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Abstract

Fortune, S., A note on Delaunay diagonal flips, Pattern Recognition Letters 14 (1993) 723-726.

Suppose we wish to transform an arbitrary triangulation of a point set into its Delaunay triangulation. A Delaunay
diagonal flip replaces the common edge of two abutting triangles with the opposite diagonal if the resulting triangles
would locally satisfy the Delaunay empty-circle condition. We show that ©(n?) Delaunay diagonal flips are nec-
essary and sufficient to transform any triangulation into the Delaunay triangulation.

1. Introduction

The Voronoi diagram and its geometric dual, the
Delaunay triangulation, arc structures central to
computational geometry [9]. Because of the wide-
spread utility of these structures, it is important to
find algorithms to computc them that are as cfficient
and as simple as possible. Both of these structures can
be computed on # sites in worst-case optimal time
O(nlogn) using divide-and-conquer [10,6] or
sweepline [3] algorithms; random-incremental al-
gorithms with expected running time O(nlogn) are
also known [2.5]. However, all of these algorithms
are in practice somewhat complicated, and it would
be a valuable contribution to devise a simpler algo-
rithm that is equally efficient.

A particularly simple Delaunay triangulation al-
gorithm is the diagonal flipping algorithm. Given a
set of # sites, the diagonal flipping algorithm first
computes an arbitrary triangulation of the sites and
then transforms it into the Delaunay triangulation.
The first step is relatively straightforward. To per-
form the transformation, one uses Delaunay diago-
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nal flips. Suppose sites a, b, ¢, d are triangulated into
two triangles abc and acd, the two triangles together
form a convex quadrilateral, and locally the Delaunay
empty-circle condition is violated, that is, d is in the
circumcircle of triangle abc (equivalently, b is in the
circumcircle of acd). Then the Delaunay diagonal flip
replaces ac with bd, yielding triangles abd and bcd.
This method seems to have been first suggested by
Lawson [8]. It is not hard to show, see Theorem 1
below, that at most O(#n?) Delaunay diagonal flips
are necessary to transform any triangulation into the
Delaunay triangulation.

Empirical evidence suggests that the diagonal flip-
ping algorithm is a reasonable algorithm in practice
[4], performing much better than this O (#2) bound,
though not quite as well as more complex algorithms.
One might hope to show that the flipping algorithm
could be implemented to require less than O(#?) time
even in the worst case. For example, one might hope
to show that there is always some order of Delaunay
diagonal flips that requires only O(#) flips. If, say,
the ordering could be found in time O (log #) per flip,
an O(nlogn) algorithm would result. Unfortu-
nately, the main result below, Theorem 2, shows that
in some cases Q(7n?) Delaunay diagonal flips are re-
quired in the worst case, no matter how the flips are
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ordered. Hence this approach will not lead to an im-
proved worst-case time bound.

The proofs

Throughout this note we assume that unless oth-
erwise specified all point sets are in general position,
that is, no three points are collinear and no four points
are cocircular. Removing this assumption does not
change the results, though more care would be needed
in definitions and proofs.

Let S be a set of points in the plane, called sites. A
triangulation of S is a set of segments connecting pairs
of sites in .S so that segments intersect only at end-
points, all convex hull segments are in the set, and all
interior faces are triangles. When convenient we also
think of a triangulation as the set of triangles not con-
taining sites in their interiors. By planarity a trian-
gulation on # sites has at most 3» segments; since each
segment appears in at most two triangles, there are at
most 2x triangles in a triangulation.

Let (. be the circle through a, b, ¢ together with
its interior. A triangulation is Delaunay if for every
triangle abc in the triangulation, C,,. contains no ad-
ditional sites. It is not hard 1o see that the vertices of
any convex quadrilateral can be labeled a, b, ¢, d in
clockwise order so that de Cy,., b€ Chg, ¢¢ Capg» and
a¢ Cyeq. Diagonal bd is the Delaunay diagonal of abed.
Triangulation 7" results from 7"by a Delauney diag-
onal flip (henceforth: flip) if

T'=Tulbd! — lac)

where Ad is the Delaunay diagonal of convex quadri-
lateral abed. The following proposition implies that
flips are always possible in non-Delaunay
triangulations.

Proposition 1. [ftriangulation T is not Delaunay, then
there are sites a. b, ¢, d so that abed is a convex quad-
rilateral, bd is the Delaunay diagonal of abed, and abc
and acd are triangles in T.

Proof. Choose 4 in the circumcircle of some triangle
in 7. Of all such triangles, choose abc so that d is as
close as possible to ac, where sites a, b, ¢, d are labeled
as the vertices of a quadrilateral in clockwise order.
Since b and d are on opposite sides of ac, segment ac
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is not on the convex hull of the set of sites. Hence
there is a site e# b so that aceeT. If d=e, then the
lemma is satisfied, since quadrilateral abcd is convex
as de Cy,.. If d# e, then e must be in the circumcircle
of C, . if not, then ¢ is in the circumcircle of C,.. and
the segment perpendicular to ac from d to ac must
intersect ae or ce, contradicting the choice of abc as
triangle with circumcircle containing d and side clos-
est to d. The lemma is satisfied with e replacingd. [J

Proposition 2. Suppose a, b, ¢, d form the vertices of a
convex quadrilateral. If bd is the Delaunay diagonal
of abed, then

Cahd v Chcd = (‘ah( o Ca(a'
and
Coapa N Creg € Cape N Ceg -

Proof. For arbitrary points x, y, z, let {7, be the half-
plane containing z with bounding line through x and
y. Since deC,., H% N Capa < Cope; since beCuy,
H. 0 Copa © Cuea. Since

Capra= (HmeCabd) 4 (HZdﬂCabd) B

Copa S Cope ' Cueg. Similarly Chey © Cppe Cueg For the
second part, notice

Carad O Crea=(Capa "Hiq) 0 (Coeg nHEy) .

Now CadeZd = Hf;d ! Cabdg Cacd~ Slmllarly
CreanHSy <= Chey. Hence Copy 0 Cped S Creq. Simi-
larIYa Cuhd e C/)Cd S Cabc' O

Theorem 1. Let S be a set of n sites. Then n® flips are
sufficient to transform any triangulation into the
Delaunay triangulation of S.

Proof. By Proposition 1, if a triangulation is not
Delaunay, then there is always a possible flip. We
show that no sequence of flips has length more than
nz.

For T a triangulation of S, let w( T') be the sum over
all triangles 7 in T of the number of sites of S in the
interior of C,. Since there are at most 2# triangles in
T and each circumcircle can contain at most # sites,
w(T)<2n2 Clearly if T'is Delaunay, then w(T) =0.

Suppose 7" results from T by flipping the diagonal
of abced from ac to bd, replacing triangles abc and acd
by abd and bcd. We claim w(T")<w(T)—2. First
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note that circumcircles of triangles distinct from abc
and acd are unaffected by the flip. Second, by Prop-
osition 2, ifes£a, b, ¢, dand e is in one of C,,; 0r Chy
then e must have been in one of C,,. or C,y. Simi-
larly, if e is in both C,,,; and C,,, then ¢ must have
been in both C,,, and C,.,. Finally, note de C,,. and
be ("a(‘d but a¢ Chcd and C¢ Cabd' O

The lifting map A:R?>->R3 is defined by
Ax, ) =(x, p, x2+y%)

A(R?) is a paraboloid of revolution about the z-axis.
Using the lifting map it is possible to show the stronger
result that once an edge is removed by a flip, it never
reappears [4,7]. Of course, this fact immediately im-
plies Theorem 1.

Theorem 2. For all n there is a set S, of n sites and a
triangulation Ty of S, so that Q(n?) flips are required
to transform Ty into the Delaunay triangulation of S,,.

Proof. Without loss of generality assume # is even
and set m=n/2. Choose msites {/,, ..., [, } on the seg-
ment from (—1,0) to (=1, 1) uniformly spaced
numbered from top to bottom and m sites {r, ..., p,, }
on the segment from (1, —1) to (1, 0) uniformly
spaced numbered from bottom to top. See Figures |
and 2. These two sets of sites have the property that
if i< then Cy,, contains exactly the /, with i<p<j
and exactly the r, with p> k.

We claim that the sites can be perturbed slightly
preserving this property so that all sites lie on the
convex hull and so that no three sites are collinear.
We sketch a proof of this claim. The only slight diffi-
culty 1s the first condition, that C,,;,,, contains exactly
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Figure . Triangulation T.
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Figure 2. Delaunay triangulation 7'p.

the /, with i<p</. If two sites are perturbed by at
most g, then the perpendicular bisector of the two sites
moves only slightly, specifically it rotates by an angle
O (&) about a point near the midpoint of the two sites,
then translates by an amount O(¢). The center of
Cy4n 18 the intersection of the perpendicular bisector
of /; and /;, a horizontal line with y-value at most 1,
and the perpendicular bisector of /; and r,, a line of
slope at least 1 intersecting the x-axis at a point x< 1.
This implies that the radius of Cj,, is at most 3, a
constant; hence the center of C,,;,, moves by at most
O(e) if each of /,, /; and r, is perturbed by at most &.
Now if p+#1, j then Cy,, lies at least Q(1/n?) to one
side or the other of /, on the horizontal line through
l,. Hence if we choose ¢ small compared with 1/n?,
membership of /, inside Cj,,, does not change.

We let S, be the perturbed set of sites. Clearly, these
sites also satisfy the property that if /< then C,,,,
contains exactly the r, with i < p<j and exactly the /,
with p> k.

Let T, be the triangulation of S, consisting of the
segments of the convex hull and the segments {/;r,}
and {/,r;}, i=1, ..., m. See Figure 1. Triangles of the
form /;/;, ,r,, and r;r;/,, have empty circumcircles,
so the Delaunay triangulation 7, of S, consists of the
segments of the convex hull and the segments {/;r,.,}
and {/,,r;}, i=1, ..., m. See Figure 2. We show that
(m—1)?flips are necessary to transform 7 into 7.

We claim that the only possible flip is if /,, ,r;, re-
places /;r; as the diagonal of /;/;,.,7;r;..,. We use as in-
duction hypothesis the claim that all non-convex-hull
segments go between the /’s and the r’s. To see this
claim, suppose /;; is about to be replaced. Since all
non-convex-hull segments go from the /’s to the r’s,
the remaining vertices of the quadrilateral with di-
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agonal /,r;must be two of /[, _ . l;y,. r,_, 4. The two
vertices cannot be /,_, and /,,., since C;_,, ,,; con-
tains /. Similarly the two vertices cannot be r;_, and
r.41 since €y, ..., contains r;, nor can they be /,_,
and r,..,. since C;_,,,_, contains r;. Hence the two
vertices must be /.y and 7y, .

We show that any sequence of flips transforming
Ty into T, has exactly (m— 1) flips. For T any inter-
mediate triangulation, let

v(T)=Y i+j.

lirie T

Clearly we have

v(']‘,))—V(TO):2(i (k+m)—2m)

- (z 5 (k+l)—2)
k=1
—2(m—1).

Since v goes up by 2 per flip, (m—1)? flips are nec-
essary to transform 7 into 7. [

Discussion

The example of Figure | is essentially as bad as it
could be. It consists of two sets of points, separated
by a single diagonal. Each of the two sets of points is
originally triangulated with its Delaunay triangula-
tion. Yet still Q(n?) flips are necessary to transform
the individual Delaunay triangulations into the joint
triangulation. Also notice that the sites of Figure |
form the vertices of a convex polygon; Aggarwal et al.
[ 1] show that its Voronoi diagram can be computed
in linear time. Hence the initial triangulation seems
more to get in the way than to be useful.

It would still be desirable to have a local rule that
would transform an arbitrary triangulation into the
Delaunay triangulation with only O(#n) steps. For ex-
ample. the triangulation of Figure 1 can be trans-
formed into the triangulation of Figure 2 with 3m—5
diagonal flips: first triangulate so all triangles contain
[, (this requires 2m — 3 diagonal flips), then use an
additional 1 —2 flips to obtain the triangles contain-
ing r,,. Of course, the first ;1 —2 diagonal flips are not
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Delaunay. Is there some (easily computed) rule that
would produce this sequence of flips?

There is some empirical evidence that Delaunay
diagonal flips work well in practice. Is it the case that
Delaunay diagonal flips work quickly for ‘most’ or
‘random’ triangulations? Alternatively, is there some
(easy) way of choosing the original triangulation so
that only a few Delaunay diagonal flips will be needed
to obtain the Delaunay triangulation? Guibas et al.
[5] consider adding points one by one, updating the
triangulation to the Delaunay triangulation using
Delaunay diagonal flips after each addition. They
show that the expected number of flips is linear, where
the expectation is taken over the permutation used to
order insertion, with each permutation equally likely.
Their algorithm is slightly complicated, since they
need to maintain a point-location data structure to
determine the triangle containing the next point to be
inserted. Possibly there is a simple variant of their
algorithm that avoids the need for the point-location
data structure.

References

[1] Aggarwal, A., L.J. Guibas, J. Saxe and P.W. Shor (1989).
A linear time algorithm for computing the Voronoi diagram
of a convex polygon. Disc. Comp. Geom. 4, 591-604.

[2] Clarkson, K.L. and P.W. Shor (1989). Applications of
random sampling in computational geometry, II, Disc.
Comp. Geom. 4, 387-421.

[3] Fortune, S. (1987). Sweepline algorithms for Voronoi
diagrams. Algorithmica 2, 153-174.

[4] Fortune, S. (1992). Voronoi diagrams and Delaunay
triangulations. In: D.A. Du and F.K. Hwang, Eds.,
Euclidean Geometry and Computers. World Scientific Publ.
Co., New York, to appear.

[5] Guibas, L.J.,, D.E. Knuth and M. Sharir (1990).
Randomized incremental construction of Delaunay and
Voronoi diagrams. [CALP 90. Springer, Berlin, 414-431.

[6] Guibas, L.J. and J. Stolfi (1985). Primitives for the
manipulation of general subdivisions and the computation
of Voronoi diagrams. Trans. Graphics 4, 74-123.

[7] Guibas, L.J. (1987). Personal communication.

[8] Lawson, C.L. (1977). Software for C' surface inter-
polation. In: J. Rice, Ed., Mathematical Sofiware III.
Academic Press, New York, 161-194.

[9] Preparata, F.P. and M.I. Shamos (1985). Compu-
tational Geometry: an Introduction. Springer, Berlin.

[10] Shamos, M.L. and D. Hoey (1975). Closest-point problems.
Proc. 16th Annual Symposium on Foundations of
Computer Science, 1975, 151-162,



