Klaus G. FISCHER

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, U.S.A.

Received 12 June 1986 Revised 10 March 1987

If $A[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$ is a polynomial ring over the commutative unitary ring A, let \mathcal{P} be the ideal which vanishes on the points $(x, \sigma(x))$ in $A^{(2\cdot n)}$ for any elementary symmetric polynomial σ . It is shown that this ideal is generated by the differences of the elementary symmetric polynomials in X and Y which in consequences gives another proof of the classical result concerning symmetric polynomials. Furthermore, by associating to a complete bipartite graph on n vertices a polynomial in \mathcal{P} , a purely algebraic proof of the Phillip Hall matching theorem is given.

1. Introduction

Let A be a commutative ring with 1 and let A[X, Y] be the polynomial ring in $2 \cdot n$ variables where $X := X_1, \ldots, X_n$ and $Y := Y_1, \ldots, Y_n$. Consider the ideal \mathcal{P} in A[X, Y] generated by those polynomials P(X, Y) which vanish for any substitution of the Y's by some permutation of the X's. That is, those P(X, Y) for which P(X, s(X)) = 0 for all $s \in S_n$.

In particular, let $\sigma_k(Z_1, \ldots, Z_n)$ be the kth elementary symmetric polynomial in *n* variables defined by

$$\sigma_k(Z_1,\ldots,Z_n)=\sum_{i_1<\cdots< i_k}Z_{i_1}\cdots Z_{i_k}, \quad \text{for } k=1,\ldots,n.$$

Then for each such k, $\sigma_k(X) - \sigma_k(Y)$ is a polynomial with the above described property.

Let \mathcal{D} be the ideal in A[X, Y] generated by these differences of the elementary symmetric polynomials. Hence

$$\mathcal{D} = \langle \sigma_k(X) - \sigma_k(Y) : k = 1, 2, \ldots, n \rangle.$$

In Section 2 it is shown that the ideal $\mathcal{D} = \mathcal{P}$. An easy consequence is the well-known theorem that any symmetric polynomial in *n* variables is a polynomial in the elementary symmetric polynomials.

Section 3 considers a combinatorial property of this ideal \mathcal{P} . Given a biparitite graph G on two disjoint sets of n vertices, associate with it a polynomial P(X, Y) defined by

$$P(X, Y) = \prod_{(i,j)\in G} (X_i - Y_j).$$

Here, the product is taken over those *i*, *j* for which edge (i, j) is in G. It is shown that P(X, Y) belongs to the ideal \mathcal{P} iff G contains a complete bipartite graph $K_{s,t}$ for which s + t > n. This result, applied to the associated polynomial \tilde{P} of the complimentary bipartite graph \tilde{G} , gives another proof of Hall's matching theorem. Furthermore, an equivalent formulation of this theorem in terms of ideals in $\mathbb{Z}[X, Y]$ is proved.

2. The ideal 9

For any $s \in S_n$, let

$$\mathscr{P}_{s} = \langle (X_{1} - Y_{s(1)}), \ldots, (X_{n} - Y_{s(n)}) \rangle.$$

As long as A is a domain, \mathcal{P}_s is a prime ideal in A[X, Y]. Clearly, P(X, s(X)) = 0iff $P(X, Y) \in \mathcal{P}_s$ and therefore $\mathcal{P} = \bigcap_{s \in S_n} \mathcal{P}_s$. Theorem 1 will show that $\mathcal{D} = \bigcap_{s \in S_n} P_s$. Hence, $\mathcal{D} = \mathcal{P}$ and if the ideals \mathcal{P}_s are prime, then \mathcal{D} and \mathcal{P} are radical ideals.

Given the variables X_1, \ldots, X_n and Z, the product expansion

$$\prod_{j=1}^{n} (Z - X_j) = Z^n - Z^{n-1} \sigma_1(X) + \dots + (-1)^n \sigma_n(X)$$
(1)

shows that for any j,

-

$$X_{j}^{n} = X_{j}^{n-1}\sigma_{1}(X) - \dots + (-1)^{n-1}\sigma_{n}(X).$$
⁽²⁾

Identical relations hold for the variables Y_1, \ldots, Y_n . Replacing Z by Y_n in Eq. (1) we have

$$\prod_{j=1}^{n} (Y_n - X_j) = Y_n^n - Y_n^{n-1} \sigma_1(X) + \cdots + (-1)^n \sigma_n(X).$$

Substituting the expansion for Y_n^n in terms of $\sigma_k(Y)$ as given by Eq. (2) with X replaced by Y we have

$$\prod_{j=1}^{n} (Y_n - X_j) = Y_n^{n-1} [\sigma_1(Y) - \sigma_1(X)] - Y_n^{n-2} [\sigma_2(Y) - \sigma_2(X)] + \dots + (-1)^{n-1} [\sigma_n(Y) - \sigma_n(X)].$$

This establishes an identity to be used in the proof of the first theorem.

Theorem 1. Suppose $P(X, Y) \in A[X, Y]$, where $X := X_1, \ldots, X_n$, $Y := Y_1, \ldots, Y_n$ and A is a commutative ring. If P(X, s(X)) = 0 for all permutations $s \in S_n$ of X_1, \ldots, X_n , then

$$P(X, Y) = \sum_{k=1}^{n} a_k [\sigma_k(X) - \sigma_k(Y)],$$

where σ_k is the kth elementary symmetric polynomial in n variables and $a_k \in A[X, Y]$.

Proof. If n = 1, then by the Euclidean algorithm

$$P(X, Y) = (Y - X)H(X, Y) + P(X, X) = (Y - X)H(X, Y),$$

for some $H \in A[X, Y]$. Since $\sigma_1(X) - \sigma_1(Y) = X - Y$, the result follows in this case.

Now let n > 1 and assume that we have already shown that

 $P(X, Y) \equiv (Y_n - X_1) \cdots (Y_n - X_{j-1})H(X, Y) \pmod{\mathcal{D}},$

for $1 \le j \le n + 1$ and where \mathcal{D} is the ideal of differences. (If no factor appears in the above then j = 1.) If j = n + 1, then by the identity established before the theorem the result will follow.

We have $H(X, Y) = (Y_n - X_j)Q(X, Y) + R(X, Y)$ where the remainder $R(X, Y) = H(X_1, \ldots, X_n, Y_1, \ldots, Y_{n-1}, X_j)$ contains no Y_n . Hence

$$P(X, Y) \equiv (Y_n - X_1) \cdots (Y_n - X_j)Q(X, Y) + (Y_n - X_1) \cdots (Y_n - X_{j-1})R(X, Y).$$

Observe that R(X, Y) vanishes for all substitutions of Y_1, \ldots, Y_{n-1} by a permutation $s^* \in S_{n-1}$ of $X_1, \ldots, \hat{X}_j, \ldots, X_n$ (X_j omitted). This is so since the result of setting $Y_n = X_j$ in P(X, Y) along with the above substitutions, is equal to P(X, s(X)) where $s \in S_n$ is the extension of s^* . Hence, the above equation yields

$$0 = P(X, s(X)) = 0 + (X_i - X_1) \cdots (X_i - X_{i-1})R(X, s^*(X))$$

Therefore R satisfies the hypothesis of the theorem in the variables $X_1, \ldots, \hat{X}_j, \ldots, X_n, Y_1, \ldots, Y_{n-1}$ and coefficients in $A[X_j]$. By the inductive hypothesis it is a linear combination of terms

$$\sigma_k(X_1,\ldots,\hat{X}_j,\ldots,X_n)-\sigma_k(Y_1,\ldots,Y_{n-1}), \quad k=1,\ldots,n-1.$$

If these are denoted by $\sigma_k(\hat{X}) - \sigma_k(\hat{Y})$, then

$$\sigma_k(\hat{X}) - \sigma_k(\hat{Y}) = [\sigma_k(X) - \sigma_k(Y)] - [X_j \sigma_{k-1}(\hat{X}) - Y_n \sigma_{k-1}(\hat{Y})] = [\sigma_k(X) - \sigma_k(Y)] - \sigma_{k-1}(\hat{X})[X_j - Y_n] - Y_n[\sigma_{k-1}(\hat{X}) - \sigma_{k-1}(\hat{Y})].$$

Applying the same expansion on $\sigma_{k-1}(\hat{X}) - \sigma_{k-1}(\hat{Y})$ it follows that for $k = 1, \ldots, n-1$, $\sigma_k(\hat{X}) - \sigma_k(\hat{Y}) \equiv 0 \pmod{(\mathfrak{D}, Y_n - X_j)}$. Hence, modulo \mathfrak{D} , R contains a factor of $(Y_n - X_j)$ and we may write

$$R \equiv F(X, Y)(Y_n - X_j) \pmod{\mathcal{D}} \text{ and so obtain}$$
$$P(X, Y) \equiv (Y_n - X_1) \cdots (Y_n - X_j)[Q(X, Y) - F(X, Y)] \pmod{\mathcal{D}}$$

as we wanted to show. \Box

If P(X) is a symmetric polynomial in the ring $A[X_1, \ldots, X_n]$ then it is well

known that P may be written as a polynomial in the elementary polynomials $\sigma_k(X)$, k = 1, ..., n. This fact can be obtained easily from the above theorem, at least in the case when A equals the rationals \mathbb{Q} , by induction on the degree of P in the following way.

We may assume that P is homogeneous and if it is of degree 1 and symmetric, then $P(X) = a \cdot \sigma_1(X_1, \ldots, X_n)$ for some $a \in A$. If the degree of P(X) is d > 1, then introduce the variables Y_1, \ldots, Y_n and note that $P(X) - P(Y) \in A[X, Y]$ satisfies the hypothesis of the theorem. Hence

$$P(X) - P(Y) = \sum_{k=1}^{n} a_k [\sigma_k(X) - \sigma_k(Y)],$$

and setting $Y_1 = \cdots = Y_n = 0$, we see that

$$P(X) = \sum_{k=1}^{n} b_k \cdot \sigma_k,$$

where $b_k = a_k(X, 0)$ and is homogeneous of degree n - d < n. These b_k may not be symmetric. However, if we let $b_k^{(s)} = b_k(s(X))$, where $s \in S_n$ is a permutation of X_1, \ldots, X_n , then $B_k = \sum_{s \in S_n} b_k^{(s)}$ is symmetric and homogeneous of degree n - d. Since

$$P^{(s)}(X) = P(X)$$
 and $\sigma_k^{(s)} = \sigma_k$ for any s,

we have that

$$n! P(X) = \sum_{k=1}^{n} B_k \sigma_k(X).$$

Hence, the inductive hypothesis applied to B_k gives the result in the case that A contains the rationals.

Another inductive argument gives the more general result.

Corollary. If F(X) is a symmetric polynomial in $A[X_1, \ldots, X_n]$, where A is a commutative ring with 1, then $F(X) = P(\sigma_1, \ldots, \sigma_n)$, where $\sigma_1, \ldots, \sigma_n$ are the elementary polynomials and $P(T_1, \ldots, T_n)$ is a polynomial in $A[T_1, \ldots, T_n]$.

Proof. First we assume that A is the ring of integers. By the discussion following the theorem, we know $m \cdot F(x) = P(\sigma_1, \ldots, \sigma_n)$ for some positive integer m. We claim that m divides the coefficients of P so that $F(X) = P'(\sigma_1, \ldots, \sigma_n)$ for some $P' \in \mathbb{Z}[T_1, \ldots, T_n]$, where Z is the ring of integers.

We may assume that F(x) is homogeneous and then the result is clear if n = 1. It also holds, regardless of n, when $d = \deg F = 1$. Assume then, that the result holds for symmetric polynomials in less than n variables and also for those in any number of variables but for which $\deg P < d$.

We may write

$$m \cdot F(X) = P(\sigma_1, \ldots, \sigma_n) = Q(\sigma_1, \ldots, \sigma_{n-1}) + \sigma_n R(\sigma_1, \ldots, \sigma_n) \quad (*)$$

If we set $X_n = 0$, then for $1 \le k \le n-1$, $\hat{\sigma}_k = \sigma_k(X_1, \ldots, X_{n-1}, 0)$ is the kth elementary symmetric polynomial of the variables X_1, \ldots, X_{n-1} . Since $\sigma_n(X_1, \ldots, X_{n-1}, 0) = 0$, Eq. (*) gives

$$m \cdot F(X_1,\ldots,X_{n-1},0) = Q(\hat{\sigma}_1,\ldots,\hat{\sigma}_{n-1}).$$

By induction, *m* divides *Q* so that we may rewite (*) as $m \cdot [F(X) - Q'(\sigma_1, \ldots, \sigma_{n-1})] = \sigma_n R(\sigma_1, \ldots, \sigma_n)$, where $m \cdot Q' = Q$. But since $\sigma_n = X_1 \cdots X_n$, and $\mathbb{Z}[X]$ is a UFD, σ_n must divide the left side of this last equation and hence we may write

$$m \cdot F'(X) = R(\sigma_1, \ldots, \sigma_n), \text{ for some } F'(X).$$

Evidently, F'(x) is symmetric and deg $F' < d = \deg F$. The inductive assumption on this degree says *m* divides *R*. Since *m* divides *Q* also, Eq. (*) says *m* divides *P*.

Now let A be arbitrary. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be an *n*-tuple of nonnegative integers and write $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$. If $F(X) \in A[X]$ is symmetric and contains the term aX^{α} , $0 \neq a \in A$, then it must also contain the term $aX^{s(\alpha)}$, where $s \in S_n$. So if $[\alpha]$ is the equivalence class of *n*-tuples induced by *s*, F(X) must contain the symmetric sum

$$a\cdot\sum_{\alpha\in[\alpha]}X^{\alpha}.$$

Since F(x) can be written as the sum (over distinct equivalence classes) of such terms, it suffices to show the result for symmetric polynomials

$$F(x)=\sum_{\alpha\in[\alpha]}X^{\alpha}.$$

Over the integers such as expression can be written as $P(\sigma_1, \ldots, \sigma_n)$ for some P. Hence, if $\lambda = \operatorname{char} A$,

$$F(x) = \overline{P}(\sigma_1, \ldots, \sigma_n),$$

where \bar{P} is the image of P in

$$\frac{\mathbb{Z}}{(\lambda)}[X] \subset A[X]. \qquad \Box$$

Remark 1. We may use this last corollary to sharpen the result of Theorem 1. That is, assume F(X, Y) vanishes for all substitutions of Y by permutations of X. Then

$$F(X, Y) = \sum a_k [\sigma_k(X) - \sigma_k(Y)].$$

But furthermore, if F is symmetric in (say) Y_1, \ldots, Y_n , then we may find a_k 's in the above equation which are symmetric in Y_1, \ldots, Y_n .

To see this, note that by the corollary $F(X, Y) = P(\sigma_1(Y), \ldots, \sigma_n(Y))$, for some $P \in A[X_1, \ldots, X_n][Z]$. But since $P(\sigma_1(X), \ldots, \sigma_n(X)) = 0$, one computes

directly that

$$F(X, Y) = P(\sigma_1(X), \ldots, \sigma_n(X)) - P(\sigma_1(Y), \ldots, \sigma_n(Y))$$
$$= \sum a_k[\sigma_k(X) - \sigma_k(Y)],$$

where the a_k 's are polynomials in the $\sigma_k(Y)$'s with coefficients in $A[X_1, \ldots, X_n]$. Hence, they are symmetric in Y_1, \ldots, Y_n .

Remark 2. Let \mathcal{G} be the ideal in A[X, Y] generated by differences of sums so that

$$\mathscr{G} = \left\langle \sum_{i=1}^n X_i^k - \sum_{i=1}^n Y_i^k \colon k = 1, 2, \ldots \right\rangle.$$

The theorem shows that $\mathscr{G} \subset \mathscr{D}$. Furthermore, Newton's identities [1, p. 135] state that for $k \leq n$, and the summation taken over i = 1, ..., k,

$$0 = k\sigma_k - (\sum X_i)\sigma_{k-1} + (\sum X_i^2)\sigma_{k-2} + \cdots + (-1)^k (\sum X_i^k).$$

Since $\sum X_i = \sigma_1(X)$, there show by induction that $\sigma_k(X) = P(\sum X_i, \ldots, \sum X_i^n)$, where P is a polynomial with rational coefficients. Hence, over the rationals Q,

$$\sigma_k(X) - \sigma_k(Y) \in \mathcal{G} \cdot \mathbb{Q}[X, Y]$$

and so $\mathcal{G} = \mathcal{D}$ in $\mathbb{Q}[X, Y]$.

3. The polynomial associated to a graph

Given a bipartite graph G on two disjoint copies of $[n] = \{1, \ldots, n\}$ as vertex-set, we may associate with G a polynomial in $\mathbb{Z}[X, Y]$ which is the product of terms $X_i - Y_i$ for all edges (i, j) in the graph.

Definition. For a bipartite graph G let

$$P(X, Y) = \prod_{(i,j)\in G} (X_i - Y_j)$$

be the associated polynomial of G. Furthermore, if a and b are non-empty sets of [n], let

$$P_{a,b} = \prod_{(i,j)\in a\times b} (X_i - Y_j).$$

Then $P_{a,b}$ is the polynomial associated to the complete bipartite graph $K_{(al,b)}$.

Example. If $X := X_1, X_2, X_3, Y := Y_1, Y_2, Y_3, a = \{2, 3\}$, and $b = \{1, 3\}$, then $P_{a,b} = (X_2 - Y_1)(X_2 - Y_3)(X_3 - Y_1)(X_3 - Y_3).$

Note in this case that $P_{a,b} \in \mathcal{P}$.

Lemma 1. If |a| + |b| = n + 1, then $P_{a,b} \in \mathcal{P}$.

Proof. Substituting for the Y's by some permutation of the X's requires choosing a subset of |b| elements from the set $\{X_1, \ldots, X_n\}$. Since |a| + |b| = n + 1, such a choice would of necessity include an X_i where $i \in a$. Hence, P(X, s(X)) = 0 for all $s \in S_n$ and the conclusion follows from the definition of \mathcal{P} . \Box

Let \mathcal{M} be the ideal generated by all polynomials $P_{a,b}$ with |a| + |b| = n + 1. Lemma 1 shows that $\mathcal{M} \subset \mathcal{P}$.

Lemma 2. Let $(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n)$ be a point in K^{2n} , where K is an algebraic extension field of \mathbb{Q} . If the point (α, β) is a zero of all polynomials in \mathcal{M} , then $(\beta_1, \ldots, \beta_n) = s(\alpha_1, \ldots, \alpha_n)$, for some $s \in S_n$. Consequently, the algebraic point set of \mathcal{M} and \mathcal{P} agree.

Proof. We do this by induction on *n*. If n = 1, then $\mathcal{M} = \langle X_1 - Y_1 \rangle$ and hence, $\alpha_1 - \beta_1 = 0$. Suppose the result is true for k < n. Since (α, β) satisfies $(X_1 - Y_1) \cdots (X_1 - Y_n)$, it follows that $\beta_{j_0} = \alpha_1$ for some β_{j_0} . Since the object is to find some $s \in S_n$ so that $s(\alpha) = \beta$, it is harmless to renumber and assume that $\beta_{j_0} = \beta_1$, $\beta_1 = \alpha_1 = \cdots = \alpha_t$, and that $\beta_1 \neq \alpha_i$ for i > t. Since (α, β) satisfies

$$(X_1 - Y_2) \cdots (X_1 - Y_n)(X_2 - Y_2) \cdots (X_2 - Y_n)$$

then if t > 1 it follows (after renumbering) that $\beta_2 = \beta_1 = \alpha_1$. If it has already been shown that $\alpha_1 = \beta_1 = \cdots = \beta_s$, s < t, then since (α, β) satisfies $P_{a,b}$, where $a = \{1, \ldots, s + 1\}$ and $b = \{s + 1, \ldots, n\}$, it follows that after renumbering, $\alpha_1 = \beta_1 = \cdots = \beta_{s+1}$. Hence we may assume that $\alpha_1 = \cdots = \alpha_t = \beta_1 = \cdots = \beta_t$ and that this common value does not equal any α_i for i > t. Now let $a', b' \subset \{t + 1, \ldots, n\}$, where |a'| + |b'| = n - t + 1. Then $P_{a',b'}$ is satisfied by $(\alpha_{t+1}, \ldots, \alpha_n, \beta_{t+1}, \ldots, \beta_n)$ since the point (α, β) satisfies

$$P_{a',b'} \cdot \prod_{i \in a'} (X_i - Y_1) \cdots (X_i - Y_i)$$

The first statement in the lemma now follows since by the inductive assumption, $\beta_{t+1}, \ldots, \beta_n$ is a permutation of $\alpha_{i+1}, \ldots, \alpha_n$.

Since $\mathcal{M} \subset \mathcal{P}$, any zero (α, β) of the ideal \mathcal{P} must be one of \mathcal{M} and the result follows. \Box

Since the preceding lemma shows that the zero points in some algebraic extension of \mathbb{Q} , of the ideals \mathcal{M} and \mathcal{P} agree, it follows by a slight generalization of the Nullstellensatz [2, p. 285], that the radicals of \mathcal{M} and \mathcal{P} agree in $\mathbb{Q}[X, Y]$. This means that $\mathcal{P}^m \subset \mathcal{M}$ for some positive integer m. The lemma also shows that since the ideal \mathcal{S} defined in Remark 2 of Section 2 also equals \mathcal{P} in $\mathbb{Q}[X, Y]$, the zero point set of \mathcal{S} is also that of \mathcal{M} and explicitly consists of points $(\alpha, s(\alpha))$ for any $\alpha \in K^n$ and $s \in S_n$. **Lemma 3.** Let A be a unique factorization domain or a field. Suppose M, M_1, \ldots, M_r are monomials in the ring A[X, Y] of the form

$$\prod_{(i,j)\in\Lambda} (X_i - Y_j), \quad \text{where } \Lambda \subset [n] \times [n].$$

If $M = c_1M_1 + \cdots + c_rM_r$ for $c_i \in A[X, Y]$, then M_j divides M for some j.

Proof. If $M = c_1 M_1$, then clearly $M_1 \mid M$ since A[X, Y] is also a UFD. Assume the result is true for sums of fewer than r terms. If M_1 does not divide M, then some factor $(X_s - Y_t)$ of M_1 fails to divide M. After reordering, we may assume that $(X_s - Y_t)$ divides only M_i for i = 1, ..., k, where $1 \le k < r$. It follows that in $A[X, Y]/(X_s - Y_t)$,

$$\bar{M} = \bar{c}_{k+1}\bar{M}_{k+1} + \cdots + \bar{c}_{k}\bar{M}_{r}$$

This ring satisfies the hypothesis of the theorem and therefore by induction, $\bar{M}_j \mid \bar{M}$ for some j, $k + 1 \le j \le r$. This says that for any factor $(X_u - Y_v)$ of M_j there must be a factor $(X_e - Y_f)$ of M for which

$$(X_e - Y_f) \equiv (X_u - Y_v) \quad (\operatorname{mod}(X_s - Y_t)).$$

The only way this can happen is that $(X_e - Y_f) = (X_u - Y_v)$. Hence, M_j divides M in A[X, Y]. \Box

As before, suppose that P is the associated polynomial of some bipartite graph on the set of vertices $a, b \subset [n]$. If \overline{G} is the bipartite complement of G with associated polynomial \overline{P} , then

$$P \cdot \bar{P} = P_{[n],[n]}$$

We say G gives a matching of the set of vertices if there exist a set of edges (i, j) providing a 1-1 correspondence between the set [n] and itself. This is equivalent to saying that P contains the product $(X_1 - Y_{s(1)}) \cdots (X_n - Y_{s(n)})$ for some $s \in S_n$.

Theorem 2. The following are equivalent:

- (i) The graph G does not contain a matching,
- (ii) $\tilde{P}(X, s(X)) = 0$, for every $s \in S_n$,
- (iii) $\overline{P}(X, Y)$ contains as factor some $P_{a,b}$, where |a| + |b| = n + 1.

Proof. $\overline{P}(X, s(X))$ vanishes for $s \in \mathcal{J}_n$ iff it contains a factor $(X_i - Y_{s(i)})$ for some *i*. This is so iff for every $s \in \mathcal{S}_e$, $P(X, \mathbb{X})$ fails to contain the product $(X_1 - Y_{s(1)}) \cdots (X_n - Y_{s(n)})$. That is, iff G contains no matching. Hence, (i) and (ii) are equivalent.

If $\bar{P}(X, s(X))$ vanishes for each $s \in s_n$, then by the remark following Lemma 2, $(\bar{P}(X, Y))^m \in \mathcal{M}$ for some *m*. But according to Lemma 3, $(\bar{P})^m$, and hence, \bar{P} is divisible by some $P_{a,b}$, where |a| + |b| = n + 1. This shows that (ii) implies (iii).

The fact that (iii) implies (ii) is precisely Lemma 1.

Definition. If G is a bipartite graph and $a \subset [n]$, let $\Re(a) = \{j \in [n]: \text{ there is an edge } (i, j) \text{ in } G \text{ such that } i \in a\}.$

Corollary (Hall's Theorem). The graph G gives a matching iff for every set $a \subset [n]$, $|a| \leq |\mathcal{R}(a)|$.

Proof. If G has a matching, then the condition $|a| \leq |\mathcal{R}(a)|$ is clear.

Now assume the condition and suppose G has no matching. Then by the theorem, $\overline{P}(X, Y)$ is divisible by some $P_{a,b}$ for some sets $a, b \subset [n]$ for which |a| + |b| = n + 1. Therefore, \overline{G} contains a complete bipartite graph on the set of vertices a, b. Hence, if $i \in a$ and (i, j) is an edge in G, then it must be that $j \in \overline{b}$, where \overline{b} is the complement of b in [n]. Hence, $\Re(a) \subset \overline{b}$ and

$$|a| = n - |b| + 1 = |\bar{b}| + 1 > |\mathcal{R}(a)|.$$

Since this is contradictory to the assumption the corollary is proved. \Box

In conclusion, we wish to make explicit that the following two results are equivalent.

Theorem 3. The following two statements are equivalent:

- (i) In $\mathbb{Z}[X, Y]$, the radical of the ideal \mathcal{M} is the ideal $\mathcal{P} = \bigcap_{s \in S_n} \mathcal{P}_s$,
- (ii) Hall's theorem.

Proof. The proof that (i) implies (ii) is precisely the proof of Hall's theorem in the corollary. The important fact needed there is that if \tilde{P} is in \mathcal{P} , then some power of \tilde{P} lies in \mathcal{M} . This is guaranteed by statement (i).

To show that (ii) implies (i), note that for any $F(X, Y) \in \bigcap_{s \in S_n} \mathcal{P}_s$, we have n! equations in $\mathbb{Z}[X, Y]$ of the form

$$F(X, Y) = a_{1,s(1)}(X_1 - Y_{s(1)}) + \cdots + a_{n,s(n)}(X_n - Y_{s(n)}),$$

arising from each $s \in S_n$. To show that $[F(X, Y)]^{n!} \in \mathcal{M}$, it is sufficient to show that for a selection of n! factors $(X_i - Y_{s(i)})$, exactly one chosen from each of the n! equations above, the product P(X, Y) belongs to \mathcal{M} .

Let G be the bipartite graph whose associated polynomial is P(X, Y). That is, an edge (i, s(i)) belongs to G iff the factor $(X_i - Y_{s(i)})$ was selected. Let \overline{G} be the complement of G. Then \overline{G} contains no matching since from every possible such matching, an edge has been removed by the way edges were selected for G. Applied to \overline{G} , Hall's theorem then asserts the existence of sets $a, b \subset [n]$ so that |a| > |b| and for which if $i \in a$ and (i, j) is an edge in \overline{G} , then $j \in b$. Hence, if \overline{b} is the complement of b in [n], it follows that for any $i \in a$ and $j \in \overline{b}$, edge (i, j)belongs to G. Hence, G must contain the complete graph $K_{|a|,|\overline{b}|}$, for which

$$|a| + |\bar{b}| = |a| + n - |b| > n.$$

It follows that P(X, Y) contains as factor some element of \mathcal{M} . Hence, P(X, Y) and, therefore, $[F(X, Y)]^{n!}$ belongs to \mathcal{M} .

Acknowledgments

Many discussions with Jim Lawrence proved invaluable to the formation of this paper and his help is gratefully acknowledged. Theorem 1 was also proved independently by Moshi Roitman. I also appreciated the careful reading of this paper by the referee.

References

- [1] N. Jacobson, Basic Algebra, I (Freeman, San Francisco, 1974).
- [2] D.G. Northcott, Lessons on Rings, Modules and Multiplicities (Cambridge University Press, Cambridge, 1968).