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§0 Introduction.

In this paper we will present a very simple discrete Morse theory for CW complexes.
In addition to proving analogues of the main theorems of Morse theory, we also present
discrete analogues of such (seemingly) intrinsically smooth notions as the gradient vector
field and the gradient flow associated to a Morse function. Using this, we define a Morse
complex. a differential complex built out of the critical points of our discrete Morse function
which has the same homology as the underlying manifold.

This Morse theory takes on particular significance in the context of PL manifolds.
To clarify this statement, we take a small historical digression. In 1961, Smale proved
the h-cobordism theorem for smooth manifolds (and hence its corollary, the Poincaré
conjecture in dimension > 5) using a combination of handlebody theory and Morse theory
Sm2]. In [Mi2], Milnor presented a completely Morse theoretic proof of the h-cobordism
theorem. In ({Mal. {Ba}, [St]) Mazur, Barden and Stallings generalized Smale’s theorem by
replacing Smale’s hypothesis that the cobordism be simply-connected by a weaker simple-
nomotopy condition. Along the way, this more general theorem (the s-cobordism theorem)
was extended to other categories of manifolds. In particular, a PL s-cobordism theorem
was established. In this case, it was necessary to work completely within the context of
nandlebody theory. The Morse theory presented in this paper can be used to give a Morse
theoretic proof of the PL s-cobordism theorem, along the lines of the proof in [Mi2].

In the remainder of this introduction, we present an informal exposition of the contents
of the paper. To avoid minor complications we will restrict attention, in this introduction,
to simplicial complexes.

Let M be any finite simplicial complex, K the set of simplices of M, and K, the
simplices of dimension p. A discrete Morse function on M will actually be a function on
K. That is, we assign a single real number to each simplex in M. Write ¢ if ¢ has
dimension p, and 7 > ¢ if ¢ lies in the boundary of . We say a function

f:K—R

is a discrete Morse function if for every o(P) € K,
1) #{r"*V >0 | f(r) < flo)} < 1.
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(2) #{vPV <o flv)2 flo)} <L
For example, in figure 0.1, the function (i) is not a discrete Morse function as the edge
f~1(0) violates rule (2) and the vertex f~!(3) violates rule (1). The function (ii) is a
Morse function. 3
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FIGURE 0.1

We say o'?) is critical (with index p) if

(1) #{r™V >0 | f(r) < flo)} =0.

(2) #{v?P V<] f(v) 2 flo)}=0.
For example, in figure 0.1(ii), f~!(0) is a critical point of index 0, f~1(3) is a critical
simplex of index 1 and there are no other critical simplices. Note that if 0P is critical, it
is necessarily critical of index p.

The above definition provides a discrete analogue of the smooth notion of a critical point
of index p. For example. suppose z is a critical point of index 1 of a smooth Morse function
F on a smooth manifold of dimension n. Then the Morse Lemma (see [Mil], Lemma 2.2)

states that there are coordinates (ty,....t,), with z corresponding to (0,...,0), such that
in these coordinates

n
Fti, ... ta) = F(z) -] + D _¢2.
1=2

That is, beginning at the point z, F decreases to both sides in the t; direction, and
increases in the transverse directions. Now suppose ¢ is a critical edge of a discrete Morse
function f. Then f(o) is greater than f at either boundary vertex, and less than f at any
2-simplex with ¢ in its boundary (see, for example, figure 0.2).

FIGURE 0.2
That is, f decreases as one moves from the edge to either boundary component, and
increases in every transverse direction. We can see that this is, in fact, a discrete analogue

of the smooth situation. Moreover, we see that, heuristically, if o(P) is critical then the
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simplex ¢ can be thought of as representing the p-dimensional “unstable” space at a
smooth critical point of index p.

Before stating the main theorems, we need to present a definition. Suppose fisa
discrete Morse function on a simplicial complex M. For any ¢ € R define the level

subcomplex M(c) by
M(c) = U U o.

f(r)<c o&T

That is. M(c) is the subcomplex of M consisting of all simplices  with f(7) < ¢, as well
as all of their faces.

Theorem. Suppose the interval (a.b] contains no critical values of f. Then M(a) is a
deformation retract of M(b). Moreover, M(b) simplicially collapses onto M(a).

We will not define simplicial collapse here (the definition appears in section 1), but we
will mention that the equivalence relation generated by simplicial collapse is called simple
homotopy equivalence. This indicates that our Morse theory is particularly well suited to
handling questions in this category.

Theorem. Suppose o'P) is a critical simplez with f(o) € [a,b], and there are no other
critical simplices with values in ‘a.bl. Then M(b) is homotopy equivalent to

Ma) U e(P)

e{p)
where € 7 2s a p-cell. and 1t 15 glued to M(a) along its boundary eP.

Corollary. Suppose M is a simplicial compler with a discrete Morse function. Then M
1s homotopy equivalent to a CW complez uith ezactly one cell of dimension p for each
critical simplex of dimension p.

This Corollary implies the standard Morse Inequalities (see Corollaries 3.6 and 3.7 and
Mil]). We present a simple example. See figure 0.3

FIGURE 0.3



Here f~'(0) is a critical simplex of index 0, f~!(8) is a critical simplex of index 1, and
there are no other critical simplices. Thus, it follows from the above corollary that M is
homotopy equivalent to a circle, as is evident from the picture.

It is useful to indicate pictorially the simplicial collapse referred to in the theorem.
Suppose o(P) is a non-critical simplex with 7P+ > ¢ satisfying f(r) < f(o). We then
draw an arrow from o to 7. The resulting diagram can be seen in figure 0.4. A simplex is
critical if and only if it is neither the tail nor the head of an arrow. These arrows can be
viewed as the discrete analogue of the gradient vector field of the Morse function.

FIGURE 0.4

I- is better to think of the gradient vector field, which we now call V, as a map of
orented simplices. That is. if v is a boundary vertex of an edge e with f(e) < f(v),
we want to think of V(v) as a discrete tangent vector leaving v i.e., with e given the
orientation indicated by the arrow in figure 0.5

FIGURE 0.5

More generally, if 7P*1) > 5(P) satisfies f(7) < f(o) then we set V(o) = =7 with the
sign chosen so that
<0g,0V(ig)>= -1

where <, > is the obvious inner product on oriented chains (with respect to which the
oriented simplices are orthonormal). That is, V(¢) = — < 0,07 > 7 (the integer < ¢,07 >
is usually called the incidence number of 7 and ¢). Now V can be extended linearly to a
map

V:Cp(M,Z) — Cpt1(M,Z)

where, for each p, Cp,(M, Z) is the space of integer p-chains on M.
The next step is to define the discrete gradient flow. We define a map

$:Co(M,Z) — Cp(M,2Z),
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the discrete-time flow, by

¢ 1+ 90V + V4.

We illustrate by an example. Consider the following complex, with the indicated gradient
vector fleld V

FIGURE 0.6

Let e be the top edge oriented from left to right. We shall calculate

Ple) = e+ dV(e) + Va(e)

:n figure 0.7.
e Vie) V(de) dle)
FIGURE 0.7

The prope‘rties of the map & are examined in section 6.
Let CF C C,(M.Z) denote the d-imvariant p-chains, i.e., those p-chains ¢ such that
®(c) = c. Since

0% = ¢4,
the $-invariant chains form a differential complex
c*:0—c? L2, 2.ct L
We prove in section 7 that
H.(C*) = H.(M,2Z).

That is, this complex. which we call the Morse complex, has the same homology as the
underlying manifold. For discussions of the Morse complex in the smooth category see,
for example, [Mi2] and [KI1].

The Morse complex can also be defined using critical simplices. For each P let M, C
Cp(M,Z) denote the span of the critical p-simplices. We prove in section 8 that for each P

My, =CP.
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Thus. the Morse complex C? can be defined equivalently as the complex

2] 3 3
M:O-—niwn-—-o./wn_l—wan_z-—o...

where 3 is the differential induced by the above isomorphism. We prove in section 8 that
from this point of view, the differential can be defined by setting, for any oriented critical

simplex 77!

or = Z <dr,é> 2 Z m(y)| o

Frigr oriented Y€l(d,0)
critical o(®)

where ['(6.0) is the set of gradient paths from & to 0. Rather than define this term
precisely, we again illustrate by an example. In figure 0.8 we show a single gradient path
from the boundary of a critical 2-simplex T to a critical edge o, where the arrows indicate
the gradient vector field.

o

FIGURE 0.8
The coefficient m(~) is equal to =1 (in the case of a simplicial complex) and is deter-
mined by whether the orientation on 7 induces (in a manner defined precisely in section 8)

the chosen orientation on o, or the opposite orientation.

It is frequently desirable to deform one Morse function into another. It is often conve-
nient to work instead with the gradient vector field. When deforming the gradient vector
field. it is necessary to know that the resulting vector field is, in fact, the gradient vector
field of a Morse function. Thus, it is important to characterize those vector fields which
are gradient vector fields of Morse functions. In the smooth case, Smale provided such
a characterization in [Sml]. In section 9, we provide an analogous characterization of
discrete gradient vector fields. First, we define an object we call a discrete vector field.
Such objects have been previously studied in [Du], {Sta] (under a different name) and the
references therein (see [Fol] for discrete vector fields on 1-dimensional complexes). We
then prove, essentially, that any discrete vector field which has no closed loops is, in fact,
a gradient vector field.

The results in section 9 are very powerful, and in the remainder of the paper we present
some applications. For example, in section 11 we prove a “cancellation” theorem, a discrete
analogue of Theorem 5.4 in [Mi2]. That is, if #(P) and 7(P*1) are 2 critical simplices, and
if there is exactly 1 gradient path from 87 to o, then o and 7 can be cancelled. More
precisely, there is a Morse function with the same critical points except that ¢ and = are



ro longer critical. In the smooth case, the proof, either as presented originally by Morse in
‘Mo] or as presented in [Mi2], is rather technical. In our discrete case the proof is simple.
If. in figure 0.8, the indicated gradient path is the only gradient path from 9o to 7, then we
can vary the gradient vector field only along this path, replacing the figure by the vector
feld in figure 0.9.

FIGURE 0.9

Our characterization of gradient vector fields immediately implies that this new vector
field is the gradient vector field associated to some Morse function, and ¢ and T are no
longer critical. This cancellation theorem is the fundamental tool in the Morse theoretic
proof of the s-cobordism theorem.

In analogy with {Sm1] and {Sm2], in sections 9 and 11, rather than working with a single
cell complex, we work instead with a cellular triad, which plays the role of a cobordism in
the cellular category.

In Wi}, Witten provided a Hodge-theoretic proof of the main theorems of smooth
Morse theory. as well as an analytic derivation of the Morse complex. In [Fo2], we provide
a discrete Hodge-theoretic derivation of the main theorems of discrete Hodge theory and
the Morse complex.

Before leaving this introduction, we note that there have been earlier attempts to de-
velop a Morse theory for PL manifolds, by restricting attention to piecewise-linear func-
tions (see, for example {K] and [B-K]). There are some drawbacks to such a theory. For
example, while it is easy to define a critical point for such functions, without further re-
strictions the notion of the index of a critical point is more difficult. More significantly,
tne Morse complex does not appear in this setting. Hence there seems to be no direct way
of seeing the more subtle topological information contained in the Morse theory. The sim-
pier theory we present in this paper exhibits neither of these drawbacks, and, in addition,
applies to much more general cell complexes.



§1. Preliminaries.

Although the primary objects of study in this paper will be CW complexes, we will
occasionally require extra structure. The four types of complexes we will study (in order
of increasing structure) are: finite CW complezes, regular CW complezes, polyhedra, and
PL manifolds. In this section, we define these different types of complexes, as well as
some of their fundamental properties. The interested reader may skip this section and
refer back as necessary.

Let M be a finite CW complex (see [L-W] for definitions and basic properties of CW
complexes and regular CW complexes) and let K denote the set of open cells of M, with
K the cells of dimension p. The notation ¢ will indicate that ¢ is a cell of dimension p.
To indicate relationships between cells, we write 7 > 0 (oro < 7)if o # 7 and ¢ C 7,
where T is the closure of 7, and we say o is a face of 7. We write 7 > ¢ if either 1 = ¢ or
> 0.

Suppose ¢P) is a face of 7(P*1), Let B be a closed ball of dimension p + 1, and

h:B—M

the characteristic map for 7. i.e., h is a continuous map that maps interior(B) homeomor-
phically onto 7.

Definition 1.1. Say ¢'? is a regqular face of 7(P*1) if

(i) h: h~!(0) — o is a homeomorphism

(ii) h=1(o) is a closed p-ball.
Otherwise we sav o is an irregular face of 7.

We note that if M is a regular CW complex (and hence if M is a simplicial complex or
a polyhedron) then all faces are regular. Of crucial importance is the following property.
Suppose 0'P is a regular face of 7(P*!), Choose an orientation for each cell in M and
consider ¢ and 7 as elements in the cellular chain groups Cp(M,Z) and Cps1(M,Z),
respectively. Then

(1.1) (Or,0) = £1

where (07.0) is the incidence number of 7 and ¢ (for a proof see Corollary V.3.6 of [L-W)).
We will require the following property of CW complexes

Theorem 1.2. Suppose 7(P*1) > o(P) > 1(P=1) then one of the following is true.

(1) o is an irregular face of T.
(1i) v 1s an irregular face of o.
(iii) There is a p-cell & # o satisfying

T>8> V.



Proof. Suppose neither (i) nor (ii) is true. Choose an orientation for each cell of M.
Since ¢ is a regular face of 7, (1.1) holds, so that

or = o+ Z Cs0

for some integers ¢z. Similarly, since v is a regular face of o,

o = v+ ZC{,‘D.

Therefore.

0 = 8% = +00+ Z c;06

r>o%o
= v+ Z c500 + E csU.
>0 vy

For this equation to hold, there must be some &, with r > & # o, satisfying
06 = cv+ (sum of (p — 1)-cells other than v)

for some ¢ # 0. This implies & > v, so that 7 > & > v as desired. O
If M and .V are CW complexes, say M and NV are isomorphic, denoted by M = N, if
there is a homeomorphism
h:N—M
which maps each cell of .V homeomorphically onto a single cell of M. Say M is a subdivision
of M if there is 2 homeomorphism

h:M— M

which maps each cell of M into a single cell of M. Say M and \V are equivalent, denoted
by M = N if there are finite subdivisions M of M and N of V with M = N.

Suppose M is a CW complex and 0P} < 7'P*1) are 2 cells of M which satisfy

(i) o is a regular face of 7.

(i) o is not a face of any other cell.
Let V=M~ (cuUrT). Wesay M collapses onto N. More generally, we say M collapses
onto NV, and we write M \, N, if M can be transformed into N by a finite sequence of
such operations. For example, figure 1.1 illustrates a 2-simplex collapsing onto a vertex.

FIGURE 1.1



Note that if M \\ N then, in particular, NV is a deformation retract of M.

Recall that a regular cell complez is a CW complex M in which for every p-cell ¢ of
M there is a homeomorphism from the closed p-dimensional ball B into M which maps
the interior of B homeomorphically onto ¢. In particular, every simplicial complex, and
more generally every polyhedra (with a fixed polyhedral decomposition), is a regular cell
complex. We observe that if M is a regular cell complex, then if o(P) < +(P+1) 4 is
necessarily a regular face. From Theorem 1.2 we learn that if M is a regular cell complex,
then 7771 > g{P) > u(P~1) jmplies there is a 5(P) % o such that + > & > v. In fact, we
will make use of the following generalization.

Theorem 1.3. Suppose M is a regular cell complez, and for some p and r > 1 we have
7P=7) > v(P=D) Then there are p+ r — 1-cells 0P and ®) such that o # & and

T>OoO>U, T>JO> V.

Proof. The proof is by induction on r. Suppose r = 1, that is, we have 7(P*1) > y(p-1)
Since M is regular, the p-cells in #(= 7 — 7) are dense in 7, i.e.,

U oc=T—-rT.

a(P)(y

Thus. there is a p-cell 0*® with 7 > ¢ such that ¢ > v. Theorem 1.2 then guarantees the
existence of 5?) £ ¢ such that 7 > & > v.

For general r, we again have that the (p+ r — 1)-cells in # are dense in 7. Thus we can
fird a (p~r = 1)-cell ¢ with 7 > ¢ > ¢v{»~1), Continuing in this fashion, we can find a
\p—+r —2l-cell ¢ such that 0 > ¢ > v. Applying Thoerem 1.2 to the triple * > ¢ > ¥ we
learn there isa (p+ r — 1)-cell & # o such that 7 > & > ©. The cells ¢ and & satisfy the
desired properties. O

We will occasionally require that M be a polyhedron (see [St] for the foundations of
polyhedral topology). At such times, one can restrict attention to simplicial complexes
without any significant loss of information.

A CW complex M is a polyhedron if M can be embedded in some Euclidean space
such that every p-cell of M is convex and lies in a single p-dimensional affine subspace.
Isomorphism, subdivision and equivalence are defined as for general CW complexes, with
the proviso that when we speak of 2 map h: N — M between polyhedra we always mean
a map which is linear on each cell of N, and we only consider subdivisions M of M which
are themselves polyhedra (we will occasionally emphasize this point by refering to M as a
polyhedral subdivision).

The main advantage of using the more general polyhedra, as opposed to simplicial
complexes, is that one can restrict attention to a small set of subdivisions called bisections,
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in which a single cell is divided into two (see [St] for a definition). In figure 1.2 we show
a sequence of bisections of a simple polyhedron.

>

FIGURE 1.2

The following is Corollary 1.10.5 of [St].

Theorem 1.4. If M is any finite polyhedral subdivision of a polyhedron M then there is

a finite polyhedral subdivision M of M (and hence of M) which can be produced from M
by applying a finite sequence of bisections.

Corollary 1.5. If M and N are polyhedra, then M and N are equivalent if and only
if there 15 a_subdivision M of M resulting from o finite sequence of ‘_gisccg'ons, and a
subdirision N of N resulting from a finite sequence of bisections, with M = N.

At a few points, we will require that a polyhedron is a PL n-manifold, i.e. that each
vertex of M has a PL neighborhood equivalent with the standard n-cell (see [St] for precise
definitions). The reader need not be familiar with such objects. The main point is that we
can make use of Whitehead's remarkable Theorem of Regular Neighborhoods (see [Wh] or
.Gl! for simplicial complexes and [St] for PL manifolds). We quote a special case.

Theorem 1.6. Let M be a PL n-manifold with boundary and v a vertez of M. If M \, v
then M 1s a PL n-cell (i.e., M is equivalent to an n-simplez with its standard trangula-

tiony,

For applications of this theorem see Theorems 5.1 and 9.8.
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§2 Combinatorial Morse Functions.
In this section we introduce the main definitions. Let M be a finite CW complex. All
definitions and notation are as in §1.

Definition 2.1. A discrete Morse function on M is a function
f:K—R

satisfying for all 0 € K,

(i) If o is an irregular face of 7?1 then f(7) > f(o). Moreover,
#{r" V> 0| f(r) < flo)} <1
(i) If v»=1) is an irregular face of o then f(v) < f(o). Moreover,

#{LP V<o f(u) 2 flo)} £ 1.

Definition 2.2. Given a combinatorial Morse function fon M wesay o € K, is a critical
point of inder p if
(i) #{r7V > a0 f(r) < f(o)} =0.
i) #{vP ™V <o | f(v) 2 flo)} =0
We note that a face o of dimension p cannot be a critical point of any index other than
p. Thus, without any loss of information. we may refer to ¢ simply as a critical point.

Example 2.3. Definitions 2.1 and 2.2 imply that if M is regular then the minimum of f
must occur on a vertex, which must then be a critical point of index 0. This follows from
the observation that if p > 1, then every p-cell has at least 2 (p — 1)-dimensional faces.

Example 2.4. If M is a triangulated n-dimensional manifold without boundary, then the
maximum of f must occur on a n-face. which must then be a critical point of index n.
This follows from the observation that if p < n — 1, then every p-cell is a face of at least 2
(p + 1)-cells.

It follows from Definition 2.2 that a p-cell ¢ is not critical if and only if either of the
following conditions holds

(i) 37(P*D > ¢ such that f(7) < f(o).

(ii) Zv®»~Y < ¢ such that f(v) > flo).

Lemma 2.5. Conditions (i) and (ii) cannot both be true.
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Proof. Condition (ii) requires p > 1 which we now assume. Suppose (i) is true. Then o
must be a regular face of 7. Moreover, from condition (i) from Definition 2.1, if & # ¢ is
any other p-face of 7, we must have

f(@) < f(7)
so that. in particular,
(2.1) f(&) < f(o).
Now suppose (ii) is true. Then v must be a regular face of ¢. By Theorem 1.2, there is a

p-cell & # o satisfving
T>0>v.

From condition (ii) of Definition 2.1, f(v) cannot be > both f(o) and f(&). Thus f(v) <
f(6) Combining this with (2.1) we learn

flo) £ f(v) < f(6) < f(r) £ f(o)

which is a contradiction. T
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§3 The Morse Theorems for Regular Cell Complexes.

In this section we prove the main theorems of Morse theory in the case that M is a
regular cell complex (the theorems are extended to general CW complexes in Corollary
8.3 and section 10). Let M be a regular cell complex and f a discrete Morse function on
M.

Definition 3.1. For ¢ € R, define

That is, M(c) denotes all cells on which f is < ¢, as well as all of their faces. In
particular, M(c) is a subcomplex of M.

As it stands. to see if a cell o with f(¢) > ¢ lies in M(c) we must see if there is any
with o <7 and f(r) < c. In fact, it is enough to consider = with

dimr =dimeg + 1.
This is the content of the following lemma.

Lemma 3.2. Let o be a p-cell of M and suppose T > o. Then there is a (p+ 1)-cell 7
with o < ¥ < 7 and

f(F) < (7).

Proof. Since 7 > ¢. it follows that dim7 > dime. If dimrT = p+ 1 wecanlet ¥ = 7.
Assume
dimr=p+r, r>1.

Tren by Theorem 1.3 we can find two (p + r — 1)-faces vy, vg satisfying

T>U1 >0
T>U > 0.

From condition (ii) of Definition 2.1 either

fler) < f(r)

or

f(v2) < f(7).

In either case the result follows by induction. O

We now arrive at the main theorems of Morse theory.
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Theorem 3.3. If a < b are real numbers such that [a,b] contains no critical values of f,
then

M(b) \ M(a).

Proof. Notethat if 7(P*1) > 5(p) satisfies f(7) < f(0) then we may perturb f by replacing
f(7) by f(r)—¢€ or f(o) by f(o)+e, for € > 0 small enough, without changing which cells
are critical. If o!® satisfies f(r(P*1)) # f(o) # f(v®P=D) for each 7®+D) > g > y(=1)
then we may perturb f by changing f(o) to f(0) e, for e small enough, without changing
which cells are critical. Combining such operations, we may perturb f slightly without
changing M (b) or M(a) so that

f:K—R

is 1-to-1.

If f~'(la,b}) = @ then M(a) = M(b) so there is nothing to prove. Otherwise, by
partitioning [a.b] into smaller intervals if necessary, we may assume there is a single non-
critical cell o with

f(o) € [a,b].
By Lemma 2.5 exactly 1 of the following holds:
(i) 277D > o with f(r) < flo).

(i) 20D < o with f(v) > f(o).

In case (i). we must have f(r) < a. Thus 7 C M(a). Since o is a face of 7, we have
o C M(a) so that

and again there is nothing to prove.

Suppose case (ii) is true. From Lemma 2.6, case (i) cannot be true, so for all 7®*+1) > ¢
we have f(7) > f(o). In particular, f(r) > b. It follows from Lemma 3.2 that for any
T > 0. fir) > b. Therefore

onM(a)=0.

e have assumed there is a v‘P~!) < o with f(v) > f(0), so that, in particular, f(v) > b.
I£ 0P~ 2 v is any other (p — 1)-face of o we must have

f(t) < f(o)
(from condition 2(ii) of Definition 2.1) so that
f(0) < a.

Thus, T and all its faces are contained in M(a).
Let ') # o be any other p-face of M with

o> v.
Then condition 2(i) of Definition 2.1 implies
f(e) > flv) > b
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By Lemma 3.2, if ¢ is any face of any dimension such that ¢ > v then
f(e) >0

so that
v .M(a) = 0

It follows that M (b) can be expressed as a disjoint union
M) =M(a)UoUv
where v is a free face of 0. Therefore

M)\ M(a). O

Theorem 3.4. Suppose o'P) is a critical point of indez p with

flo) € [a’b]

and f~1(la.b}) contains no other critical points. Then M(b) is homotopy equivalent to
Ma) | Jer
eP

where eP denotes a p-dimensional cell with boundary €P.

Proof. As in the proof of Theorem 3.3 we may assume f is 1 — 1. Thus we can find o’
and & with .

a<a <b <b
with

o= fY(a',b)).
From Theorem 3.3 M(b) \, M(¥) and M(a’) \, M(a) so it is sufficient to prove that
M(b') is homotopy equivalent to

M(a") Uep.
&P
Since o is critical, if #(P*1) > & we have
f(r) > f(o)
so that
f(r) > V.

From Lemma 3.2, if 7 is any face of M with 7 > ¢ then
f(r)>V.
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Thus

oNM()=0.

It also follows from the criticality of o that for every v(P~1) < o we have

f(v) < f(o)
so that

flv)<d
which implies

v C M(a)
Therefore,

o C M(ad)
so that

M@ = M@)o
Since ¢ is homeomorphic to eP, the theorem follows. O

Let my(f) [or simply m,, if it will not cause confusion] denote the number of critical
points of f of index p. The my’s are called the Morse numbers of f. As an immediate
corollary of Theorems 3.3 and 3.4 we learn

Corollary 3.5. M is homotopy equivalent to a CW complez with exactly my(f) cells of
dimension p.

Let F be 3 field and
‘ b, = dim H (M, F)

the i Betti number with coefficients in F.
Corollary 3.6. (The Strong Morse Inequalities) For any N >0

MmN —MN-1+--Fmg2by—bv_1+ - £ bo.

Corollary 3.7. (The Weak Morse Inequalities)

(i) For every N
my 2 bn.

(ii)
x(M)=0bo—by+by = % bgimm

=mg=—m1+ My — £ MdimM-

For a discussion of how the corollaries follow from the preceding theorems, see [Mil).
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¢4 Examples of Discrete Morse Functions.
Every CW complex M has a discrete Morse function. For example, define a Morse
function f by setting, for each o € K,

f(g) = dimoe.

Then every cell is critical. Corollary 3.5 (for regular cell complexes) and Theorem 10.3 (for
general cell complexes) imply the tautological statement that a CW complex with m,, faces
of dimension p is homotopy equivalent to a CW complex with my cells of dimension p.

We now examine ways in which a Morse function on one cell complex may induce a
Morse function on another cell complex.

Lemma 4.1. Let M be a CW complez and N C M a subcomplez. Then any discrete
Morse function on M restricts to a discrete Morse function on N. If o € N is a critical
pont for the original function, then it is critical for the restriction.

Proof. The lemma follows directly from Definitions 2.1 and 2.2.
The following lemma is a converse to Lemma 4.1.

Morse function on N can be ertended to a discrete Morse function on M. That is, if f is
a Morse function on N, then there is a Morse function g on M such that

Lemma 4.2. Let M be a cell complez and N C M a subcomplez. Then any discrete

whenever o C N.

Proof. Let ¢ = max f(0). Define a combinatorial function g on M by setting, for each

o\
face o on M
flo) if cCN
g9(o) = . . ,
c+dimeo if o € N.

It can be easily seen that g is a Morse function on M that extends f. O
The Morse function constructed in the above proof may be very inefficient. In particular,

every face of M — N is critical. There may exist extensions to M with many fewer critical
points. This is partially rectified in the following lemma.

Lemma 4.3. Let M be a CW complez and N C M a subcomplez such that M \, N. Let
f be a Morse function on N and let ¢ = max f(c). Then f can be ertended to a Morse

function on M with
N=M(c)

and such that there are no critical points in M — N.
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Proof. By induction on the number of elementary collapses required, it is sufficient to
prove the lemma when M collapses onto N by a single elementary collapse. Suppose ¢ is
a face of M with a free edge 7 < ¢ such that M is a disjoint union

M=NUcUT.

Define a Morse function g on M by setting

Then it is easy to check that g satisfies the desired properties. O

Corollary 4.4. Let A™ denote the n-simplez with its standard triangulation, and A™ its
boundary. Then

(i) A™ has a Morse function with ezactly 1 critical point.
(i) A™ has a Morse function with ezactly 2 critical points.

Proof. Part (i) follows from Lemma 4.3, since A™ collapses onto any vertex. Part (ii)
follows from Lemmas 4.2 and 4.3 since, for any (n —1)-cell ¢ of A", A™ — & collapses onto
any vertex.

For partial converses to Corollary 4.4 (ii) see §5.

We now present some general examples of how Lemma 4.3 may be used to construct
Morse functions with desired properties.

Let M be an n-dimensional CW complex and f a discrete Morse function on M. Say
f is a polar Morse function if

mo(f) =ma(f)=1.

This definition was introduced by Morse in {Mo] where he proved that every smooth
compact n-manifold without boundary has a smooth polar Morse function. We now prove
a discrete analog. The proof proceeds in two steps.

Lemma 4.5. Let M be a connected polyhedron. Then M has a Morse function f with
mo(f) = 1. Moreover, if v € Ko is a vertez of M, then f can be chosen so that v is the
unique critical point of f of indez 0.

Proof. Let M, denote the 1-skeleton of M. Then M, is a connected graph. Let T be a
maximal (= spanning) tree of M. That is, T is a connected, contractible subgraph of M;
which contains every vertex of M) (and hence every vertex of M). It is easy to see if v is
any vertex of T then

T\, v.

Thus, by Lemma 4.3, there is a Morse function on T such that v is the only critical point.
By Lemma 4.2, this Morse function can be extended to a Morse function f on M. Since
M — T contains no vertices, v is the only critical point of f of index 0. O
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Theorem 4.6. Let M be a connected polyhedron which is topologically a compact n-
manifold without boundary. Then M has a polar Morse function. Moreover if v is a
vertez of M and o an n-face, then there is a polar Morse function f such that v is the
unique critical point of indez 0 and o is the unique critical point of indez n.

Proof. If dimM = 0 then M must be a single point and the theorem is trivial.
If dimM =1 then M must be a circle. Let N =M ~¢. Then N \, vso N has a
Morse function f with v the only critical point. Let

= max
c 12 f

and extend f to M by setting
flo)=c+1.

Then f has the desired properties.

Suppose dimM > 2. Let N = M — ¢. Then N is a connected polyhedron which is
topologically an n-manifold with boundary. Therefore N \ L, where L is a subcomplex of
dimension < n -1 which contains the n — 2 skeleton of N. (This can be seen by collapsing
the n-faces of N one at a time along free (n — 1)-faces. For a proof see [Gl] p. 52.) From
Lemma 4.5, L has a Morse function f such that v is the only critical point of f of index 0.
By Lemma 4.3 f can be extended to .V without adding any critical points. Let ¢ = max f.

Extend f to M by setting
fle)=c+1.

Then f has the desired properties. 3

Our last goal of this section is to examine the relationship between Poincaré duality and
ciscrete Morse theory. Recall that if “f is a compact n-dimensional PL manifold without
boundary then for any field F and any p, 0 < p< n

H,(M,F) = H,_,(M,F).

If M is a smooth manifold this duality is reflected in Morse theory by the observation that
if f is a smooth Morse function then — f is also a smooth Morse function. Moreover, pe M
is a critical point of f of index p if and only if p is a critical point of — f of index n — P

Now let us consider the discrete category. If M is a polyhedron and f is a discrete Morse
function, then — f is not a Morse function. Of course, a general polyhedron does not satisfy
Poincaré duality. However, suppose M is a compact PL n-manifold without boundary.
Then one can associate to M a dual polyhedron M*. That is, M* is a PL manifold
homeomorphic to M. Moreover, for each p, 0 < p < n, there is a 1-1 correspondence
between K,(M) and Kn—,(M"). If 0 € K,(M) denote the corresponding (n — p)-face of
M* by ¢°. Then

T>0— 1" < 0"

The following theorem follows directly from the definitions.
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Theorem 4.7. Let f be a Morse function on a compact PL n-manifold M without bound-

ary. Then —f is a Morse function on M*. That is, we can define a Morse function g on
A*® by setting

g9(6%) = —f(o).

Moreover, 0'P) € K, (M) is critical if and only if o*(®—P) ¢ Kn_p(M?*) is a critical point
of =f on M*. In particular, for allp, 0 < p<n

mp(f) = Mn-p(-f).
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£5. Sphere Theorems.

If M is a smooth compact manifold without boundary with a smooth Morse function
with exactly 2 critical points then M is homeomorphic to a sphere ({Re], {Mil]). In this
section we prove the analogous theorem in the cellular context under various assumptions
on M.

Theorem 5.1. 1) Let M be a general CW complez with a Morse function f with ezactly
2 critical points. Then M ts homotopy equivalent to a sphere.

2) If, in addition, M is a finite polyhedron which is topologically an n-manifold without
boundary then M is homeomorphic to S™.

38) If, in addition, M is a compact PL n-manifold without boundary then M is piecewise
linear equivalent to a PL n-sphere (i.e., M is equivalent to A™*!, the boundary of an
(n + 1)-simplex with its standard triangulation).

Remark. Our proof of (2) requires the Poincaré conjecture in dimensions # 3. However,
our proof of (3) does not rely on the Poincaré conjecture, and instead follows from White-
head's theorem on regular neighborhoods [Wh], as extended by Stallings to polyhedra
St

Proof. (1) Since Ho(M,R) # 0, the Morse inequalities imply that at least one critical
point must have index 0. If the other critical point has index p, then Corollary 3.5 (if M
is a regular cell complex) and Theorem 10.3 (if M is a general CW complex) imply M is
homotopy equivalent to a p-cell with its boundary glued to a point, which is precisely a
p-sphere.

(2) Asin (1). at least one critical point must have index 0. Moreover, since H,(M,Z/2Z)
# 0 the Morse inequalities imply there must be at least one critical point of index n.
Thus. from Corollary 3.5 and Theorem 10.3, M is a homotopy n-sphere. By the resolution
of the generalized Poincaré conjecture in dimensions other than 3, if n # 3 then M is
romeomorphic to S™.

Suppose n = 3. Any finite polyhedron which is topologically a 3-manifold without
boundary is, in fact, a PL 3-manifold ({Gl] Exercise II1.8). Thus in dimension n = 3, the
result follows from part (3).

(3) Let o be the critical n-face of f and let N = M —¢. Then N has only 1 critical
point occuring at a vertex v. Hence, by Theorem 3.3 NV \ v. It follows from Whitehead’s
theoremn (Theorem 1.6) that N is a PL n-cell. Clearly & is a PL n-cell. Thus

M=NU;&
is a PL n-sphere. O

The following theorem is a partial converse to Theorem 5.1 (compare with Corol-
lary 4.4).

Theorem 5.2. Suppose M is a PL n-sphere. Then, by performing a finite sequence of

bisections, M can be subdivided to a polyhedron M' which has & Morse function with
ezactly 2 critical points.
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Proof. If n =0 the theorem is trivially true so assume n > 1.

Since M = A™*!, M and A"*! have isomorphic subdivisions. In fact, these subdivisions
can be chosen to result from a finite sequence of bisections of M and A™*!, respectively.
Since A™*! has a Morse function with exactly 2 critical points (Corollary 4.4), the theorem
follows from Theorem 11.1. O

Theorems 5.1 and 5.2 yield an interesting reformulation of the PL Poincaré conjecture.

Corollary 5.3. The following 2 statements are equivalent

1) (PL Poincaré Conjecture) Let M be a PL n-manifold which is a homotopy n-sphere.
Then M is a PL n-sphere.

2) Let M be a PL n-manifold which is a homotopy n-sphere. Then, by a series of
bisections, M can be subdivided to a complex which has a Morse function with ezactly 2
critical points.
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£€6. The Discrete Gradient Vector Field and the Associated Flow.

In smooth Morse theory, the gradient of the Morse function and the associated flow
are essential tools in investigating the relationship between the critical points and the
topology of the underlying manifold. In this section we define the gradient vector field
and the corresponding flow in the cellular setting. In the following sections, the discrete
gradient flow will be used to establish a more precise relationship between the critical
points and the topology of the underlying complex than that provided by Theorems 3.3
and 3.4. We emphasize that in this section, and in the rest of the paper, M will denote a
general CW complex, i.e., M need not be regular.

Our first goal is to define an object Vy which will represent a discrete analog of the
gradient vector field —V f, and the associated flow ®;. For now, we assume a Morse
function f has been fixed, and we write V and ®, for V; and ¢ s, respectively. We begin
our discussion with the vertices of M. Let v € Kp. If v is a critical point, then any
reasonable definition of gradient should vanish at v so we set

Vi{v) =0.
If v is not critical. then there is a unique edge e > v with

fle) < f(v).

The edge e specifies the unique direction in which f is not increasing so =V f at v should
be e. We must now be more precise. We wish to think of V(v) as a discrete tangent vector
poirung away from v. (See figure 0.6). That is, V(v) is e with a chosen orientation.

We pause here to introduce the chain complex of M. Fix an orientation for each cell ¢
of M. Let C,(M.Z) denote the free abelian group generated over Z by these orientated
cells of M. We now identify —o with o given the opposite orientation. Let & denote the
usual boundary operator

8:Cpo(M,Z) — Cpy (M, 2Z).

Then

vir-lico

where the ¢'s are integers called the incidence numbers.
It is convenient to introduce an inner product <,> on C. by declaring the cells of M
to be an orthonormal basis. Using the inner product we can write

do = Z < fo,v>v.

vir-liceo

We are now ready to complete our definition of V. If v € Kj is not critical and the
edge e satisfies

e>v, fle) < f(v)

we set

V(v) = xe
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where the sign is determined so that
<oV(@),v>= -1

It is now clear how to define the (discrete time) flow & on the vertices of M. If ¢ is
critical, i.e.. V(v) = 0, then v is fixed under the gradient flow, so

&(v) = v.
If v is not critical, and V(1) = e, then v should flow to the “other end” of e. That is,
®(v) = v+ (V(v)).

Note that this formula holds for all vertices, whether critical or not.
We can extend V and ¢ linearly to maps (which we also call V and @) on chains

V: Co(M, Z) — C\(M, 2Z)
®: Co(M,Z) — Co(M, Z).

We now extend V to higher dimensional cells.

Definition 6.1. Let ¢ be a p-cell of M (with a fixed orientation). If thereis a r(P+1) > ¢
with f(7) < f(o) we set
Vie) = - <38r,0> 7.

‘note that o must be a regular face of 7, so (67, ¢) = =1).If there is no such T, then set
Vie)=0.
For each p. we extend 1" linearly to a map
ViCo(MZ) — Cpi (M, 2Z).

Note that V(o) = 0 does not imply o is critical. Consider the following example (where
tne arrows indicate the chosen orientations on the edges).

3
2 p]
1 1
0
FIGURE 6.1

We observe that V(e;) = 0. However, e; should not remain fixed under ®. The
boundary of e; moves downward, so e; should also. The main point is that for any face
o. V(o) can be thought of as representing the component of -V f which is transversal to
. The component of —Vf which is tangent to ¢ is determined by V(90).
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Definition 6.2. For any oriented face o we define the (discrete time) gradient flow ¢ by
¢(o) =0 +0V(o) + V(o)

or, more succinctly,

d=14+3V+Va

(see Figure 0.8).
The main properties of V' and ¢ are contained in the following theorems.

Theorem 6.3. 1) VoV =0.
2) If o is an oriented p-cell, then

#{vP~ D | V() =20} < 1.
3) If o is an orented p-cell of M then

o s critical —— [0 ¢ Image(V) and V(o) = 0].

Proof. 1) If V(v®=V) = +¢( then v < ¢ and f(¢) < f(v). By Lemma 2.5 there is no
7 P*Y > g with f(7) € f(o). Thus

V(o) =0.

JIEV (077 1) = 5% then v < 0 and f(o) < f(v). By condition 2(i) of Definition 2.1,
U is unique.
3) From Definition 2.2, ¢ is critical if and only if
(i) There,is no v'?~Y < ¢ with f(v) > f(¢) and
) There is no 7'7"1) > ¢ with f(7) < f(0).
These conditions are equivalent to
(i) There is no v»~1) with V(v) = 20 and
(ii) Thereis no 7(P*1) with V(o) = +7
Le.,
(i) o ¢ Image(V) and
(i) V(a)=0. O

Theorem 6.4. 1) $8 = 09.
Let 01.... .0, denote the p-cells of M each with a chosen orientation. Write

@(Gi) = Z Qai;0;.
J

2) For every i, a;i =0 or 1, and a;; = 1 if and only if o; is critical.
3)Ifi#j thenay; € Z. Ifi # j and ai; # 0 then f(o;) < f(0,).
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Proof. 1) Using ® =1+ 8V + V4 we find

P9 =(1+V3+3V)d
=9+ Vd*+09Vvsa
=3d+0Vo

8% = 8(1+V + V)
=0+ 0Va+6*V
=0+ avVa.

2) and 3). We prove these simultaneously. First, since 8 and V both map integer chains
to integer chains, each a,; € Z.

By Theorem 6.3 each cell 0‘?) satisfies exactly one of the following properties:
(i) o is critical.
(ii) =o € Image(V).
(ili) V(o) # 0.
We examine each case independently.
(1) If o is critical, then V(g) = 0, so

®(c) =0+ V(d0)
=0+ Y (do,0)V(v).

L'(P-1)<G

S:nce o is critical. for each v~V < ¢

fv) < f(o).

For each such v. either V(v) =0or V(v) = 6 with

f(8) £ f(v) < f(o).

Thus
(o) =0+ as6
where
a; # 0= f(g) < f(o).
(ii) Suppose o € Image(V) C ker(V). Then
®(0) =0+ V(8o)
=o+ Y (fo,v)V(v).

vir-l<eo
By Theorem 6.3 part (2) there is exactly one (p — 1)-face ¥ < ¢ with
V(D) = %o
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and
(06,0) V(D) = —0.

\Moreover. T # v < o implies V(v) =0 or V(v) =& with f(6) < f(v) < f(¢). Thus

where as; = 0 implies (&) < f(o).
(i) Suppose V(o) = — < 97,06 > 7 # 0. Then

®(0) = 0+ V(80) + 8(V(a)).

Since V(o) # 0. =0 ¢ Image(V). Thus, for each v(P~1) < ¢, either V(v) = 0or V(v)==a
where

f(8) £ f(v) < flo).

Moreover,

0Vig)) = —<0r.c>0r = —< 07,0 >2a+§:ba&
= —U+Zba&

where b # 0 implies f(&) < f(7) < f(o).
This completes the proof. T

Intuitively. Theorem 6.4 says that & decreases f and ¢ C ®(o) if and only if ¢ is critical.
For example. consider again the circle in figure 6.1. In the smooth category, if & were the
r.me 1 map corresponding to the flow along —V f, where f is the height function, we would
have

o
G
2
N 1N v
a 0O o
S

In fact, with the combinatorial Morse function f indicated in the figure

$le;) =e1+ex+e€3
d(e2) = $(e3) = 0.
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£7. The Morse Complex and Invariant Chains.
Let CF(M,Z) denote the ¢-invariant p-chains of M. That is,

C¥(M.Z)={ce Cpo(M,2Z)|®(c) =c}.

From Theorem 6.4 (i), the boundary operator 8 maps Cg’ to C;,”__l. Thus we have a
differential complex

(7.1) c*0—cimz)y 2t mz) 2 LM, z) —o.

The complex C® is called the Morse complez. For discussions of the Morse complex in the
smooth category, see, for example, [Mi2] and [KI].

The goa. of this section is to prove that the homology of C% is precisely the homology
of M. The first step is to investigate the stabilization map C. — C? given by

&> = lim ¢V,
N—-co

In fact. the goal of the next 2 results is to show that for N large enough
d>® = CID\'

Lemma 7.1. Letce C;b(.\!. Z) and write
=3 ae

Let

0" = any marimizer of {f(o)]|a, # 0}.
Then ¢* 15 a-critical cell of f.
Proof. Since cis ®-invariant
c = $(c) = Z a,®(0).
0K,

Therefore,
Qg =<c¢, 0" >= Z a, < (o), 0" >.
cEK,

From Theorem 6.4 (iii), if o # ¢* and f(o) < f(c*) then
< ®(o),0">= 0.

Thus,
0#ape = ao- < ¥(c%),0" >

SO
<®(c°),0" > # 0.

Theorem 6.4 (ii) now implies o* is critical. O
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Theorem 7.2. For N large enough &V = ¢V+1 = ... = §>,

Proof. Fix 0 € K. We will show that for N large enough
V(o) = Nt (o) = - = 9¥(q).
The proof is by induction on

r = #{c€K|f(G)<flo)}
Suppose 7 = 0, then by Theorem 6.4, either ®(0) = ¢ or $(¢) = 0. In either case
®(o) == (0).
For general r, suppose first that ¢ is not critical. Then, by Theorem 6.4
@(U) = Z 055.
f(a)<f(o)
By induction on r there is an N so that <I>‘Q(6) is ¢-invariant whenever f(5) < f(o).

Therefore. ¥ *1(g) is ®-invariant.
Now suppose ¢ is critical, and let

¢ =V(do).

Then
P (o) =0c+c+P(c)+ -+ O™ (o).

It follows that & (o) is ®-invariant if and only if V¥ (c) = 0 for some N. As seen in the
proof of Theorem 6.4. ¢ is the sum of p-cells & with f(&) < f(c). By induction, there is
an N so that & (c) is b-invariant.

We now observe that ¢ € Image(V) and Image (V) is ®-invariant, since

OV = (1+8V + Vo)V = V(1 + V)

from Theorem 6.3 (i)). Thus, @N(c) € Image(V). From Theorem 6.3 (iii), the image
of 1" is orthogonal to the critical faces. Hence ®V(c) is a ®-invariant p-chain which is

orthogonal to the critical faces and therefore, by Lemma 7.1, ®V(c) = 0. That is, for N
large enough ¢~ (c) = 0 so V(o) is ®-invariant. O

By Theorem 7.2, there is an N large enough so that for every chain ¢
V() =@V () =N () = -+ .
Let &> (c) denote this $-invariant chain. Then for each p we have maps

°: Cp(M,2Z) — C¥(M,2Z)
i CP(M,Z) — Cp(M,Z)

where 1 is the natural inclusion. Note that $* o1 is the identity on Cg’(}\/!, Z).
We are now ready to state and prove the main theorem of this section
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Theorem 7.3. Let C?¥ denote the Morse complez (7.1). Then for each p

H,(C?) = H,(M,Z).

Proof. Consider the following commutative diagram

0 —Cn(M,2) 2 Cocy(M,2) 2= - 2aCo(M,Z) — 0
le=Ti o= T [e= Ti
0—C2(M,2) L oy (M, Z) 2. 2L Cy(M,Z) — 0.
Let

$*: H.(M,Z) — H.(CP
i.: H.(C?) — H.(M,Z)

denote the induced maps on homology. Our goal is to show that i, and $> are isomor-
phisms. In fact, we will see that they are inverses of each other. Since ®® o4 = 1 it follows
that

1=(9%0i)e =dF 0i,.

To see that 1, = & =1 it is sufficient to find an operator
L:C.(M,2Z)— C.1(M,2)

such that
1—210®9* =0L+ Lo

since then 1 — 1 ¢ > would map closed forms to exact forms and would thus be the zero
map on homology. Since 1 is the identity map on chains and > = &~ for some N large
enough

1-100% =1-¢"=(1-8)(1+&+---+ N1
=(-0V-Va)(1+&+-- + &V
=6[—V(1+<I>+----+-<I>N‘1)]+[—V(1+¢+...+¢N-1)]a

(we have used Theorem 6.3 (i)). Let

L=-V(1+®&+---+&"1). O
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¢8. The Morse Complex and Critical Points.

In section 7 we defined the Morse complex, built out of the ¢-invariant chains of M,
which has the same integer homology as M. In this section we will show that the Morse
complex can be expressed directly in terms of the critical cells. The first goal of this section
is to prove that the space of $-invariant chains is canonically isomorphic to the span of the
critical cells. The second goal is to express the boundary operator of the Morse complex
more explicitly in terms of the critical points.

For each p, let M, denote the span of the critical p-cells, i.e.

M, = Z 6,0 |0, € Z and a, # 0= o critical
oeK,

By restricting the map ®> defined in section 7, we get a map
(8.1) = : M, — C3(M, Z).
Fix an orientation for each p-cell ¢ and identify —o with o given the opposite orientation.

Lemma 8.1. Let o be a critical p-cell. If & # o is critical, then
< ®*(g),6>= 0.

Proof. As seen in the proof of Lemma 7.1
*>(oc)=0c+c¢

3
7

where ¢ € Image(V') C ,M;,'“. This proves the lemma. O

Theorem 8.2. The mep (8.1) is an isomorphism.
Proof. (Onto) Suppose c € C;’(M., Z), and let
¢ = Z <c0o>0€ M,
o critical

We shall see that
&>(¢) =c.
It follows from Lemma 8.1 that for any critical ¢
< ®*(@),0>=<c,0>.
Therefore, ®(¢) — c is a $-invariant chain such that for any critical o
< ®®(E)—c,o>= 0.

It now follows from Lemma 7.1 that

®><(¢) —c=0.
(One-to-one). Suppose ¢ € M, satisfies ®(c) = 0. Then, for any o critical

< ®=(c),oc > = 0.

It follows from Lemma 8.1 that for any o critical

<c,o>= 0
which implies c=0. O
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Theorem 8.2 implies that the Morse complex is isomorphic to

(8.2) M0 — My 2 Mpoy 2= 2 My — 0
where, for ¢ € My, o a critical (p — 1)-face
(8.3) <8c.o>=<80%c0> =< d%0c,0 >

(by Theorem 6.3 (i)). Since H.(M) = H.(M,Z), we learn from the Universal Coefficient
Theorem that for any field F,

H(MgF)=H.(M)8F = H,(M,Z)8F = H.(M,F).

Thus, M @ F is a differential complex of vector spaces over F with the same holmology
as M. Since dimp Mp 8 F = m,(f), it follows from standard linear algebra that

Corollary 8.3. If M is a finite CW complez, f is a discrete Morse function on M and
F is any coefficient field, then the Strong Morse Inequalites (as stated in Corollary $.6)
and hence the Weak Morse Inequalities (as stated in Corollary 8.7) hold.

Our goal now is to find a more convenient expression for 8. Namely, we will show that
for 7P+ and ¢'® critical, < 87,0 > can be expressed in terms of gradient paths from o7
0 o.

Definition 8.4. 4 gradient path of dimension p is a sequence + of p-cells of M
Y = 00,01,02,...,0¢

such that forevery 1 =0,....,r =1

(1) if V(o,) =0 then 0,41 = 0.
(i) if V(UJ # 0 then Oi+1 < V(O’,) and Civl # 04
We say v is a gradient path from o to o-, and the length of v, denoted by |4/, is equal to
T.
We record in the following lemma two easily verified properties of gradient paths

Lemma 8.5. (i) If vy = 00, 01,...,0, is a gradient path then for eachi=0,1,...,s -1
either oy = ai4y or f(oy) > f(ous1) .
(1) If i = 00, 01,...,0, and y2 = 07, Ort1, ... ,0r4s are two sequences of p-cells, then

00,01y -y0ryOr4ly: -y Oras

1s a gradient path if and only if both vy and 2 are gradient paths.

Suppose o # & are two p-cells of M and 7 is a (p+1)-cell with 0 < 7 and 5 < 7 and both
are regular faces. Then an orientation on ¢ induces an orientation on & in the following
way. An orientation on ¢ induces an orientation on 7 (so that < 87,0 >= —1). Given
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FIGURE 8.1

the orientation on 7, we choose the orientation on & so that < 87,5 >= 1. Equivalently,
fixing an orientation on ¢ and 7, an orientation is induced on & so that

< 0r,0 >< 01,6 > = -1.

Loosely speaking, we induce an orientation on & by “sliding” ¢ across 7 to §. In figure 8.1,
an orientation is shown for ¢ and the induced orientations on 7 and & are indicated.

On the other hand, if o = &, then an orientation on ¢ induces the same orientation on &.
Thus, if v = 09, 01,...,0, is a gradient path an orientation on oo induces an orientation
on each o, in turn, and, in particular, on o,. Recall that we have fixed an orientation for
each face of M. Write m(vy) = 1 if the fixed orientation on ¢o induces the fixed orientation

on o,, and m(vy) = —1 otherwise. Equivalently,
r—1
(8.4) m(~v) = H - < 0V(a),0i >< 8V (0y), 0041 > -
V(o0

We can use this formuia to define the multiplicity of any gradient path.
Definition 8.6. Let
Y = 00,01,...,0r

denote a gradient path of dimension p. We define the multiplicity of 4, m(y), by the
formula (8.4).

Note that if v9 = 09,...,0, and 1 = or,..., 0r4, are gradient paths, then
(8.3) m(y1)m(yo) = m(m © o)
where
V1OV = O0y.--y0rye-.yOrgg.

For p-cells o and &, let T'+(0,5) denote the set of all gradient paths from ¢ to & of length
r. The remainder of this section is devoted to proving that if 7(®*+1) and ¢(P) are critical,

then _
<0r,o>= Z < dr,a> Z m(%)

&P <r v€lN(5,0)

for any N large enough.
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Definition 8.7. Define a reduced gradient flow
& Cp(M,Z) — Cp(M,2Z)

by _
®=1+09V.

Note that <I> does not share most of the desirable properties of ® listed in Theorem 6.4.
However, ® is simpler to work with, and can be substituted into (8.3).

Lemma 8.8. For any critical faces 7(P*1) gnd o(P)

<8ro>=< <-I~>°°6'r,a > .

Proof. It is sufficient to prove that for every r > 0
< 5’67’,0 >=<d'0r,0 >.
This follows from the observation that for every chain ¢ and every r > 0
¢7(c) - &7 (c) € Image(V) € MZ.
We prove this by induction on r. For r = 0 there is nothing to prove. For general r
®7(c) = B () = 83" () + V(D)

for some chain ¢ by the inductive hypothesis)

=(d+ )(@" (c) + V(&)
37 (c) + B(V (&) + VI ~L(c) + VOV (d)
37 (c) + V(c+ 83" (c) + VAV (&)

where the last equality follows from
V=V+0Vi=V. O

Lemma 8.9. For any o\”, o{” € K,

(8.6) < &0y,00> = Z m(y).
v€l(01,02)
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Proof. First suppose V(o;) = 0. Then

1 oy=0,

<b01,00>=<01,00> = {
’ 0 o) #o0;.

On the other hand, the only gradient path of length 1 beginning at o, is the trivial gradient
path v = 01, 01 so that m(y) = 1. Thus, if 01 # 02, T'1(01,02) = 0 so

> m(r)=0

Y€l (01,032)

and if o1 = 02, I'1(01,02) = v so

v€l(o1,02)

Now suppose V(o) # 0. If 01 = 02 we calculate the left hand side of (8.6) to find

N

<501,01 > =< 01,04 >+<6V(01),0’1>
=1-1=0.

On the other hand, since V(o) # 0 there is no gradient path of length 1 from o, to o; so
F;(m,al) = and

~€l(o1,0y)

Now suppgse oy # g2. Then

< 501,02 > =<o01,020>+ < 0V(eg),02 >
=< 0V(gy),00 > .

If 05 is not a face of V(o,) then < 501,02 >= 0. Moreover, in this case there are no
gradient paths of length 1 from o, to o2 so that

7€F1(01y02)

If 05 is a face of V() then there is exactly one gradient path from o, to o, of length 1,
namely 4 = ¢y, 0 and

m(‘Y) = -< Ulaav(al) >< aV(Ul),UQ >
=< 9V (ey),00 >

as desired. O

36



Theorem 8.10. For any critical cells 7(P*Y) and o!P)

<Gro>= Y <dn5> Y m(
agPlcr 7GFN(5,5)
for N large enough.

Proof. From Lemma 8.8 _ -
<8r,0>=<dVdr,0>

for N large enough. Since
or = Z <0r,g>é

Py

we find - -
<0r,0> = Z <016 ><dV5,0 >

&(P)(ﬂr
for N large enough. We now prove inductively that for all r > 0

< G,0>= Z m(~y).
vel,(o,0)

The case r = 0 is trivial, and r = 1 is Lemma 8.9. For general r > 1

< &)"Fr,o > =< &5(5"15),0 >
= Z <(37715),0' >< d0’,0 >

a/(P)

= Z Z m(y) < do', 0 >

o' y€lr_y(d,0")
(by induction)

= > m Y mE)

o' ~4el._1(6,0) Y€l (o’,0)

(by Lemma 8.8)

= > m®

v€T.(5,0)

(by Lemma 8.6 (ii) and (8.5)). O
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§9. Self-Indexing Morse Functions, Cellular Triads, and a Characterization
of Gradient Vector Fields.

When manipulating Morse functions, one finds it is often convenient to manipulate
instead the corresponding gradient vector field. It is important to know that after varying
the vector field, one is left with the gradient vector field of some Morse function. With
this in mind, our goal in this section is to characterize gradient vector fields of Morse
functions. Along the way, we sha. rove that every Morse function can be replaced with
a particularly nice (i.e., self-indexing) Morse function with the same critical points. In
this section we also introduce the notion of a cellular triad, which will play the role of a
cellular cobordism in later sections. The results in this section are discrete analogues of
those in [Sm1].

Definition 9.1. A discrete vector field is a map
W:K— Ku{0}
satisfving
(1) For each p, W(Kp) C Kp+y U {0}
(2) For each 0'?) € K, either W(c) = 0 or ¢ is a regular face of W(o).
(3) If o € Image(W) then W(e) =0
(4) For each ¢/ € K,

#{vP-V g Kooy | W) =0} < 1.

(When M is a simplicial complex such objects have previously been considered under a
different name. in 'Duj and [Sta]. See also [Fol] for discrete vector fields on 1-dimensional
complexes).

This definition is not quite consistent with our definition of the discrete gradient vector
feld 1y in §6, in that V; was defined to be a map of oriented cells. However, ignoring
orientations. V7 gives rise to a discrete vector field as defined here. Conversely, if W is a
discrete vector fleld, then by properties (2) and (4) if W(o(P) = 7*+D) then g is a regular
face of 7. Thus. we can consider W to be defined on oriented cells by endowing ¢ and r
with orientations and setting W (o) = 7, with the sign chosen so that

i9.1) <0,0W(oc)>= -1.

With this in mind, we will frequently abuse notation and write expressions of the form
W = V;. This means either that if one ignores orientations then W = Vs as maps of
unoriented cells, or if one extends W to oriented cells via (9.1) then W = V; as maps of
oriented cells. These two points of view are equivalent.

Definition 9.2. Let W be a combinatorial vector field. A W-path of dimension p is a
sequence of p-cells
Y =00,01,...,0r
such that
(1) if W(o,) =0 then g4 = o,
(i) if W(o,) # 0 then 6,41 # 0, and 0,41 < W (o).

Say 7 is a closed path if 0, = 0g and 7 is non-stationary if o; # oo.
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Theorem 9.3. Let W be a discrete vector field. There is a discrete Morse function f
with W = V; if and only if W has no non-stationary closed paths.
Moreover, for every such W, f can be chosen to have the property that if oP) is critical,

then
flo)=p

Such a Morse function is said to be self-indezring.

Remark. Note that W determines the critical points of f. Namely, if W = V}, then, by
Lemma 6.3, 0 € K}, is critical for f if and only if W (o) = 0 and o ¢ Image(W).

We will not prove Theorem 9.3, as it will follow directly from the more general Theo-
rem 9.10. We pause here to note a corollary.

Corollary 9.4. Let f be a discrete Morse function. Then there is a discrete self-indezing

Morse function f with the same discrete gradient vector field, and hence the same critical
points.

Proof. Given f, let W = V;. By Theorem 9.3, W = V; for some self-indexing Morse
function f.

Before going futher, we introduce the notion of a cellular triad.

Definition 9.5. A cellular triad (M,N~,N%*) consists of a CW complex M and two
disjoint subcomplexes N~ and N* with the property that for every p-cell ¢(P) of N-UN*
there is exactly one (p— 1)-cell 7(P*1) ¢ N= U N+ satisfying 7 > 0. Moreover, we require
that o is a regular face of 7.

For example, if M is any CW complex, we can set N~ = N+ = . For a less trivial
example, suppose M is 2 PL n-manifold such that M can be written as a disjoint union
M = N~ UN™ where N~ and N* are subpolyhedra. Then (M,N=,N%*) is a cellular
triad. This is the most important class of examples, and such a triad will be called a
polyhedral trad.

Definition 9.6. Let (M,N~,N*) be a cellular triad. A discrete Morse function f on
(M,N=,N7) uith image [a,b] is a function

1 K(M) — [a,b]
satisfying
(1) f~'a)=N-, f71(b)=N*
(2 )ForallaP)EK( M), o @ NTUNT,
(1) If o is an irregular face of 7(P*1) then f(7) > f(c¢). Moreover,

#{r"*) > 0| f(r) < flo)} < 1.

(i) If v®=1) is an irregular face of o then f(v) < f(¢). Moreover,

#{vPV <o f(v) 2 fo)} < 1.
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Let f be a Morse function on (M, N~,N*). We call 0P ¢ Kp(M) a critical point of f if

tf
(1) o® Z (N"UN¥)
(2) () #{r?"* Vo | f(r) < f(o)} =0

(i) #{vP~V <o | f(v) > f(0)} = 0.

Definition 9.7. Let (M, N_, N,) be a cellular triad, and f a discrete Morse function on
(M, N_,N,). We will now define the discrete gradient vector field V; of f. Suppose that
each cell of M has been endowed with an orientation. If o® ¢ N~ U N+ then we define
Vy(o) as in Definition 6.1. If ¢ C N~ then we set Vi(o) = 0. If 0 € N* then we set
t(o) = £7(P*1) where 7 is the unique (p+ 1) cell not in N- U N* which has o as a face
(with the sign chosen as in Definition 6.1).
We observe that it is still true, in this more general setting, that if f has no critical points
then M\, N~. If (M,N~,N%) is a polyhedral triad then we can apply Whitehead’s
Theorem of Regular Neighborhoods ([Wh], see Theorem 1.6 for a special case) to learn

Theorem 9.8. If (M,N~,N*) is a polyhedral triad, and f is a Morse function on
(M, N~,N"*) with no critical points, then

M = N-"x1I
where I 15 a closed interval.

This is the crucial theorem which makes possible a Morse theoretic proof of the
s-cobordism theorem.

Much of the previous chapters can be generalized to this setting. In particular, one
can define the Morse complex M associated to a Morse function f on a cellular triad
(M, N~ ,N7).exactly as in §8, with the differential & defined as in Theorem 8.10. Following
the proofs of the preceeding sections we learn that in this case, the homology of M is not
the homology of M, but rather the homology of M relative to N-.

Theorem 9.9. Let f be a Morse function on a cellular triad (M,N~,N7) and define the
Morse complez as in (8.2) and Theorem 8.10. Then

H.(M)=H.(M,N~,2).

We now present the main theorem of this section
Theorem 9.10. Let (M,N~,N*) be a cellular triad, and
W : K(M) — K(M)u {0}

a discrete vector field on M satisfying

(1) W has no non-stationary closed paths
(2) Forallo® C N-, W(o)=0
(3) ForalloP C N* 0% W(o)Z N-UN*.
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Then there 1s a Morse function f on the triad (M, N~,N*) such that W = V;. Moreover
f can be chosen to be self-indezing. That is, we can choose f to have image [-1/2, n+1/2
so that
) f7H(=1/2) =
( ) fHn+ 1/2)
(3) If o' isa cntzca.l point of f then f(o) =

Proof. The proof is by induction on the skeleta of M. For each p, let M, denote the
p-skeleton of M. Ve restrict W to a combinatorial vector field W, on M, by setting

We®) if I<p

Wo(e®) = {0 ¢ lmp

Define

N;=N—ﬂMp_1
J\"; = '+ﬂ.'wp_1.

Then for each p. (My. N N>} is a cellular triad and W, satisfies the hypotheses of the
theorem.

We will prove inductively that there is a Morse function foon (Mp, N, N;) with image
'~1/2.p—1/2] satisfying

(1) f~H-1/2) = N7

(2) f~Hp+1,2) =N}

(31 If oY is critical for fp then f (o) =1

) W=V

P = 0: In this case, My is the O-skeleton of M, Wy maps every vertex to 0, and
Ng =27 =0. The function fo, where

folv) =0
for every vertex v, satisfies the desired properties.

General p: Suppose we have a Morse function fp—1 defined on the triad (M,—;, No_y,
Vp_ ) with image [-1/2,p — 1/2] satisfying
(1) f;2,(1/2) = N'
(2) p—l (p - 1/2)
(3) lfeW C M,_ is crmcal for fp—1 then fp_1(0) =1
(4) Wp-1 = pr 1
Our goal is to extend f,_), after minor modifications, to a suitable function on M,.

Without loss of generality, we now assume dimM = p, so that (M,, Ny N ) =
(M,N=,N*)and W, = W.
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We now define f on M. For [ < p- 2, set

fle®) = {fp-x(a“)) if o0 g N+

p+3% if o c N+,

We can not define f on (p — 1)-cells in such a straight forward manner. For suppose

W(e®=D) = r(P). Then f must satisfy f(o) > f(7). Moreover, if 5(P=1) # ¢ is any other

(p — 1)-face of 7 we must have f(r) > f(&). In particular, f must satisfy f(o) > f(5).
For each ¢(P~1) define

d(o) = max{r |3 a W path o0,0y,09,...,0r-1,0, With o,_; # 0, and W(o,) = 0}
D= max d(o).

Note that d(o) must be finite since W has no closed paths. Now set

fo-1(0) + 532L if 0 € (N UN™)
flo®™D) = ¢ ps+d if o CN*
—% if cCN-.

Note that fo—1(0) <p-1/2s0if o € N* then f(0) < p.
We will now define f on the p-cells of M. Since for all ¢{P) we have W (o) = 0, o(P is
critical if and only if o ¢ Image(W). Thus, if 0(P) ¢ Image(W) we set

fle) =p

On the other hand. suppose o' = W (v(P=1). We will first see that if 5*=1) is any other
(p—1)-cell of o then

(9.2) flv) > f(2).

Note that © € N'*, since otherwise, by Definition 9.5, there is a unique p-cell & such
that 6 € (N"UN7™) and ¢ > ©. Thus we must have & = ¢. However, by hypothesis
(3) of the theorem we must have W () = ¢ = W (v). This contradicts condition (iii) of
Definition 9.1.

We observe that (9.2) is certainly true if v C N* since then f(9) < p+ 1/2 = f(v).
Suppose v € N*. If ¥, vy,..., v, is any W-path then v, ©, vy,...,vr is a W-path. Thus
d(v) > d(¥), which implies (9.2). Now set f(o) = f(v).

We will now prove that f satisfies the desired properties. We must first check that f is,
in fact, a Morse function on (M, N~,N*) with image [-1/2,p + 1/2]. By construction,
fTHUNT)=-1/2, f~YN*)=p+1/2, and if o Z N“UN*, f(o) € (-1/2,p+1/2). This
is condition (1) of Definition 9.6.

We now check condition (2) of Definition 9.6. Let o) € K;(M). If ¢ C (N~ UN™)
then 2(i) and 2(ii) are clearly true since v < ¢ = v € N~ UN* and there is exactly 1
({-1)-face 7 with 7 > o and 1 € (N~ UN*).
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Suppose ¢ € (NT UNT). If | = p then 2(i) is vacuously true and 2(ii) is true by
construction.

The following observation will simplify the remainder of the proof. Suppose ! < D
o g N*, and v~V < 5. Then

(9.3) flo) < f(v) — fo-1(0) < fp-1(v).

The proof is simple, but must be broken into a few cases.

Ifv S N7 then f(0) < f(v) = p+1/2 and fp-1(0) < fp-1(v) = p—1/2, so (9.3) holds.

Suppose v € N*. Then f(v) = f,—1(v). Ifl < p—1then f(o) = fp-1(c) so (9.3) holds.
If{ =p—1then f(0) 2 fo-1(0) s0 if fo—1(0) > fp-1(v) (9.3) holds. If fp-1(0) < fo-1(v)
then W(v) = o which implies W(c) = 0. Thus d(¢) = 0 and f(¢) = fp-1(0) and again
(9.3) holds. This proves (9.3) in all cases.

In particular, (9.3) implies, by induction, condition 2(i) if dimension (¢) < p - 2 and
2(i1) if dimension (o) < p—1. Suppose dimension (¢) = p— 1. By construction, if (P > ¢
then f(r) < f(o) « W(o) = 7. This implies condition 2(i) in this case. This completes
the proof that f is a Morse function for the triad (M, N=, N*) with image [-1/2,p+1/2].

We will now check that W = V. That is, if v(=1 < ¢® then

(9.4) fv) 2 flo) — W(v) = 0.

By induction, if { < p— 1 then f,—1(0) € f—1(v) —m o = Wo_1(v) = W(v). Thus, in this
case (9.4) follows from (9.3). If { = p then (9.4) is true by construction.

Lastly, we must check that f is self-indexing. That is, if ¢(¥) is critical then f(o) = L.
If { = p this is true by construction. If [ < p -1 then f(o) = fo-1(0) and o is critical
for fp—1 so it is true by induction. If / = p ~ 1 then if ¢ is critical we have W(e) =0 so
d(o) = 0. This implies f(o) = f,—1(c¢). Since ¢ is critical for fp—1 the result follows by
induction.

This completes the proof. O

We remark that it can be seen from the construction of the discrete Morse function f
that

(i) If o'? € Image(W) then f(o) € (p—1,p— 3).
(i) If 0P is critical then f(o) = p.
(iil) If W(o®)) # 0 then f(co) € (p,p+ 3).
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§10. The Morse Theorems for General CW Complexes.

In §3 we presented the Morse Theorems for a regular CW complex. In Corollary 8.3 we
deduced the Strong Morse Inequalities for general CW complexes. Yet, for general CW
complexes we still do not have the stronger topological statement of Corollary 3.5. In this
section we fill this gap.

There are 2 difficulties in applying the proofs in Section 3 in this more general context.
First, in Definition 3.1 we defined the level subcomplex M(c) to be a union of some cells
and all of their faces. However, unless M is normal [L-W p. 78] this need not be a
subcomplex. Second, Lemma 3.2 may not hold. We need to restrict attention to those
discrete Morse functions such that these difficulties do not arise. More precisely, for each
cell o, let Carrier(c) denote the smallest subcomplex of M which contains o. Given a C\W
complex M and 2 discrete Morse function f, say (M, f) satisfies the Discrete Morse
Hypotheses if:

(DMH) (1) For every pair of cells ¢ and 7, if 7 C Carrier(c) and 7 is not a face of o,
then f(7) < f(o). (This implies that for each ¢ M{(c) is a subcomplex.)

(2) Whenever, for some p and r > 0, there is a +(Pt™+1 5 4(P) with f(7) < f(o) then
there is a 777V with # > ¢ and f(F) < f(7).

Lemma 3.2 can now be restated as

Lemma 3.2. If M is a regular CW complez and f is a discrete Morse function, then
(M. f) satisfies the Discrete Morse Hypotheses.

It is easy to check that if (M, f) satisfies the Discrete Morse Hypotheses then the proofs
of Theorem 3.3 and Theorems 3.4, and hence Corollary 3.5, go through. That is, we have

Theorem 10.1. If (M. f) satisfies the Discrete Morse Hypotheses then M is homotopy
equivalent to & CW complez with eractly mp(f) cells of dimension p.

We now apply the results of §9. Let M be a CW complex and f a discrete Morse
function. Then, from Theorem 9.10 there is a Morse function f with the same critical cells
such that
(10.1) f(KpnImV)C (p-1,p- 1) f(K,NKerV)C o+ 3)

(apply the theorem to the discrete vector field V¢ and see the remark at the end of §9).
Thus if r > 0 and

Fr®rr+y < fo®)
then necessarily r = 0. This is part (2) of DMH. Let a(_”) be any cell of M. If 0 € KerV
if follows from (10.1) that for any cell + C Carrier(o) f(r) < f(o) (since dimT < p). If

o € ImV, then o must have a codimension 1 face. This implies that for any viP-1) ¢
Carrier(o), vis a face of 0. Thus, any 7 C Carrier(o) which is not a face of ¢ has dimension

at most p — 2, so that (10.1) implies f(r) < f(o). This is part (1) of DMH. Thus we can
apply Theorem 10.1 to conclude

Theorem 10.2. Let M be a CW complez and f a discrete Morse function. Then M is
homotopy equivalent to a CW complez with ezactly mp(f) cells of dimension p.
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§11. Cancelling Critical Points.

When using Morse theory to study the topology of a space, one frequently desires the
Morse function to be as simple as possible, that is to have as few critical points as possible.
In this section we use the results of §9 to investigate means of simplifying a given Morse
function.

Theorem 11.1. Let (M, N~,N%) be a cellular triad and f a Morse function on the triad.
Suppose TP and ¢'P) are critical points of f satisfying
(1) There is a regular face ') < , and a gradient path

0 =00,01,...,0p =0

from & to o such that for each i =0,...,7 =1, 0,4, is a regular face of V(oy).
(i) There is no other gradient path from any p-face of T to o.

(’.gradz'ent paths are defined in Definition 8.4). Then there is a self-indexing Morse function
f on M such that

(11.1) {critical points of f} = {critical points of f} — {r,0}.
Moreover, Vs = V; except along the unique gradient path from 87 to o.
Proof. Suppose ‘P < 7 and

Y:6 =09, 01,....0,r =0 Or-1 # Oy

is the unique gradient path from a p-face of 7 to ¢. Define a combinatorial vector field W
on M by setting

Wi(v)=Ve(v) if vg {5,01,...,00-1,0}
W(oi) = Vy(gi-1) for i=1,2,...,r
W@)=r1
(note that none of the cells 3,04,...,0,-1,0,V(6),V(01),...,V(0r-1) lie in N~ U N*).

We have simply changed figure 0.8 to figure 0.9.

Now W satisfies the hypotheses of Theorem 9.10. Namely, it is clear that W is a
combinatorial vector field (since V; is). Moreover W has no non-stationary closed paths.
To see this, suppose 6 is a non-stationary closed W path. Since Vr has no such paths,
& must have dimension p and include at least one p-face from v and at least one p-face
which is not in 4. Therefore, § must contain a segment § of the form

6:0:, vo, V1,...,Vr,0j
with 7 > 0, and v, ¢ {o0,...,0,} for all n (o; may equal o;). In particular, since
W(vn) = Vy(vy,) for all n,
Vo, V1,..-,VUr, Oj
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is a gradient path for f. In addition, if { # 0, then
Vo # 0i-1,0¢ and vo < W(a;) = Vy(o;-y).
Thus
G =00, O1,...,01-1, V0, Ul,---,Ur, Ojy Oj41,...,0r = O
is a second gradient path from 67 to 0. If i = 0 then
GFro<W(@)=r
and
Vo, V5y..., Uy aj? Uj+1,---s0'r =0
is a 2"9 gradient path from 87 to ¢. In either case we reach a contradiction.

Thus, by Theorem 9.10, there is a self-indexing Morse function f with W = Vf‘ In
particular, the critical points of f are those faces v with v € Kernel (W), v ¢ Image (W).
However,

Kernel(W) = Kernel(Vy) \ {0}
Image(W) = Image(Vy) U {7}
which implies (11.1). O

Corollary 11.2. Let f be a Morse function on the triad (M, N=,N*). If Ho(M,N~) =
0, then the critical points of f of indez 0 can be cancelled against an equal number of
critical points of inder 1.

Proof. Let v be a critical vertex of f. We will prove that there is a critical edge e such
that there is exactly 1 gradient path from e to v. From Theorem 10.1, the critical points
v and e can then be cancelled. We can then repeat the process until all critical points of
index 0 have been cancelled.

Applying Theorem 9.9 we learn that the map

8:Ci(M,N~) — Co(M,N")

1s onto. If e is any critical edge then de = v; - vy for some vertices v; and vg of M. There
1s a unique gradient path beginning at each of v; and vy. Each such gradient path either
ends at N~ or at a critical point of index 0. Thus, the image of e in Co(M,N~) equals 0,
U1, =v1, OF Uy — vp, where vy and v; are distinct critical points of index 0. In particular, if
v is a critical vertex and <~5e, v ># 0 then < Ge,v >= =1 and there is exactly 1 gradient
path from Oe to v. Since 8 is onto, there is a linear combination '

c= T a

e critical

5 ae = Sade = v,

Za,<5e,v>= 1

so there must be at least one critical edge e with < 56, v >%# 0. This edge has the desired
property. O

such that

Thus
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The process described in Theorem 11.1 can be reversed to create a pair of critical points.

Theorem 11.3. Suppose
R a(p) =00, O1y...40¢r

15 a gradient path of f of dimension p and Vy(o,) = 7 # 0. Suppose further that
v is the unique gradient path from o to o,.
Then there is a Morse function f such that
{critical points of f} = {critical points of Stufe, 7}
Moreover, Vy = Vf- except along the gradient path .

Proof. Define a combinatorial vector field W by

W) = V(o) if v {onon... 00}
W(o:) = Vy(oi-1)
Wi(op) = 0.

1" has no closed paths because of (11.4). Hence by Theorem 9.10 W = V7 for a Morse
function f with the desired properties. [

The simplest example of the hypotheses of Theorem 11.3 is when V¢(o) = 7. Then
we can simply take to be the trivial gradient path consisting only of o. Then there is a
Morse function f such that V; = V; on all cells except o, and Vi(c) = 0. Changing f to

f creates the pair of critical cells ¢ and .
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§12. Invariance Under Subdivision.

As a final application of results in §9, we show that a discrete Morse function on
a polyvhedron has a natural extension to any subdivision resulting from a sequence of
bisections. 1f one wishes to work in the category of simplicial complexes, one could show,
by similar arguments, that a Morse function ona simplicial complex has a natural extension
to any subdivision resulting from a sequence of stellar subdivisions.

Suppose M is a polyhedron with a Morse function f and M is a refinement of M
resulting from a sequence of bisections (see §1). We will show that f induces an essentially
equivalent Morse function f on M. In particular, the Morse complex associated to fis
canonically isomorphic to the Morse complex associated to f. Moreover, we can choose
f such that Vj is equal to V on all cells of M which are also cells of M. We state the
theorem in terms of a single bisection, from which the general result clearly follows.

Theorem 12.1. Suppose M 1s a polyhedron with a Morse function f, and o) is a p-cell
of M. Suppose M is the refinement of M resulting from a bisection

P = a§”) uvP=by a,f,p).

Then there is a Morse function f on M with the following properties
(i) 7# o isa critical point of f —~ T isa critical point of f.

(ii) oo is not a critical point of f, and o is critical for f « o1 s critical for f
(i) Of of 0. Vy = lf That is, if Ty # 0 # 7o then

Vi(n)=mn—Vi(n)=mn
and

Vilo) = —Vj(1) =71 or Vi{o2) =7
Vi(r) =0 —Vi(n1) =01 or Vi(ri) = o2.

(iv) If rf“ # o and Té“’l) # o are critical points of f, then there is an algebraic-
multiplicity preserving 1-to-1 correspondence between gradient paths of f from Oy
to 7, in M and gradient paths of f from 8712 to 7y in M. If o is critical and
either T\ = o or T, = o then the same statement is true, replacing o by o1 when
considering M.

In particular, the Morse complez associated to f is canonically isomorphic to the Morse
complez associated to f.

Proof. The proof is divided into 3 cases, depending on whether o € Image(Vy), Vy(o) # 0,
or o is critical.
Suppose first that o € Image(Vy). Then ¢ = Vy(a®~) for some alP~!) < ¢. Either
a < o) or a < oy. By relabeling if necessary, we assume a < 01. Define a discrete vector
field W on M by setting
W (3) = Vy(8)
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if Jisacellof Manda# 3#¢

(see figure 12.1).

FIGURE 12.1

It is easy to see that since Vy has no closed paths, neither does W. Hence W is, in fact,
a combinatorial vector field and, by Theorem 9.10, W = V for some Morse function f on

M. The critical points of f are identical to the critical points of f. The gradient paths
of f which include neither a nor o are precisely the gradient paths of f which exclude a,
c1. v and oy Since Vy(o) = 0. any gradient path of f of dimension p which includes o
must end at 0. Since o is not critical. such paths do not play a role in the Morse complex
associated to f. Similarly. gradient paths of f which include &, or o2 do not enter into
the Morse complex associated to f

If a is in a gradient path 4 of f. then it must be followed by some (p — 1)-cell & # a of
0. If @ < o, then 5 is also a gradient path of f. & <o, then replacing the segment a, &
of 4~ by a. v, & we get a gradient path of f. This establishes a 1-1 correspondence between
the gradient paths of f which contain o and the gradient paths of f which contain a and

. The only gradient paths of f which do not correspond to a gradxent path of f are those
that include v but not a. Such a path must begin at v. Since v is not the face of a critical
p-cell. such paths play no role in the Morse complex. Thus, f satisfies the conclusions of
the theorem. -

Suppose V(o) # 0. Define a combinatorial vector field W on M by setting

W(3) = Vy(3)
f 3isacellof M and 3#¢

W(a1) = Vy(o)
W(v) =02
VV(Uz) =0



FIGURE 12.2

(see figure 12.2). o
Then W = V; for some Morse function f on M. The gradient paths of f which do not

include o are precisely the same as the gradient paths of f which exclude o1, v and o3.
Replacing ¢ by o, establishes a 1-1 correspondence between the gradient paths of f which
include ¢ and the gradient paths of f which include o1. The gradient paths of f which
include v or o7 do not correspond to gradient paths of f. However, any gradient path
which includes v must begin at v. Since v is not a face of a critical p-cell, such a path does
not play a role in the Morse complex. Any gradient path which includes o3 must end at
o2. Since o9 is not critical such a path does not play a role in the Morse complex. Thus
f satisfies the conclusions of the theorem.

Lastly, suppose o is critical. Define a discrete vector field W on M by setting

W(3) = V4 ()
fJ3isacellof Mand 3#¢
W(Ul) =0
W) = og
Wi(os) =0

so that o) is critical for W (see figure 12.3)

>

FIGURE 12.3

Then W = V; for some Morse function f on M. Gradient paths of f which do not

include o are the same as gradient paths of f which exclude 01, U, and o2. Replacing o by
o1 gives a 1-1 correspondence between gradient paths of f which include ¢ and gradient
paths of f which include o;. As in the other 2 cases, gradient paths which include o2 must
end at 0; and hence play no role in the Morse complex. Gradient paths of f which include
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v must begin at v. In this case, such paths are important in the Morse complex because
v is a (p— 1)-face of the critical p-cell o1. Suppose ¥ is a gradient path of f beginning at
a (p—1)-face a of . Then either a < oy or a < o;. If a < o, then v is a gradient path of
f. If a < o7 then v, v is a gradient path of f, and this establishes a 1-1 correspondence
between gradient paths of f beginning at 8o and gradient paths of f beginning at da,.
Thus, in this case too, f satisfies the conclusions of the theorem. O
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