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IfA[X,,..., X, Y;,..., ¥,]is a polynomial ring over the commutative unitary ring A, let
& be the ideal which vanishes on the poiats (x, o(x)) in A%™ for any elementary symmetric
polynomial o. It is shown that this idea! is generated by the differences of the elementary
symmetric polynomials in X and ¥ which in consequences gives another proof of the classical
result concerning symmetric polynomials. Furthermore, by associating to a complete bipartite

graph on n vertices a polynomial in 2, a purely algebraic proof of the Phillip Hall matching
theorem is given.

1. Introduction

Let A be a commutative ring with 1 2nd let A[X, Y] be the polynomial ring in
2 - n variables where X:=X,;,..., X, and Y:=Y,, .. , ¥,. Consider the ideal 2
in A[X, Y] generated by those polynomials P(X, Y) which vanish for amy
substitution of the Y’s by some permutation of the X’s. That is, those P(X, Y) for
which P(X, s(X)) =0 for all s € S,.

In particular, let 0,(Z,, . . ., Z,) be the kth elementary symmetric polynomial
in n variables defined by

02y, ....Z)= O Z,---Z, fork=1,...,n.
0 < e <iy

Thea for each such k, 0,{(X) — 0:(Y) is a polynomial with the above described
property.

Let 9 be the ideal in A[X, Y] generated by these differences of the elementary
symmetric polynomiz!s. Hence

g =(o(X)-a(Y):k=1,2,...,n).

In Section 2 it is shown that the ideal @ =%. An easy consequence is the
well-known theorem that any symmetric polynomial in n variables is a polynomial
in the elementary symmetric polynomials.

Section 3 considers a combinatcrial property of this ideal ?. Given a biparitite
graph G on two disjoint sets of n vertices, associate with it a polynomial P(X, Y)
defined by

Px,v)= [l (x;-Y)
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Here, the product is taken over those i, j for wiich edge (i, j) is in G. It is shown
that P(X, Y) belongs to the ideal # iff G contains a complete bipartite graph K,
for which s +¢>n. This result, applied tc the associated polynomial P of the
complimentary bipartite graph G, gives another proof of Hall’s matching
theorem. Furthermore, an equivalent formulation oi this tlizoremn in terms of
ideals in Z[X, Y] is proved.

2, The ideal 9

For any s € 5,, let
@s = ((Xl - Ys(l))) ceey (Xn - Ys(n)))'

As iong as A is a domain, %, is a prime ideal in A[X, Y]. Clearly, P(X, s(X))=0
iff P(X,Y)e% and therefore P =[5, #. Theorem 1 will show that & =

MNses, P.. Hence, 9 = @ and if the ideals %, are prime, then 9 and 2 are radical
ideals.

Given the variables X, ..., X, and Z, the product expansion

[1(Z-X)=2"—Z"'0,(X) + - - - + (~1)'0,(X) 1)

j=1
shows that for any j,

X =X"'0(X) - -+ + (-1 oy (X). @
Identical relations hold for the variables Y, . . ., Y,. Replacing Z by Y, in Eq. (1)
we have

_Ii_[l Y, - X)=Vr-Y. '0y(X) + - - - + (—1)"0,(X).

Substituting the expansion for Y7, in terms of 0, (Y) as giver: by Eq. (2) with X
replaced by Y we have

1104 - %) = Y3700~ 01(0)] - Vi [ou(Y) - 0s()]

+ o4 (=1 oY) - 0,(X)]}-

This establishes an identity to be used in the proof of the first theorem.

Theorem 1. Suppose P(X,Y)eAl[X,Y), where X:=X,,...,X, Y:=
Yi,..., Y, and A is a commutative ring. If P(X, s(X))=0 for all permutations
seS,of Xy,...,X,, then

PX, Y)= i ar[o(X) = o (Y)),
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where o, is the kth elementary symmetric polynomial in n variables and
a; € A[X, Y].

Proof. If n =1, then by the Euclidean algorithm
PX,Y)=(Y-X)H(X, Y)+ P(X, X)=(Y - X)H(X, Y),
for some H e A[X, Y]. Since 0,(X)— 0,(Y)=X-Y, the result follows in this
case.
Now let n > 1 and assume that we Lave aiready shown that

PX,Y)=(Y,—- X)) ¥, - X;_)H(X, Y) (mod9),

for 1<j=<n+1 and where 9 is the ideal of differences. (If no factor appears in
the above then j=1.) If j=n +1, then by the identity established before the
theorem the result will follow.

We have H(X,Y)=(Y,- X;)O(X, Y)+R(X,Y) where the remainder
R(X,Y)=H(X,,...,X,, Y,,..., Y, ;, X;) contains no Y,. Hence

PX, Y)=(Y, - X)) - (Y. - X})Q(X, Y)
+(Y. - X)) (Y, - X;_)R(X, Y).

Gbserve thut R(X, Y) vanishes for all substitutions of V;,...,Y,_; by a
permutation s*€ S§,_; of X,,..., X’,-, .. -; X, {(X; omitte®). This is so since the
result of setting Y, = X; in P(X, Y) along with the above substitutions, is equa! to
P(X, s(X)) where s € S, is the extension of s*. Hence, the above equation yields

0= P(X, (X)) =0+ (X, ~ X;) - - - (X; — X;_R(X, s*(X)).

Therefore R satisfies the hypothesis of the theorem in the variables

A

Xy,...,X..., X, 11, ..., Y,_, and coefficients in A[X;]. By the inductive
hypothesis it is a linear combination of terms

Xy .. Xy, X)) =0kl .., Y, k=1,...,n-1
If these are denoted by 0,(X) — 0,(Y), then
Uk()b - Gk(Y} =[5 (X) — o (Y)] - [-Xi“gkcl(X) - Yngk—'l(f,)]
=[ow(X) — an(Y)] - Uk—l(x’)[Xi — Y]~ Yoo (X - 0r-1(Y)).

Applying the same expansion on 0;_;(X)— g,_,(Y) it follows that for k=
L...,n—1, o(X)-0(¥)=0 (mod(2, Y, - X;)). Hence, modulo 9, R
contains a factor of (Y, — X;) and we may write

R=F(X, Y)(Y, — X;) (mod 2) and so obtain
PX, Y)=(Y,- X)) -+ (Y, - X))[Q(X, Y) - F(X, Y)] (moc D)

as we wanted to show. 0O

If P(X) is a symmetric polynomial in the ring A[X,, ..., X,] then it is well
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known that P may be written as a polynomial in the elementary polynomials
o(X), k=1, ..., n. This fact can be obtained easily from the above theorem, at
least in the case when A equals the rationals @, by induction on the degree of P
in the following way.

We may assume that P is homogeneous and if it is of degree 1 and symmetric,
then P(X)=a- 0y(X,, ..., X,) for some a € A. If the degree of P(X) is d>1,
then introduce the variables Y;, ..., Y, and note that P(X) - P(Y) e AlX, Y]
satisfies the hypothesis of the theorem. Hence

P(X)-P(Y)= gl a[o:(X) — 01 (Y)),
and setting Y, =--- =¥, =0, we see that
P(X)= Z by - 9,
k=1

where b, = a,(X, 0) and is homogeneous of degree n —d <n. These b, may not
be symmetric. However, if we let b’ = b,(s(X)), where s € S, is a permutation of
X, ..., X,, then B, = Y5, b§ is symmetric and homogeneous of degree n — d.
Since

PYX)=P(X) and of)=o0, foranys,

we have that
n! P(X) = 3, Bow(X).
k=1

Hence, the inductive hypothesis applied to By gives the result in the case that A
contains the rationals.
Another inductive argument gives the more general result.

Corollary. If F(X) is a symmetric polynomial in A[X,, ..., X,], where A is a
commulative ring with 1, then F(X)= P(o,, ..., o,), where o,, ..., o, are the
elementary polynomials and P(T,, . . ., T,) is a polynomial in A[T,, . . ., T,].

Proof. First we assume that A is the ring of integers. By the discussion following
the theorem, we know m - F(x) = P(0, . . ., 6,,) for some positive integer m. We
claim that m divides the coefiicients of P so that F(X)= P'(0,, ..., 9,) for some
P'eZ[T, ..., T,), where Z is the ring of integers.

We may assume that F(x) is homogeneous and then the result is clear ii n = 1.
it also holds, regardless of n, when d = deg F = 1. Assume then, that the result
holds for symmetric polynomiais in less than n variables and also for those ii any
number of variables but for which deg P <d.

We may write

M'F(X)=P(O'|,.;.,0',,)=Q(U|,...,0,,._1)+(7,,R(Gl,..., n) (*)



Symmetric polynomials and Hall’s theorem 229

If we set X, =0, then for 1sk<n-1, é,=0(X,,..., X,_,, 0) is the ktn
elementary symmetric polynomial of the variables X,,...,X,_,. Since
o.(Xy, ..., X,1,0)=0, Eq. () gives

m 'F(Xl, “ oo ’Xn—l! 0)=Q(6'1, ey 6',,_1).

By induction, m divides O so that we may rewite (*) as m-[F(X)-
Q'(0y,...,%,_1)]=0,R(0y,...,0,), where m-Q'=Q. But since o,=
X, -+ X,, and ZIX] is a UFD, o, raust divide the left side of this last equation
and hence we may write

m-F'(X)=R(o0,,...,0a,), forsomeF'(X).

Evidently, F'(x) is symmetric and deg F' <d =deg F. The inductive assumption
on this degree says m divides R. Since m divides Q also, Eq. (*) says m divides P.

Now let A be arbitrary. Let @ =(a,, ..., @,) be an n-tuple of nonnegative
integers and write X*=X7"--- X If F(X)e€ A[X] is symmetric and contains
the term aX? 0+#a € A, then it must also contain the term aX*®, where s € S,,.
So if [@] is the equivalence class of n-tuples induced by s, F(X) must contain the
symmetric sum

Since F(x) can be written as the sumn (over distinct equivalence classes) of such
terms, it suffices to show the result for symmetric polynomials

Fx)= > X~
aela)
Over the integers such as expression can be written as P(oy, . . ., g,) for some

P. Hence, if A=char A,
F(x)=P(oy, ..., 0,),

where P is the image of P in

Z ,
a; [X] c A!}»_’ ] (W

Remark i. We may use this last corollary to sharpen the result of Theorem 1.
That is, assume F(X, Y) vanishes for all substitutions of Y by permutations of X.
Then

F(X,Y)= 2 ar[on(X) — 01 (Y)].

But furthermore, if F is symmetric in (say) Y}, . .., ¥,, then we may find ¢,’s in
the above equation which are symmetricin ¥;, ..., Y,.

To see this, note that by the corollary F(X, Y) = P(o(Y), ..., 0,(Y)), for
some P e A[X,, ..., X,][Z]). But since P(0,(X), ..., 0,(X)) =0, one computes
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directly that
F(X: Y)=P(01(X), cee on(X)) —P(GI(Y), RN n(Y))

=3 a [0 X) — o(Y)],

where the 4,’s are polynomials in the 0,(Y)’s with coefficients in A[X, ..., X,].
Hence, they are symmetricin Y;,..., Y,.

Remark 2. Let & be the ideal ir A[X, Y] generated by differences of sums so that

y=<2x§—2 Yak=1,2,.. >
i=1 i=1

The theorem shows that ¥ < 9. Furthermore, Newton’s identities [1, p. 135]
state that for £ <n, and the summation taken overi=1,..., k%,

0=ko,~ (X X)0k1+ (X XD0k_z+ - - - + (=D X5).

Since ¥ X; = 0,(X), there show by induction that o(X)=PX X, ..., LXD,

where P is a polynorzial with rational coefficients. Hence, over the rationals Q,
o(X)- o (Ve ¥-Q|X, Y]

and so ¥ =9 in G[X, Y].

3. The polynomial associated to a graph

Given a bipartite graph G on two disjoint copies of [r]={1,...,n} as
vertex-set, we may associate with G a polynomial in Z[X, Y] which is the product
of terms X; — Y; for all edges (i, j) in the graph.

Definition. For a bipartite graph G let
P, V)= I (x-1)
’ (i.j)eG
be the associated polynomial of G. Furthermore, if a and b are non-empty sets of
[n], let

P.= [l (Xx-1)

(i.j)eaxb
Then F, ;, is the polynomial associated to the complete bipa::ite graph K, 5.
Example. if X:=X, X,, X3, Y:=Y,,Y,, V5, a={2,3}, and b= {1, 3}, then

Pop=(X,~- V)X, - Vo) (X; — V)(a; - Y3).
Note in this case that P, , ¢ 2.
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Lemma 1. If |a| +|b|=n+1, then P, , € P.

Proof. Substituting for the ¥’s by some permutation of the X’s requires choosing
a subset of |b| clements from the set {X,, ..., X,}. Since |a| + |bl=n + 1, sucha
choice would of necessity include an X; where i € a. Hence, P(X, s(X)) = 0 for all
s € S, and the conclusion follows from the definition of 2. O

Let 4 be the ideal generated by all polynomials P,, with |a|+ |b|=n + 1.
Lemma 1 shows that # < 2.

Lemma 2. Let (ay,..., @, B1,...,B,) be a point in K*, where K is an
algebraic extension field of Q. If the point (a, B) is a zero of ail polynomials in Ji,

then (By, ..., B.)=s(a, ..., w,), for some s €S,. Consequently, the algebraic
point set of M and P agree.

Proof. We do this by induction on n. If n =1, then # = (X, -Y;) and hence,
@, — B, =0. Suppose the result is true for k <n. Since («, B) satisfies (X;~—
Y)) -+ (X, - Y,), it follows that §; = a, for some B;,. Since the object is to find
some s € S, so that s(a) = B, it is harmless to renumber and assume that g, = ;,
Bi=a,="---=a, and that B, # a; for i >¢. Since (a, B) satisfies

(Xl— Yz) te (Xl"Yn)(Xz—Yz)' : '(Xz"Y;.)
then if +>1 it follows (after renumbering) that g, =8, = a,. If it has already

been shown that a;=f,=---=p;, s<t then since (a, ) satisfies P,,,
where a={1,...,s+1} and b={s+1,...,n}, it follows that after renum-
bering, a;=p,="'--=f,,,. Hence we may assume that a;=---=q,=f;,=

-++=p, and that this common value does not equal any a; for i >¢. Now let
a,b'c{t+1,...,n}, where |a'|+|b'|=n—t+1. Then P, , is satisfied by
(X415 -« - 5 Oy Prars - - - » B,) since the point (a«, B) satisfies
Pow [l (Xi=Y) - (X = Y)).
iea’

The first statement in the lemma now follows since by the inductive assumption,
Bis1s - . - B is a permutaion of «, ., ..., @,.

Since M = P, any zero («, B) of the ideal ? must be one of # and the resuit
follows. O

Since the preceding lemma shows that the zero points in some algebraic
extension of @, of the ideals .# and 2 agree, it follows by a slight generalization
of the Nullstellensatz [2, p. 285], that the radicals of # and 2 agree in Q[X, Y].
This means that ™ < 4 for some positive integer m. The lemma also shows that
since the ideal & defined in Remark 2 of Section 2 alsc equals 2 in Q[X, Y], the
zero point set of & is also that of .# and explicitly consists of points (&, s(a)) for
any v K"and s € §,.
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Lemma 3. Let A be a unique factorization domain or a field. Suppose
M, M,, ..., M, are monomials in the ring A[X, Y] of the form
[1 (X;-Y;), where Acin]x(n]

G.)eA

If M=c,My+- - -+ ¢, M, for c;e A[X, Y], then M; divides M for some j.

Proof. If M =c,M,, then clearly M, | M since A[X, Y] is also a UFD. Assume
the result is true for sums of fewer than r terms. If M, does not divide M, then
some factor (X; — Y,) of M, fails to divide M. After reordering, we may assume
that (X, — Y;) divides only M, fori=1, ..., k, where 1<k <r. It follows that in
A[X’ Y]/(Xs - }’l)r

M = E’C+1Mk+l +-e-4 E-Mr-

This ring satisfies the hypothesis of the theorem and therefore by induction,
M; | M for some j, k +1<j <r. This says that for any factor (X, — Y,) of M; there
must be a factor (X, — ¥;) of M for which

(Xe - Y,’) = (Xu - Y:.') (mOd(Xs - Ye))

The only way this can happen is that (X, — Y;) = (X, — Y,). Hence, M; divides M
inA[X,Y]. O

As before, suppose that P is the associated polynomial of some bipartite graph
on the set of vertices a, b [n]. If G is the bipartite complement of G with
associated polynomial P, then

P- P = P[,,],[,,].

We say G gives a matching of the set of vertices if there exist a set of edges (i, j)
providing a 1-1 correspondence between the set [#] and itself. This is equivalent
to saying that P contains the product (X, — Y,)) - - - (X,, — Ys(n)) fOr some s € §,.

Theorem 2. The foilowing are equivalent:
(i) The graph G does not contain a matching,
(ii) P(X,s(X))=0, for everys€S,,
(iii) P(X, Y) contains as factor some P, ,, where |a| + |bl=n + 1.

Proof. P(X, s(X)) vanishes for s € 5, iff it contains a factor (X; — Y, for some
i. This is so iff for every seS,, P(X, /) fails to contain the product (X, -
Y,y) * - (X, = Yy(ny). That is, iff G contains no matching. Hence, (i) and (ii} are
equivalent.

It P(X, s(X)) vanishes for each s €s,,, then by the remark following i.emma 2,
(P(X, Y))™ e M for some m. But according to Lemma 3, (P)™, and hence, P is
divisible by some P, ,, where |a| + |b| = n + 1. This shows that (ii) implies (iii).

The fact that (iii) implies (ii) is precisely Lemma 1. O
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Definition. If G is a bipartite graph and a c [r], let R(a) = {j € [n]: there is an
edge (i, j) in G such that i e a}.

Corollary (Hall’s Theorem). The graph G gives a matching iff for every set
a cr], |a| <|R(a)|.

Proof. If G has a matching, then the condition |a| < |%(a)) is clear.

Now assume the condition and suppose G has no matching. Then by the
theorem, P(X, Y) is divisible by some F,, for some sets a, b =[n] for which
la| +|b]| = n + 1. Therefore, G contains a complete bipartite graph on the set of
vertices_a, b. Hence, if i € a and (i, j) is an edge in G, then it must be that je b,
where b is the complement of b in [r]. Hence, #(a) c b and

la|=n—|b|+1=1|b|+1>|R(a)|.

Since this is contradictory to the assumption the corollary is proved. O

In conclusion, we wish to make explicit that the following two resul*s are
equivalent.

Theorem 3. The following two statements are equivalent:
(i) In Z[X, Y), the radical of the ideal M is the ideal P = \cs, P,
(ii) Hall’s theorem.

Proof. The proof that (i) implies (i1) is precisely the proof of Hall’s theorem in
the corollary. The important fact needed there is that if P is in 5*, then some
power of P lies in (. This is guaranteed by statement (i).

To show that (ii) implies (i), note that for any F(X, Y) €[ \es, &, we have n!
equations in Z| X, Y] of the form

F(X,Y)= al.s(l)(Xl - Ys(l)) +e--+ an,s(n)(Xn - Ys(n));

arising from each s € S,,. To show that [F(X, Y)]™ € M, it is sufficient to show that
for a seleciion of n! factors (X; — Y,(;), exactly one chosen from each of the n!
equations above, the product P(X, Y) belongs to /.

Let G be the bipaitite graph whose assuciated polynomial is P(X, Y). That is,
an edge (i, s(i)) belongs to G iff the factor (X; — Y;,) was selected. Let G be the
complement of G. Then G contains no matching since from every possible such
matching, an edge has been removed by the way edges were selected for G.
Applied to G, Hall’s theorem then asserts the existence of sets a, b = [r] so that
la] > |b| and for which if i € a and (i, j) is an edge in G, then j e b. Hence, if b is
the complement of b in [n], it follows that for any i€a and j< b, edge (i, ]
belongs to G. Hence, G must contain the complete graph K, 5, for which

la] + |B| = |a| + n — |b]| > n.

It follows that P(X, Y) contains as factor some element of (. Hence, P(X, Y)
and, therefore, [F(X, Y)]” belongs to 4. []
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