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Abstract. This paper explores the metrical properties of convex polytopes by means
of the classical Pliicker embedding of the Grassmannian G(k, n) of k-planes in R"
into the exterior algebra A, R". The results follow from the description of the volume
of the projection of a polytope into a k-plane by a piecewise linear function on
G(k, n). For example, the Hodge-star operator is used to obtain the volume of a
polytope from its Gale transform. Also, the classification of the faces of G(2,n)
(or G(n—2,n)) imply that the largest projection within a particular combinatorial

type is unique if k=2 or n -2.

Introduction

The exterior (or Grassmann) algebra is a beautiful classical theory which can be
used to represent geometric properties of R" by algebraic operations. This method
has had applications in many areas of geometry, one example being the recent
use of chirotopes (or oriented matroids) to investigate the combinatorial proper-
ties of polytopes (see [2] and [3]). This paper uses the exterior algebra to gain
insight into the metric properties of polytopes, in particular, the volume of their

projections.
The first section contains a review of the properties of the exterior algebra,

especially in light of the connection with the geometry of R" mentioned above.
The principal object of study is the Grassmann manifold G(k, n) of all k-
dimensional subspaces of R". Let Q be a convex polytope in R” and let V(Q:L)
be the k-dimensional volume of the orthogonal projection of Q into a k-plane
Le G(k, n). The key to the results of this paper is

Theorem 1. The function V(Q:L) is piecewise linear on G(k, n).

Although this result is not new (see p. 25 of [5]), the proof in Section 2 contains
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an alternative construction of V{(Q:L) which yields some interesting new
corollaries.

One example concerns the Gale, c.s., and zonal transforms. These transforms
have proved quite useful in obtaining combinatorial results for polytopes (see
[23],[26], and [30]). As an application of Theorem 1, we prove in Section 3 that
the transform of a polytope also gives its volume.

A special case of the above occurs when Q is an n-dimensional simplex. In
this case, the decomposition of G(k, n) induced by V(Q:L) corresponds to
combinatorial equivalence of polytopes with at most n + 1 (labeled) vertices. This
decomposition refines to the decomposition induced by chirotopes.

The final sections deal with the problem of maximizing V(Q: L)}, L€ Gk, n).
Section 4 relates the largest projections of the regular simplex, cross polytope,
and cube to the solutions of other extremum problems and gives some necessary
conditions. One interesting result is that if the vertices of a maximal projection
of T" ' lie on a sphere, then they also solve the problem of finding the largest
volume of the convex hull of n points on a sphere in R*. Some bounds and
solutions for the projections of a cube can be found in [6], [11], and [19].

Section 5 contains a uniqueness result for the problem above:

Theorem 11. There is at most one maximal projection in each open region of
Gk, n), k=2 orn—2, on which V(Q:L) is linear.

The proof establishes a connection between this problem and the use of “calibra-
tions™ in the study of area-minimizing surfaces (see [28]).

1. Exterior Algebra

The definitions and notation will mostly follow Federer’s book [9]. The Grass-
mann manifold G(k, n) of k-dimensional linear subspaces of R" is to be topo-
logized as follows:

A k-frame X ={x,,...,x.} is a set of k linearly independent vectors of R".
We denote by X the k x n matrix whose ith row consists of the coordinates of
x,. The collection of all k-frames forms an open subset of R*", called the Stiefel
manifold V(k, n). Define a map

q: V(k, n)> G(k n),
X - L=lin X,

which takes each k-frame X to the k-plane L which it spans, and give G(k, n)
the quotient topology under this map.

Lemma. The Grassmann manifold G(k, n) is a smooth, compact manifold of
dimension k(n — k). The correspondence L~ L, which assigns to each k-plane its
orthogonal (n - k)-plane, defines a diffeomorphism between G(k, n) and G(n — Kk, n)
(see 5.1 of [27]).
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The twofold cover of G(k, n) is the set of oriented k-planes G(k, n). These
manifolds can be defined alternatively as the homogeneous spaces O(n)/(O(k) x
O(n —k1yand SO(n)/(SO(k) x SO(n — k)), respectively (32, Vol. 5, pp. 403, 414].
The exterior algebra A, R" = \,R" is the quotient (3, R"/ 1, where Xy R"
denotes the tensor algebra of R” and I denotes the ideal generated by xR x|xe
R"}. 1t follows that multiplication is skew-symmetric, ie., if x,ve R", then
XAV Sy
The elements of A R" are called “k-vectors.” Given a basis {e,, ..., e,} of
R". the k-vectors
xeAln k),

N

Ao
where

AL KY = 1A, . A e NYT= A < - - <A =n},

. L , . . n
form a basis for A,R" as a vector space of dimension M = <l\>
Ao

There is a natural embedding of G(k, n) into real projective space P7
called the Pliicker embedding. First define

i Vik, n)> \ R",
(L1

X=X, n A X.

If f L /. L <linX, is a linear map, then XN =(f(xDa Al flx )=
(det f1x,~ - ~x,. Hence, the image under i of all the k-frames in L is a line
through the origin in A R". It follows that i can be extended to a map which
embeds G(k. n) as a submanifold of P cut out by quadratic polynomials [14,
p. 209].

Below is a list of some basic properties of G(k, n) and A R" (see Chapter 1
of {911

. Given a linear map f: R" > R", we define the kth-compound map
A /AR > A, R" by letting

(A e =1le  yn- - nfle ), A€ A(n, k),

and then extending by linearity to all of A,R" The classical Cauchy-Binét
theorem 1mplies

\;\(f‘g):(\;\f)o(\;\g) (12)

2o e, . e, }is an orthonormal basis of R" then a k-vector £¢€ A R" can

be expressed as

E'l &oe,.
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The numbers &, A € A(n, k), are known as the Pliicker coordinates of £ and if
&=i(X), they are identical to the (k x k)-subdeterminants of X.
The usual Euclidean inner product on A, R" is given by

(& m =2 &, (1.3)
& ne AR and
HERAS)

is the norm of & Note that {e, [A € A(n, k}} forms an orthonormal basis of A,R".
Formula (1.2) can be used to show that if f is an orthogonal transformation of
R", A, f 1s also an orthogonal transformation of A R". Hence, in the proof of

many of the statements below, it suffices to take E=¢€; A" A€
" This inner product has a useful geometric interpretation. Let X, Y€ V(k, n),

£=1i(X), and n =i( Y). Then

(& m)y=det(XY") = £[£ VY X), (1.4)
where V(Y : X) equals the volume of the parallelotope spanned by the orthogonal
projection Y’ of Y into lin X. Assuming || =1, (1.4) implies

|
;(jl(f, ) = V(conv{0, Y'}. (1.5)

This formula is the basis of the representation of the volume of polytopes in the

next section.
3. Interior multiplication is the bilinear map

J: AR X A,R" >\, R,

p = g, defined by
(Enm, ®y=(&n | D), (1.6)

geA, ,R",neA,R" and b€ A R"1f we N¥, we define sgn u to be the sign of
the permutation of u which puts its elements in increasing order. It follows from
(1.6) that if A € A(n, p) and w € A(n, q),

| {0 ifAZpu,
e, | e, =
AL sgn(p,A) e, ifu=vul,

veAln, g—p) (e-=1). The formula for combining interior and exterior multi-

plication is

(Eam)d=¢](n] ), (1.7)
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EeAR", neAR" e A,R", and p+gq<r They can also be used to define a
linear isomorphism *: A,R" - A,_,R" called the Hodge-star operator. Given an
orthonormal basis {e,,...,e,} of R" and £€ A R", let

*e=¢(egn o ne,). (1.8)

The equation
(&)= ("¢ D), (1.9)

& ®e A R", will be quite important in the section on transforms.

4. A k-vector is said to be “simple™ if it is the exterior product of k vectors
of R" ie. if it belongs to i(V(k, n)). If £#01s a simple k-vector, we will let
L(¢) denote the k-dimensional subspace associated to & As noted above, two
simple vectors ¢ and n represent the same subspace if and only if £=c¢m, ¢ a
nonzero scalar. This also implies that the simple, unit k-vectors can be identified
with the oriented k-planes G(k, nj.

The following relations are valid for simple vectors ¢ € A,R" and ne A R,
p=q (see [2]):

L&) = L&) and ¥ =1é], (1.10)
Ligan)=L{EHD L(n) it L&) L(7)=0, (1.11)
L&) m)=L(&) nLin) and [&] nl=[n|VIX:Y), (1.12)

where £=i(X) and n=i(Y).
Finally, the quadratic relations which indicate when a k-vector £ is simple
can be written as
(n] &Hné=0,  V¥neA, R (1.13)
or

(£]®)]£=0, VPeA R (1.14)

(see {127

2. Projection Form

Let Q< R" be an n-dimensional convex polytope, and let TI(Q: L) be the
orthogonal projection of Q into the oriented k-plane Le G(k, n). This section
contains a proof that the k-dimensional volume V(Q:L)=V(LQ:L)) is a
piecewise linear function on G(k, n). We begin with some notation.
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The set of faces of Q will be denoted by F(Q) and the set of k-faces by F,.(Q).
Fix alabelingvert Q ={y,, ..., ¥} of the vertices of Q. This induces a correspond-
ing labeling of the points M(vert(Q): L), which can be used to define an
equivalence relation on G(k, n). Two k-planes L and L' are said to be equivalent
if the map between the polytopes TI(Q: L) and T{Q: L") given by the labelings
above is a combinatorial equivalence. The equivalence class of L will be denoted
by (L). Finally, the previous section implies that choosing an orientation of L is
equivalent to choosing a unit, simple k-vector ¢ with L(£) = L.

Theorem 1. The volume V(Q: L), Le G(k, n), can be represented by a function
on A R" which is linear on each equivalence class (L). This representation is unique

(up to sign) whenever (L) is open in Gk, n).

Proof. Assume Ocint Q. Let P=TI(Q:L), L& G(k, n), and let £¢ Gk, n) be
an orientation of L. We choose a triangulation ['(6P) of the boundary 4P of P
into (k —1)-simplices whose vertices belong to vert Q. This gives a decomposition
of P into disjoint pyramids, each having apex 0 and base in ['(aP). Given
A€ A(m, k), we define

1
b, :Fsign((jc’, VOV, (2.1)
where vy, = ¥, A~ AV, Formula (1.5) implies that (& ®,) equals the volume of

the pyramid conv{0, IT1(F,: L), F, = conv{y, ..., v} Hence

V(Q:L)=(,d) (2.2)
for
& ={Y @, |TI(F,: L) eGP} (2.3)

The construction of & depends on the combinatorial type of P, the labeling of
vert Q, and a choice of orientation of L. This proves the first statement of the
theorem.

The uniqueness of ® follows from the fact that no neighborhood of G(k, n)
lies in a hyperplane of A R" [17, Vol. 1, p. 310]. Thus if (L) is open, it must
contain a basis of A,R", and (2.2) gives the coordinates of & with respect to this
[

basis.

The k-vector @ in (2.2) will be called a “projection form’ of Q. In order to
avoid always referring to the k-plane L, we will sometimes write TI(Q: &) for
I(Q: L(¢§)), and write x(P) for those £ € Gk, n) such that V(Q:¢£) =(§ P), ie.,
Lix(P)) =(L).

It will be useful to give an alternative construction of ® which does not assume -
Ocint Q. Let F,=conv{y,,,... LV b mEAMm k+1), be a k-dimensional
simplex with vertices belonging to vert Q. We can associate to F, a simple k-vector
f. such that L(f,) is parailel to aff F, and |f.|= V(F,). This determines S, up
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to a sign which represents an orientation of aff F,. Choose a triangulation I'( P)
of P into disjoint k-simplies, and define

b, =sign{(& L)) (2.4)
and

d={Y D, |TI(F,: £ e l(P)). (2.5)

This & also satisfies (2.2). A third method of constructing ® can be found on
pp. 24-25 of [5]. In [5] a projection TI(Q: L) is said to be “sharp’ if the region
x{d) 15 open in Gk, n).

It will also be necessary to have an algebraic description of x(&). That is,

Y (D) = {n e Gk n)sign((n, £,)) =sign((&, /)
it F, ¢« F(Q) and dim(F, nT1,"(aP)) =k — 1}. (2.6)
The set y{d) is bounded by hyperplane sections
H, ={ne Gk, n)|(n,f,)=0}. (2.7

e

Fquations (2.5) and (2.71 imply that (2.2) holds also on the closure x(®P) of x(P)
in Gk, ni.

A very important special case of the above occurs when Q is an n-dimensional
simplex. Then the partition of G(k, n) given by the equivalence relation above
corresponds to the combinatorial types of the convex hull of labeled sets of n+ 1
points which span R*, and the sharp regions represent simplicial polytopes. The
concept of chirotope (or oriented matroid) equivalence is a proper refinement
of this relation in A, R". This concept has been used to obtain many new results
on the realizability of configurations [2], (3] and upper bounds for the number
ot combinatorial types [13].

For polytopes Q= R" with dimension dim Q < n, we have

Proposition2. The maximum of V(Q: L) is attained by a k-plane L parallel to aff Q.
Proof.  1f dim Q = n there is nothing to prove, so we assume dim Q < n and let
W be the subspace parallel to aff Q. Then any vector xe€ R” has a unique
representation
x=x"+x",
with x' ¢« Wand x"e W .
Suppose £=x,n-- ax, € Glk,n) and L(£&)Z W. The remarks following

Theorem | imply

V(Q:&) =({& D),
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where @ =3 @, is given by (2.5). Now, if m is any simple vector with L(n)n W*#
0, then

(m £ =0,
since L(f,)c W (see (1.4)). It follows immediately that
(& f0 =& 00, (2.8)

where £ =x n- A x. Substituting (2.8) in (2.6), we see that TI(Q: &) has the
same combinatorial type as TI(Q: §), and therefore @ is also a projection form
of TI(Q: &) Altogether, we obtain

VIQ: &) = (& dy=(¢, P)< <é‘ ¢> =V(Q:¢'),
since |&']< 1. This gives a projection into a k-plane L(¢)= W which is larger
than T1(Q: &), and completes the proof. O

Proposition 2 has an interesting generalization even if dim Q=n.

Definition. The Cartan subspace C(®), de AR", is the smallest subspace W
of R" such that ®¢ A\ W,

A k-vector @ is simple if and only if dim C(®) = k, in which case C(P) = L(P).
In general, the retraction theorem of E. Cartan [12] implies

C(P)=1a | PlacA, R"}. (2.9)

Now, let @ be a projection form of Q for the k-planes in (L), and assume
dim( W = C(D)) < n. We would like to conclude that the maximum of V(Q: L),
L' e{L), occurs at a k-plane L'c W. However, the proof in Proposition 2 requires
that the form @ gives the volume of projections of Q into the k-planes of
M({L): W). Thus we conclude

Corollary 3. If @ is a projection form of Q throughout the region {L), and
TH((L): C(P)) = (L), then the maximum of V(Q: L) on (L) is attained by a k-plane

in C(D).

3. Transforms

The main result of this section is that certain Gale, c.s., and zonal transforms
can be used to determine volume, as well as combinatorial type. This was already
known for zonal transforms (see [21]). We begin with a common geometric
description of the transforms which follows that in Section 3.1 of [24] (see also

(229.
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Let Q< R" be a convex polytope with 0€ int Q, so that O e relint P=11(Q: L),
Le Gk, n). For convenience we will denote projection into L in this section by
x' =Tl(x L), x¢ R". The polar set of P is the polytope

Pt = {yeLly-x'=1,Vx'e P} (3.1)
Alternatively, we can write
Prefre Ly x=1,Vxe Q)=Q"n L, (3.2)

SINCe ¥ X =V
This polarity establishes an anti-isomorphism between the face-lattices of P
and P* 11 F'= F(P), then the dual face (F)*€ F(P*) is

(o8]
")
—

(F = {ve P*ly-x'=1,Vx'€ F'}, (
(see 3.4 of [15]). 1t follows that
relint( F % = {ve P¥y-x'=1,xe FlLand y- x"<1, x'¢ F'}, (3.4)

and that an arbitrary subset F'< P is a face of P if and only if the set in (3.4)
is nonempty. Letting F =TT, '(F')~ Q, this condition becomes: F'c P is a face
of P if and only if 3ve P* such that

vex =1, Vxd o F and yox<l1, VxegF
The latter statement is equivalent to
dye Lrelint F¥,

and also
Ocrelint TI{F*: L-). (3.5)

This result implies that the combinatorial type of TI(Q: L) can be determined
from TTEQ*: L.

Gale Transforms

Let P R" be a k-dimensional polytope with n vertices and 0 e relint P, and let
[ =1lin P Then P =TI(T: L) for some (n— 1)-dimensional simplex T which also
contains 0 in its interior.

Given A ¢ A(n, r), the complementary sequence Ae A(n, n—r) consists of
{1, ... n\{A,, ..., A} Label vert T={y,,..., .} and vert T*={z,,...,2a}, SO
that for any F, =conviy,...., vi b€ F(T), the dual face of T* is Fi=

conv{z,....,z; } Inthe situation described here, (3.5) implies

TH(F,:L)ye F(P) < 0¢ relint TI{(F¥: L-). (3.6)
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The points IT(vert T*: L") are a Gale transform of P, and (3.6) becomes quite
useful in obtaining combinatorial results when the codimension of L is small
(see [15] and [30]). However, here we are interested in the relationship of the
transform to the volume of P.

First we must assume P is in fact the projection of a regular (n —1)-simpiex
T,= R" ', so that the dual simplex T} is —aT,, « >0. In the next section we
will show that an arbitrary polytope differs by a linear transformation from the
projection of a regular simplex.

We now construct a k-vector ®' € A, ,R" ' from the polytope IT(T,: L"),
with the property that

VIP)={&, D), 3.7
where £ is an orientation of L".

Suppose ¢ is an orientation of L, and & is given by (2.3) so that V(P) = ({ ®).
The volume of a typical pyramid 1s

1 ] i )
T K& vl = Viconv{0, Fi}),
A€ A(n, k) and F,el(aP). From (1.9) we obtain

<£a ,"«>:<*& *,‘.,\>- (38)

Recall that {1.10) implies L(*v,)=(lin F,)', and that [*y,| =|y,|. However, since
T, is regular, {lin F,)" is parallet to aff F,. Therefore, *y. is a multiple of f;, i.e.,

. 1
Vo= m (3.9)
Equations (3.8} and (3.9) show that the k-vector
G = Ysign(E, I (3.10)

satisfies (3.7), where

(/kNv (L kVT/k=1/n V(T
¢ = - =

N VT )

and
_v‘n+1

v( T”) ‘
n.

In general, the terms appearing in (3.10) depend upon the triangulation of 9P,
but if the projection is sharp, they are determined solely by the condition
OcrelintTI(F,: L").
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The methods above carry over to the projections of any dual pair of regular
polytopes. However, in five or more dimensions [8, Chapter VII], the only other
regular polytopes are the cross polytope and the cube. Applying (3.5) to this dual
pair gives the geometric formulation of ¢.s. transforms [25] and zonal transforms
[23]. We shall describe here simply the transformation of the projection forms.

C.s. Transforms

Let {e,.....¢,} be the standard orthonormal basis of R". Then X"=
convite,,..., te,} is a regular cross polytope. Let P=TI{(X":L), Le G(k, n),
be a centrally symmetric polytope with 2n vertices. Construct a projection form
d ¢ A\,R" by decomposing P into pvramids with volume

1 1
G0 = e, ()
A+ Aln, k), and *e, = te,. Then the k-vector

i
O =—Ysign{(&', enle, (3.12)

k!

satisties 13.7), where the sum again depends on ['(aP) if the projection is not
sharp. and (3.5) otherwise

Zonal Transforms

Since projection commutes with Minkowski sum, the projection of the cube
"= Y [e]is the zonotope Z =Y [e,], e, =TI(e,: L). According to Shephard [31],

n
Z can be decomposed into <l\> parallelotopes congruent to Y [e} ], A € A(n, k).

Thus the projection form of Z is

b= Y sign((§ enle,, (3.13)
A, ko
and, by (3.111,
b= N sign({€,e)e, .
Ninon ko

But this k-vector is also the projection form of TI{C": L"), and so (3.7) gives
VIC"-Ly=V(C": L") (3.14)
220

(see also {2
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4. Extremum Problems

In the remainder of the paper we shall apply the machinery developed above to
various extremum problems, chiefly that of maximizing the volume of the projec-

tion of a polytope.

Astar S=1{s,,..., 5.} 10 R" is a finite set of vectors which span R* The nxk

matrix whose ith row contains the coordinates of s, will be denoted by S. We
denote the collection of all stars with n vectors in R* by S*. A staris said to be
“eutactic” if it is the projection of an orthonormal frame in R", and the eutactic
stars in S* will be denoted by I1*. An application of the Gram-Schmidt process

yields (see [16})

Theorem 4. A star S'is eutactic if and only if S's=1

For symmetrical stars, we have [8, 13.91]

Theorem 5. A star S'is eutactic if its symmeltry group is irreducible.

Thus, the vertices of any regular or uniform polytope [7] form a eutactic star. A

recent discussion of eutactic stars appears in [291.
IfE={e,..., e,} is the standard orthonormal basis of R", then the polytopes

T, ,=conv E,
X" =convixE},
c=Yle]

are a regular (n— 1)-simplex, n-cross polytope, and unit n-cube, where the sum

represents the Minkowski sum of the line segments [e,]:conv{—el/z, e;/2}.

Similar operations on the eutactic star S =TI(E: L), Le Gk, n), define projec-

tions of these figures.

A star S is said to be “balanced”
balanced if and only if L lies in the hyperplane through t
aff T" .

Choose a k-frame X in L's
The matrix equation for the coordinates
a point ye R" into L is then

if Y s, =0 It follows that S=TI(E:L) is
he origin parallel to

o that the vectors of X form an orthonormal set.
(with respect to X) of the projection of

M(yv:L)= (Xv),

and therefore

S=I1X' =X (4.1

Theorem 4 implies that 1" is a subset of

Yh = {Se} SMS s )= k}_
i 1
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One last interesting family is the “spherical stars™
O ={SeSHls|=Vk/n,i=1..  n}. (4.3)

Henceforth the results shall be stated only for conv S, with the understanding
that similar results also hold for conv{x S} and Y [s,]. In particular, the theorems
for zonotopes can all be found in Sections 2 and 3 of [11].

Let g: Vik. n)— Gk, n) be the natural projection. We can associate a collection
of stars

Si{Ly={SeS8"|S =X for some X =q '"(L)} (4.4)

to any L. Gik n). The remarks following (1.1) imply that S(L) is the set of all
stars hnearly equivalent to TI(E : L). The following theorem shows that maximiz-
ing the volume in Y* and TI* leads to the same figures.

Theorem 6. Conv S attains its largest volume among stars in Y*AS(L), Le
Gk, n), if and only if S is eutactic.

Proof. let S+ Y*~ S(L). Then the k-frame X given by X' =8 satisfies

N k k n
Ve Y Y =T Y sh= Y fsf ek (4.5)
[ RS Feba-l )t

It S i eutactic, {2.2) implies that

V(conv S) = (£ &)

, {4.6)

where © . A\ R" is a projection form and & = i(X ). Butif f is a linear transforma-
tion of L, then (A /)(&)={(detf)¢ and V(conv(f(S))=(detf)V{conv(S)).
Hence, (4.6) holds for arbitrary stars, and can be rewritten

V(conv S) = |£] ‘<é,¢>>‘ (4.7)

Now. as S varies in S(L), the only term which changes in (4.7) is |£[. But,
(1.5 implies

l&l= V(X [x]. (4.3)
and given the condition in (4.5}, it is easy to prove that this volume is maximized

when the paralielotope Y [x,] is a unit k-cube. In this case, XX' =8'S=1, and
thus S is a eutactic star as required. 0]
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An interesting corollary of this theorem follows from the fact that Qfeyh

Corollary 7. If a maximal projection in IT* is spherical, then it is also a solution
to the problem of finding the largest volume of the convex hull of n points on a
sphere in R*.

The latter is a well-known isoperimetric problem (see [10]). In particular, the
solution for five points on the 2-sphere is not eutactic [1], whereas the solutions
in [10] and [18] are eutactic.

We now proceed to give two necessary conditions for these problems. The
first condition can be proved exactly as in Lemma | of [2], which covers the case
k =3. Let max Y* denote the collection of stars S€ Y* such that V(conv S) has
a relative maximum at S, and use a similar notation for the other families. If P
is a k-dimensional polytope, then the outer “area”™ normal to a facet F, € F, (( P),
is the vector n, which points away from int P and satisfies {n,| = V(F,).

Theorem 8. If Semax Y* (=max 1*) or max Q°, then P =conv S is simplicial,
and Viel, ... n,

s Inl
where

n={Y n,|F,€F. (P)andseF,} (4.10)

The analogous theorem for zonotopes states that maximal zonotopes are cubical,
and (4.9) holds with

n={¥ nyin, s >0t {4.11)
[11, Theorem 3.1].

We have seen in Section 1 th~at G(k, n) is embedded as a submanifold of the
unit sphere in A,R". Given £€ G(k, n) and a curve y: R G(k, n) with y(0) = £
the k-vector

n=vy0) .

is called a tangent vector of G(k, n) at & The collection of all such tangent vectors
at ¢ forms a subspace T.G(k, n) of dimension k(n—k) in A R" 'l:he other

necessary condition depends on the fact that the tangent plane T,G(k, n) is
spanned by the simple vectors (e | &), Ves ¢ and VrLe [17, Vol. 11, p. 314].

Proposition 9. Given ® e A R", the critical points of the function (£, ®) are those
£ Gk, n) which satisfy

(e] &) ®=ae (4.12)

Vec éand e e R.
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Proof. From the remark above, &€ G(k, n) is a critical point if and only if

(tnfe] &), P)y=0, (4.13)
Ve ¢ and Vi L e Substitution of (1.6) yields

({e] &) | P)=0,
which shows that (¢ | &) | & lies in the same direction as e. J

Note that Proposition 9 applies only to sharp projections. It is not hard to show
that if @ ~ I'", the conditions in Theorem 8 and Proposition 9 are equivalent.

The problems of finding the largest projection of a polytope Q in R" into R
or R” "havesimple solutions since the corresponding Grassmannians are isomor-
phic to the unit (n - 1)-sphere. The largest projection into a line is just the
maximum width. The largest projection into a hyperplane can be found by
maximizing Y n,| over all subsets of the facets of Q. This condition, along with
many results for regular polytopes, can be found in [20].

5. Projections into R*, 1= k< n—1
The “comass™ of a k-vector & A,R" is defined to be
1D = {max(g ®)| g€ Gk, n)} (5.1)

(sec 1.8 of [9]) and the face of G(k, n) with supporting hyperplane orthogonal
to $ s

Gy =1{&e Gk, n)|(& D)= ||D]}. (5.2)

If & s 4 projection form of a polytope Q< R", and G(d)< x (D) (see (2.6)),
then G(d) equals the set of oriented k-planes ¢ for which V(Q:¢)=
{max V(Q:ni|ney(d)}=|df.

The classification of the faces of 6(2, n){or G(n -2, n)) follows directly from
the canonical representation of a 2-form [28, p. 2]. Given ® € A5R", there exists
an orthonormal sequence e¢,, ..., e,,, € R" and real numbers A, = A.,=>- = A, >
0, such that

D=3 Aey, Ae, (5.3)
i

!

[9.p. 291 If A, ~ A, G(dD)=e, ne., whileif A, = =A, >A,,,, G(P) is the set
of 2-planes which are complex lines in R™" =lin{e,, ..., e, } under the compiex
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structure e,, =ies, 1, j=1,...,r By ruling out the second possibility, we obtain

below a uniqueness result for the maximum projection in each combinatorial
region. The basic idea is that an infinite face must contain a plane orthogonal to

some 2-faces of Q, in which case there exists a nearby sharp projection with

greater volume.

Let max I, (Q) (Max I1,(Q)) denote the set of €€ G(k, n) for which V(Q:¢)
has a relative {absolute) maximum.

Theorem 10. [f £ max I1,(Q), then TI(Q: &) is sharp.

Proof. Suppose Oeint Q and the projection P =TI(Q:¢) is not sharp. The
discussion in Section 2 implies that ¢ must belong to an intersection of hyperplane
sections of G{k, n) which form the boundaries of sharp projection regions. Hence,
there exists a path y: R—> G(k n), v(0) = £ such that the projections

P =TI(Q:¢ = y(¢)) and P =II(Q:¢ =y(-¢))

are sharp for some £ > 0.
Let & be a projection form for P given by (2.3). We claim that the projection

form of P’ can be written as
O =P, +D with (5, ®3)=0, n=19(0"). (5.4)

The form @ defines a triangulation I' of P into k-simplices with apex 0 and
base in 8 P. Choose £ small enough to that these simplices remain nondegenerate
for—e < 1= ¢ Thenin &', " becomes a star-polytope with O in its kernel. Therefore,
we can define . by triangulating the part of P” not in I'. Since (&7, ®y)=0and
(&, ®3)=0, (n, ®;) must be nonnegative, and this establishes (5.4).

Construct the form for P~ in a similar manner so that

b =P, +P with (=7, $,)=0. (5.5)
Note that at least one of (n, ®;) or (—n, d,) must be strictly positive since P is
not sharp.
Now, the hypothesis that V(Q:¢) has a relative maximum at ¢ implies

0=(n,®)=(n,®;+d) and 0=(-n, & )=(n, Oy +P) (5.6)

Adding these equations gives
0=(n, D —Dy).

But the remark following (5.5) implies

(n, &g —Py)>0,

which gives a contradiction.
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In preparation for the final theorem, we assemble a few properties of 6(2, 4).
This Grassmannian sits inside A-R*= R® as a four-dimensional manifold isomor-
phic to a product of 2-spheres. Let {e,, e., €;, e,} be an orthonormal basis for
R* and give R* the complex structure e, =ie,, and e = ie;. Then the 2-sphere

O={¢c G(2,4)|é=xnix,xe R"} (5.7)

equals the real planes which are complex lines in R*~C". A simple 2-vector is
said to be “complex’ if it lies in O.

Let é¢ G(2,4) and let H={n¢ G2, 4}1({n, &) = 0}. Then the set H N O equals
+& if £ is complex, and is a circle otherwise.

Theorem 11. [f k=2 or n-2, then [MaxI1,(Q)nx (P} <=1 for any sharp
projection form ® ¢ A R".

Proof.  The duality in (1.9) shows that we need only consider the case k =2. We
claim that it also suffices to take n=4. Assume ¢, £ € Max I1,(Q) both tay in
some open region on G(k, n). Then they would have the same property for the
polytope TI{Q: W), W= L(£)® L(£"). Since dim W =4, this would contradict
the result for (;‘(2, 3) or (.7(2, 4).

Now it follows directly from (5.3} that the only relative maxima of (£ @),
e (7(2,4), are the planes in G(®). Thus, if |G(P)] =1 we are done. Otherwise,

G(®) equals the complex lines @, and we may assume O N x(P) < Max IT,(Q).

In this case, the previous theorem implies O ax(®) =, which is possible
onlyif @ < y(d). But, by the remarks above, any hyperplane section which bounds
x(®) intersects @ in at feast two points. This contradiction gives the desired

result. O

Any generalization of Theorem 11 to higher dimensions must confront the
increasing complexity of the Grassmannians. In the particular case of G(3,6),
Morgan [28] has shown that there are only four types of faces: a singleton, a
doubleton, and two types of infinite faces. Theorems 10 and 11 can again be used
to rule out the infinite faces.
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