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IfA[X, ,..., X,,, y1,..., Yn] is a polynomial ring over the commutative unitary ring A, let 
9 he the ideal which vanishes on the points (x, u(x)) in A(2-n) for any elementary symmetric 
polynomial u. It is shown that this ideal is generated by the differences of the elementary 
symmetric polynomials in X and Y which in consequences gives another proof of the classical 
result concerning symmetric polynomials, Furthermore, by associating to a complete bipartite 
graph on n vertices a polynomial in S, a purely algebraic proof of the Phillip 
theorem is given. 

Let A be a commutative ring wi be the polynomial 
2 l n variables where X:=X1, . y . , Yn. Cmsidea the i 
in A[X, Y] generated by those polynomials (X, Y) which vanish for any 
substitution of the Y’s by some pe 
which P(X, s(X)) = 0 for all s E S,* 

elementary symmetric polynomial 
in n variables defin 

Zi, l l l Zik, for k = 1, . . . , n. 

Thea for each such k, ok(X) - a,(Y) is a polynomial with the above described 

P rtY* 
t 9 be the ideal in Y] generated by these differences of the elementary 

symmetric poBynon&&. 

- ok(Y): k = 1,2, . . . , n}. 

In Section 2 it is shown that the ideal 9 = 
well-known theorem that any symmetric polyno 
in the elementary symmetri 

Section 3 considers a co 



product is taken over those i, j for wr\ich edge (i, j) is in @. 
the ideal 9 iff C contains a complete bipartit 

is result, applied tc the associate 

ulation oF this tMorem in terms of 

ranys~S,, let 

is a domain, PS is a prime ideal in A[X, U]. Clearly, P(X? s(X)) = 0 
therefore 9 = nSos SFS. Theorem 1 will show that 9 = 

ence, 9 = 9 and if the ideals PS are prime, then 9 and 9 are radical 
ideals. 

Given the variables X1, . . . , X, and 2, the product expansion 

* (Z - Xj) = 2” - z%l(X) + l l l + (-l)“a,(X) 
j=l 

(1) 

ows that for any j, 

xy = x+(x) - l l l + (-l)“-%JX)* (2) 

cal relations hold for the variables U,, . . . , eplacing 2 by Y, in Eq. (1) 

n 

- xj) ‘= Yi - )+-+(-lS”a,( 

e expansion for Fn in terms of a,(Y) as gibes by Eq. (2) with X 

n 

sta es a e use 
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is the kth elementary sym 

1 . 

f n = 1, then by the u&dean algorithm 

227 

in n. variables and 

case. 
Now let n > 1 and assume that we have already shown that 

)=(Y+X,)*==( ) (mods), 

in this 

for 1 s j G n + 1 and where 9 is the ideal of 
the above then j = 1.) If j=n+l, then by 

Observe t&t 
s is so since the 

result of setting V, = Xj in P 
P(X, s(x)) where s c5 pSn is the extension 0f 3* . I-Ience, the above equation yields 

O=P(X,s(x))=O+ --&)~~*(xj-+_J 

satisfies the hypothesis of the theorem in the variables 
and wefficients in &4[&-]. y the inductive 

ar combination of terms 

,..., Xn)-&& ,..., Yn+), k=l,...,n-I. 

f these are denoted by ok 

CT&k?) - C&) = [G&X) - 

contains a factor of (Yn 

as 
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ritten as a polynomial in the elementary polynomials 
is fact can be obtained easily from the above theorem, at 

quals the rationals Q!, by induction on the degree of 

for some a! E A. 

satisfies the hypothesis of the theorem. ence 

and setting YI = l l l = Yn = 0, we see that 

0) and is homogeneous of degree n - d < n. These bk may not 
wever, if we let hp) = B&(X)), where s E & is a permutation of 

etric and homogeneous of degree n - d. 

n 

k=l 

e inductive hypothesis applied to gives the result in the case that A 

er inductive argument gives the more general result. 
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and hence we may write 

(ol, . . . , a,), for some 

Evidently, F’(x) is sym 
on this degree says m di 

Now let A be 
integers and writ 
the term aT, 0 #a E 
So if [LY] is the equiva 
symmetric sum 

Since F(x) can b e written as the sum (over distinct equivalence c 
terms, it suffices to show the result for symmetric polynomials 

Over the integers such as expression can be written as P(al, . . . , a,) for some 
ence, if il = char A, 

F(x) = P(q, . . e , on), 

where P is the image of P ;n 

use this last corollary to s 
Y) vanishes for all substit 

9 9 l l 9 “n9 
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directly that 

F( 

)‘s with coefficients in 

cp 
de t 9 be the ideal in A[X, I’] generated by diiTerences of sums so that 

e theorem shows that 9k 9. urthermore, Newton’s identities [ 1, p. 1351 
at for k s n, and the summation taken over i = 1, . . - , k, 

), there show by induction tha 
a polynomial with rational coefficients. 

o&K) - a,(Y) E 9 l Q[X, Y] 

andso9=9i 

artite graph C on two disjoint copies of [n] = { 1, . . . , n} as 
ay associate with G a polynomial in Z[X, Y] which is the product 
for all edges (i, i) in the graph. 

ite graph G let 

( - 5) 
WkG 
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e x’s requires choosing 
[=n+;,sucba 
s(X)) = 0 for all 

e ideal generated by all th Ial + 161 = n + 1. 
mma 1 shows that 

Let (al,. . . , tx,, j&, . . . , /3,,) be a point in 
t&&on field of CL If thz point (a, ,6) is a z 

then (81, . . . , &)=s(~Y,, . . . , a;l), fiw some s ES,, 
point set of and 9 agree. 

e do this by induction on n. (XI - V,) and h 
a1 - PI = 0. Suppose the result is tru (a, /Q satisfies ( 
&‘,\ l l l (Xl - Yn), it follows that &, = cyl for some &,. Since the object is to find 
some s E Sn so that s(a) = /3, it is ha less to renumber and assume that igiO = &, 

B 1 
= 

a1 
=..m= cu,, and that & # cwi for i > t. Since (cu, /I) satisfies 

then if t > 1 it follows (after renumbering) that p2 = /I1 = al. If it has already 
been shown that si = & = l l l = bs, s < t, then since (cu, /3) satisfies Pa,b, 
where a = (1, . . . ,s+l} and b={s+l,..., n}, it follows that after renum- 
bering, a1 = PI = - l l = JBs+l. Hence we may assume that au1 =. l l = at=& = 

l l l = /i& and that this common value does not equal any CQ for i > t. Now let 
a’, b’ c {t + 1, . . . ,n}, where la’l+Ib’l=n-t+l. en Par,61 is satisfied by 

( a! t+l, . . . 9 4, #$+1, . . ’ F A) since the point (a, /3) satisfies 

P -&)*m*(Xi-Y,)m 

e first statement 13 the ?emma now foS!o”ss since by the inductive assumption, 
/$ is a permutaion of ar+d,. . . , mm. 

c 9, any zero (a, /I?) of the i eal 9 must be one of 
follows. cl 

extension of Q, of the ideals .& and 9 agree, it fol 
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Let A be a unique factorization domain or a field. Suppose 
are monomials in the ring A[X, U] tif the form 

), where ii c [n] x [n]. 

for Ci EA[X, Y], then divides for some j. 

ult is true foi sums of fewer than r terms. If 
some factor (X, - yC) of After reordering, we may assume 

, where l<k<r. t follows that in 

This ring satisfies the hypothesis of the theorem and therefore by induction, 
for some j, k + 1 “-j 6 r. This says that for any factor (X,, - YJ of there 

must be a factor (X= - yr) of M for which 

(Xe - I$) = (XU - Y,) (mod(X, - x)). 

e only way this can happen is that (Xe - Yf) = (X,, - Y,). divides 

[X, Y]. 0 

As before, suppose that P is the associated polynomial of some bipartite graph 
set of vertices a, b c [n]. If G is the bipartite complement of G with 

associated polynomial P”, then 

e say G gives a matching of the set of vertices if there exist a set of edges (i, j) 
roviding a l-1 correspondence between the set [n] and itself. This is equivalent 

to saying that P contains the product (X, - Y& l . l (Xn - Yscn,) for some s E S,. 

es not contain a matching, 

,.,, where Ial + lb! = n -I- 1. 

the product (X, - 
ence, (i) and (ii) are 
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f G is a bipartite gra 
edge (i, j) in G such that i E a}. 

a c [rz], let %(a) = {j E [n]: there is an 

all’s eorem). The graph G gives a matching iff for every set 
a = [nl, la1 e Wa)L 

as a matching, t en the condition Ial =S l$R(a)l is clear. 
ow assume the condition and su ose G has no matching. 

-(X, Y) is divisible by some P, b for some sets a, b c [n] 
Ial -I 16 I = n + 1. Therefore, G contains a complete bipartite graph on 

ence, if i E a and (i, j) i n edge in G, then it must be that j E 6, 
mplement of b in [n]. rice, %(a) c b’ and 

I I a =n - 161 + 1 = 161 + 1~ IS(a 

Since this is contradictory to the assumption the corollary is proved. 0 

In conclusion 
equivalent. 

, *:ve wish to make explicit that the following two resuk are 

The following two statements are equivalent: 
iX, Y], the radical of the ideal A is the ideal 9” = nES. pSp 
‘s theorem. 

The proof that (i) implies (ii) is precisely the proof of all’s theorem in 
the corollary. The l portant fact needed there is that if ii is in 9, then some 
power of P lies in This is guaranteed by statement (i). 

To show that (ii) implies (i), note that for any F(X, Y) E nEs, Ps, we have n! 
equations in Z[X, Y] of the form 

F(X, Y) = 6.,&X1 - I$,) + l l l + a,,,&L - K&, 

arising from each s E S,,. To show that [ F(X, Y)]“’ E , it is suffkknt to show that 
for a selection Of n! factors (Xi - x(i))r exactly chosen from each of the n! 
equations above, the product P(X, Y) belongs t 

I.& G be the bip~ite graph whose asskated polynomial is P 
an edge (4, s(i)) be!ongs to G iff the factor (Xi - Ys($ was selecte 
complement of G. Then G contains RO matching since from every possible such 

e has been removed by 

Ia I> Jb 1 and for which if i 
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any discussions with Jim Lawrence proved invaluable to the formation of this 
tefully acknowledged. Theorem 1 was also proved 
itman. I also appreciated the careful reading of this 

aper by the referee. 
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