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§0 Introduction.

In this paper we introduce the notion of a combinatorial dynamical system on any CW
complex. Earlier in [Fo2] and [Fo3], we presented the idea of a combinatorial vector field
(see also {Fol] for the one-dimensional case), and studied the corresponding Morse Theory.
Equivalently, we studied the homological properties of gradient vector fields (these terms
were defined precisely in {Fo2], see also §2 of this paper). In this paper we broaden our
investigation and consider general combinatorial vector fields.

We first study the homological properties of such vector fields, generalizing the Morse
Inequalities of {Fo2]. We then introduce various zeta functions which keep track of the
closed orbits of the corresponding flow, and prove that these zeta functions, initially defined
only on a half plane, can be analytically continued to meromorphic functions on the entire
complex plane. Lastly, we review the notion of Reidemeister Torsion of a CW complex
(introduced in [Rel, [Fr]) and show that the torsion is equal to the value at z = 0 of one of
the zeta functions introduced earlier. Much of this paper can be viewed as a combinatorial
analogue of the work on smooth dynamical systems presented in [P-P}, [Fra], [Fril, 2] and
elsewhere.

We now give a more detailed overview of the contents of the paper. In §1 we review the
notion. introduced in [Fo2] (see also [St] and [Du] for earlier related work), of a combina-
torial vector field on a CW complex. In this introduction we will present all definitions in
the special case of a simplicial complex, thereby avoiding some minor difficulties.

Let M be a simplicial complex, with K the set of simplices. If o and T are simplices of
M, we write o(P) if dim(o) = p, and o < 7 if o lies in the boundary of 7.

Definition. A combinatorial vector field on M is a map
V:K — Ku{0}
such that

(1) If V(o) # 0, then dimV(¢) = dim(g) + 1, and ¢ < V(o).
(i) If V(e) =7 # 0, then V(1) =0
(if) Forallo e K, #V~}o) < 1.
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It is useful to consider this definition pictorially. Given such amap V, anda ¢ € K
with V(o) # 0, draw an arrow on M whose tail begins at ¢, and which extends into V(o).

See Figure 0.1 for a simple example involving a 2-dimensional complex.
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FIGURE 0.1

In the language of such pictures, property (i) of V implies that ¢ is always a face of
V(o) so such an arrow is possible, property (ii) implies that if 7 is the head of an arrow,
then it can not also be the tail of an arrow, and property (iii) implies that every simplex
o is the head of at most 1 arrow (it also follows from the definition that ¢ can be the tail
of at most 1 arrow).

Thus, for each simplex o(P), there are precisely 3 disjoint possibilities:
(1) o is the head of an arrow (o € Image(V)).
(ii) o is the tail of an arrow (V (o) # 0).

(lii) o is neither the head nor the tail of any arrow (V(¢) = 0 and o ¢ Image(V)).
If o) falls into category (iii) we say o is a rest point of V of indez p. For example, in
Figure 0.1, the edge e3 is a rest point of index 1.

The next step is to define the combinatorial analogue of the flow lines of V. Define a
V'-path of indez p to be a sequence

(0.1) ¥ aép),répﬂ),agp),rfpﬂ), .. ,rfp_*;l),a,(f’)
such that foralli=0,1,...,r=1

(1) m =V(ay)

(i) 0, # giv1 < 7.

Say v is a closed path (of length r) if 0o = o.. A V-path of index 1 is illustrated in
Figure 0.2. '
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FIGURE 0.2
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In Figure 0.1, the sequence
Vo, €0, V1, €1, V2, €2, Vg

is a closed path of length 3 and index 0.

We define an equivalence relation on the set of closed paths by declaring 2 paths v and
Y to be equivalent if 4 is the result of varying the starting point of v. For example, if
oo = oy, then the path v in (0.1) is closed and equivalent to

5 = ng), Tl(p+1)’ o ,0@1, 7.(1:41-1), a((,”), Tépi-l),agp)'

An equivalerice class of closed paths will be called a closed orbit. If y is a closed path, then
(7] denotes the corresponding orbit.

Given a combinatorial vector field V on M, we define the chain recurrent set R to be

the set of simplices which are either rest points of V or are contained in some non-trivial
closed path. The chain recurrent set can be decomposed into a disjoint union of basic sets

R=Um

where 2 simplices o, 7 € R belong to the same basic set if and only if there is a closed
V-path which contains both ¢ and 7.

The basic sets control the topology of M. This idea can be made precise. Denote by
A, the closure of A; in M and Ai =A; — A. Let F be a field. Define the Morse numbers
of M with respect to F by

m; = Z dimFH"(KJ',AJ‘,F).

basic
sets A;

Let
bi = dimp H;(M,F)

denote the Betti numbers of M. In §3 we prove the generalized Strong Morse Inequalities
Mk =M1+ -Emg2 b —bp_;+---tby V k=0,1,2,...
which imply the Weak Morse Inequalities

mk2be V k=0,1,2,...
meg—my+--kmy,=by—-by+--- b,

(where n = dim M). The main tool is the existence of combinatorial Lyapunov functions,
which is established in §2. See [Fra] for a discussion of these ideas in the context of smooth
dynamical system.



In §5 we begin our study of zeta functions. We start with the simplest zeta function
o0 Zn
((z) = exp Zl —r
r=

where

pr = #{closed V-paths of length r}.

If we make the change of variables

Z(s) =¢(e™)

we can rewrite this zeta function in the suggestive form

Z(s) = H (1 —eslbly-1

prime closed
orbits [v]

where a closed orbit is prime if it is not a multiple repeat of a shorter orbit, and 197!
denotes the length of 7. We prove that ¢ has an analytic continuation by proving that

((z) = det(1 - zA)~!

where A is a finite dimensional matrix arising from a subshift of finite type.

To construct more sophisticated zeta functions, we need to define some new ingredients.
The first is the notion of the multiplicity of a closed path. If v is a closed path, then its
multiplicity m(v) is defined to be 1 or —1 (if M is a simplicial complex, all integers are
possible if M is a general CW complex) depending on whether the (p + 1)-dimensional
band formed by the simplices in + is orientable or not (see §4 for precise definitions).

We can also keep track of the homotopy classes of the closed orbits by choosing a unitary
representation

6: 1 (M) — U(m)

(where U(m) denotes the m x m unitary matrices) and “twisting the zeta function by 6
(see 85 for details). In Theorem 5.12 we prove the existence of an analytic continuation
of this twisted zeta function ((z,8). The main idea of the proof is to relate ¢ (2,0) to
det(I — z®) where

®:C.(M, 0 — C.(M,6)

is the map on chains induced by the combinatorial flow along the vector field V. This
notion of a combinatorial flow map was introduced in [Fo2], and is extended to the present
context in §4.

In §6 we consider the Reidemeister Torsion of M with respect to the representation 6,
T(M,6), a combinatorial invariant of the pair (M, 8) (see [Re], [FY]). The main result of
this section is that if, restricted to each basic set Ay, 8 is acyclic (i.e., H. (Ai,Ay,0) = 0)
then the torsion is equal to a special value of the zeta function ¢(z,6). Namely,

(0.2) T(M,0) =¢(1,6) = Z(0,6)
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(evaluating ¢ at 1 requires the analytic continuation established in §5). Such a formula
was proved for large classes of smooth flows in [Fril] and [Fri2). Our proof of (0.2) involves
a combinatorial version of the deformation of the deRham complex introduced in [Wi] (see
also [Fo3]). We think that this proof will provide clues for generalizing this type of formula
to other settings.

In §7 we examine our results in the special case of combinatorial Morse-Smale vector
flelds.



81 Preliminaries.

In this section we present the definitions of our objects of study. More extensive discus-
sions of these topics can be found in [Fo2] and [Fo3].

Let M be a finite CW complex (see [L-W] for definitions and basic properties of CW
complexes and regular CW complexes) and let K denote the set of open cells of M, with
K the cells of dimension p. The notation (P will indicate that o is a cell of dimension p.
To indicate relationships between cells, we write 7 > ¢ (or 0 < 7) if ¢ # 7 and ¢ C 7,
where T is the closure of 7, and we say ¢ is a face of r. We write 7 > o if either 7 = ¢ or
T> 0.

Suppose o!P) is a face of 7(P*1). Let B be a closed ball of dimension p+ 1, and

h:B—M

the characteristic map for 7, so that, in particular, h is a continuous map that maps
interior(B) homeomorphically onto .

Definition 1.1. Say ¢(P) is a regular face of (P*1) if
(i) h:h™1(o) — o is a homeomorphism
(ii) h=!(o) is a closed p-ball.
Otherwise we say o is an irregular face of 7.
We note that if M is a regular CW complex (and hence if M is a simplicial complex or
a polyhedron) then all faces are regular. Of crucial importance is the following property.
Suppose ¢(P) is a regular face of 7(P*1). Choose an orientation for each cell in M and

consider ¢ and 7 as elements in the cellular chain groups Cp(M,Z) and Cpy1(M,Z),
respectively. Then

‘1.1 (Or,0) = =1
where (07, 0) is the incidence number of 7 and o (for a proof see Corollary V.3.6 of [L-W)).
Definition 1.2. A combinatorial vector field is a map

V:K— KU{0}

satisfying
(1) For each p, V(K,) C Kp+1 U {0}
(2) For each 0(P) € K, either V(o) = 0 or o is a regular face of V(o).
(3) If o € Image(V) then V(o) =0
(4) For each o(P € K,

#{PVeK, | |Vv)=0} <1

(When M is a simplicial complex such objects have previously been considered under a
different name, in [Du] and [Sta)).



Definition 1.3. Let V be a combinatorial vector field on M. We say o(® is a zero (or
rest point) of V of indez p if
V(e)=0

and
o & Image(V).

Note that if ¢{?) is a zero of V, then it necessarily has index p.
To proceed further, we need the notion of a flowline of a combinatorial vector field.

Definition 1.4. Let V be a combinatorial vector field. A V-path of indez p from o to
5(P) is a sequence

(p+1)

I N T R O S

YO = UO y 7'0 Ul y
such that foreachi=0,1,...,r-1
1) V(o) =mn
(i) 7 > 0ip1 # 04
Say v is a closed path if ¢ = &, and v is non-stationary if r > 0.

These definitions immediately imply the following lemma.

Lemma 1.5. Let ~ be a non-stationary closed V -path, and suppose ¢‘P) € v. Then
(1) either V(o) # 0 or o € Image(V)
(i) if V(o) # O then index(y) = p
(iii) if o € Image(V') then index(y) = p+ 1.



§2 Chain Recurrent Sets and Lyapunov Functions.

Let M be a finite CW complex with a combinatorial vector field V. In this section we
define the sets, distinguished by V, which “carry” the homology of M (in a sense which
will be made precise in §3). First we define the chain recurrent set R (see (Fra] for the
definition in the case V is a smooth vector fleld on a smooth manifold M).

Definition 2.1. Say 0(®) € K is an element of the chain recurrent set R if either
(i) o is a rest point of V
or
(i) there is a non-stationary closed V-path v with ¢ € 7. (Note that v must have
index either p — 1 or p).

The chain recurrent set R naturally decomposes into disjoint “minimal” recurrent sets
A, defined by the following equivalence relation.

Definition 2.2. Given o, 7 € R, say 0 ~ 7 if there is a non-trivial closed path v with
o€ ~andTE€ ™.

Lemma 2.3. The relation ~ does, in fact, define an equivalence relation.

Proof. The relation ~ is clearly reflexive and symmetric. It remains to check transitivity.
Suppose 0, ~ 02 and 03 ~ 03. Then there are closed orbits

Y1:0,...,01,...,02,...,0

‘72:&,...,02,...,0’3,...,&

We must show that o, ~ o3, i.e., that there is a closed path which contains both o, and
o3. We can simply “splice” v, into v,. That is, the sequence

Yi0,...,01,...,02,...,03,...,0,...,02,...,0

is a non-stationary closed path which contains both ¢; and ¢3. O

Let A1...., Ak denote the equivalence classes of R/ ~. The A;’s are called basic sets.
Each A, consists of either a single rest point of V, or is a union of non-stationary closed
paths, each of which has the same index. We write Af-p ) if A; consists of a rest point of
index p or a union of closed paths of index p.

In [Fo2] we proved that if there are no non-stationary closed paths, then V is the combi-
natorial gradient vector field of a combinatorial Morse function (see [Fo2] for definitions).
Of course, if V has closed paths, then it cannot be the gradient of a function. However,
one can still find a “Morse-type” f, called a Lyapunov function, which is constant on each
basic set, and has the property that, away from the chain recurrent set, V is the gradient
of f.

We emphasize that when we speak of a combinatorial function f on M, we mean that
f assigns a single number to each cell. That is, f is actually a function on K.

The following theorem is a combinatorial version of a theorem of Conley [Co] (Theo-
rem 1.2 in [Fra}).



Theorem 2.4. There is a function f : K — R such that
(i) ifo® ¢ R and 7(P+*1) > 4 then

{f(c) < f(r) if 7 # V(o)
fle) 2 f(r) if 7=V(o)

(ii) ifo'® € R and r(P*1) > ¢ then

{f(a)=f(7') if o~1
floy< f(r) if o4

Remark. Part (i) implies that if agp) € R and

ng)’ T1(p+1), ng)

is a V-path, then

flo1) = f(m1) > f(o2).

That is, off the chain recurrent set, f decreases along V-paths.
Part (ii) implies that if

vl D oP L e® ) L)
is any closed path. then
floo) = f(r0) = f(o1) = -+ = foro1) = f(Tr1)

so that f is constant on each basic set.

Proof of Theorem 2.4. For each o(? € K define

d(o) = max{s | 3 V-path

o = o), 7{PtY, o BN )

such that the o;’s include elements from exactly s distinct equivalence classes}

We now define the function f. For any ¢(® € K
(i) if o is a rest point of V, set



(ii) if V(o) # 0, set

so that (since d(c) > 1)

(i) if o € Image(V) then there is a unique v(P~1) with V(v) = o. Since V(v) # 0,
f(v) was defined in (ii), so we can set

(2.1) flo) = f(v)

so that

(2.2)  p-1<flo)<p-

| —

We must now check that f satisfies the desired properties.
First suppose 0P ¢ R and 7(P*) > 4. If V(6) = 7 then f(o) > f(r) (in fact
flo) = f(r)) by (2.1). If V(o) # 7 we consider the 3 possibilities:

(1) If = is rest, then
1
fr)=p+1>p+ 352 flo).
(ii) If V(7) # 0 then
1
f(r)>p+1>p+5 2 f(0)
(iii) If 7 € Image(V') then there is a unique 6P # o with V(§) = 7. Since 0 ¢ R, o

Is not rest so either V(o) # 0 or ¢ € Image(V). If ¢ € Image(V) we learn from
(2.1) and (2.2)

) =) 2p>p~5 2 fo).

If V(o) #0and v:0,... is any V-path beginning at o, then ¥ : 4, T, a,'. .. isa
V-path beginning at . Moreover, since o ¢ R, o is not an element of any closed
V-path. Thus & is not equivalent to any element of 4. This implies

Therefore
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We now consider the case ¢ € R. Suppose

(»)

() L+ o) o) = g

vy Uo s
is a non-stationary closed V-path. Then foreachiand j,0<1i,j<r-1
d(oi) = d(o;)

since, using segments of +, any V-path beginning at o; can be extended backwards to
begin at ¢, and vice versa. Thus

flo:) = f(o5).
Since, for each i, V(0;) = 71,
f(m) = f(oy)
so that
floo) = f(ro) = flon) = ---
Therefore
o~1=> f(o) = f(r).

Now suppose (® € R and 7("*1) > ¢, r £ ¢. As in the case ¢ € R, if
(1) 7 isrest, or (ii) V(r) # 0 then

[T 2p+15p+ 22 f(o).

(ii) If 7 € Image(V) then, since T # o, 7 # V(o) so there is a unique &® # ¢ with
Vig)=r
a) If g is rest or o € Image(V)

b) If V(o) # 0 and
Yy:o,...
is any V-path beginning at o, then

Y:0, 7T, 0,...

is a V-path beginning at 5. Moreover, G is not equivalent to any element of 4,
since otherwise o and 7 would be contained in a non-stationary closed path, which
contradicts 7 £ ¢. Thus

which implies

11



£€3 The Morse Inequalities.

In this section we use the Lyapunov function of Theorem 2.4 to present Morse inequali-
ties relating the homology of the basic sets to the homology of the underlying complex. As
an introduction, we briefly review the standard Morse inequalities (proved in [Fo2]), which
form a special case of the main result of this section. Suppose V' has no non-stationary
closed paths, so that R consists only of rest points of V. Let mi denote the number of
rest points of index k. Let F denote a field and

(3.1) b = dimg Hi (M, F)
the k’'th Betti number of M. In [Fo2] we proved the Strong Morse Inequalities
Mk —Mg_1+--Emg2be—be_1+---xby Yk=0,1,2,...
and hence the corollaries the Weak Morse Inequalities
mi > be Vk=01,2...
mo—my+my—- = bg—by+by—--- (= x(M)).

Before stating our main result, we present some notation. Let A C K be a set of cells
of M. By A we denote the subcomplex of M consisting of all cells in A, as well as all of

their faces, i.e.,
i-UUv

ceAv<e

Although this is not quite standard notation, we define A to be the union of the cells of A
which are not in A, i.e.,
A= e

oCA
) oA
Choose a coefficient field F and define
(3.2) me = > dimp He(A;, Ai, F).
basic
sets A,

Remark. 1) If index A; = p, then
He(Ai,AiF) = 0
unless
k=p or p+1.
2) If A, consists of a single rest point of index p (i.e., a p-cell o(P)) then
He(Ai A F) = Hi(o®,6® F)
- [F if p=k
N { 0 if ptk
so that, if V has no closed paths, my is precisely the number of rest points of index k.
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Theorem 3.1 (The Morse Inequalities). Let V be any combinatorial vector field on
a finite CW complex M. Fix a coefficient field F and define by and mi as in (3.1) and
(3.2). Then

(i) (The Strong Morse Inequalities)

Mk — Mgy +--2mog 2 b —bk—1 +--- L b YVk=0,1,2,...
(ii) (The Weak Morse Inequalities)

be Vk=0,1,2,...
bo— by, +---

Mk

nwv

mo—my+ -

Proof. The proof uses the Lyapunov function f : K — R of §2. It will be useful to modify
the function slightly, to make it as injective as possible. Choose, for each ¢ € K , @ small
positive number ¢, 0 < ¢, < |K|™}, such that for any o, 7 € K,

€o =€ e=>0=7 0r 0, 7TER and o~ 1.

Following the conventions and definitions of §2, define f : K — R by
(1) if 0P is rest set

f(U') = p+¢s
(ii) if V(c'P)) # 0 set .
_ d(o)
flo) = p+ 2D + €o
(iii) if V(o) = 7 set
f(r) = f(o)

This function is still a Lyapunov function, i.e., f satisfies the conclusions of Theorem 2.4.
Moreover, for each ¢ € R, if f~1(c) # @ then either

(1) f~c) ={o,7} for some 0 ¢ R and 7 = V(o)
or
(2) F~!(c) = A for some basic set A.

For each ¢ € R, define
M) = U U v.

f(e)ScvSe

That is, M(c) is the level subcomplex of M consisting of all cells ¢ with f(o) <c, as well
as all of their faces. For each ¢ € R define

mk(C) = Z dlmF Hk(xia Ai’ F)
basic sets
A; with
f(A)<e
be(c) = dimp Hx(M(c),F).

13



We will see that for each c € R, the sets {m«(c)}, {bk(c)} satisfy the Morse inequalities.
Choosing ¢ large enough so that M(c) = M yields the theorem.

The proof is by induction on ¢. The inequalities are trivially true for ¢ small enough so
that M(c) = 0, since then mi(c) = b(c) = 0 for all .

We must now check that the inequalities remain true as ¢ increases. We need only check
what happens when c reaches one of the finitely many values in the image of f. Suppose
f71(c) # 0 and choose b < c so that the interval (,c) contains no values in the image of
f. By the inductive hypothesis {m;(b)} and {bs(b)} satisfy the Morse inequalities. We
need to see that {mk(c)} and {bx(c)} do also.

(1) Suppose f~!(c) = {oP 7(P+1)} where 0 ¢ R and V(o) = r. Since neither ¢ nor
TER,

mi(b) = mi(c) k=0,1,2,... .

We will see that
bi(b) = bk(c) k=0,1,2,...

so that the Morse inequalities remain true at c.
We first check that ¢ € M(b) and 7 € M(b), i.e., that there is no cell v with f(v) < b
and v > o or v > 7. Note that

p<c=flo) = fr) < p+i
Ifv>corv>rthendimv >p+ 1. Ifdimv> p+ 2 then
flv) 2 p+1 > ¢
[fdimv=p+1land v >0, v#7 then by part (i) of Theorem 2.4
f(v) > flo) = c
Thus,
(3.3) oL M), 1€ M(b).

Now we prove that if v # o and v < 7 then f(v) < c, so that v C M(b). If v < 7 then
dimv < p. If dimv < p—1then

flv) < p—% < ec

If dimv = p, v # 0 and v < 7 then V(v) # T, so by property (i) of Theorem 2.4

flv) < f(1) = ¢

Therefore
(3.4) (+ - o) C M(b).

14



Combining (3.3) and (3.4) we learn

M(c) = M) | 7

T=-C

By definition, o is a regular face of 7, which implies that M(b) is a deformation retract of
M(c). so that

bi(c) = bi(d) k=0,1,2,... .
(2) Suppose f~!(c) = A, for some basic set A;. Then

(3.5) mi(c) — me(b) = dimp He(Ai, Ai, F)  k=0,1,2,... .

Following the argument of part (1) we can see that

ANM®OB =0
and ‘
A © M((b).
Thus. by excision.
(3.6) Hi(M(c),M(b),F) = He(A,A,,F)  k=0,1,2,....

The proof that (3.5) and (3.6) imply the desired Morse Inequalities is standard, and can
be found on pages 28-31 of [Mi]. O
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§4 Combinatorial Flows.

So far we have defined combinatorial vector fields and their associated paths, but we have
not yet seen anything which would correspond to the smooth notion of a flow generated
by a vector field. In this section we fill this gap.

Let Ck(M,Z) denote the integer cellular chains on M, and, for each k,

0:Ce(M,Z) — Cr-1(M,2)

the usual boundary operator.

In §1. a combinatorial vector field was defined as a map of cells. We now modify the
definition slightly and consider V' as a map of oriented chains. Choose an orientation for
each cell 0. and identify —o with o given the opposite orientation. Given a combinatorial
vector fleld V', we define a map

Vo : Ce(M,Z) — Ci41(M, 2),

an oriented vector field. by setting

0 if V(o) =0

Volo) = {—(87’,0)1‘ if V(e)=r

and extending linearly to Cp(M.Z) (where <, > is the canonical inner product on chains
with respect to which the cells are orthonormal, so that (87, ¢) is the incidence number of
- and o).

For example. suppose V(o) = 7. Then, since o is a regular face of 7

(0r,0) = =1
depending on the chosen orientations. Thus

<8VO(U),0'> = <8(— (87,0) T),0’>

= - (8r,0)® = -1

To illustrate, if v; is a vertex and V(v;) = e then V,(v;) is the edge e, oriented to be
leaving v; (figure 4.1)

FIGURE 4.1
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Lemma 4.1. V2 =0.

Proof. This follows from property (3) of Definition 1.2.

Since the vector field V' uniquely determines V,, and V, uniquely determines V (simply
ignore all orientations) we will, from now on, use the symbol V for both the original vector
field and the induced map on chains. We do this to keep our notation consistent with that
of {Fo2] and [Fo3]. We believe this will not cause confusion.

Definition 4.2. Define the (discrete time) flow
¢ C(M,2Z) — Ce(M,Z)

by

) 1+0V + Vo

L.e.. for any oriented cell o
®(0) = o+ 09(V(c)) + V(o).
For example. in figure 4.1.

®(v)) = vy + V(v

= 11+ (vp-v) = vy

A more complicated example is shown in figure 4.2, where the arrow indicates the vector
fleld V. and e is the top edge oriented from left to right

FIGURE 4.2

In figure 4.3 we calculate $(e).

)
e dVie) V(de)

FIGURE 4.3

$(e)
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The main properties of the flow are listed in Theorem 4.3

Theorem 4.3. (i) $0 =09, Vd = V.
Choose an orientation for each cell. For any o € K, write

5€K,
(i) If o is a rest point of V then
Coo = 1.
If o is not a rest point of V then
Coo = 0.
(iii) Let f be a Lyapunov function for V. If 0 # & and c,5 # O then
flo) 2 f(o)
and
flo) = f(6) — o ~3.

For a proof. see Theorem 6.4 of [Fo2].

Of great interest in later sections will be trace(dl(’p)) forr=1,2,3,.... Our last goal in
this section will be to express these traces in terms of V-paths. Express Q’('P) as a matrix
with respect to the basis of C,(M, Z) consisting of the oriented cells. Then

r — r
race(2(y)) = ) (2)os-
€K,
We first consider the trivial contributions to the trace

Theorem 4.4. (i) If 0P ¢ R then for all r >1
| (®7,))00 = O.
(i) If ') is a rest point of V then for all + > 1
(Plp))oe = 1.

Proof. Let f be a Lyapunov function for V. From Theorem 4.3 (iii), for any o € K, $(0)
is the sum of cells & with f(&) < f(o). Moreover, if o ¢ R then f(o) is the sum of cells &
with f(d) < f(o). Thus, inductively, if o ¢ R then for any r > 1

(®7)os # 0= f(3) < f(o)
so that, in particular
(Qr)aa = 0.
Now suppose ¢ is rest, then by Theorem 4.1 (ii) and (i),
(o) = o+ Z Co50
& such that
f(&)<f(o)
and the desired result follows by induction. O
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It remains to find ($7),, for o € R which is not rest. In order to state the result in
this case, it is necessary to introduce the notion of the multiplicity of a V-path. Let

71087), Té”l), a§”, ...,afi)l, r,(’fl'l), olP)

denote a V-path of index p and length r. For simplicity, we assume for the moment that
for each 1, 0i41 is a regular face of 7; (by definition o, is a regular face of 7;). Choose
orientations for 0g and o,. The orientation on oy induces an orientation on 70, such that
with this orientation

(Om,00) = -1
This orientation of 7y induces an orientation on o1, such that with this orientation
(870,00) = 1.

Continuing in this fashion, an orientation on each cell induces an orientation on the next
cell in turn (see figure 4.4 where a V-path of index 1 is indicated as well as an orientation
on the initial edge oy and the induced orientations on the remaining cells in the path).

Tinitad

FIGURE 4.4

Thus. the initial orientation on ¢ induces an orientation on ¢,.. We define the multi-
plicity of ~. denoted by m(+), to be +1 if the induced orientation on o, is equal to the
chosen orientation. We set m(y) = -1 if the induced orientation is the opposite of the
chosen orientation.

Choose an orientation for each cell of M. We observe, in the special case that all faces
are regular. that the multiplicity can be expressed by the formula

r=1
m(v) = [[-(0n 00 0n,001).
1=0
We can use this formula to define the multiplicity in general, i.e., not assuming all faces
are regular.

Definition 4.5. Choose an orientation for each cell of M. For any V-path

1 1
7:06”), rép* ), ng), ...,af.’l)l, T,SP_T ), olP)

define the multiplicity of v by
r—1

m(y) = []-(0n,0) @n,0001).
=0

In Lemma 4.4 we list some immediate implications of the definitions.
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Lemma 4.6. (i) The multiplicity of a V-path v from o to & depends only on the chosen
orientations of ¢ and &.

(i) If v is a closed path, then m(v) is independent of all choices.

(iii) If 71 is a V-path from o to &, and v is 8 V-path from & to &, then v, ovs, ie., the
sequence of cells traced out by first following v, from o to & and then following v, from &
to &, is a V-path from ¢ to & and

m(y1 0v2) = m(m)m(ys).

Remark. If v is a closed path of index p then one can think of the cells in v as playing
the role that the unstable directions along a closed orbit of index p of a hyperbolic flow
play in the smooth case. With this analogy, at least when all faces are regular, m(y) = -1
corresponds to what is called a “twisted orbit” in [Fra], and m(y) = 1 is an “untwisted
orbit.”

For o, 6 € K let P,(0,5) denote the set of V-paths of length r from o to . We are
now ready to proceed to the next step in our computation of the trace of ®".

Theorem 4.7. Suppose o € R and V(o) # 0. Then

(@)oo = D my).

vEP,(0,0)
The proof will follow from 2 lemmas.
Lemma 4.8. Suppose V(o) # 0. Then
(1) (®)os = (8700
where
(1.2) ® =1+8V = &-Va.

Proof. We first observe that for each r there is a linear map L, such that
(4.3) " -3 = VL,.
This easily follows inductively from (4.2) and Theorem 4.3 (i).

Now (4.1) follows from (4.3) and the observation that

V(o) # 0= o ¢ Image(V). a
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Lemma 4.9. Suppose V(o) # 0. Then for allé € K

Poz = Y. my).

7epl (d,&)

Proof. Suppose V(o) = 7 with 7 oriented so that (8r,¢) = —1. Then

-

b0 = 0+0Vo = o+ 071

o+ (37,6)5

a<r
= o+ Z-(ar,a) (Or,6) 6
o<r

= Z —(dt,0) (01,6) 6.

<T
F#o

It

QQe

We now observe that if 3 < 7, & # ¢, then
Yio, T, O
is a V-path of length 1 with
m(y) = —(0r,0)(0T,5)

and every such path corresponds to precisely one such &. Thus

or, in the language of matrices

(®)os = > m(y). O

Y€P,(0,5)

Proof of Theorem 4.7. It follows inductively from Lemmas 4.4 and 4.7 that if Vie) #0
and ¢ € K then for any r > 0

(o = > m(v).
Y€P-(0,5)
Therefore, using Lemma 4.8
(Qr)aa = (6r)aa = Z m(7)

‘76?,.(6,0)

—

as desired.

21



Lastly, we need to find (®7),, for c € R, 0 € ImageV. To this end we require a new
definition.

Definition 4.10. A V-bridge of index p and length r from ¢(P) to §(P) is a sequence

yio = o), oY, o) WPV e Pl ) = 5

satisfying foreachi1=0,1,...,r -1
(1) V(vw) =0im1
(i) oi+1 # 0, > vi
We define the multiplicity of a V-bridge +, denoted m(y), by

r—1

m(y) = H — {00, vi) (0041, vs) -
=0
For any o, 6 € K let B,(0,5) denote the set of V-bridges from o to 5. As for V-paths, if
~1 is a V-bridge from o to &, and 2 is a V-bridge from & to &, then vy, 0y; is a V-bridge
from o to ¢ and
m(viov2) = m(v1)m(v2).

Theorem 4.11. Suppose ¢ € R satisfies 0 € Image(V). Then
(@)oo = Z m(y).

763' (0,0)

Proof. We only sketch the proof, as it is precisely dual to the proof of Theorem 4.7. We
first note that

(1.4) ’ (@)oo = (ér)aa

where

d =1+V8 = & -6V,

This follows. analogously to the proof of Lemma 4.6, from the observations
(i) there is a linear map L, such that

-3 = L,V.
(ii) o € Image(V) = V(o) = 0.
We then note that for all &
6c’!a = Z m('Y)
7631 (6,0)
(which is proved as in Lemma 4.7) so that
(4.5) (5’)_ = > mH).
77 4eB.(5.0)
Together, (4.4) and (4.5) yield the theorem. O
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Adding together the results of Theorems 4.6, 4.7 and 4.11 we learn

tr®7,, = # (rest points of index p) + Z Z m(y)
c®Per v€P,(0,0)
V(e)#0

+ Z Z m(y).

a(P)e‘R 168,(0,0)
o€&lmage(V)

To simplify this formula, let

cp = # {rest points of index p}
and let PP’ denote the set of closed V-paths of length r and index p, i.e.,

PP = U Pr(o,0).
a(P)EK

We then have

Theorem 4.12.
trd,y = cp+ Z m(vy) + Z m(7).

vePP yePPY

Proof. We first observe that if ¢ ¢ R or V(o) = 0, then P.(0,0) = 0 for all r > 1.
Therefore

U Pue,o) = |J Prloo) = PP

P erR oPeK
V(0)30
so that
> my = Y m(v).
P er VEP-(0,0) ~ePLP
V(e)#0

It remains to see that

> Yo my) = Y m.

oPer  YEB-(0,0) ~eplr-v
o€lmage( V)

Let
B = U B.(0,0).
oPleK
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If o ¢ R or o ¢ Image(V) then B,(c,0) = 0. Therefore

U Bieo = | Bloo) = BY

U(P)e‘R_ 0(’)€K
o‘P elmage(V)

so that

(4.6) ) Yo mh) =) m).

oPer  YEBr(0,0) ~€BP
o (P elmage(V)

Now suppose v € BP ), then v is a closed bridge of the form
-1 ~1
7:08;7)7 V(()p )7 ng),-«-a‘/ﬁzl ), o.’(.P) = 0o.

It follows immediately from the definition that

z . Vép-l), ng),--.,VS:l), ol = a(()?), V(()P‘U
is a closed V-path of length r and index p — 1 satisfying
m(y) = m(y).

This establishes a 1-1 multiplicity preserving correspondence between closed bridges of
length r and index p, and closed paths of length r and index p — 1. Therefore

4.7) Z m(y) = Z m(7y).

13- vePPY

Substituting (4.6) into (4.7) completes the proof. O
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§5 Zeta Functions.

Zeta functions have become a standard way to keep track of the closed orbits of a vector
field. In this section we present analogues of the most commonly studied zeta functions.
We begin with the most straight forward zeta function. Define

(5.1) ((2) = epo%Pr
r=1

where

p- = > #P® = #{closed V-paths of length r}.
k=0
Let
k = #K = #{cells in M}.

The trivial bound
pr < k7

shows that {(z) has a radius of convergence of at least k~!. Our first goal is to make more
precise statements about the analytic behavior of {(z).

Definition 5.1. A V-step is a V-path of length 1, i.e., a sequence

1
~ U(()P), Tép+ ), ng)

for some p, where V(0g) = 79 and og # 0, < 7.
Define the origin of v, o(v), and the terminus of v, t(v), by

o(v) = oo, t(y) = o1.
We observe that a sequence of V-steps
Y05 Yiseery Vet
fit together to form a V-path of length r if and only if for each i = 01...,r=2
t(vi) = o(vi+1).

Let S denote the set of V-steps, and let A denote the square matrix whose rows and
columns are indexed by the elements of S, and where, for Y0, Y1 € S

Ay = {1 if t(y) =o(m)

0 if t(0) # o(m)-
It is then quite easy to see that
pr = trA’.

Theorem 5.2. Where ((z) converges
¢(z) = det(l —zA4)"L.
Thus, det(I — zA)~! provides an analytic continuation of ¢ (z) to a meromorphic function

on the entire complex plane.
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The set {S, A} is an example of a subshift of finite type. For a thorough analysis of
more general zeta functions associated to such objects, see [P-P].

Before leaving this topic, we pause to rewrite {(z) in a very suggestive form. Let
P = |J2 P- denote the set of all non-stationary closed V-paths.

Definition 5.3. Say a closed path v € P is prime if v is not the multiple cover of another
path, i.e.. if there is no closed path 4 such that
— XX ~ _ =t
Y= Y0y0--r0y = %
e, o—

{-times

for some ¢ > 1. Let P. denote the set of all prime closed paths, and PP those with
index p.
In our definition of PP , we distinguish between the closed paths

F1 +1 +1
vo: o, 7Y, o) L U L e )
and
+1 +1 +1)
o) :ogp), Tl(p ),...,Tr(fl ), aép), ‘rép , a§p)

even though they trace out the same cells in the same order, differing only in the starting
point. It seems natural to identify these 2 paths.

Definition 5.4. Say 2 closed paths v, 5 € PP represent the same closed orbit (of indez p)
if it is possible to write
Y= "Mo97

for 2 (not necessarily closed) V-paths v; and 42 such that

¥ = mom.
If v € P{”) we denote the corresponding orbit by [y]. Denote by O. the set of prime closed

orbits, i.e.,
O. = {(]reP.}

and by O those of index p.
The following lemma is evident from the definitions.

Lemma 5.5. If v is a prime closed orbit of length r, then there are precisely r distinct
closed paths in PP which represent the closed orbit [v] € O., each of which is prime.
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Let |y| denote the length of v, i.e., if v € Pr then |y| = 7. For a closed orbit [4], let |[+]|
denote the common length of the closed paths which represent [v], ie.,

Ml = Il
With these definitions and notations in hand, we can write
o Zr zl‘YI
log((z) = Z";Pr = ZW
r=1 ~EP v
_ Z izlv‘l _ Z X, 2l
yeP. =1 I I YEP. =1 eh{'
| = zthl >, Ukl
= z ,7,2 . Z 7
~€P, {=1 [v}€eO. =1

[~€e0.
so that
(z) = [T @-2rh=
[+]eO.
It is customary to change variables here and let z = e~*.

Theorem 5.6. Define Z(s) = ((e~*). Then
Z(s) = I'I (1- e—&![v]l)-l‘

[~]€O.

We now consider a zeta function which keeps track of more information than simply the
length of the closed orbits. We observe that the key ingredient in (5.1) is the quantity

(5.2) pr= > 1L
~EP,

One can create more “sophisticated” zeta functions by changing the 1 in (5.2) to a function
of v with more information. One natural choice is to consider the multiplicity. Define

Gm(z) = Y T Y m(y).

r=1 YEP,
With our results of §4, it is simple to find an analytic continuation for ¢m(z). By Theo-

rem 4.10
> f = 2(2 n) | +3 e
so that . e .
2 R[]

which leads to the theorem
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Theorem 5.7. Where (,(z) converges
Gm(@)* = (1= 2)TFre T det (1= 284)) ™
k=0

so that the right hand side provides an analytic continuation of (3, to a meromorphic
function on the entire complex plane.

By Lemma 4.4, if closed paths 4 and ¥ represent the same closed orbit, then

m(y) = m(d).

For any closed orbit [v], we define its multiplicity m([v]) to be the common multiplicity of
the paths which represent [4], i.e.,

m([v]) = m(y).

Moreover. for any ¢
m(y)) = (m(y)*
Following the proof of Theorem 5.6, we prove

Theorem 5.8. Define Z,,(s) = (m(e™*). Then

Zn(s) = [ (=m(e iy,

[v]eO.

[t will be useful in the next section to consider a zeta function which incorporates the
index of a closed path. To that end, we introduce

n

imal2) = e YT | (-1 T miy)

re=1 k=0 ~ePk)
From Theorem 4.10 we learn
n n n
DDkt = S (-0F Y m(y)+ 3 (-1)kH ke,
k=0 k=0 7€P£k) k=0

so that

Theorem 5.9. Where (m :(z) converges

Gmi(z) = (1= 2)ZE=al=0" ke T [det (1 - 284y)] D
k=0

so that the right hand side provides an analytic continuation of ¢m,i(2) to a meromorphic
function on the entire complex plane.
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The zeta function {m i(z) can also be expressed in terms of prime closed orbits

Theorem 5.10. Let Zp, i(s) = (m i(e™*). Then

Zma(z) = H (l—m('r)e-sl»yl)(‘l)““"

(v)€0.

where i([v]) is the common index of the closed paths which represent [v], i.e.,

([v]) = index(v).

To proceed further, we now assume that M has a non-trivial fundamental group, which
we denote by I'. We can then associate to each closed path its homotopy class, and we can
incorporate this data into the zeta function. One manner of carrying this out is to choose
a unitary representation

6: T — U(m)

where U(m) denotes the group of m x m complex unitary matrices. We now describe how
to “twist” the zeta function by 6.

Let M denote the universal cover of M, K the cells of M and I?p the cells of M of
dimension p. Let = denote the canonical projection

M —M
as well as the induced map _
m: K — K.

The group I acts on K. We denote the image of the actionof ge Tonacell 5 € K by
g(a). The fundamental property of this action is

~

Vo.7€K, n(6)=n(f) — 3 g€l suchthat g()=r.

It is possible to lift the combinatorial vector field V on M to a combinatox;ial vector
field V on M. Namely, suppose o(P, (P*1) ¢ K satisfy V() = 7 and & € K satisfies
m(&) = 0. Then there is a unique 7 € K with m(¥) =7 and ¥ > &, so we set

V() =7

Let

v : ol Tép+l),...,a,(.”) = a((,p)

denote a closed V-path, and let 59 € K denote any cell of M satisfying 7(69) = 0¢. Then
there is a unique V-path beginning at gy,



covering 7, i.e., such that for each i

7(6:) = oi, w(fi) = 7.

However, ¥ need not be closed. It is certain only that

so that there is a g, € I" with
9+(60) = Gr.

We can now try to define a map from P, the closed V-paths, to U(m), which we also
denote by 6, by setting

6(v) = 6(g,).

Unfortunately, this map is not well-defined, since our definition of g., required an initial
choice of Go. Varying our choice of o, say by replacing it by h(&o) for some h € T, has the
effect of conjugating #(+) by #(h). Therefore, although 6(v) is not well-defined trace CI6%))
1s.

Writing tr for trace, we now define the twisted zeta function

o

(20 = 2|05 T m o)

r=1 k=0 ~eP®

Note that if we let 65 denote the trivial representation
6o: I — U(1)

which maps every element of I to the number 1, then

((z,60) = (m,il2).

In fact, we will derive an analytic continuation of ¢(z,6) by simply “twisting” the analytic
continuation for {, ;(z).

Let C,,(M, C™) denote the C™-valued p-chains on H, i.e., objects of the form Z&ef(, c50,
where c; € C™. Each g € T induces a map

9. : Cp(M,C™) — C,(M,C™)

by

g (Z cs0 = Z cz9(F) = Z Cg-1(5)0-

ek, ek, seK,
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Any matrix v € U(m) also acts on Cp(:\/?, C™), by
v ( Z ca&) = Z v(cs)d.
ek, sek,
Denote by Cp(M, 8) the elements of CP(X/I- ,C™) which transform under I' via . That is

Cp(M.6) = {c€ Co(M,C™) [V geT gulc) = [8(9))(c)}
= { Z c;o|Vgel,Vae I?p, Co-1(5) = [9(9)](06)} .
eK,
The boundary operator
8: Ce(M,C™) — Cr—(M,C™)
extends in a natural way to a map
8: Cx(M,C™) — Ci-(M,C™)

which commutes with the action of I' and hence preserves C,(M,6). Therefore, there is
an induced boundary operator

85 : Cu(M,8) — Cr_1(M, 8).

Similarly. the lift V to M of the combinatorial vector field V is invariant under T, i.e.,

“o€kandgel _ _
V(g(a)) = g(V(5)).
Modifving V" to act on oriented cells of M , as described in §4, yields a map
V:Ce(M,C™) — Cx_1(M,C™)
which is invariant under the action of I, and hence induces a map
Vg . Ck(AM, 9) — Ck-l(M, 9)
This allows us to define a flow

¢y : C.(M,0) — C.(M,0)

by setting
Py = 1+ V0 + O Vs.

Denote by @4k the restriction of &4 to Cx(M, ). Following the proof of Theorem 4.10 in
this twisted context yields
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Theorem 5.11.

tr(Po))” = kee+ > m(y()+ D> m(y)tré(y).
~ePP) ~ePP-D

Thus, generalizing Theorem 5.9 we learn

Theorem 5.12. Where ((z,6) converges

n

n s _1\k
((z,68) = (1- Z)Zk:o(—l)k ke H [det(I _ zq)e(k))](k+l)( 1)
k=0

so that the right hand side provides an analytic continuation of ((z,6) to a meromorphic
function on the entire complex plane.

To express ((z.6) in terms of closed orbits, rather than closed paths, we observe that
if v and ¥ are closed paths which represent the same closed orbit, then §(v) and 6(%) are
conjugate, so that

tr(y) = tré(v).

Thus. if [+] € O is any closed orbit. we can define tr6([y]) to be the common value of
trf(~) for the paths ~ which represent [v], i.e.,

tré([v]) = tré(y).
Precisely as in Theorem 5.10 we have

Theorem 5.13. Let Z(s,6) = ((e*,6). Then, where the series converge

(=1)¥¥D

Z(s,6) = H [det (1_m(7)0([7])e"|["”)]

~€0.
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§6 Reidemeister Torsion.

In this section we examine the Reidemeister torsion of a CW complex, and its relation
to combinatorial flows. The study of this relationship finds its origins in (Fril, 2] in which
large classes of smooth flows on smooth manifolds were found in which the Reidemeister
torsion of the underlying manifold could be expressed in terms of the closed orbits of the
flow. In this section we show that this relationship holds for any combinatorial flow or any
finite CW complex.

We begin by reviewing the notion of Reidemeister torsion. Let

6:T —U(m)

be a unitary representation of the fundamental group I' of M, and consider the twisted
chain complex defined in §5

C.(M,8) : Ca(M,6) = Cuy (M, 8) 21 ... 2. Co(M,6) — 0.

As is the case with the usual chain complex, 8% = 0, so it is natural to define the homology

_ Kernel(a : Ck(M, 9) — Ck-l(M, 9))

Hk(M, g) = Image(a : Ck+1(‘M’ 9) U Ck(M, 9)) .

We will assume, for simplicity, that 8 is chosen such that the homology vanishes, i.e.,
He(M,0)=0 Y k.

This requires, in particular, that

n

Y (-1)*dim Hi(M,6) = 0.
k=0

From standard linear algebra, this alternating sum is equal to

n

Y (-1)*dimC(M,6) = D (=1)*m(# of cells of dimension k).
k=0 k=0
Therefore, a necessary condition for such a 8 to exist is

0 = Y (~1)*(# of cells of dimension k) = x(M).
k=0

There is a natural inner product on each Cx(M, 6). To define this inner product, choose
a lift 0* € K for each cell ¢ € K. For chains a, b € Ci(M,6) of the form
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define
<ab>= Z (Qa',ﬁa')

gkleK

where (, ) is the standard inner product on C™. It is easy to check that, since the
representation 6 is unitary, this inner product is independent of the chosen lifts o*.
Let
0" : Cp(M,0) — Cp+1(M, 6)

denote the adjoint of 8 with respect to the inner product, and define the Laplacian
AP 08" + 870 : Co(M,8) — Cp(M, 8).
It follows from standard linear algebra that for each p

Kernel(AY)) = H,(M, 6)

so that, by assumption, each Agp ), p=0,1,...,n,is invertible. We define the Reidemeister
torsion of M with respect to the representation 8, T(M, 6), by the formula

T(M.0) = [](Detap)(-v"=%,

p=0

This formula first appeared in [R-S] (see also [Fo3]). This unusual combination of de-
terminants has the remarkable property of being a combinatorial invariant, that is, it is
invariant under finite subdivisions of the cell structure ([Fr)).

The proofs in §2 can be generalized to accomodate the representation 8, so that the
Morse inequalities. suitably interpreted, are still true. More precisely, define

mp(8) = Y dimH,(&;, A, 6)

basic
sets A;

where the relative homology H.(A;, A;,8) is defined in the natural way. Then for any 6
(i.e.,  need not be acyclic) and any k

Mk (8) = me—1(6) + -~ £ mo(8) > be(6) — be—1(8) + - - % by(8)
where
b;(6) = dim H;(M,§6).

We have already assumed that bx(8) = 0 for all k. We now make the stronger assumption
that

my(f) = 0 vp.

This requires, in particular, that V have no rest points. The reason for this assumption
will become clear shortly (see Theorem 6.3).
We are now ready to state the main theorem of this section
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Theorem 6.1. Suppose V has no rest points and 6 is chosen so that for each basic set A,
H.(A;, Ai8) = 0

(this Is equivalent to my(6) = 0 for all p). Then ((z,6) is analytic at z = 1 and
T(M,0) = ¢(1,6).

Equivalently, Z(s,8) is analytic at s = 0 and
T(M,8) = Z(0,0).

The remainder of this section is devoted to proving Theorem 6.1. The proof makes use
of Witten's deformation of the chain complex C.(M,§) ([Wi], see also [Fo3] for the use of
this technique in the combinatorial setting).

Let f be a Lyapunov function for V (see Theorem 2.4). Lift f to a function

f K —R
by setting N
f(@) = f(=(a)) VéeKkK.
Define a one parameter family of automorphisms
etf : C,(M,C™) — C,(M,C™)

as follows. If
a = ) 0;5€Cy(M,C™)
seK

then ) L
ef(a) = Zaae‘f(")&.

Define e~t/ similarly. Since the maps e**/ commute with the action of T they preserve
the spaces Ci(M, ). Thus we can consider the one-parameter family of chain complexes

C.(M,8,t): Ca(M,60) 25 Cp_ (M, 8) 2 ... 28 Co(M,0) — 0

where
6¢ = e‘fae"f .

Let us now work more explicitly. Let ey,...,en denote the standard basis for C™. For
any 5P € K, and any i € {1,2,...,m} let ¢ denote the p-chain

csi = _0(9))(e)g™" ().

g€er
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Then ¢z, € Cp(M, ). For each cell ¢(P) € Ky, choose a lift 0* € K. Then

{Ca-,i} UEKp

i=1,2,...m

forms an orthonormal basis of C,(M,6). The boundary operator 8 acts by

ez = 3 _18(g))(e)d97(5)

gel
= D [6(9)i(e:)g™"(85)
g€l
=D Bl | Y <aé,e>ﬁ>
geT olr-VeK
= Y (85.9)) [6(9)(e)g™ (D)
oP-VeK g€r
= > (85,9)con.
o=k
The operator 9, acts by
i6.1) Oics, = e‘f-ae"tfc;,,,' = Z (0a,7) e‘(f('.’)—f(a))cﬁ,i-
o(r-NeK

Similarly. 8% and d; (the adjoints of 8 and 8, with respect to the inner product) act by
0%csz: = Z (OF, ) cs 4
Fr~VeK
Orcss = Z (67, ) et (2= "Nes
Fp~Veg K

so that

AP (t)ess = (8u8; + 8 8y)cos

- Z LZ (6%’5)(af,t'f)e‘(f("’)'*'f-(&)—zf(;))
amek Lrp-neRk

+ S (85,0) (95, 0) CIO-F@-F@n | 5.
'-"("1)61?

For all t € R, the homology of the complex C(M,#6,t) is equal to the homology of the
original complex C(M, #), and hence is trivial by assumption. This implies that for each
teR

AP(t) : Cp(M, ) — Cp(M, 6)
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is invertible, and hence has non-zero determinant.
We define the torsion of the complex C(M, 6,t), denoted by T(M, 6,t) by

T(M,8,t) = ] (Det AZ(e))~D" 5%
=0

Of crucial importance is the following lemma.

Lemma 6.2. Forallte R
T(M,0) = T(M,86,t).

Proof. Since T(M,80) = T(M,6,0), it is sufficient to prove

d
Y — =
(6.2) T(M.6,8) = 0.

From Lemma 6.2 of [Fo3]

d : d i\ _.f
—_ = _ P — tf -t'f . i — 4 .
5 T(M.6.¢) p};a( 1) tr[(dte >e : Cp(M, 8) — Cp(M, 6)

Since
a7\ —tf _ f
(dte )e =/

maps each ¢y, to j:(cf)cc,,,'

u[(%ef) ~tf . C,(M,8) — Cy MG)J =mY fo)

oceK,

so that

%T(M,B,t) =mY (-1)* Y f(o).

p=0 €K,

We have assumed that V has no rest points. Therefore
K = Image(V)U{o € K| V(o) #0}.

Moreover, if V(o) # 0 then
flo) = f(V(a)).
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Thus

- -
d n
T M0t = md> ()7 D flo)+ > f(o)
=0 V(a(P))¢0 (,,)€
i Image(V) 3

{ :
=m) (-)*| > flo- 3 fl)

p=0 V(o(P))#0 Pl e
L Image(V) B
S| > o= Y SV
p=0 V(a(P) )#0 V(a(P))#O

=mY V7| Y flo) - f(V(e))

p=0 L V(a(P)50

-]

The main idea of the proof of Theorem 6.1 is to use Lemma 6.2 and to take the limit
of T(M.6.t) as t — oc. Consider the formula for the action of 8; given in (6.1). Since
106.7) =0 unless T < & we can write

dics. = (85,9 e O=Fonc,

U<&

We now observe that
which implies
Thus. as t —

In particular,

exists. To simplify future formulas, we introduce some notation. If v~V 4 ¢ K, we
will write

vxog (or ¢ =v)
if

v < o and f(v) = f(o).
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Similarly, if ©P~1, 61D ¢ K we will write

if
Note that

With this notation,
(6.3) Oxcss = Y (85,D)cs

0 Cs,. = (07,8) ¢z 5.

Let
AP = 0,05 + 058 : Cp(M,0) — C,(M, 8).
The upshot is that if each A% is invertible, then we can simply let t — oc in (6.2) and

(6.4) T(M.6) = f[ (Agg Det)(_l)ui_l .

p=0
With this in mind. we now take a closer look at the operators Ouo, 05, Aco-
Lemma 6.3. Ifo ¢ R then for any lift * of o, and any i € {1,2,...,n}

A Coe i = Coe .

Proof. Either V(0) # 0 or o € Image(V). Suppose V(o) # 0 and let p = dimension (o).
Since ¢ ¢ Image(V'), for all v~V < ¢, f(v) < f(e). Therefore there is no v(P=1) with
v = 0. This implies there is no #(P~1) with § =~ ¢*. Hence

acx;Ca"i = 0-
If V(c*) = #(**1) then o* = 7 and there is no other (p + 1)-cell 7 with 7 ~ o". Hence,
03%Coei = (0F,0") cs4

so that
Aooca',i = <67.'10")aoocf,i-

Similarly, ¢* ~ ¥ and there is no other such p-face of 7, so
8occ;,,- = (67‘,0")00-,.'
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and 2
- ™
Aooca',t = <6T,U> Coi = Copi

((0F,0") = %1 since o* is a regular face of 7). )
On the other hand, if ¢ € Image(V), say o = V(v(P~V), then ¢* = V(¥) for some ¥ € k
with 7(T') = v. Similar arguments show that

Bmc,-,,- = <80.,{)>Cg,i, 3;,ca-,,- =0
O0Cos = (00%,0)co
so that \
BocCori = (007,0) Conri = Coe i O

It follows from Lemma 6.2 that

6. Det AP = Det A(P) .
(6.5) et Al II T30 P
Rrd g

Suppose ¢(P) € A,, and vP~Y) < o. Then f(v) < f(0) and

fv) = flo) —v=o—veA.
Therefore. if 0P~V < 0" then f(#) < f(o*) and
fl&) = fo") — b ~0" — n(D) € As.

Hence. we can rewrite (6.3) as

aooca,i = Z (60‘,1’)) Co,i-

m(D(P-D)EA;

This differential also appears from another point of view. For each p there is a canonical
isomorphism

(66) CP(KisAivo) = CP(Aiae)'

Namely, map 3, 5)eR, €50 to Z,(a)e A, €50, i.e., simply ignore the terms corresponding
to cells not in A;. Via this isomorphism, the differential

g CP(Ki!Aivo) — C, —1(Ki1Aia0)

induces a differential on Cp(A;,8) which is precisely 8. From this discussion, and
Lemma 6.2, we learn
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Theorem 6.3. The following statements are equivalent
(i) For each basic set A
H.(A, AL6) = 0.

(i) For each basic set A; the complex
300 8o deo
C(A,0,5¢) : Cn(Ai,0) = Cn-i(Ai, ) = - == Co(A,8) — 0

Is exact.
(iii) The complex

C(M,8,5¢): 0 — Cn(M,0) 2= Co_ (M, 8) Z= ... 2= Cy(M,0) — 0

1S exact.

If any one (and hence all) of these conditions hold then we have

T(M,§) = ﬁ (Det Agf,))(—l)”’ﬂ
p=0

oo (-nre
(r)
H (Det B Cp(/\-'.9)) }

- I

basic Lp=0
sets Ay

= J[ 19
basic
sets A;

where T(\,,6) refers to the torsion of the complex C(A;, 6, oc), which can be thought of as
the torsion of X, with respect to the representation of the fundamental group of A induced
by § and the imbedding A; — M.

We continue to assume that the conditions stated in Theorem 6.3 hold, and we now
take a closer look at

D tA(P)
¢ B Cp(As,0)

for some basic set A;. If A; has index g, then Cp(A;, 6) is non-zero only for ¢ = p or p—1,
so we must consider

AP : Ch(AP,6) — Co(AP, 6)
AEY : Cp (AP 0) — Cppr (AP, 9).
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Lemma 6.4.

2
; (,)‘ _-_!DtR-V] [
) Det A Co(A(P ) et Rd Cp(AP )
2
(p+1) - ‘ Det R,V ]
i) Det 82 Cpe1(ALP,8) et R:V9 Cps1(AP,6)
where

R, : C.(M,0) — C.(A,0)
is the natural projection.

Proof. If (P ¢ Afp), then there is no v~V with v = ¢ so for any i

6occa‘,i =0
and
Aooca',i = aooa;;cd',i = Z (61",0') Z (6‘?,&)ca,,~.
: Fprlixge a(PI=F

We note that 77" x~ ¢, if and only if 7 > 0* and 7 = V(&) for some & € K with
7(7) = A; (such a & is necessarily unique).
On the other hand
V8% cony = Y (87,07 V(cs)

F>o"
where 1'(5) = =7. so that V*(F) = — (87,5) 5. Hence
Rlv.a‘ca‘,l = = Z <67-:U.> V-(Cf,i)’
For 7 € Image(1")
T =VV

so for each 1
VV'(U-,'—Y;') = 07 .

Thus
VRV & coy = Y (87,0%) ¢z
and )
VRV 8cors = Y (87,07 (87,5) css
Frot e<#
ROVRV 3 coey = Y (07,0%) Y (87,58) com s
N
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Therefore,

Det A = DetR,0VR,V*0°R;

Cp(A“,e)

Cp(Ai 10)
= Det(R,0VR,;)(R,0VR;)"

Cp(As,9)

= { Det R,-@VR;

c,(Ai,e)’ '

Since. restricted to Cp(A,,8), R; is the identity

Det R,0V R,

. - [ Det R,8V
Cp(A0,8)

Cp(l\-'.!?)I

which completes the proof of (i).
The identity (ii) is proved by a similar argument. O

Before complering the proof of Theorem 6.1 we observe that if ¢(P) € A,(-lp ) then

VooP) = Z ag o’
fle')<f(o)
Thus
f(&y<f(o)
so that
RgVaCa'yi = 0.

Hence. restricted to C'p(Afp), 6)

ROV = R(8V +V8) = —R,(1- ).
Similarly. restricted to Cpy1 (AP, 6)

R\VO = R,(8V +V8) = —R,(1- ).

Therefore, Lemma 6.4 can be restated as

Lemma 6.5.

(i) Det A)

= , Det R;(1 — @)

2
Cp(AP,6) 'cp(AS”.ml

(ii) Det AZ+Y = | Det Ri(1 — 3)

|2
Cori (AP 6 Corr (AP )

The next step is to recombine the maps R;(1 — ®) into a single map.
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Lemma 6.6. For each p

Detl — & = H Det R;(1 — 9)
Cp(M.8)

Cp(Ai,8)
basic
sets A

Proof. Theorem 4.3 implies that for any o € A;
(1= ®)co-s = R(1=D)comi+ D acay

and if ¢ € R then
(1- q))ca',i = Cg+:i+ Z Q5Cs i
f(3)<f(e*)
Thus, ordering the p-cells so that f(o§”)) < f(agp)) < --- puts the operator (1 — &) in
block upper triangular form with diagonal blocks

{ 1 if c¢gR
R(1-9) if oceA;.
Therefore,

Det(1 - &) |

= J] DetrR(1-9) O
‘Cp(M.6)

Cp(Ai 8)
basic
sets Aq

Proof of Theorem 6.1. From Theorem 6.3, if H.(K,»,A,»,G) = 0 for each basic set A,,

then for each p AP | o) is invertible, so combining (6.5), and Lemmas 6.5 and 6.6
1Cp(M,
" 0#Det AP | - Det A®)
#DetAZ ', (M.6) H S Co(As,0)
basic
sets A,
D d ’
= ‘ H et R,(l - ) C,,(A.v,e)l
basic
sets A,
2
= ' Det(1 — &) |
C,(M.,8)

Therefore, from (6.4) and Theorem 5.12

0%# T(M,8) = fI(DetAgﬁ))(—l)n;—l

p=0

- | };[0 (Det(l - )

=1¢(1,6) |

)("U’P‘H

Co(M,86)

as was to be shown. O
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§7 Combinatorial Morse-Smale Vector Fields.

In this section we briefly examine the special case of combinatorial Morse-Smale flows,
in which the results of the previous section can be made more explicit. Compare this
section with Chapter 8 of [Fra].

Definition 7.1. A combinatorial vector field V on a finite CW complex is a combinatorial
Morse-Smale vector field if the chain recurrent set R consists only of rest points and
pairwise disjoint closed orbits.

Equivalently, V is a Morse-Smale vector field if every pair of distinct prime closed V-
paths is disjoint.

Suppose V is a combinatorial Morse-Smale vector field. Let ¢p denote the number of
rest points of index p, and A, the number of prime closed V-orbits of index p. The simplest
set of Morse inequalities is the following

Theorem 7.1. For any coefficient field F, and any k
A+ Ck —Ch—1 + Ck_g — -+ % co 2 bi(F) = b1 (F) +---:tbo(F)

where

by(F) = dimp(M,F).

Proof. Suppose /7] is a prime closed orbit of index p, represented by

~: P = U(()p), Tép“),...,aép)

so that in particular, V(o) = 75. We define a new vector field V' on M by setting, for all
reK
Viv) if v#o

0 if v=o0.

V'i(v) = {

Then V' has one fewer closed orbit than V, since [7] is no longer a V’-path. Moreover, the

rest points of V' are precisely the rest points of V along with ¢(®) and Té”"' b,

We can continue in this fashion, killing each closed orbit, one at a time, each time
creating 2 rest points. The end result is a vector field V* with no closed orbits, and with
m, = Cp+ Ap + A4, rest points of index p. The Strong Morse Inequalities proved in
[Fo2] (and reviewed in §3) imply that for any k

Mi~Mg_y+ -t mg > be(F) = b (F) + -+ bo(F)
which is equivalent to the desired result. O
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It is possible to work more precisely by taking into account the multiplicities of the
closed orbits. Let ASP) denote a basic set consisting of the cells in a single closed path
¥® ;P P e B ) o olP.

The set A; contributes .
dim H, (Ag, A,‘, F)

to the Morse numbers of V (see Theorem 3.1). This contribution is determined in Theo-
rem 7.3.

Theorem 7.3. Let A; denote a basic set consisting of the single closed path v(P) a5 above,
and let

r—1

m(y) = []-(0m,0:) (87,0:01)

=0

denote the multiplicity of v. Then

He(AiAiZ) = 0 if k#p, p+1

{ Z if m(y)=1
0 otherwise
Hy(A, A, 2Z) = Z/(1-m(v)Z.

04

Hpe1(Xi A, Z)

Proof. For each k, o
Cre(Ai Ay, Z) = Cr(Ai,Z)

where Ci(A,, Z) denotes the integer k-chains spanned by the k-cells of A;, i.e.,

Ce(Ai,Z) = 0 k#p p+1

r—1
Cor1(A,Z) = {Z a;iTi | a; € Z}

1=0

r—1
Cpo(Ai,2Z) = {Zﬁim‘ | Bi € Z} )

=0
Thus, H.(A;, A;,Z) is the homology of the complex
0 — Ca(84,2) 2 Caiy(80,2) 2+ - 2 Go(A,Z) — 0
where 8 is the induced differential. In particular
He(AiALZ) =0 if k#p, p+1
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and Hp(Ai, Ai, Z), Hpr 1 (A, Ay, Z) is the homology of the complex
0 — Cpr1(Ai,Z) - CpAi, Z) — 0
where 8 is the induced differential given by
or = (01,0:) 00 + (OTi, Ois1) Oit1-

Note that the condition that V be a Morse-Smale vector field implies that if j # i, 1 + 1
o, is not a face of 7.

We first find . _
H,,+1(X,-,A.~,Z) = Kernel(a).

Since

r-1 r-1
] (Z am) = Z (ai (073, 0%) + ai—y (OTi-1,04)) 04

i=0 =0

‘where all subscripts are mod r,

r—1

Zam € Kernel(d)
=0
if and only if for each i
(7.1) @i (073, 0i) + @iy (OTim1,04) = 0.

We now recall that V(o,) = ; implies that o, is a regular face of 7; so that (Ori,0:) = 1.
Thus. we can rewrite (7.1) as '

(7.2) i = a1 (= (0n,0:) (OTicy,04)).
The equation (7.2) allows us to solve for each a; recursively, once we have chosen ag. The
only restriction is that the o; must be periodic with period r, which will hold if and only

if ar = ap. From (7.2)

a; = ao(—(0r,01) (079, 01))
@y = ap (= (0m,03) (011,02))
= aq (= (071,01) (070,01)) (— (872, 02) (871, 02))

Qr = Qg (-— (67‘1,01) (67‘0,01)) v (—- (61‘,-,0’,-) (67’,--1,0,-))
= agm(y).
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Therefore ar = aom™(7), so a, = ao has a non-zero solution if and only if m(y) = 1in
which case the solutions are generated freely over Z by the single solution resulting from
setting ap = 1. This proves

- . Z if m(y)=1
Ho (A A2 = .
pe1 ) { 0 otherwise.
We now find ColAs.2)
H T,‘, AZ) = _p_t_,__
ol ) Image(d)
We note that »
Z,B,m € Image(%)
1=0

if and only if there is a (p + 1)-chain Z:;ol a;7; with

r—1 r—1
E(ZQ‘T‘) = Zﬁidi

i=0 i=0
which holds if and only if
a, (01, 0:) + ai—1 (O7i-1,03) = G Vi
This leads to the recursive relationship
(7.3) = 3 (07i,0:) + ai—1 (= (87, 04) (07521, 03)) .

Fixing the 3,, once we have chosen aq, (7.3) enables us to solve for each a; in turn, with
the only restriction that we must have a, = ag. From (7.3)

ay = 31 (0r1,01) + ao (- (811, 01) (870, 01))
az = 33(072,02) + ay (- (872, 03) (871, 02))
= 32 (072,02) + B1 (= (072, 02) (71, 02)) (D71, 01)
+ a0 (= (071,01) (870, 01)) (— (872, 02) (871, 02))

ar = By (07,0.) + -+ agm(y).
Therefore. the condition a, = aq is equivalent to
(7.4) QO(I‘m('Y)) = G (67’,-,0,-)+--'

where the right hand side is linear in the §;’s. Of significance is the fact that (01r,0¢), the
coefficient of 3,, is equal to £1. Let

f(ﬁl,"'aﬁr)
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denote the right hand side of (7.4). Then (7.4) can be solved for ag if and only if
f(By,...,5:) € (1—-m(y))Z

Thus i
Image(g) = {Z ﬁiai ‘ ﬁi € zy f(ﬂl; v aﬁr) € (1 - m('Y))Z}
1=0
so that

ZT'
{(Br,...B-) €27 | f(By,...,B,) € (1 - m(r))Z}
= Z/(1-m(v)Z

Hp(Kiv Aivz) =

where it is in this last isomorphism that we use the fact that the coefficient of Bris+1. O

For example, working over R, we find

He(A,AuR) = 0 if k#p p+1

- . R if m(y)=1

H ALALR) =
Pl ) { 0 otherwise

R if m(y)=1

H,(A,,A,,R) =
p(d A R) {O otherwise.

In this case we can apply Theorem 3.1 to get a more refined version of Theorem 7.2.

Corollary 7.4. Let A, denote the number of closed orbits of V which have index p and
multiplicity 1, so that, in particular, A, < A,. Then for each k

Ap =k~ ko1 +--£co < be(R) —bk-1(R) + .- £ bo(R).

We observe that if M is a regular CW complex, then every face is regular, so for every
closed path v

m(y) = =l
Therefore, if 4 has index p

Z if m(y)=1
Z/2Z if m(y)=-1

and we see that a crucial factor is whether the coefficient field F has characteristic 2 or
not.

We observe that V is a Morse-Smale vector field if and only if V' has only finitely many
distinct prime closed orbits. Thus, the zeta functions introduced in §5 are finite products,
and there is no need for analytic continuations. In particular, in this context Theorem 5.13
becomes

HP(KH Ai1 Z) = {
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Theorem 7.5. Suppose V is a Morse-Smale vector field
group of JM, and r field. Let T denote the fundamenta]
: — U(m)

a unitary representation. Suppose that for each prime closed orbit [v]

det(f — m({~])6(v])) #0.

Then
H.(M,8) =0

and

T(M,.0) = ] [detd = m(())8())0"™ .
[v)eO*
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