, 06,

ol
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because the right member of this equation equals

M M .
Y o m=its Y T m) g

_S S rim— e xi = m)) S e,
j=im=i

= W 0+ xY (=) d¢;=S;(v+x).

[
[}

To represent the polynomial function P in terms of a basis ey, ..., €,
of ¥, we recall 1.9.3 and find that

M

wAW:m__vnM Y el ) b

i=1 m=0 aeZ(nm)

whenever teR".

1.10.5. In analogy with 1.7.5, any given inner product of <.om: be
used to construct inner products on the spaces OV, by wio:g_mm %m
iven polarity to an algebra homomorphism of O,V into O _\.‘
. o i - s (1)} ¢* corresponding

Cyyeen, Opare orthonormal in ¥, then the products (1) * ¢* corresp .
to all aeZ(n,m) are orthonormal in ©,, V. The norms corresponding
to such inner products satisfy the inequality

10,0+ 0 Uy < (MO lvy] - < fva] for vy, UV

Other useful norms can be constructed by adapting the method of
1.8.1 as follows: Whenever V and W are normed vectorspaces and

Ppe@™(V, W) we define
¢l =sup{lP(vy, ..., vl VEV and |v|<1 for i=1,...,m}.

Clearly (@0 0a)t¢l<la “lajl - 1@l in case j<m and ay, ...,
a;eV. The shuffle formula shows that

;eoe:mAanV:%%

for peOF(V,W)and yeQ(V, W), provided Wis a normed algebra with
lw-z|<|wl||z| for w,zeW; moreover

i@kl =k oIk for e VW), k=1,2.3,.
in case W is associative and [w!i=|w|* for wel! We also define

4 . - ml|/ . i e \
Pl =sup (<& gy e @™V and o <
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whenever £€(®,, V, and readily verify that
lEonl <&l - lnl for £e@,V, ne®V;
XK =|x[* for xeV, k=1,2,3,....

If Vand O'V have dual basic sequences e, ..., e, and w, ..., w, with
le)|=lw;l=1for i=1,...,n, then

!l <ol <(Za)! and «!/[(Za)! <] <1 for aeZ(n,m).

It may also be shown that [|£{>0 for {e®,, V'~ {0}, and (compare
1.8.1) that || ¢]] equals the infimum of all finite sums
N

M _c:_ A ._cs;._

j=1
corresponding to v; ;eV with

N
E=3 (1,0 0V );
i1

if dim V< o one can take N <dim ©,, V.
For every homogeneous polynomial function P: V— W of degree m
we define
[Pl =sup{{P(x)]: xeV, x|<1}.
Choosing ¢e@™(V,W) so that P(x)={x"/m!, ¢) whenever xeV, we

observe that
m! [P <@l <m™ || P|

as a consequence of the polarization formula; for the case when V'is
an inner product space it was shown in [H 1] that m! [P||=[i¢}. Re-
calling 1.9.3 we also obtain

k
P(Sun)ls T il e

j=1 ae E(k, m)
k m
<igl T la=lel AM _5\5_
x€ E(k, m) j=1

provided v <1 for j=1,... k.

1.10.6. Assuming that V¥ and W are inner product spaces with
dim V=n< oo, we first endow O™V with the inner product such that
the polarity described in the first paragraph of 1.10.5 is an orthogonal
isomorphism mapping O,,V onto @™V, then use the method of .79 to
define an inner product on

OV WI=[O"V]eW.

4
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Now suppose ey, ..., e, and @, ..., w, are dual orthonormal bases
of Vand ®©'V, hence a!~*¢* and a!~* w* corresponding to ae = (n, m)
form dual orthonormal bases of ©,, Vand ©™ V. With each ¢ in O™ (V, W)

we associate
Y almtetelalter ¢
aeE(n, m)

in [O™V]e® W and compute
p1P= 3 Kal"ret d))

aeZ(n,m)

Letting &(n,m) be the set of all functions mapping {I,...,m} into
{1,...,n} and observing that for each aeZ(n,m) there exist precisely
m!/a! sequences s (n, m) such that

w(j)=card{i: s(i)=j} for je{l,...,m},
we obtain the formula

S__QV_NH M _AQMACO...ONK:.TQV_N.

s€7(n,m)

[t follows that
[{(x™/m!, ¢>|<m!~¥|x™|p| for xeV.

Recalling 1.10.5 we see that

Ipl<m™mi=*|¢| and |pl<m!™*n"? |}

Pederer. Geometric Meastre Theory



