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In [Fo2] we introduced a combinatorial Morse theory for CW complexes (see [Fol] for
an informal summary). We showed that, in addition to the Morse inequalities, many
of the basic notions of differential topology, such as the gradient vector field and the
corresponding gradient flow, can be realized in this combinatorial setting. In [Fo3] we
studied the notion of a general combinatorial vector field and found that one can find
combinatorial analogues of much of the theory of vector fields, including the study of zeta
functions and their special values. In this paper, we develop combinatorial analogues of
some aspects of global analysis and present a proof of the combinatorial Morse inequalities
of [Fo2] along the lines of Witten’s Hodge-theoretic proof of the standard (smooth) Morse
inequalities as presented in [Wi]. This combinatorial version retains much of the structure
of the smooth theory, and provides combinatorial analogues of the main ingredients of the
proof in [Wi]. On the other hand, some difficulties in the smooth theory, arising from the
infinite dimensional nature of the analysis, or questions of transversality, do not appear.
Moreover, the combinatorial theory can be applied to very general cell complexes, not just
those arising from cell decompositions of manifolds.

This work was motivated by the analysis in [Wi], in which Witten gave a beautiful
new proof of the Morse inequalities based on techniques from Hodge theory. Moreover, he
showed, using ideas from quantum physics, how one could analytically derive the entire
Morse complex, a differential complex built out of the critical points of a Morse function
which has the same homology as the underlying manifold (see [Mi] and [KI] for earlier
topological treatments of the Morse complex, [C-F-K-S] and especially [H-S] for a mathe-
matical treatment of Witten'’s ideas, and [Bo] for a wonderful overview of the subject).

In [Fo2] we presented a combinatorial Morse theory for CW complexes. In this paper
we present a (finite-dimensional) linear algebra proof of the Morse inequalities for CW
complexes along the lines of Witten’s proof. We also derive the Morse complex in this
setting. In particular, we exhibit a combinatorial version of the quantum phenomenon of
tunneling. The reader may use this paper as an introduction to the rather daunting analy-
sis of [H-S] (see also [B-Z] chapter VIII) which is required to carry through this program in
the smooth category. We find it fascinating that there are finite dimensional analogues of
most of the key ingredients of the proof in [H-S]. Moreover, the finite dimensional nature
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of our analysis allows us to avoid some of the difficulties which arise when attempting to
make rigorous the arguments of [Wi]. Thus, in a couple of places our proof more closely
follows the presentation of [Wi] than the proof in [H-S]. In particular, in §4 and, more
explicitly, in §5 our proof makes use of (well-defined) discrete path integrals.

We now give a very brief look at the main ideas of the paper. Let M be a simplicial
complex (although the results in this paper hold for more general cell complexes), K the
set of simplices of M, and K, the simplices of dimension p. A (discrete) Witten-Morse
function is a function f on K, i.e., an assignment of a single real number to each simplex,
satisfying some conditions (which we will not describe until later, see Definition 0.6). We
will also define later (see Definition 0.3) the notion of a critical simplex for f. Whether
a simplex ¢ of dimension p is critical or not depends only on comparisons between f(o)
and f(7) where 7 runs over all neighboring simplices of dimension p+1landp—1.

Consider the real simplicial chain complex of M

0 — Cn(M,R) % Co 1 (M, R) -2 .. 25 Cy(M,R) — 0.
Our first goal is to study the homology of this complex, ie.,

_ Kerd:C,(M,R) — C,_1(M,R)
B R) = e G (I R) — G, R)

Following Witten [Wi], we deform the boundary operator 0, replacing it with
9, = et/ get!
and consider the induced Laplace operators
Ap(t) = 0,0; +0;0, : C,(M,R) — Cp(M,R)

where 97 is the adjoint of 9, with respect to the inner product on C, (M, R) such that the
simplices are orthonormal. For each t € R

Kernel (Ap(t)) = H,(M,R).

Letting t — oo, and expressing A, (t) in matrix form with respect to the basis consisting
of simplices, we will find that if f is a Witten-Morse function then

0 0

01) Atoe) = ( ¢ H
critical non-critical
p-simplices p-simplices

where D is a diagonal matrix with entries in Z+ U {+00}. So that
dim Kernel (Ap(00)) = # of critical p-simplices.
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Standard arguments imply that for each p
dimKernel (A,(c0)) > dim Kernel (Ap(t)) teR

and

zn:(-—l)p dim Kernel (A,(00)) = f:(—l)” dimker(A,(t)) teR.

p=0 p=0

It follows immediately that for each p

(0.2) # of critical p simplices > dim H,(M,R)

and
Z(——l)”{# of critical p simplices} = Z(—l)”{dime(M, R)}.
p=0 p=0

These are the Weak Morse Inequalities.
In fact. we show in §2 that this is sufficient to prove the Strong Morse Inequalities

mk—mk_1+---2bk—bk_1+--- v k=0,1,2,...
where

mk = # of critical simplices of dimension k
br = dim Hy(M,R)

(see also [Wi] and [Bo] for the corresponding argument in the smooth category).
In general. (0.2) will not be an equality, since we may have

dimker Ay(o0) > dimker A,(t)  teR.

We investigate the nature of these extra zero eigenvalues that occur at ¢t = oo. We learn
that these small eigenvalues go to 0 exponentially fast as ¢t — oo, and the corresponding
eigenfunctions are concentrated, with exponentially small error, at the critical simplices.

A closer look leads us to the Morse complex

M:i0— My My L 2 My — 0

where M, C Cp(M,R) is the span of the critical p-simplices, and § is a differential
constructed from the “gradient paths” of f (this is explained in §3). We then prove that

this complex has the same homology as the underlying manifold. That is,

H.(M)=H,(M,R).
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Lastly, we single out a special class of Witten-Morse functions which we call flat (see
Definition 0.7). We show that every Witten-Morse function is equivalent (in a precise
sense) to a flat Witten-Morse function, and if f is flat, then

0 0
(0.3) Ap(o0) = <O I)
critical non-critical
p-simplices p-simplices

where I is the diagonal matrix with all diagonal entries equal to 1. Thus, any quantity
which can be expressed as a function of det(A,(t)) becomes, as t — oo, a function of
just the small eigenvalues, and hence, as we will see, depends solely on the information
contained in the Morse complex M. As an example, we consider (after choosing a rep-
resentation ® of 71 (M) — this is all reviewed in §5) the Reidemeister Torsion T(M, 9),
which Ray and Singer showed in [R-S] could be expressed in terms of the determinants of
Laplacians twisted by . We show that the Morse complex M can be twisted by & to a
complex Mg and the torsion of this complex is equal to the Reidemeister Torsion of M.
That is.
T(Ms) =T(M,®).

We will now add some precision to our discussion. We begin with a brief review of
the Morse theory developed in [Fo2]. We will work in the category of CW complexes (see
[L-W] for definitions and basic properties), but the reader may prefer to think only of
simplicial complexes. Let M be a finite CW complex, and let K denote the set of (open)
cells of M. with K, the cells of dimension p. For ¢ € K we will write 0® to indicate that
dimo = p. and for o, 7 € K we will writec < T or 7 > o to indicate that ¢ is contained
in the boundary of 7, and we say that ¢ is a face of T (wewriteo <Tifo<ToOrc = 7).
Suppose 0P is a face of 7(P*1), Let B be a closed ball of dimension p + 1, and

h:B— M

the characteristic map for 7, so that, in particular, h is a continuous map that maps
interior(B) homeomorphically onto 7.

Definition 0.1. Say 0P is a regular face of 7(P+1) if
(i) h: h™'(0) — o is a homeomorphism

(ii) h=1(c) is a closed p-ball.
Otherwise we say o is an irregular face of 7.

We note that if M is a regular CW complex (and hence if M is a simplicial complex or
a polyhedron) then all faces are regular. Of crucial importance is the following property.
Suppose (P is a regular face of 7("*1), Choose an orientation for each cell in M and
consider ¢ and 7 as elements in the cellular chain groups Co(M,Z) and Cpiy (M, 2Z),
respectively. Then )

(0.4) (Or,0) = %1

where (97, o) is the incidence number of 7 and o (for a proof see Corollary V.3.6 of [L-W)).
This brings us to the definition of a Morse function. Roughly speaking, for a function

from K to R to be a Morse function, higher dimensional simplices must be assigned higher

values, with at most one exception, locally, at each simplex (see [Fol] and [Fo2] for further
explanation and examples).



Definition 0.2. A function f : K — R is a discrete Morse function if for every ¢(P) ¢ K,

(i) If o is an irregular face of +(P*1) then f(r) > f(c). Moreover,
#{rP*) > 0| f(r) < flo)} < 1.

(i) If v»~1) is an irregular face of ¢ then f(v) < f(c). Moreover,
#(WPV<o|fv) 2 flo)} <1,

We declare o(P) to be a critical point (of index p) if there are no exceptions at o, ie.,

Definition 0.3. Let f be a discrete Morse function on M. Say o(P) is a critical point (of
index p) if

D) #{r"* Y > 0| f(r) < f0)} =0

2) #{vPV <o | f(v) 2 flo)} = 0.

Note that if a cell of dimension p is a critical point, it is necessarily a critical point of

index p. See {Fol] for a heuristic justification for this definition.

Let m, denote the number of critical points of index p, and for any coefficient field F
let b,(F) denote the pt! Betti number

bp(F) = dim H,(M, F).

In [Fo2) we proved

Theorem 4. (The Strong Morse Inequalities). For each k=0, 1, 2,...
Mg — Mk} + Mg —---E2mg > bk(F) - bk-l(F) + bk_g(F) -k bo(F)

As a corollary. we have the weak Morse Inequalities.

Corollary 5. (The Weak Morse Inequalities).
(i) Foreach k=0, 1, 2,...
mg 2 b (F).
(if) mo —my +my = - = bo(F) = by(F) + bp(F) — - - .

See [Mi] for a discussion of the Morse inequalities. In this paper we will only discuss the
Morse inequalities in the case that the coefficient field is the field of real numbers. With
this in mind, let

by = by(R) = dim H,(M, R).

Before presenting our analytical proof of the Strong Morse Inequalities for CW com-
plexes, we need to strengthen our definition of a Morse function. Note that Definition 0.2
1s equivalent to



Definition 0.2'. A function f: K — R is a discrete Morse function if, for every o) ¢
K,.

+1 1 . . .
1) whenever 'rl(p !> o and 7-2(” s g satisfy 7y # 7, or 7, = m, and o is an irregular
face of 7,

f(o) <max{f(n), f(r:)}

-1 - . .
2) whenever u§P V<o and vép V<o satisfy v; # v,, or v; = v, and v; is an
irregular face of o,

(o) > min{f(v1), f(v2)}.

In the analytic approach we will be following, we need stronger inequalities. Compare
Definiticn 0.2" with the following definition.

Definition 0.6. A function f K — R is a discrete Witten-Morse function if, for every
(p)
o\P e Kp,

1) whenever Tl(p+1) > o and Tép.H) > o satisfy 7y # 7, or 1y = p and o is an irregular
face of ;.
f(o) < average {f(m1), f(2)}
2) whenever vgp'l) < ¢ and vép-l) < o satisfy v; # vy, or v; = vy and v, is an

irregular face of o,

f(o) > average {f(u1), f(v2)}.

Clearly. every Witten-Morse function is. in fact, a Morse function. In section 4 we will
have to strengthen the definition even more.

Definition 0.7. Say a discrete Witten-Morse function f is flat if, for every o(P) ¢ K,

1(p+1) (p+1)

1) whenever 7 >0 and 7, > o satisfy 11 #

f(e) < min{f(n), f(r2)}

(p-1) (p-1)
2

2) whenever v; < o and v < o satisfy v; # v,

f(o) 2 max{f(v1), f(v2)}.

Although its role in the proof in §4 will be obvious, the ultimate meaning of this def-
inition is not completely clear to the author. However, in this and in other work, flat
Witten-Morse functions seem to have shown themselves to be the appropriate combinato-
rial analogue of smooth non-degenerate Morse functions.

The following figure exhibits 3 Morse functions on the solid triangle. The first is a Morse
function, but not a Witten-Morse function. The second is a Witten-Morse function, but
is not flat. The third is a flat Witten-Morse function.
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These 3 Morse functions are equivalent (see Definition 1.2).

In section 1 of this paper we show that, although the definition of a flat Morse function
1s more restrictive than that of a Morse function, for every Morse function there is an
equivalent (in the sense of Definition 1.2) flat Morse function.

In section 2 we give a (discrete-) Hodge theoretic proof of the Strong Morse Inequalities

(with coefficient field F = R) for CW complexes. Namely, we begin with the cellular chain
complex

0 — Ca(M.R) = C, Ly (M.R) -2 ... 2. Cy(M.R) — 0

and we investigate a combinatorial analogue of the perturbed differential studied. in the
smooth category. in [Wi]. That is. we set

0, = et/ et/
where f is a Witten-Morse function. We then consider the Laplacian
Ap(t) =007 + 670, : Cp(M.R) — Cp(M,R)

where 87 is the adjoint of 8, with respect to the inner product on the chain spaces defined
by declaring the cells to be an orthonormal basis. We study the behavior of A,(t) as t

goes to +>c. In particular. after presenting a more explicit description of Ap(t), it will
follow immediately from Definitions (0.2) and (0.6) that for each P

# {eigenvalues of A,(t) which tend to 0 as t — x} = m,.

We include a discussion of why this is sufficient to prove the Strong Morse Inequalities
(see also [Bo]).

In section 3 we define the Morse complex

M:O—"’Mn_é"Mn-—l a- "'—'a-_’MO-—’O

where M, C Cp(M,R) is the subspace consisting of the linear combinations of the critical
cells (so that dim M, = m,). Let 7(P*1) and o(P) be critical cells. We define the differential
J by setting < 7.0 > to be the number of gradient paths (see Definition 3.1) of f from
07 to o (counted according to an algebraic multiplicity).

In section 4 we present an analytic derivation of the Morse complex. We first introduce
the one-parameter family of Witten complexes

W(t) 10 — Wa(t) =5 Waoa(t) 25 - 25 Wo(t) — 0
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where Wy(t) € C,(M,R) is the span of the eigenspaces of Ap(t) corresponding to the
eigenvalues which tend to 0 as t — co. It follows immediately that for all ¢

(0.5) H.(W(t)) = H.(M,R).

We then prove that if f is a lat Witten-Morse function then, after a change of coordinates,
as t — oc the complex W(t) approaches the complex M.
In section 5 we show that the equality (0.5) holds in the limit as ¢t — oc. That is,

H.(M) = H,(M,R).

A topological proof of this fact is presented in [Fo2].
In section 6 we broaden our view and fix an orthogonal representation

®:m(M)— O(k,R)

where 7, (M) denotes the fundamental group of M and O(k,R) denotes the group of real
orthogonal k x k matrices. We recall the definition of the Reidemeister Torsion T'(M, ®), a
combinatorial invariant of the complex M. We then show how the Morse complex M can
be modified to a complex M(®) which takes into account the representation ®. The main
result of the section is that T(M, ®) can be calculated from the Morse complex M ()
Namely. one can define a torsion of any differential complex and we show

T(M,®) = Torsion(M(%)).

This identity. in the smooth category, is a key step in the recent proofs that Reidemeister
torsion equals the analytic torsion of Ray and Singer [R-S] ([T], [B-Z], [B-F-K)).

.

§1. Flat Witten-Morse Functions.

In [Fo2] we proved the existence of many nontrivial Morse functions. We also examined
their basic properties. Of importance to us is the following lemma (Lemma 2.5 of [Fo2]).

Definition 0.3 list two conditions for a p-cell & to be critical, which we denote 0.3(1) and
0.3(2).

Lemma 1.1. For any p-cell o, at least one of 0.3(1) and 0.3(2) must hold. That is,
#{TPV >0 | f(1) < f(0)} + #{vP D <o | f(v) 2 f(0))} < 1.

For a proof. see section 2 of [Fo2].
In this section we extend the existence to flat Witten-Morse functions. Namely, we
prove that for every Morse function there is an equivalent flat Witten-Morse function.

Definition 1.2. If f, g : K — R are 2 non-degenerate functions we say f and g are
equivalent if, for every p and every ¢(® < 7(p+1)

flo) < f(r) «— g(0) < g(7).

It follows directly from the definitions that if f and g are equivalent, then f is a Morse
function if and only if g is a Morse function. If they are Morse functions, they have
precisely the same critical points and (as we will see in section 3) they induce canonically
isomorphic Morse complexes.

It will be convenient to require a bit more structure of our Witten-Morse functions.
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Definition 1.3. If f is a combinatorial Morse function on M, say f is self-indezing if

1) Image(f) € [0, dim M)
2) For every critical point ¢ of f

f(e) =dimo.

Theorem 1.4. Let M be a CW complez and f a discrete Morse function on M. Then
there 1s a discrete self-indezing flat Witten-Morse function g on M which is equivalent to

f.

Proaof. The proof will be by induction on the dimension of M.

If dim M = 0 then the trivial function g, where g(v) = 0 for all v, satisfies the desired
properties. .

Suppose the theorem is true for all complexes of dimension <k-1and dimM = k.
Let N be the (k — 1)-skeleton of M. Restricting f to N yields a Morse function fx on N.
By induction there is an equivalent self-indexing flat Witten-Morse function gon N (we
will not label this function gn since it is not quite the restriction of the desired function
g to N). We begin our construction of g by setting

g(o)=g(o) if dimo <k-2.
We must modify g slightly on the (k — 1)-cells. To see this, suppose agk—l) and aék'l) are
(k — 1)-faces of 7(*) and f(0,) > f(7) > f(c2). Then we must have 9(o1) = g(1) > g(02)

so. in particular, g(o1) > g(03). However, this relationship need not hold for §. This
difficulty is the motivation for the following definition. Given a (k = 1)-cell o, define

(1.4) d(c) = sup{r | 3 a sequence

k k-1 k k-1 k -
o = 0y, 'ré ), a§ ), 71( ),...,a,(._l ), 7',(_)1, olk-1

such that for each:1=0,1,...,r =1

Ti>0;#F0i1 <7 oand  f(oy) 2> f(1i) = floie1)}

and let
D = sup d(o).
olk=1)
Now set, for any (k — 1)-cell o
- d(o)
9(0) = glo) + 52

We make the following observations

(i) If 3v*~2 < o* =D with f(v) > f(o) then, by Lemma 1.1,d(o) = 0so g(o) = §(o).
Otherwise, g(c*=1)) > §(o). It follows directly from the definitions that g is a flat
Witten-Morse function on N that is equivalent to g, and hence to fn.

9



(i) If o*~1) is critical for f on M then d(o) = 0 (since there is no 7*) > & with
f(7) £ f(o)). Moreover, ¢ is critical for f restricted to N. Thus

9(0) = §(o) = k- 1.
(iif) Since Image(g) < [0. k — 1) we have that restricted to N

Image(g) C [O,k - -;—} .

(iv) If d(c*=Y) # 0 then there is a 7% > o with f(7) < f(o). Using Lemma 1.1 we
see that ¢ is critical for fy so that §(o) = k — 1.

We now define g on k-cells. If 7(¥ is critical for £, set
(1.5) g(t) = k.

If 7% is not critical. there must be a o*~1) < + with f(e) 2 f(7) (so that d(o) > 0).
Such a ¢ must be unique by condition 2 of Definition 0.1. In this case, set

(1.6) 9(t) = g(o).

It remains to show that g satisfies the conclusions of the theorem. We must first show
that g is equivalent to f. Since. restricted to N, g is equivalent to fy (by observation (i)),
it is sufficient to check that if 6(*=1) < +(*) then

flo) < f(r) — g(o) < g(7).

Suppose f(o) > f(7). Then g(c) = g(7) by (1.6). Suppose f(c) < f(7). If 7 is critical
for f then

9(7)=k>k—%29(0)

(by observation (iii)). If 7 is not critical then there is a %1 <  with f(8) > f(r). It

follows from (1.4) that d(5) > d(c) +1 (since if o, 79,..., 0, is any sequence as in (1.4) of
length r beginning with o. then &, 7, 0, 75,... .0, is a sequence of length r + 1 beginning
with &). Thus. since §(¢) = k - 1 > §(c) (by observations (iii) and (iv))
- d(6) d(o)
= = — — —_— — >
9(r)=9(6)=k-1+ 5D >k—-1+ 2D 2> g(o)
as desired.

It follows immediately from the construction that
Image(g) < [0, k]
If dimo < k - 2 and o is critical for f then o is critical for fn and
9(c) = §(o) = dime.

It follows from observation (ii) and (1.5) that g is self-indexing on M.
Lastly. it follows from the construction that g is flat, and hence is a Witten-Morse
function. O
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§2. The Morse Inequalities.

Theorem 2.1 (The Strong Morse Inequalitiés). Let M be a finite CW complez and
f a discrete Morse function on M with Morse numbers {mi}i=0.1....n, where n = dim M.
Then for every k =0, 1, 2,... we have the inequality

Mk = Mg+ + (=1)*Tmg > by = by + -+ + (=1)F~ 14,

where b; = dim H,(M,R).

Proof. The Strong Morse Inequalities are equivalent to the following statement: There
is a differential complex of finite dimensional real vector spaces

Vio—vyr-Syn-t 4, d o g

(so that d* = 0), satisfying for each i =0, 1,... ,n, dimV? =m;

_ ; _ . kerd: Vi o yi-l
dim H*(V) [: dim T Vil V‘J = b;.

To see how such differential complexes arise, consider the cellular chain complex of M
C:O-—-»Cn—a—>Cn-1 —a-—w--ivCo——-vO

where C, = C,(M.R) is the vector space of real cellular i-chains on M , and 0 is the usual
boundary operator. Endow each C, with the inner product <,> in which the cells of M
form an orthonormal basis. Let 8" be the adjoint of 8 with respect to these inner products.
For each i we can consider the Laplacian

A;=00"+0"0:C; — C,.
It follows from standard linear algebra that
b; = dimker A,.
The operator A; is symmetric, and hence diagonalizable. For each A € R, let
EiQ)={ceCi|Aic= X}

denote the A eigenspace of A;. Since A = AJ, 8 preserves the eigenspaces. That is, for
each A € R we have a differential complex

E(M):0— E,(\) L Ea () 2 B0 — 0

where 0 is simply the restriction of the boundary operator to the A eigenspace. It is easy
to check that

b,‘ lf A=O

(2.2) dimH,(E(A)):{O £ A0

11



For A € R. detine
Wi(A) = P E.(n)

A<A

and consider the Witten complex

W) = @ EN:0— Wa(d) L Woss(8) Lo ... 2 Wy(A) — 0.

A<A
It follows from (2.2) that

0 if A<O

dimH;(W(A)) = {b‘ if A>0.

Therefore. to prove the Strong Morse Inequalities, it is sufficient to find a A > 0so that
for each 1

We note that
dim W;(A) = #{eigenvalues of A; < A}

where the eigenvalues are counted according to their multiplicity.
This is not quite how we will prove the Morse Inequalities, since, in particular, we have

not yet used the Morse function. Let f be a discrete Witten-Morse function. For each i ,
define the automorphism

by setting
et/ (o) = et/ 0)g
for each oriented i-cell o of M. and extending linearly to all of C;. We now consider the

Witten cellular chain complex

(C,8):0— Cpn 24 Cpoy 2500 25, 0g —a 0
where
61 = e'fae“f.

For each t € R this complex has the same homology as C = (C, 0o) so, preceeding exactly

as before. to prove the Strong Morse Inequalities it is sufficient tofind a t € R and a A>0
such that for all ¢

#{eigenvalues of A;(t) < A} =m;

where

A(t) = 8,8; + 8.8, : C; — C,

and §; is the adjoint of 8; with respect to the inner product <, >.

12



It is now simply a matter of finding a more explicit representation for Ai(t). Let o be
an oriented i-cell of M. Then

0o = Z (Oo,v)v
vii-lice
and
(2.3) b0 =etfdet g = Z (80, v) et W)=1(0))y,,
vii-D<o
Similarly,
0o = Z (Or,0) T
rli+l) >
and
(2.4) Ojoc=e 5%t g = Z (01, 0) et (@)1 () r,
rli+l) s

Combining these we learn
A(t)o = 0,6; + 0,00
= 5 ¥ (80.v) (86, v) et@IW= 1@ 1@

vii-D<e gt >y

+ Z Z (8, o) (dr, &) et(f(0)+f(5)—2l(‘f'))&

TO+D>g 50y

=31 Y (80.v) (85.v) et )= S(0)- (&)

F (1) -
(AN _U(t US.t_.
v<o.v<o

+ Z (81,0) (07, 6) etf()+1(8)=2f(m)) | 5.

'r(""”s.t_.
T>O,T>0

If ) # 5 then for every v(*~1) which is a face of both o and &
2f(v) - f(o) - f(6) <0
by condition 1 of Definition 0.7. If 7(:*1) has both o and & as faces then
fle)+ f(6)-2f(r) <0
by condition 2 of Definition 0.7. Therefore
Ai(t)o = (A(t)o,0) o + O(e~ %)
=1 T (80w’ e%(f(v)-ﬂo)) + S (Bro)2e U@ | o4 oemte)

L'("U<o' 'r(‘+1>>a
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for some ¢ > 0. Therefore, as t — o, A;(t) becomes diagonal with respect to the basis of
C; consisting of the i-cells of M. In particular, up to exponentially small errors as t — ~c.
the eigenivalues of A;(t) are the diagonal entries

(2.5) (Qilt)o,o) = Y~ (8o, v)? U )= f(o))

vi-l<go

+ Y (01,0)2 2t (@)=f(7)

-r(\+1)>c

We now observe that it follows directly from Definition 0.3 that all of the exponents in
(2.5) are negative (and go to —oo as t — oo) if and only if o is critical. Otherwise at least
one exponent is nonnegative. For such an exponent, say f(v(P~1)) — f (), v must be a

regular face of 0. Applying (0.2) we learn (Ai(t)o,0) > 1. Therefore, for all i and any t
large enough

#{eigenvalues of A,(t) < }=m;

which completes the proof. O

§3. The Morse Complex.

In this section we briefly describe the Morse complex associated to a discrete Morse
function. A more complete presentation can be found in [Fo2] (for a discussion of the
Morse complex in the smooth category see [KI]. [Wi] and [H-S]). Fix a discrete Morse
function f. For each p let My(f) (or simply M, if f is understood) denote the subspace
of C,(M.R) consisting of linear combinations of critical p-cells (so that dim M, = m,).
We will build a differential complex

M:O—*Mn—a-*Mn-1—a—*"'-2-*Mo—->0

satisfying, for each p,
dim Hp(M) = dim H,(M,R).

To define the differential & we must introduce the notion of a gradient path.

(p) ()

Definition 3.1. A gradient path of dimension p from Oinitial 10 Tgna; IS @ sequence

(p) (p+1) _(p) _(p+1) _(p) (p+1) _(p) _ _(p)
(3.1) T Ui(:i)tial =05, T o, P, O2 ooy Tpoy s O - = Ogy
such that for every i =0, 1,...,k =1

1) oi <7 and 0441 < 7
2) oy # o1
3) floi) 2 f(m) > f(ois1).

14



Tiaitial

FIGURE 3.1

Our next goal is to define the algebraic multiplicity of a gradient path. Suppose, for
the moment. that for each i. o, and o,,, are regular faces of 7;. Then each o;, when
endowed with an orientation, induces an orientation on 7; (so that with this orientation
{07,,0,) = —1) which in turn induces an orientation on Oi+1 (so that with this orientation
(07,,0,+1) = 1). In this way an orientation on Oinitial induces an orientation on ogy,, (see
figure 3.1).

Suppose Oinitial and Cfina; have been endowed with an orientation. Set the multiplicity
of ~. denoted by m(«), to be +1 if the orientation on Ofinal agrees with the orientation

induced by the orientation on gjitia. and —1 otherwise. Equivalently, suppose each cell
of M is given an orientation, then

k-1
(3.3) - m(y) = H = (07:,04) (07, 0is1) -

1=0

Definition 3.2. Suppose each cell of M is given an orientation and v is a gradient path

as in (3.1) (we no longer require o; and 0,4, to be regular faces of 7:). We define the
algebraic multiplicity of v, m(y), by the formula (3.3),
We can now define the differential 5. Endow each cell of M with an orientation.

Definition 3.3. For any (oriented) critical cells 7(P*1) and o' set

(3.4) <5'r,a>= Z (0r,01) z m(¥y)

olPcr v€l(e1,0)

where [(01,0) is the set of all gradient paths of dimension p from o, to o. Since the
critical p-cells form a basis of M, the formula (3.4) defines a unique linear map

It is not at all obvious that the Morse complex has the same homology as M, or even

that 42 = 0. These will be proved in the next 2 sections.

§4. The Limit of the Witten Complex.

An immediate corollary of our proof in section 2 of the Strong Morse Inequalities is the
observation that the differential complex (which we will call the Witten complex)

W(t) 10— Wa(t) 2 Wnoy(t) 25 22 Wo(t) — 0
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satisfies for all ¢
dim H;(W(t)) = dim H;(M,R)

where §, = e/8e~*/ and Wp(t) is the span of the eigenfunctions of Ap(t) corresponding
to eigenvalues which tend to 0 as t — oo. It also follows from the proof of Theorem 2 that
for each p

,1.‘,’2,, Wp(t) = M,.
This can be seen very clearly from the form of Ap(oc) as shown in (0.1). In fact, the
main theorem of this section is that, as ¢ — oo, the Witten complex, slightly modified,
converges to the Morse complex.

Before embarking on the rigorous proofs of the main results of this section, we will
provide a brief overview. The key step is to define an isomorphism (t) from M, to W,(t)
(which satisfies lim;_.o, 7(t) is the identity). The proof then boils down to showing that
(after a simple rescaling)

. -1 Y
tl_lgloﬂ’ (t)0em(t) = 0.

The main ingredient is the observation that (as is hinted at in the expression for A,(o0)
in (0.3)) if f is a flat Witten-Morse function, then =(¢) is very close to 1 — A(t). In fact,
up to negligible error. 7(t) can be replaced by (1 — (A(t))M)N for sufficiently large N.
To proceed further. we express the operator A(t) as a matrix with respect the standard
basis consisting of cells. We note that the non-zero entries in A(t) correspond to adjacent
cells. so that the entries of (A(t))" are determined by paths of length N. Thus, n(t) is
expressed as a sum over paths. which we then analyze in greater detail.

The interested reader may wish to compare this analysis with Witten's argument ap-
pearing on pages 671 and 672 of {Wi]. Witten, in essence, constructs 7(t) from an exami-
nation of an appropriate Lagrangian on the path space of the manifold. From an operator
point of view. he is studying the heat operator e=2®). It is easy to see why this operator
can be used in the smooth case and (1 - (A(t))")" in the combinatorial setting. The goal
is to construct 7(t) which is uniquely characterized by the property of being the identity
operator or the eigenspaces corresponding to the eigenvalues which goto 0, i.e., W(t), and
0 on the orthogonal complement. From (0.3) we see that as t — oc, A(t) approaches 0 on
W(t) and 1 on the complement. Hence 1 — A(t) is close to 7(t). Simple estimates show
that as N — o0 (1 — (A(t))")N approaches n(t) exponentially fast. In Witten’s smooth
setting as ¢ — oc the eigenvalues of A(t) go to 0 on W (t), while all other eigenvalues
go to oc. Hence e=2(") is an operator which goes to 1 on W(t) and O on its orthogonal
complement, as desired.

We now work more precisely. Let f be a flat Witten-Morse function and consider

A(t) = 8,8; + 85,

Following the proof of Theorem 2 we see that the off-diagonal terms of A(t), as well as the
diagonal terms corresponding to critical cells, are O(e~¢*) for some ¢ > 0. The diagonal
terms corresponding to non-critical cells are all 1 + O(e™¢t).

To study the behavior of the complex W(t) as t — oo we will choose a convenient basis
for the W, Let m,(t) denote the orthogonal projection from Cp(M,R) to Wy(t). For each

16



critical p-cell o let
| 9o(t) = m(t)o(= o + O(e™*))

For sufficiently large t the g,’s form a basis of W,(t), but not an orthonormal basis. Let
G denote the square matrix with rows and columns indexed by the critical p-cells, and
where (suppressing the t’s)

Ga,a: = (gdﬂgdz) (= 60103 + O(e—lC))'

Let
ho = G™Y2g,(= o + O(e™*)).

The h, form an orthonormal basis of W,(t). The main theorem of this section is

Theorem 4.1. For any critical cells 0P and r(P+1)
(Bthe, ho) = etf(@)=f()) [<5‘r,a> + O(e-tc)]

for some ¢ > 0, where § is as in (3.4).

Before proving the theorem. we consider some implications. Let H (t) denote the linear
map on W (t) which sends h, to f(o)h,, and

6t = e'tHate—tH.

Then for all t the complex (W (t),8,) has the same homology as (W (t), ;) and hence the
same homology as the underlying manifold M. Moreover, for all critical 7 and ¢

t—oo t—oc
hT — T.‘ hc -_—

and from Theorem 4.1
<6':h,,ha> = <5T,a> +0(e"tc) =% <5T,a>.
Thus, we have

Corollary 4.2. Ast — oo, the complex (W(t),8,) converges to the Morse complez M
defined in section 8. Since 6° = 0 for all t, we learn that 82 = 0. In addition, it
immediately follows that for each p

(4.2) dim Hp(M) 2> dim Hp(M,R)

and

£(~1)? dim Hp(M) = £(=1)" dim H,(M, R).

These are the Weak Morse Inequalities with the Morse numbers {m,} replaced by
{dim H,(M)}. In fact, it also follows easily that the Strong Morse Inequalities hold. We
will not prove this, since in section 5 we will prove that in (4.2) we actually have equality.

We now begin our preparations for the proof of Theorem 4.1.

17



Definition 4.3. Define a p-step on M to be a triple
B:o{P, 7 o!P)

where either

1)dim7=p+1andao<r>01
or
2)dimr=p~1land oy >7< 0y

(00 = 01 is permitted). We define the algebraic multiplicity of 8, m(3), by

(8) = { —{¢T,00)(87,0y) if dimT=p+1
— (009, 7) (801,T) if dimr=p-1

and the action of 8. s(3), by
s(8) =| foo) + fo1) = 2f(r) | .
We observe that
(4.3) s(8) 2| f(oo) = f(o1) |
with equality if and only if either
floo) 2 f(1) 2 f(oy)

or
fle1) 2 f(7) 2 f(00).

In either case. since f is flat. we must have either floo) = f(7) or f(o1) = f(7).

Definition 4.4. Define a p-path of length r from ai(:i)tial to af(iﬁl to be a sequence of r

p-steps Jp. Ji.....58,-1 where each step begins where the previous step ends. That is
(p)
v (Ui(:i)tial = U(()p)! 70, ng)) ’ (o’gp)s Tlsaép)) yoeey (Urzla Tr—1, U’(_p) = O’f(irx':)al)

where

B; = U,(p)y Tiy U,‘(f.)r

We then set

r-1
m(v) = [[ m(8))
i i=0

r-1

s(v) = s(B).

=0
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It follows from (4.3) that
(4.4) s(v) 2| f(Ginitial) - f(Ofnal) |
with equality if and only if either

floo) 2 f(m0) > flor) 2 -+ 2 f(r-1) > Floy)

or

flor) 2 f(ree1) 2 for1) 2+ 2 f(70) = f(00).

In either case, by (4.1), fori =0.1,...,r — 1 we must have
(4.5) flow) = f(r) or f(ois1) = f(m).

We now use the notion of a p-path to define a distance function on the set of p-cells.

Definition 4.5. For any p-cells 5"’ and 0P, let
Dleo.01) = min s(v)

where ~ runs over all p-paths from oo to 0.
It follows from (4.4) that

D(oo.01) 2 |f(00) = f(o1)].
Moreover. we have an obvious triangle inequality. For all olP, aip ) and olP)

(4.6) D(Uo,01)+D(0’1,02)ZD(Uo,dz).

Lemma 4.6. If U(()p) and o§p) are critical p-cells and g # o1 then

D(00.01) > | f(oo) = f(o1) |-

Proof. Let v be a p-path from og to ;. We must see that

s(v) > | f(oo) = f(o1) |-

Suppose. on the contrary, that

and write

v (o, m0.0P), 0, T, o), 0P 1y, o).
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We may assume that
GoF UL F V2 FE - F# 0y

since. if v; = v,41 We can remove the step (vi, Ty, Ui41) and the action s(v) will not increase.
By relabeling if necessary, we may assume that

floo) 2 f(10) 2 f(v1) 2 f(n) >+ 2 f(rro1) 2 f(ow).

In particular. we must have

floo) > f(v1) > f(v2) > - > f(oy)

which implies

(4.7) TOFETIFTo# - # Ty,

Since og is critical

floo) # f(70).
By (4.5) this implies

f(70) = f(u1).

From condition 1 of Definition 0.2 and (4.7) we learn

flvr) # f(m).

Again applving (4.5).
flm) = f(v2).
Continuing in this fashion we must have
f(rr-1) = f(o1).
This contradicts the hypothesis that o is critical. [

Proof of Theorem 4.1. Our first goal is to reduce the theorem to statements about

the simpler functions g, rather than h,. We will prove that for all critical aép ), a§P ) and
~{p~r1)

O(e~tP(o0a1)) if o9 % 0

1.8 = \9o0:901) =
( ) Gaoal <g 0 9 1> { 1+O(e‘tc),c>0 if 0o =0,

(4.9) (019r.9o) = e‘(f(")'f(’))(<c'§7'. a> + O(e~*¢)) for some ¢ > 0.

This is sufficient to prove the theorem since, assuming (4.8), and using (4.6) we see

(G-1/2)0001 = {‘O(e—tD(ao’al)) if oo # o

1+0(e7*),c>0 if op=o0;.
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For all critical ¢(?) and 7(P+1)

<azh7- ha) = Z (G—1/2)TTI (atg‘rl"gdx) (G-1/2)010

ag”) ~,§p+l)
critical

= (G2 (09r 9) (G 00+ 3 (GV)1r, (Begryr900) (G7H/2), .

01,7 critical

(01,m1)#(0,7)

Assuming (4.9), the first term is equal to
et(f(o)—f(r))(<5,r‘a>+O(e-¢c))

for some ¢ > 0. The second term is

Z 0 (e—tD(T.'n)) etf(@1)=f(n) (e_,p(,,,,)) .

y.7; critical

(e1.71)#(0.7)

From Lemma 4.5 we see that each of these terms is
0 (etw(a)—f(r))-cl)

for some ¢ > 0. and thus does not contribute to the leading term.
To prove the estimates on the g, we need a convenient representation for n(t). the
orthogonal projection onto W(t). The operator m(t) is uniquely characterized by the

property
{ 1 on W(t)
m(t) = .
0 on W+(t)
where 11"~ (t) is the orthogonal complement to W(t). Equivalently, W (t) is the span of
the eigenfunctions of A(t) corresponding to eigenvalues which do not go to 0 as t — .
Recall that there is a ¢ > 0 such that
O(e~) on W(t)

Alt) = { 1+0(e™) on W(¢).

Forany N >0

N _ O(e—-cNt) on W(t)
AT = { 1+0(e™) on W(t).
so that LA 1+0(e~<Nt) on W(t)
= ( )- { O(e—ct) on W"L(t)
and

1+0(e”NMt) on W(t)

N N
(1-AV)HN = { O(e=N)  on Wi(t)
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Therefore. for N large enough. it is sufficient to prove (4.8) and (4.9) with g, = 7o replaced
by (1 - A%Y)No, ie., to prove that for all critical o®), ¢P) and rp+1)

, _ AN WN NN\ _ [ O(emtPleany if g 2 o
. 1-a O)7e. (1-a7() Ul>_{1+0(e'“) if o=0,

(4.11) (8:(1 = AMY+ (1 - AMNg) = tU(o)- (z))(<37. U> +0(e~).

In particular. (4.10) and (4.11) imply (4. 8) and (4.9) as long as N is chosen large enough
so that for all 0. ¢; and 7

c¢N > D(o,0y)
cN > f(r) - f(o).
Proof of (4.10). For p-cells 0 and o1 let Pr(0g, 01) denote the set of p-paths of length r
from oq to ;. Then
(Aog.0y) = Z —m(y)e"t™)

v€Pi(0p,01)

and
@looa)= 3 (=1)Vm()em0) = 0 (Pl

YEPN(00.01)
Thus
(1= 2Aa™)0,. o1)=0 (e"D(“'”‘))

and for any A > 1
{(1-2A%)%05.01)
= Z (1= aN)ay, vy) ((1-AY) Jup,vg) - (1 - A UK—1501>

(p) (p)
L,‘p p) L;}

-0 ( —tD(ao,vl)) 0 (e—tD(vl,vg)) .0 (e-tD(uK-l,al))
-0 (e—tD(ao,al))
by the triangle inequality. It follows immediately that for any oy, o,
(1=2")a0, (1-aMNay) = (1= AN)Nog,0,) = O(e~tPiw0.01)),
If o is critical. then for any K > 1
AKX g = O(e~to). .

Hence
((1- AN, (1- AN)Ncr> =(0,0) +0(e”*) =1+ O(et).

This completes the proof of (4.10).
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Proof of (4.11). We observe that 8, commutes with A(t) = 0:0; + 0;6;. In fact
O:A(t) = A(t)6, = 6,(8;8;) = (6,8;)8,.

Therefore, for critical () and +(p+1)

(4.12) (0.1~ aMNr. (1= AM)No) = (8,7, (1 - (8,8;))N o)
=2 (@ra1) (o1, (1= (8:8)")No)
- Z (87, 0,) etf (@)= f(7)) (o1, (1= (ata;)N)Wg)_

We now focus our attention on the expression
(01, (1= (8:8;)")*No)

keeping track only of terms which are on the order of e~t1/(¢1)=f(@)l. The first step is to
show that we can replace the operator (1 — (8,8;)¥)2N by the simpler (1 - (8:6;))*V.
This is the content of Lemma 4.7.

Lemma 4.7. If 0'P) is critical then for N large enough there is a ¢ > 0 such that for all
(p}
Jl

(o1 (1= (8:0))")*Na) = (01, (1-(8,8;))*N o) = O(e~tf (@)= (@) +0)).

We will postpone the proof of Lemma 4.7 until later, and continue with the proof of
Theorem 4.1.

To study the operator §,8; we introduce some new definitions (which will also be used
in the proof of Lemma 4.7).

Define an upper p-step to be a p-step (see Definition 4.3)

C7(();7)’ 7 ng)

where dim7 = p + 1. We define an upper p-path to be a sequence of upper p-steps, each
step beginning where the previous step ends, and we let P; (00,01) denote the set of upper
p-steps of length r from ¢ to 0;. Note that

P (00,01) C Pr(00,01).
It can easily be seen from (2.3) and (2.4) that
(8:8])o0,01) = S —m(y)e~t*™
'YGP;'-(U(J!”I)

so that .
(00, (1=(8:6{))o1) = b0y, + Z m(vy)e~t™),

‘YE‘Pr(Uo-dx)
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We will now simplify the expression on the right hand side. Let
Lp={c® |3rP*V >0 with f(r)= f(0))}.

For each 0P € T,,. there is a zero energy upper p-step from o to itself, which we will refer
to as z,. Namely,

2o =0, TP 4o

where 7 > o satisfies f(0) = f(7), so that
m(z,) = =1, s(z,) =0.

For 0 ¢ T, we now define a similar object. That is, for 0. ¢ ., let 1, denote a trivial
stationary upper p-step from ¢ to itself satisfying

m(l,) = +1, s(1,) =0.

That is. 1, is not an actual p-step in that there is no 7 such that 1, = o, T, 0. However,
it will often be useful to allow paths to “rest” at a o ¢ ¥,. and we do this by adding the

lo's to the set of allowable steps. Let 'ﬁf(oo,ol) = P (0¢,01) — {25}oes, U {1a}ae>:,,-

Then
(0o (1= (85 Nor) = > m(y)ete,
YEPT (c0.01)

Let }52] (00.01) denote the upper p-steps of length 2N from oy to oy with the modification

that the upper step z, is not permitted if o € L. but if o € I the trivial step 1, may be
used. Then

4.13) (00. (1-1(8,8;))*No) = Z m(vy)e~ts™,
'767);\/(00-01)

Ler

D%(oo.0)= min  s(5).
7€’P;N(UO-U)

Then
D™ (0¢,0) = D(09,0).

It is clear that (4.13) is O(e~tP™(90:9)), Following the proof of Lemma 4.6 in this context
we see that if 0o € £, 0 € £,. 0g # 0,

(4.14) D*(00,0) > |f(00) — f(0)]-

Therefore. since we are interested only in terms which are on the order of e=t/(c0)- (o)l
and o is critical (and hence ¢ T) we may ignore oo # o satisfying oq ¢ Z,.
Suppose 0g € ;. Let v € Py (09.0) be a path from o4 to o satisfying

s(v) = [f(o0) = f(0)l.
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If v = ~; o~ where v is a path from ¢ to 0, and v, is a path from o, to o, then we
must have

s(v0) = |f(o0) -
s(m) = |f(o1) = f(o)].

Thus. we must have 0, € £, or 0y = 0. That is, every p-cell in v except o must belong
to £p. and hence v must look like

(4.15) ~ (Uém’ D), a§"’) (a§”’, 7P, ng))...

(aip_)l, Tr(ﬁ'l), aﬁp) = o(p)) (10)2N—r

where for each 1 =10. 1..... r—1

(1.16) 0i<T O <T
and

(4.17) flog) = f(1:) > f(0i41).

Conversely. every path ~ of the form (4.15) satisfying (4.16) and (4.17) also satisfies
() = 1f{oo) = f(o) = f(o0) - f(0).

Moreover (4.16) and (4.17) are precisely the properties which characterize the gradient
paths of f from o¢ to o (see Definition 3.1). That is, v € Py (00.0) satisfies

s(v) = |f(o0) = f(o)
if and onlv if ~ is of the form
(4.18) Y =7"0(16)N"
for some r where v* € I'(0¢, o) has length r. In addition,
m(y) =m(v"), s(v) = s(v") = f(o0) - f(o).

Thus. if 0o € T,

(00. (1=(88,))No)= Y my)e ttf(e0)=J(e) 4 O(e-t(f(e0)=f(o)+e)y
'YEF(ao,a)

(4.19)
= e—t(f(o0)=f(o)) ( z m(y) + O(e~tc)

'YEF(GO 16)
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We now observe that the formula (4.18) holds even if o4 ¢ L,. Namely. if o ¢ I, 00 #
o then there are no gradient paths from g to o so both sides are O(e~tlf(e0)=f(a)1=c))

If 09 = o then there is only the trivial gradient path from 0o to o (of length 0) so both
sides are 1 + O(e~tc).

Combining (4.12) and (4.19) with Lemma 4.7 yields

(Ge(1 = AN)Nr (1-AN)Ng) = Z (87, 0,) et f(e1)= (7))

o<1

‘:e—t(f(al)—f(a))< z m(.,)+0(e-tC)):I

v€l(e,,0)

o1<7 Y€l (o1.0)

= Z (07.01) e/ (@)= 1(7)) ( Z m(7)+0(e"°))

which is precisely (4.11).
This completes the proof of Theorem 4.1. O

Proofof Lemma 4.7. [The reader will note that we will make use of definitions, notation

and observations introduced in the proof of Theorem 4.1 after the statement of Lemma 4.7.)
Since

L0 = (1= (887))2N (1 + (887) + (B07) + - - - + (8,07) N-1y2N
to prove Lemma 4.7 it is sufficient to prove that for any critical ¢ and any K >1
‘o1 (1-8:0;)™ (8,87 )% o) = O(e~t1/(e)=f(o)l+e)y
We write
(01 (1-8:8;)(8:6;)% o) = ((1 - 8,8} )Ny (8:6;7)% o)
=> {(1-68)o1. 02) (02, (8,87 )% o)
72
and observe that

(1-6:6;)N01,02) = O(e™tP " (er.02)) = O(e=ti/ (@)1 (ea)l)
(4.20) (o3, (3,3;)K0> = o(e-tD*wz-a)) = O(e~tf(e2)=f(o)ly,

It is sufficient to prove that for any o, either
((1- 513;)N01‘02> = O(e-t(lf(ax)-f(c'a)iﬂ))

or .
(02, (6t8;)K<7> = O(e“‘(’f("z)—f(a)!ﬂ).
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First. if o = o then. since ¢ is critical, for any K > 1
(a2, (3z3{)K0> =0(e"t) = O(e-—t(lf(az)—f(o)HC)).
Second. if 07 # 0 and 0, ¢ T, then, as observed in (4.14)
D™ (02,0) > |f(02) = f(0)]

so the result follows from (4.20).
Last. suppose 0, € £, and consider

((1=(88;)")o1,02) = z m(~)e 850V,

YEPY(01.02)

Let 7 € 73;,(01,02) be a path with s(v) = |f(01) — f(02)]. Clearly 4 contains no closed
loops. so if IV is large enough ~ must contain a trivial step (i.e., a step from some o3 to
itself satisfving s(3) = 0). Since P} (01, 02) does not include any zero energy steps from

a p-cell 03 € I, to itself. ¥ must contain a p-cell o4 ¢ £,. Thus we can write v = 7; 0 79
with 41 a path from o, to o3 satisfying

s(m) = |f(o1) = f(o3)]
and ~; a path from o3 to o, satisfying

s(v2) = [f(o3) = f(o2)].
As we saw in (4.18). ~; must be of the form

n =7 °(g,)"

for some r. where ~; is a gradient path from o, to ¢3. This implies, in particular, that

flo3) < f(o1) (or else there are no gradient path from o; to 03). Similarly f(o3) < f(o32).
Therefore

s(7) = s(m1) + s(72) = |f(03) = f(o1)| +|f(03) = f(o2)| > |f(01) = f(o2)|

which is a contradiction. O

§5. dim Hp(M.R) = dim H,(M).

It follows from the work in section 4 that
dim Hy(M,R) < dim Hp(M)
so in order to prove the equality stated in the title of this section we prove
dim Hp(M,R) 2> dim Hp(M).
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The method will be to find a 1 — 1 linear map from Hy(M) to Hy(M.R). In fact. we will
construct the map on the chain level. This map will be constructed via a discrete path
integral. In (5.1)-(5.5) we present the 5 fundamental properties that our path integral
needs to satisfy. In fact, any operator satisfying these properties is sufficient to complete
the proof. It seems possible that such an axiomatic approach to the path integral may
also help clarify the situation in the smooth case.
For each p. let
p: Cp(M,R) — M, C C,(M,R)

denote the canonical projection. That is. if

c= z Ce0, Co€R
cEK,

is a p-chain, then

o'\Plentical

We will define an operator
L:Cp(M,R) — Cp(M,R)

with the following properties

(5.1) L=
(5.2) LopolL=1L
(3.3) 0eL=Lod

and. restricted to .M

(5.4) pol =1
(5.3) d=poLod.

Before defining such an operator, we will see that the existence of L implies the desired
result.

Theorem 5.1. Suppose there is an operator L satisfying (5.1)~(5.5), then for each P
dim Hp(M) < dim Hp(M,R).

Proof. Consider the diagram of differential complexes
0 M, 2 not s oo 2 Mo —
L( polL L 7poL L (7poL

0 —— Ca(M,R) = Cacy (M,R) =2 .. =2, Cy(M, R) —— 0.

M 0
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It follows from the properties of L that
Lof=LopoLod=Lod=0dolL.
Thus. L maps Kernel (5) to Kernel (8) and Image (5) to Image (8) and hence induces a
e L.: Hy(M)— H,(M,R).
Namely. if a € M, satisfies Ha = 0 then a represents an element [a] € Hy(M) and

L.[a] = [Lo] € H,(M,R).

Similarly
do(poL)=poLodopoL=podoLopol

=podoL=(poL)cd

so that (po L) induces a map
(o L). : Hy(M.R) — Hy(M)
where. if a € C,(M.R) satisfies a = 0 then a represents [a] € Hy(M,R) and
(pol).fa] = [(po L)(a)] € Hp(M).

Consider the map
(pol)ioL.: Hy(M) — Hy(M).

If a € M, satisfies da = 0 then
((peL).oLu)a] = [((poL)o L)(e)].
From (5.1) and (5.4) it follows that for a € M
(poLolL)(a)=(poL)a)=a.

Therefore. (po L). o L. is the identity on H,(M). In particular, L. must be 1-1. This
implies the conclusion of the theorem. O

We note that it follows from the work of section 4 that
dim Hp(M) > dim H,(M,R)

and hence L. must be an isomorphism.
The operator L will be defined as a sum over paths.
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Definition 5.2. For o(()”), ng) € Kp let P(0p.0;) denote the set of p-paths

(5.6) oF (oép) = vép),ro,vgp)) (v§p), ‘rl,vép)) (vﬁ’i)l, 7o, P = g;’”)
such that at least one of the p-cells op = vg, vy,...,0p =0y is critical, and such that for
eachi=0.1.2..... r—1
1) v # vy
2) Either
dimm,=p+1 and v, < Ti. Uie1 < 75
or

dim7, =p-1 and Ui > Ty Uigl > T
3) f(Uz) 2> f(Tz) 2 f(vi+1)'
We now define. for 0 € K,
7) Lio) = m(vy)o,
6.€Kp, veP(o.0,)

(3.

and extend L linearly to all of Cp(M.R). At the end of section 4 we proved that for all
.\ large enough

lim e~ (1 - (8,87))Vetf =
t—oc

where. for o € K,

L= 3 ¥ mEo

01€Kp vel(0.0,)

The same argument. applied with the operator (8,9; ) replaced by A(t) yields that for all
.\ large enough

00

(5.8) Jlim e (1-A@)Net! = L.

The rest of this section is devoted to proving that L satisfies (5.1)-(5.5). Although it is
not difficult to prove this by working directly from the definition (5.7), the formula (5.8)
leads to some simplification, particularly in the proofs of (5.1), (5.3) and (5.5).

Proof of (5.1). From (5.8)
L? = lim e7/(1 - A(t))Vet - lim e~t/(1 — A(t))NVetf
t—so0 {00

= lim e”(1 - A(t))*Net/ = L.

t—oc
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Proof of (5.3). Since
d=e"'/ ¢!

and

we have

0oL =e"g,etf Jim et/ (1-A@)Net/
= t&rx;ce"‘fat(l - At))Net!
= tl_igxce"f(l - A(t))Noet!
= (21_1_.n:,1c e"t(1- A(t))Ne'f) (e~ 8e*/)
=Lod.

Proof of (5.5). It follows from the work of section 4 that for any critical cells ¢(P), v(P=1)

<5o. u> = lim (81 - A@)Vea, (1-AM) Ve v)

= <( lim e~/ 8,(1 — A(t))we‘f) a,v>

t—o

(5.9) 8=po Jim e~ 8,(1 - A(t))*Net/
=po lim fe~ (1 - A(t))*Net/
t——oC
=podol.

Since d, commutes with A(t), we can reverse the order of the terms 8, and (1 — A(t))?V
in (5.9) to learn

e

O0=poLod.
The proofs of (5.2) and (5.4) will require the following lemma.

Lemma 5.3. For any a((,p), a§”) € K, and any v € P(0¢,0:1) of the form (5.6) exactly one

of the p-cells o9 = vp, v1,...,Vr = 0y is critical. In particular there is a unique critical
0y such that v = g 0 v, with

Yo € P(0g.02), ™1 € P(o2,0y).

Proof. By definition, at least one of the p-cells is critical. Suppose v; is critical. Since
f(vy) = f(7;) we must have

dimm=p-1, f(vi) > f(m).
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Then. since f(T,(p_l)) > f(vf_’:)l) we must have (by the flatness of f)
f(7i) = f(via).
Since 7, # T4y (or else vy, = Vi+2) and f(viy1) 2 f(741) we must have
dimr;; = p—1, f(Ui+1) > f(TH-l)
and thus
f(riv1) = f(visa2).
Continuing in this fashion, for each J20
f(7iv5) = fVigj)

so that v,.,. is not critical.

Working in the reverse order. since v; is critical and f(7:-1) > f(v;) we must have

dim7_y=p+1. f(ric1) > f(vy).

Then. since f(t'ff)l) > f(Ti(pH)) we learn (by the flatness of f)

fvic1) = f(7).
Continuing in this direction. for every 7 >0

Fe?) = f(r®)
so that v;_, is not critical. O
Proof of (5.2). For anv 0,7, 0{P € K,

{(LopoL)og.o1) = Z (Log,02) (Loz,04)

Py ...
o7 critical

= > > Y m)mm)

oiPlcritical Y0€P(00.02) v1€P(02,01)

5.10) = ¥ > > mwom)

)crmcal Y0€P(00.02) M1€P(02,0;)

For any critical oép). Yo € P(0g,02) and v € P(0,.0,) we have

Yoo € Plog. o).

Conversely, by Lemma 5.3 for any ~ € P(09.01) there is a unique critical a(p '

can be written as
T=T°MN
with
Yo € P(00,02), M € P(02,0).
Hence (5.10) can be simplified to

> m) = (Loo, o).

Y€ P(o0.01)
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Proof of 5.4. Suppose a((,p ) and a§” ) are critical. Then

(Log,o) = D m().

Y€P(00.01)

By Lemma 5.3. any v € P(0¢,0,) contains exactly 1 critical p-cell. Thus, since % contains
both o¢ and o0,. if 0y # o,, we must have

P(O’Q,Ul) = 0

so that

(5.10) (LO’o,O’l)‘—‘O if 00?50'1.

If og = o; then
P(O’Q,O’o) = 0p

where the oo on the right hand side indicates the trivial path of length 0 with m(og) = 1.
Thus.

(5.11) (Log.og) = 1.
Combining (5.9) and (5.10). for critical o (P’

(0o L)(00) = 00

so that. restricted to M,
pol=1.

§6. The Morse Complex and Reidemeister Torsion.

In [Mi]. Milnor showed that the Reidemeister Torsion of a smooth manifold (the defi-
nition will be reviewed shortly) is equal to the torsion of the Morse complex associated to
a generic smooth Morse function. In this section we show that the analogous statement
in the context of combinatorial Morse functions follows immediately from the work of
section 4 of this paper.

We begin with a review of the notion of torsion. Suppose

(6.1) Vio—V, S v v, Sy, —o

is an ezact differential complex and each Vp is endowed with an inner product (this is
more data than is necessary but this definition will be sufficient for our purposes). We
can then define the adjoint §* of § with respect to these inner products, and the induced
Laplacians

Dp =066 +66:V, —V,
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We define the torsion of the complex V. which we denote by T(V), by

n
(6.2) T(V) = [[(det &,) =0 ""e/2,
p=0
A couple of remarks are in order. We note first that since the complex V is exact. each
Laplacian A, is an isomorphism with all positive eigenvalues so that

det A, > 0.

Second. the exponents in (6.2) may seem strange. A more suggestive formula (although
less convenient for computations) is

TV)= H(det’a‘a: V, — Vp)(—l)”l/2

p=0

where det’ denotes the product of the non-zero eigenvalues. The formula (6.2) first ap-
peared in [R-S].
In order to apply this notion to a CW complex M, we need to associate to M an exact

sequence. To do this, we “twist” the chain complex of M by a representation of w1 (M).
Let

$:m (M) — O(k.R)
denote a homomorphism from 71 (M), the fundamental group of M, to the group of k x k

orthogonal real matrices. Let M denote the universal cover of M. Then 7 (M ) acts freely

on M. Moreover. M has a natural cell structure induced from that of M . and preserved
by the =, (.\/) action. so that for all D

Cp(M.R) /71 (M) = C,(M.R),
Consider ~ ~
(CP(M,R))" = {(Cl, C2,....Ck) | ¢; € CP(AI,R)}

The key observation is that, given the representation @, m1(M) acts naturally on
(Co(M.R))*. Namely, suppose ¢ € 7 (M) and ¢ = (c1y...,¢k) € (Co(M,R))*. For
any p-cell o of M we set

(e,0) = ((c1,0), {(c3,0),..., (ck,0)) € R*.

We then define g.(c¢) to be the unique element of (C,,(E'I' ,R))* such that for all cells o of
M
(9-(c)0) = ®(g) (c.g7(0)).

Let Cp(M.d) denote the elements of (C,,(M ,R))* fixed by this action. Then Co(M, d)
is preserved by & (since 8 commutes with the action of 71(M)) so we have a differential
complex

C(M,2):0 — Ca(M,8) 2 Coey(M,8) 2 ... 2 o, ®) — 0.
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We now assume that the complex C(M, ®) is exact. That is, for each p
H,(C(M,®)) =0.

Note that a necessary condition for this to hold is that x(M) = 0.

We now observe that there is a standard L? inner product on Cp(M, ®). Namely, choose
a lift & of every p-cell 0 € K,(M). Then, for every a, 8 € Cp(M, ®), set

(@B = Y (a(8),B()).

0€Kp(M)
TLe inner product is independent of the chosen lifts since @ is an orthogonal representation.

With these definitions in hand, we are now ready to define the Reidemeister Torsion of
M with respect to the representation &, Tor(M, ®), by

Tor(M,®) = T(C(M, ®)).
It is a theorem of Franz [Fr] that Tor(M,®) is invariant under subdivision of the cell

structure.

The next step is to observe that to & and any discrete Morse function f we can associate
a Morse complex

My(2) 10— Mn(®) = Muy(8) < -« =25 Mo(@) — 0.

Namely, there is a canonical lift of f to a Morse function fon M. The critical cells of f
are precisely the lifts of the critical cells of M. Define

My(®) C Cp(M, @)

to be the elements of Cp(M,®) which are supported on the critical cells of f For any
a € Mp(®) and any critical (p — 1)-cell ¢ on M, we define 8 by setting

<5a,a>= > > X Y. (Brv)m(™®(g™") (a, )

P e K, (M) viP-<r gem (M) v€l(v,g9(0))
T critical

where T'(v, g()) is the set of gradient paths of f from v to g(o).

To see that & does map Mp(®) to Mp_1(®) we must show that for any h € 7, (M),
a € My(®) and oP~1) critical

<h.(5a),a> = <5a,a’>.
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Using the fact that a € Cp(M, D)

-

<h.(5a).o> = &(h) <aa,h-1<a)>

= > ¥ ¥ 2. (Oru)me(h)e(s7) (a.7)

FPek, Xy VPTD<r gem(M) YET(v,g(h=1(c)))
T critical

=2 Y ¥ 2

7P/ critical vP-li<r (gh=1)€m (M) 7€l (v,(gh~1)(e))

(01, v) m(7)®((gh™*)™1) (o, 7)

= 2 X YT (onuym@ee ) ()

T{P) critical v(P~D<r gem (M) v€l(v,g9(0))
<8a. c7> .

We can now state the main theorem of this section.

Theorem 6.1. For any discrete Morse function f on M, and any orthogonal representa-
tion @ of my () such that H.(M,®) = 0, the Reidemeister Torsion of M with respect to
® 15 equal to the torsion of the Morse complez induced by f and ®. That is

Tor(M, ®) = T(M(d)).

The only new ingredient is the following key lemma.

Lemma 6.2. Let V denote a general ezact sequence, as in (6.1), with each V, endowed

with an inner product. Suppose that for each p we have a one-parameter family of auto-
morphisms

Up(t) : Vp — V.
We can then consider the one-parameter family of ezact sequences

7] 1]
Vt:o—"vni’ n-l"_t"""‘l—'vo——‘o

where
O =U(t) & U"l(t).
For all t
d 1 .
7 108 T(V) = 3 ;)(—1)” Tr(65(t) + 65(t))
where
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Proof.. (This sort of lemma and the accompanying proof is standard in this subject. See
for example [R-S] and [B-F-K].) By direct calculation

2 1og T(V,) = 2;)( 01 ((580) 57%)

and, letting - denote %,
Ap = 0,8; + 6,6; + 3,8, + 8,5,
0, =UoU~! - U8 U~ VU
= 00, — 0,0
0; = 8;6" — 678;.
Using Tr(AB) = Tr(BA) and
8.8, (t) = A, (D)8:, 8,851 (t) = AL (18]
we find (supressing the t's)
Tr(Ap851)
= Tr(666" A1 - 860" AT + 0076" a1 - 89‘6‘A;1
+ 0767005 - 607041 + 97004, - 97964;7)
= Tr(@@@‘A;l - 98'6A;j1 + 0‘66‘/..\.;1 - G'B‘BA;H
+ 9'66'A;_11 - 9'3'6A;1 + 986'A;_11 - 60" 6Ap )
=Tr ((6 + 0')88'&;1 - (6 + 9')6'3A;1 - (6 + 0')6'6A;_:1 + (6 + 0')68’A;_11) .
Considering those terms involving 60"

Y:<—1)Pp Tr ((6+67)007A; + (6 +67)80° A1)

p=0

=Xn:(—1)Pp'n((e+e 90" A Z 1P (p+1)Tr (6 + 67)08" A1)
=0

(6.3)
= Z(—l)“’+1 Tr ((6 + 9')66‘A;1) .
p=0
Similarly
i(—l)pp Tr (-(6 + 9')3'6A;1 -6+ 0')6'6A;_11)
(6.4) p=0 ‘

= z":(-l)r’“ Tr (6 +67)8"34; 1) .

p=0
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Combining (6.3) and (6.4)
Z(—l)pp’l‘r (A,,A;l) = i(-—l)"‘*’1 Tr ((6 + 6")(86" + 6'6)A;1)

p=0 p=0

= i(-ly’“ Tr(6+6"). O

p=0
Proof of Theorem 6.1. Since equivalent Morse functions induce the same Morse com-

plex, by Theorem 1.4 we may assume that f is a flat Witten-Morse function. Beginning
with the complex C(M, ®), define the automorphisms

U p(t) : Cp(M, ®) — Cp(M, )
by setting, for o € Cp(M,®) and any p-cell o of M
Uy p(t)a, o) = etflo) (a,0).

Setting
at = U1 6 Ul_l

we get a family of complexes
8¢ at al
CM.@.1):0 — Co(M,O) = n-1(M,®) = ... =5 Cyp(M,d) — 0.

Let
Wp(®.t) C Cp(M, D)

denote the span of the eigenfunctions of
Ap(t) = 0,0; + 8,6 : Cp(M,®) — C,(M, D)
corresponding to the eigenvalues which tend to 0 as t — co. As in the untwisted case
studied in section 4
tll-nc}o Wp(®,t) = My(d).
The complex C(M, ®.t) splits into the direct sum of 2 complexes
rd 4 O, 4 8. O, 1
W=(@.t): 0 — W (®,t) = Wisi(®,t) — - 5 Wy (®,t) — 0
W(®.1):0 — Wa(8,t) 25 Wooy(8,8) 2 2% Wy (8, t) — 0

where

W3 (®,t) C Cp(M, 3,1)
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is the orthogonal complement of Wp(®,t), or, equivalently, the span of the eigenfunctions
of Ay(t) corresponding to the eigenvalues which do not tend to 0 as t — oc. It follows
directly from the formula (6.2) that

T(C(M,®,t)) = T(W(&,t))T(W(8,1)).

Let €y,...,ex denote the standard basis of R*. For each critical p-cell o of f on M,
choose a lift . Then there is a basis

{aci}omek, (M) critical, 1<i<k
of My (®) characterized by the property that for all critical p-cells 6g, 01, on M
(ado,i’ 01) = 600.01ei'

Let g,.:(t) denote the orthogonal projection of aq,; onto W,(®,t). For t large enough the
90.4(t)’s form a basis of W,(®,t). Let {h,,(t)} denote the basis resulting from orthonor-
malizing the g, ;'s. For convenience we will assume that the heo,i's are defined for all t > 0.
It is easy to adjust the argument if this is not the case. Let

Uz p(t) : Wp(®,t) — W, (®,1)
denote the family of automorphisms defined by

Uz p(t)(hoa(t)) = e—tf(a)ha.i(t)

and let W7(®.t) denote the family of complexes

W(@.1) 10— Wa(@.8) 25 Wosy(®,1) 25 oo 24 Wy (d.8) — 0

where

di = Ua(t)0,U; 1 (t).
Let C'(M.®,t) denote the sum of the complexes W(®,t) and W/(®,t), so that

T(C'(M,®,t)) = T(WH(2,t))T(W'(®,1)).

As in the untwisted case, all eigenvalues of A,(t) which do not tend to 0 as t — oc tend
to 1. Thus .
T(W(®,t) == 1.

In addition, as in the untwisted case,
W'(®,t) =5 M(3).

Therefore
tl_{_r{.lo T(C'(M,d,t)) = T(M(d)).
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On the other hand
C'(M,$,0)=C(M,d)
Yo
T(C'(M,®,0)) = Tor(M, d).
Thus the theorem is proved once we see that

(6.5) £10gT(C'(M,2,8)) =0.
By Lemma 6.2
(66) ZIET(C'(M.,8)) = £ (1) [Tx(@1,5(6) 4 67, () + Tr(Bap(t) + 83, (0)]
p=0
where
61(t) : Cp(M,®) — Cp(M, d)
is given by
6,(t) = <%U1(t)) Ul
and
62(t) : Wy(2,1) — W, (D, 1)
is given by
aa(1) = (5020) U0
Now

Trb,=Tebi,=k > f(o)

oPle K, (M)
However. each non-critical p-cell of Af can be paired with a non-critical cell 7 of dimension
either p+ 1 or p — 1. satisfying
flo) = f(r)

so that the contributions from these cells cancel in the alternating sum (6.6). Thus,

(6.7) 22 P+ T8 5(t) + 65 ,(2)) —kz P> fo).

p=0 p=0 o P eK, (M)
o critical

On the other hand, it follows directly from the definition of U, that
Tr6rp(t) =Trb;,() =~k Y. f(o)

o P eKy(M)
o critical
so that
] — . 2
(68) 32 (CVPTTHO,(0) +65,(0) = -k D (-1 T f(o).
p=0

p=0 a(’)EK,,(M)
o critical

Combining (6.7) and (6.8) yields (6.5) and hence proves the theorem. [J
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