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ABSTRACT

The Voronoi diagram is a fundamental structure in computational geometry
and arises naturally in many different fields. This chapter surveys properties of the
Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis
is on practical algorithms for the construction of Voronoi diagrams.

1 Introduction

Let S be a set of n points in d-dimensional euclidean space E¢. The points of
S are called sites. The Voronoi diagram of S splits E? into regions with one region
for each site, so that the points in the region for site s€S are closer to s than to any
other site in S.

The Delaunay triangulation of S is the unique triangulation of S so that there
are no elements of S inside the circumsphere of any triangle. Here ‘triangulation’ is
extended from the planar usage to arbitrary dimension: a triangulation decomposes
the convex hull of S into simplices using elements of S as vertices. The existence
and uniqueness of the Delaunay triangulation are perhaps not obvious, but these
properties follow easily since it is the dual of the Voronoi diagram.

The Voronoi diagram and Delaunay triangulation of the same 250 points ap-
pear side by side in figure 1. The points are chosen uniformly in the unit square.

The Voronoi diagram is ubiquitous, arising independently in many different
fields. The eponymous Voronoi in 1908 gave a careful definition of the structure,
motivated by the study of quadratic forms as initiated by Gauss and Dirichlet. Crys-
talographers including Delaunay studied the problem of filling space with congruent
copies of a set of crystals, starting in the 1920s. Metallurgists call Voronoi regions
Wigner-Seitz zones after Wigner and Seitz, who in 1933 used them to study equi-
librium properties of alloys. A name in geography for Voronoi regions is Thiessen
polygons, following Thiessen who in 1911 used them to improve the estimation of
precipitation. Blum suggested Voronoi diagrams as a descriptor for the shape of a
set of objects in 1967, hence the use of the Blum transform in pattern recognition.

More recently, Voronoi diagrams have become a central subject in computa-
tional geometry. The motivating problem is nearest-site search. Given a fixed set of
point sites, this problem is to be able to answer repeated queries of the form “which
site is closest to point ¢?” This problem can be solved by computing the Voronoi
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Figure 1: The Voronoi diagram (on the left) and the Delaunay triangulation (on the right).

diagram of the set of sites, and for each query locating the region of the Voronoi
diagram containing the query point.

In an influential early paper, Shamos and Hoey®® sketched a divide-and-
conquer algorithm to compute the Voronoi diagram of a set of n planar points in
time O(nlog n). Independently, Green and Sibson®® gave an incremental algorithm
for the same problem with O(n®/?) expected running time. The incremental algorithm
was generalized to arbitrary dimension by Bowyer® and Watson.®! Brown!! observed
that a Voronoi diagram in dimension d can be obtained from an appropriate con-
vex hull in dimension d+1, so any convex hull algorithm can be used for Delaunay
triangulations. Subsequently, algorithms were obtained for an amazing collection of
generalizations of the Voronoi diagram, too numerous to mention except briefly. An
easy generalization is to change the metric, either uniformly, for example by using a
general L, metric or a convex distance function, or locally, for example by additive
or multiplicative weights on sites. Another generalization is to change the shape of
sites; circles and line segments have been considered. ‘Higher order’ Voronoi diagrams
result by partitioning space on the basis of the k nearest neighbors, for some fixed k;
the ‘furthest point’ Voronoi diagram partitions space on the basis of the nth closest
site, 1.e., the furthest site. ‘Constrained’ Delaunay triangulations allow some edges
to be specified before the triangulation is constructed. ‘Geodesic’ Voronoi diagrams
are defined inside a polygonal environment, where the distance between two points
is given by the length of the shortest path connecting the two points lying entirely
inside the polygonal environment. ‘Abstract’ Voronoi diagrams can be used to study
Voronoi diagram algorithms given only a set of axioms describing the behavior of the



diagram.

Aurenhammer? gives a very inclusive survey of Voronoi diagrams, with more
than 200 references. He summarizes the early history of Voronoi diagrams, gives many
of the applications in mathematics and the natural sciences, and outlines many of the
generalizations of Voronoi diagrams and algorithms for constructing them. References
for all the topics just mentioned can be found in his paper.

This chapter also surveys Voronoi diagrams and Delaunay triangulations. The
focus is narrow; the only topic is sets of point sites with the euclidean metric in E¢.
This is the most important case for applications. This chapter gives a careful defini-
tion of the Voronoi diagram and the Delaunay triangulation and discusses elementary
properties.

The emphasis of this chapter is on algorithms. One goal is to demonstrate
that there are usable and efficient algorithms for computing Delaunay triangulations,
both in two dimensions and in higher dimension. For, say, a set of points chosen from
a uniform distribution inside a sphere, the combinatorial complexity of the Delau-
nay triangulation grows linearly with the number of sites. The random-incremental
algorithm discussed below can compute the Delaunay triangulation of such a set of
sites in time O(nlog n), and the running time constant is small. Hence it is perfectly
feasible to compute the Delaunay triangulation of “large” sets of points, say 10° or
108 sites in dimension two. A caveat is that the combinatorial complexity of the
Delaunay triangulation grows exponentially with dimension. Hence the running time
of any algorithm also grows exponentially with dimension. For small dimension, say
dimension less than five, the Delaunay triangulation is still a useful tool.

Four fundamental algorithms are discussed in some detail. These are the flip-
ping algorithm, the incremental algorithm, the random incremental algorithm, and
the plane-sweep algorithm. These algorithms are fundamental because they are both
theoretically important and reasonable implementation choices. The flipping algo-
rithm is the simplest imaginable algorithm for computing the Delaunay triangulation
in two dimensions. It starts with an arbitrary triangulation of the set of points and
produces the Delaunay triangulation by a sequence of local modifications. The in-
cremental algorithm is slightly more complicated. Sites are added one by one, with
the Delaunay triangulation updated to include the new site after each addition. The
advantage of the incremental algorithm is that it generalizes readily to higher dimen-
sion. The random incremental algorithm a recent innovation. It is the incremental
algorithm with the insertion order chosen at random with all permutations equally
likely. The random insertion order guarantees good worst-case performance. The
plane-sweep algorithm is based on the plane-sweep paradigm. It provides a contrast
because its analysis is based on different principles from the others.

All of the algorithms have been implemented; at least one has been used fairly
extensively. The implementation of these algorithms is neither trivial nor excessively
complicated. Some attention is given in the chapter to the geometric data structures
and geometric primitives required to implement the algorithms, as well as implemen-
tation perils. A brief empirical comparison of the algorithms is included.

The background required for this chapter is a basic familiarity with algorithms



and with geometry. Exposure to computational geometry is certainly helpful but is
not essential. Standard references in computational geometry are books by Edels-
bunner®® and by Preparata and Shamos.”® Many concepts from the theory of convex
polyhedra are used throughout the chapter. Appendix 1 defines the terms that are
used; it is adequate for reference and review but is certainly inadequate as a primer.
Standard references on convex polyhedra are books by Grunbaum?®* and Brgndsted.!?
The table of contents is given below. Section 2 defines the Voronoi diagram
and the Delaunay triangulation and gives basic properties. One such property is a
connection with convex polyhedra in dimension one higher. This connection is funda-
mental to the analysis of many of the algorithms and is used throughout the chapter.
Section 3 of the chapter is an eclectic enumeration of results known about the Voronoi
diagram and Delaunay triangulation. For example, the Delaunay triangulation has
‘optimality’ properties that makes it attractive for use in finite element analysis. The
bulk of the chapter is the section 4 on algorithms; it is independent of section 3.
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2 Definition of the Voronoi diagram and Delaunay triangulation

The Voronoi diagram of a set of sites partitions euclidean space E¢ on the basis
of the site closest to a particular point. To handle the cases where a point is closest to
several equidistant sites, the Voronoi diagram is best defined as a cell complex. A cell
is the intersection of a finite number of hyperplanes and open halfspaces, and a cell
complez is a finite collection of pairwise disjoint cells so that every face of every cell is
in the collection. Similarly, the Delaunay triangulation is a cell complex decomposing
the convex hull of the set of sites and having the sites as vertices.

The next section gives a careful definition of the Voronoi diagram and De-
launay triangulation as cell complexes and discusses elementary properties of these
two structures. Section 2.2 outlines a fundamental connection between Delaunay tri-
angulations in E¢ and convex hulls in E**1 and between Voronoi diagrams in E¢
and intersection of halfspaces in E**'. The topic of section 2.3 is the combinatorial
complexity of a Voronoi diagram, that is, the number of cells in the Voronoi diagram,
as a function of the number of sites. Known upper and lower bounds are given, both
in the worst case and in the ‘typical’ case.

2.1 Voronoi diagrams and Delaunay triangulations

Let .S be a set of n point sites in E. For a nonempty subset R of S, the
Voronoi cell of R, V(R), is the set of all points of E% equidistant from all sites in R
and closer to every site of R than to any site not in R. Clearly, for a singleton set
R ={r}, V(R) is the set of all points strictly closer to r than to any other site. Any
point of E4lies in V(R') for some R'CS, though R’ may have more than one element.
For B C S, V(R) may be empty, either because there is no point equidistant from
all » € R or because any point equidistant from all r € R is also equidistant from
some r' € S — R. The Voronoi diagram V is the collection of all nonempty Voronoi
cells V(R), for R a subset of S.

Figure 2(a) depicts a Voronoi diagram of a set S of 11 sites in two dimensions.
For each site there is an open two-dimensional cell consisting of the points in the
plane for which the site is the strict closest among all the sites. Each such cell has a
boundary consisting alternately of Voronoi edges (one-dimensional cells) and Voronoi
vertices (zero-dimensional cells). Voronoi edges are equidistant from two sites and
Voronoi vertices are equidistant from at least three sites. The unbounded Voronoi
cells are exactly the cells corresponding to sites on the convex hull of S. Figure 3(a)
depicts the Voronoi diagram of a set S of 7 sites in three dimensions. The boundary
of each 3-cell consists of facets (2-cells), edges, and vertices.

It R C .S and V(R) is a nonempty Voronoi cell, then the Delaunay cell D(R)
is cell(R) (the relative interior of the convex hull of R). The Delaunay triangulation
D is the collection of Delaunay cells D(R), where R varies over subsets of S with
V(R) nonempty. An immediate property of the Delaunay triangulation is that it
has empty circumspheres: for R C S, D(R) is a Delaunay cell exactly if there is a
circumsphere of R that contains no site of S—R in its interior. Such a circumsphere
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Figure 2: (a) A Voronoi diagram in dimension 2; (b) the Delaunay triangulation of the same sites.
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Figure 3: (a) A Voronoi diagram in dimension 3; (b) the Delaunay triangulation of the same sites.



can be obtained with center any point in the Voronoi cell V(R), so the circumsphere
is unique exactly if V(R) is a vertex.

Figure 2(b) gives the two-dimensional Delaunay triangulation of the same
sites as in figure 2(a). Notice the correspondence between a Delaunay 2-cell and a
Voronoi vertex (the cell need not contain the vertex), between a Delaunay edge and
a Voronoi edge, and between a Delaunay vertex, i.e. a site, and a Voronoi 2-cell. In
figure 2(b) one of the Delaunay 2-cells is a quadrilateral with four sites as vertices;
this is because the four sites are cocircular. Thus the Delaunay triangulation need
not be a proper triangulation, i.e., its cells need not all be simplices. The Delaunay
quadrilateral corresponds to the vertex of degree four in the Voronoi diagram in
figure 2(a). Figure 3(b) gives the three-dimensional Delaunay triangulation of the
same sites as in figure 3(a). The correspondence is now between a Delaunay 3-cell and
a Voronoi vertex, between a Delaunay facet and a Voronoi edge, between a Delaunay
edge and a Voronoi facet, and between a site and a Voronoi 3-cell.

The following theorem gives fundamental properties of the Delaunay triangu-
lation and the Voronoi diagram. One proof can be obtained using standard properties
of convex polyhedra together with the connection to convex polyhedra discussed in

the next section. A direct proof, possibly more illuminating, is sketched in Appendix
2.

Theorem 2.1 Let S be a set of n points in E? with Voronoi diagram V and Delaunay
triangulation D.

1. 'V is a cell complex that partitions E°.
2. D s a triangulation of S.

3.V and D are dual, that is, for R, R’ C S, V(R) is a face of V(R') iff D(R') is
a face of D(R).

4. If R € S, V(R) is unbounded iff every site of R is on the boundary of the
convez hull of S.

A nonempty Voronoi cell V(R) has the same dimension as the flat of points
equidistant from all sites in R, since it is a relatively open subset of the flat. It is not
hard to check that the flat has dimension d minus the dimension of the convex hull of
R. Hence the dimensions of V(R) and D(R) always sum to d. Since the dimension
of D(R) is at most |R|—1, the dimension of V(R) is at least d+1—|R).

If V(R) is not empty and the dimension of V(R) exceeds d+1—|R|; then V(R)
and D(R) are degenerate; this happens only if the sites of R lie on a common sphere
and also on a common flat of dimension less than |R|—1. If |R| = 1,2, 3, then V(R)
and D(R) are never degenerate: this is obvious for |R| = 1 and |R| = 2, and for
|R| = 3 follows from the observation that three sites cannot be both collinear and
cospherical.

In low dimensions, degenerate Voronoi cells can be enumerated explicitly. In
dimension 2, the only degenerate Voronoi cell is a vertex that is equidistant from four



or more sites, as in Figure 2. The corresponding Delaunay cell is the interior of the
convex hull of the sites. In dimension 3, a Voronoi vertex can be equidistant from
five or more sites, and the corresponding Delaunay cell is the interior of a convex
polyhedron. A second degeneracy in dimension 3 is a Voronoi edge equidistant from
four or more sites. In this case the four sites are cocircular and also lie on a common
plane, so the Delaunay cell is the interior of a circularly-inscribed polygon sitting in
3-space.

[t can happen that k+2 sites lie on a common k-flat on the boundary of the
convex hull of the set of sites, for some £ < d. Then some boundary face of the
convex hull is the union of several Delaunay cells.

S is in general position if it is affinely independent and if no d+2 points lie on
a common sphere. Clearly, if S is in general position, then all Delaunay and Voronoi
cells are nondegenerate, so every Delaunay cell D(R) is a simplex, every Voronoi cell
V(R) has dimension d+1—|R|, and every face of the convex hull of S is a Delaunay
cell.

It 1s convenient to have a local characterization of the Delaunay triangulation.
Two opposite d-cells cell(R) and cell(R') are locally Delaunay if R and R’ both have
circumspheres C' and C’, and R'—R is outside C' (equivalently, R— R’ is outside C'). A
triangulation 7" is locally Delaunay if every pair of opposite d-cells is locally Delaunay.

Lemma 2.2 A triangulation is Delaunay iff it is locally Delaunay.

Proof. (Sketch) If T is Delaunay, then easily T is locally Delaunay. Suppose T is
locally Delaunay. Choose a d-cell cell(R) and site s€ S—R; it suffices to show that
s 1s outside the circumsphere of R. We can choose a point ré€ cell(R) so that open
segment rs avoids all k-cells of T, for k<d—2, and intersects (d—1)-cells in a single
point. Intersection with segment rs gives a linear order on an alternating sequence
of d- and (d—1)-cells cell(R) = Po,@Q1, P1,. .., Pu—1,Q@m, P ending at a d-cell P,
incident to s. An easy downwards induction, : = m,...,1, using the local Delaunay
property shows that the hyperplane through @; separates s from P;_; and that s lies
outside the circumsphere of P,_;. The lemma follows using the property that the
Delaunay triangulation is the unique triangulation having empty circumspheres. O

2.2 Connection with convezr polyhedra

The Delaunay triangulation of a set S of point sites in dimension d can be
obtained by appropriately lifting the sites to d+1 dimensions and then projecting
the lower convex hull of the lifted sites back to d dimensions. The Voronoi diagram
in dimension d can be obtained by appropriately mapping sites to hyperplanes in
dimension d+1, taking the intersection of the upper halfspaces, and projecting back
to d dimensions. Much of the material in this section is from Edelsbrunner and
Seidel?®; they extend earlier work of Brown.!! Edelsbrunner’s book?** is another
source.

We now describe the appropriate mappings. To make the geometry easier to
visualize, we consider the case when the set of sites S is in dimension 2. We identify



Figure 4: The paraboloid A.

E? with the plane spanned by the first 2 coordinate axes of E3; it is the base plane.
We think of the third coordinate axis as the vertical direction. We write for example
a for the point (21, z,) and we use dot products, thus z-pis z1p1+aapy. If 2 = (24, &)
and r is a real, then (z,7) is (z1,z2,7). This notation makes the generalization to
higher dimension obvious.

For Delaunay triangulations, the appropriate lifting map A : E? — E3 is
Mz) = (21, 22,23 + 22) = (z,2 - ). The image of \ is

A={(z,2):z€ E®,z =2z}

A is a paraboloid of revolution (about the vertical axis). See Figure 4.

A plane is nonvertical if it is not parallel to the vertical axis. Clearly, if P is a
nonvertical plane, then any point in E? is either above, on, or below P. The crucial
property of A is the following. Any nonvertical plane P either misses A, touches it
at a tangent point, or the projection of P N A onto the base plane is a circle. In
the last case, the portion of A below the plane projects inside the circle, and the
portion above projects outside. Conversely, given any circle in E? there is a plane
that intersects A in a set whose projection is the circle. To see this, note that for any
nonvertical plane P there is a real ¢ and a point p € E? so that

P={(z,z):z€F*2=2z-p—p-p+c}.

The vertical distance from the point (2,22 -p—p-p+¢) of P to the point (z,z - z)
of Ais

z-x—2z-p+p-p—c=r’—c,

where 7 is the distance from z to p. If ¢ < 0, this is positive for all z, and P is below
A. It ¢ = 0, then this is zero exactly at z = p, and it is easy to see that P is tangent
to A at (p,p-p). If ¢ > 0, then the projection of PN A on the base plane is the circle
with center p and radius \/c. A point (2, - z) of A is above P iff r2 > ¢, i.e., iff z is
outside the circle. The converse direction, obtaining a plane from a circle, is similar.

Suppose S is a set of sites in the base plane. Consider the convex hull H of
A(S). A face of H is a lower face if it has a nonvertical supporting plane P so that H
lies on or above P. Equivalently, a lower face is visible to an observer positioned at
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Figure 5: (a) A Delaunay triangulation; (b) the convex hull of the lifted sites.

a very negative vertical coordinate without looking through the interior of H. The
Delaunay triangulation of a set of sites S is shown in figure 5(a); 5(b) shows the

convex hull H of A(S5).

Lemma 2.3 Let H be the convex hull of \(S) and D the Delaunay triangulation of
S. Then D is the set of projections of lower faces of H onto the base hyperplane.

Proof. Suppose F' is a lower face of H, then F' = cell(A(R)), for some nonempty .
R C S. Since F is lower, there is some nonvertical supporting plane P with A\(R) C P
and A(S—R) above P. The projection of P N A onto the base plane is a circle C.
Since A(R) € PN A, R lies on C; since A\(S—R) lies above P, S—R is outside C.
Hence cell(R) is Delaunay, but cell(R) is also the projection of F = cell(A(R)) onto
the base plane. The converse argument is essentially the reverse. 0O

A result that is similar to lemma 2.3 can also be obtained using stereographic
projection.!! Place a unit-radius 2-sphere ¥ so that it is tangent to the base plane, and
let ¢ be the point of ¥ diametrically opposite the point of tangency. The stereographic
projection o(zx) of a point z in the base plane is the point of intersection of ¥ with the
line segment tz. The crucial property of stereographic projection®® is that a circle in
the base plane maps to a circle on X. Let H, be the convex hull of {t} Uo(S). An
argument similar to lemma 2.3 shows that ¢ is a bijection between cells of D and the
faces of H, that are not incident to t.

Now we consider Voronoi diagrams. The appropriate mapping sends the site
s to the plane

P,={(z,2):z€ E* 2=22-5—5-s}.

Clearly P; is tangent to A at (s,s-s). Consider also the surface
Us = {(:c,z):x €E2,Z= —z-z+2c-8—35-8}.

At a point z in the base plane, the vertical height of U, is the negative square of the
distance from z to s. Thus U, is an upside-down paraboloid touching the base plane
at s and below the base plane elsewhere. See Figure 6 for the situation in dimension 1.
If we think of P;, U, and A as functions from the base plane to the vertical direction,
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Figure 6: The relation among A, P;, and U,.

then obviously U, = P; — A. The crucial point is that A is independent of s: for sites
s,s' and any z in the base plane, we have Py(z) > Py (z) iff Uy(z) > Ug(z) iff z is

further from s than from s'. Similarly, Ps(z) = Py (z) iff z is equidistant from s and

s’

Lemma 2.4 Let I be the intersection of the closed halfspaces above the planes {P,}.
The Voronoi diagram V is the set of projections of faces of I onto the base plane.

Proof. F'is a face of I exactly if there is a subset R of S so that F C P, for every
r € R and F is above P,/ for every ' € S — R. Hence if (z,2) € F for some z in the
base plane, then z is equidistant from every r € R and closer to every r € R than to
any r' € S — R. Hence z € V(R). The converse is similar. O

It 1s possible to give a visual interpretation of lemma 2.4. Use opaque paint to
give each surface U; a different color. An observer sitting at a very positive vertical
coordinate will see the upper envelope of the collection of surfaces, that is, the portion
of each surface not obscured by some surface above it. The pattern visible to the
observer is the Voronoi diagram of S, since a surface U, obscures all other surfaces
exactly at points z of the base plane for which z is closer to s than to any other site.
Now instead paint each plane P, using corresponding colors. The observer sitting
inside I at a very positive vertical coordinate sees exactly the same pattern, since for
any z, the vertical order of the planes {P;} is the same as the vertical order of the

surfaces {Us}.

2.3  Combinatorial complexity

Let S be a set of n sites in E¢. The combinatorial complezity of the Voronoi
diagram V is the number of cells in V. Clearly, the number of cells of V is the same
as the number of cells of the Delaunay triangulation D.

If S is in general position, then the total number of cells of D is at most the
number of d-cells of D times a constant depending exponentially on d. This follows
because any cell of D is a face of some d-cell of D, and if S is in general position,

then each d-cell is a simplex and has at most (ZE) k-faces. If S is not in general



position, then for example the sites could all be cospherical, and there is only a single
d-cell but many k-cells for k < d.

In dimension 2 it is easy to show using planarity that the number of vertices
of V (or triangles of D) is at most 3n — 6 and the number of edges of V' (or edges of
D) is at most 2n — 4. In dimension higher than 2, it is possible to bound the number
of cells of V using the upper bound theorem for convex polyhedra.!®?* The upper
bound theorem states that the number of J-faces of a convex polyhedron in dimen-
sion d with n facets is asymptotically O(n™™d=514/2D)) (|z] and [z] are the integers
resulting from « by rounding down and up, respectively.) Using the correspondence
of section 2.2 between the Voronoi diagram V in dimension d and the convex poly-
hedron I in dimension d + 1, the number of j-faces of V is asymptotically at most
O(nmin(@+1-3.[4/2D)) " Hence the combinatorial complexity of V is at most O(n[¥/21),

A simple example attains this worst-case bound, at least within a constant
factor independent of n. First consider dimension 3, with coordinate axes z1, x5, and
z3. Let Py be the segment along the z; axis with endpoints (0,0,0) and (1,0,0) and
P, the segment in the z; = 0 plane parallel to the z, axis with endpoints (0,0, 1)
and (0,1, 1) Put n/2 sites equally spaced along P, and n/2 sites equally spaced along
P,. 1t is easy to see that there is an empty sphere through any two adjacent sites on
Py and any two adjacent sites on P,. This gives a total of #(n?) Delaunay triangles.
Notice that each site can be perturbed within a small ball while maintaining the
0(n?) complexity. This example can be extended to give 8(n/#/?1) cells in any odd
dimension d.

Using known exact bounds on the number of faces of a convex polyhedron and
the connection between convex polyhedra and Voronoi diagrams, Seidel®” gives ezact
bounds on the worst-case number of j-faces of a Voronoi diagram in d dimensions,
for all 5 and d.

For a set of point sites chosen ‘at random’, the combinatorial complexity of
the Voronoi diagram is probably much smaller. However, the available results are not
as general as might be desired. One model of ‘random sites’ is an infinite set of point
sites given by a unit-intensity Poisson process®® in E?; then the expected number of
sites in a subset of E? is equal to the measure of the subset. Meijering® shows that
the expected number of Voronoi neighbors of a site is a constant depending only on
the dimension d. The constant is 6 for d = 2 and about 15.54 for d = 3.

A second model of ‘random’ sites is point sites chosen with a uniform distri-
bution inside a bounded set H C E?. The situation is more complicated because of
edge effects near the boundary of H. Dwyer?' shows that the expected number of
Delaunay d-cells for a set of n sites chosen uniformly within a sphere in E? is ~ ¢gn.
The constant ¢y agrees with the constants given by Meijering for d = 2 and d = 3.
For d > 5, an estimate?? of the constant accurate to within 1% is

LU

d+1

Dwyer conjectures that the bound holds for point sets chosen uniformly from within



an arbitrary convex set H. If only a small fraction of the points lie near the boundary
of H, then edge effects are negligible.

3 Properties of the Voronoi diagram and Delaunay triangulation

3.1  Optimality of the Delaunay triangulation

Good finite element meshes avoid long, skinny triangles as much as possible.
A classic result of Lawson*® is that two-dimensional Delaunay triangulations optimize
one formalization of this criterion.

Lemma 3.1 Over all proper triangulations of a set of sites S C R? in general posi-
tion, the Delaunay triangulation mazimizes the minimum angle of any triangle.

Proof. Let angles(T) be the sorted sequence of angles of triangles in 7. The lemma
follows by showing that the Delaunay triangulation D is the triangulation that lexi-
cographically maximizes angles(T'), where smaller angles are more significant in the
ordering. We show that if T is not the Delaunay triangulation, then there is a lexico-
graphically larger triangulation T". If T' is not Delaunay, then by Lemma 2.2 it is not
locally Delaunay, so there must be two triangles abc and acd so that d is inside the
circumcircle of triangle abc (and b is inside the circumcircle of acd). Necessarily abed
1s a convex quadrilateral. Some easy elementary geometry shows that the minimum
angle of triangles abd and bed is larger than the minimum angle of triangles abc and
acd. Hence if T" is the triangulation obtained from T by replacing edge ac with edge
bd, then angles(7") is larger in the lexicographic ordering than angles(T"). O

If the set of sites S is not in general position, then some sites may be cocircular
and a Delaunay cell may be the interior of a circularly-inscribed convex polygon with
more than three sides. In this case the Delaunay triangulation D can be completed
to a proper triangulation by adding diagonals to the convex polygon. The minimum
angle in the resulting triangulation is independent of how diagonals are added, since
it is determined by the shortest side of the convex polygon. Essentially the same
argument as lemma 3.1 shows that any such completion of the Delaunay triangulation
maximizes the minimum angle over all triangulations. However, one might require
that the triangulation lexicographically maximize the sorted sequence of angles, in
which case it matters very much how diagonals are added. Mount and Saalfeld®®
give an efficient algorithm that determines how to add diagonals so that the resulting
triangulation is the lexicographic maximum.

No generalization of lemma 3.1 is known for higher dimensions, at least in
terms of some angular measure of simplices. Rajan®® gives a different optimality
criterion that does hold in any dimension.

The min-containment sphere of a simplex is the minimum-radius sphere that
contains the simplex. If the center of the circumsphere of the simplex lies inside the
simplex, then the circumsphere is the min-containment sphere. Otherwise, the center
of the min-containment sphere lies on some face of the simplex. For example, in two



dimensions, if a triangle is acute, then its min-containment circle is its circumcir-
cle, and if the triangle is obtuse, then its min-containment circle has center at the
midpoint of the longest edge. For T a proper triangulation, let maxrad(T") be the
maximum radius of any min-containment sphere of any simplex in T'.

Lemma 3.2 Over all proper triangulations T of a set of sites S C E? in general
position, the Delaunay triangulation minimizes maxrad(T).

Proof. (Sketch) Recall the lifting map A from section 2.2. A proper triangulation T
in £ can be lifted to a polyhedral surface T in E%*! by mapping cell(R) to cell(A(R)).
An easily verified fact is that the square of the radius of the min-containment sphere
of a cell C' of T is the maximum over z in C of the vertical distance between the
paraboloid A and the polyhedral surface T' above z. The maximum vertical distance
between A and the polyhedral surface 7' is minimized if T is the convex hull of A(S),
1.e. if T' is the Delaunay triangulation D. O

3.2 Geometric graph properties

A Delaunay triangulation or Voronoi diagram can be thought of as a geo-
metrically embedded graph by restricting attention to just its vertices and edges. A
number of results exploit this geometric graph structure.

Several classical graphs with vertex set S C E? capture some form of the
neighborhood structure of S. The euclidean minimum spanning tree EMST of S is
the spanning tree of S that minimizes the sum of the euclidean lengths of the edges
in the tree. The relative neighborhood graph® RNG of S has an edge connecting s;
and s; if there are no sites in the interior of the intersection of the two discs centered
at s; and s; with radius the distance between s; and s;. The Gabriel graph®* GG of
S has an edge connecting s; and s; if there are no sites in the interior of the disc
having as diameter the segment s;s;. It is easy to see that the edge sets of these
graphs satisfy

EMST C RNG C GG C D.

In two dimensions, these containment relations can form the basis of algorithms that
compute these graphs.>?

A graph G with vertex set S C E? has dilation c if for any si,8; € S, the
length of the shortest path between s; and s; along edges of G is at most ¢ times
the euclidean distance between s; and s;. Here the length of an edge is just the
euclidean distance between its endpoints. Clearly the complete graph has dilation
1, but it has O(n?) edges. In two dimensions, Delaunay triangulations give planar
graphs with small dilation but only O(n) edges. For any set S, Chew'? gives a planar
graph A = A(S) with dilation ca = 2; the edges of A are edges of the Delaunay
triangulation of S using a convex distance function whose unit ball is an equilateral
triangle. Naively it would seem that the dilation c¢p of the graph with edges from
the regular Delaunay triangulation D would be smaller, since a circle is much more
symmetric than a triangle. However this has not been shown; Keil and Gutwin*3



show that cp < 27/(3cos(m/6)) & 2.42. Tt is not hard to see that cp > 7/2. Chew'?
conjectures that the true bound for ¢p is close to 7/2. Using other methods, it is
possible to get graphs with small dilation. For any set of n points in E¢ and any
¢ > 0, Vaidya® is able to construct a graph with dilation 14¢ and O(n/e?) edges.

Given a cell complex whose union is the plane, one can ask if it is the Voronoi
diagram of some set of sites S. Ash and Bolker! give a criterion that can decide
this question. Let G be the edge graph of the cell complex and assume that each
vertex has three edges incident. For each vertex v of G there are three rays with
endpoint v so that the edges incident to v bisect the angles formed by the rays. Each
ray enters one of the planar regions incident to v; the ray entering planar region R
is the central ray from v into R. Ash and Bolker show that the cell complex is a
Voronoi diagram iff for each region the central rays entering the region have a point
in common. If the central rays entering the region intersect in a unique point, then it
is the site determining the region (the point is unique in all but extremely degenerate
situations). Ash and Bolker? give generalizations for other forms of planar Voronoi
diagrams; Aurenhammer® generalizes to higher dimensions. The analogous question
of whether a cell complex is a Delaunay triangulation is easy to answer: lemma 2.2
gives an easy local characterization of Delaunay triangulations.

3.3 Inscribability

Steinitz’s theorem®* states that the edge graphs of convex polytopes in three
dimensions are exactly the three-connected planar graphs. A long-standing open
question of Steiner was to characterize which of these graphs are inscribable, that is,
which graphs are actually the edge graphs of convex polytopes with all vertices lying
on a common sphere. Rivin and Smith®® give the following answer. A three-connected
planar graph G is inscribable iff the edges of G can be assigned real number weights so
that the weight of a circuit around a face is exactly one and the weight of a circuit not
bounding a face is strictly greater than one. Note that three-connected planar graphs
have combinatorially unique embeddings, so the faces of G are uniquely determined.
A variant of the ellipsoid algorithm for linear programming can determine whether
the weights exist, in time polynomial in the number of vertices of G.

Rivin and Smith’s theorem has some interesting consequences for Delaunay
triangulations in two dimensions. One is a test to decide if an undirected graph is the
edge graph of a Delaunay triangulation. Suppose G is a three-connected planar graph
with a specified ‘external’ face and specified ‘extreme’ vertices incident to the external
face. G has a Delaunay realization if it can be embedded in the plane so that its edges
become Delaunay edges, the ‘external’ face is unbounded, and ‘extreme’ vertices are
extreme on the convex hull of the embedded vertices. Notice that four or more
vertices around an internal face must be embedded on a common circle and a chain
of vertices bounding the external face between extreme vertices must be embedded
on a common line. Let G’ be the graph obtained from G by inserting a new vertex in
the external face with edges to the extreme vertices. Using stereographic projection
as described in section 2.2 it is easy to see that G has a Delaunay realization exactly



Figure 7: If the dashed edges are added, the resulting graph is not Delaunay

if G' is inscribable (the new vertex of G' gets mapped to the point ¢ used to define
the stereographic projection).

Another consequence is a condition characterizing when the sites of an im-
proper Delaunay triangulation can be perturbed to obtain a particular completion
of the triangulation. Suppose D is the Delaunay triangulation of a set S with edge
graph GG. Let G’ be the graph as before, using the true extreme sites of S. Complete
(' to a proper triangulation, then delete the new vertex and all edges incident to it,
and call the new graph G”. G" is like a completion of G with the additional property
that nonextreme sites on the convex hull of S have been decided to be either extreme
or inside the convex hull. Dillencourt, Rivin and Smith!® show that G” always has a
Delaunay realization if G’ is not bipartite. In the case that G is bipartite, say with
color classes red and blue, then G” is still Delaunay realizable as long as both red-red
and blue-blue edges were added to G to get G”. Notice that G’ is bipartite only in
an extremely degenerate situation: there must be an even number of edges between
extreme vertices on the convex hull, and an even number of edges around each in-
ternal face; even in this degenerate situation, most completions are still Delaunay
realizable. If G’ is bipartite and only red-red or blue-blue edges are added, then G
1s not Delaunay realizable. For example, in figure 7, if the dashed edges are added,
then the resulting graph is not Delaunay realizable. Dillencourt, Rivin, and Smith
are also able to show that any triangulation without chords or nonfacial triangles is
Delaunay realizable; a chord is an edge connecting two nonconsecutive vertices on
the outer face, which is the only face that does not have to be a triangle.

Dillencourt'® gives a necessary condition for a graph to be a Delaunay trian-
gulation. For specific graphs this condition may be easier to apply than the circuit
condition given by Rivin and Smith. A graph is I-tough if deleting any k vertices
(and incident edges) splits the graph into at most k components. Dillencourt shows
that the edge graph G of a nondegenerate Delaunay triangulation is 1-tough. If the
Delaunay triangulation is degenerate, then G is ‘almost’ I-tough: deleting any k ver-
tices results in at most k41 components. In either case a consequence is that G has a
perfect matching, using a classic theorem of Tutte. Dillencourt offers the 1-toughness
of Delaunay graphs as a partial explanation for the observed phenomenon that ‘most’



Delaunay graphs have Hamiltonian cycles.

4 Algorithms

This section outlines some of the fundamental algorithms that are known for
Delaunay triangulations and Voronoi diagrams. For various reasons, it is much more
convenient to express algorithms in terms of the Delaunay triangulation than the
Voronoi diagram, so we do so here. The Voronoi diagram is easily obtained from
the data structure suggested below for Delaunay triangulations; the only additional
information needed is the location of vertices, edges, etc.

The algorithms are described using the ‘real random access machine’ (real
RAM) model.>® Thus memory can contain real numbers; operations +, —, X, /, =
and > on reals are exact and take unit time. The algorithm descriptions also assume
that the set S of sites is in general position. These two assumptions are discussed
more fully in section 4.7.

The ‘figure of merit’ of an algorithm is usually its worst-case running time.
In E? a worst-case lower bound of Q(nlogn) is known for computing the Delaunay
triangulation of n sites in the real-RAM model,® and in E? d>3, a lower bound
of Q(n!%?) follows because the Delaunay triangulation can have that complexity.
Algorithms that match these lower bounds are known, so in a sense there is no
reason to consider any other algorithms. However, there are other more subjective
criteria. One is difficulty, both conceptual and in terms of implementation. Another
is running time ‘in practice.” The probabilistic estimates of section 2.3 suggest that
the combinatorial complexity of the Delaunay triangulation is linear for ‘random’
sites, so worst-case estimates are far too pessimistic. However, relatively little is
known about expected running time on ‘random’ sites, and there are few empirical
comparisons of Delaunay triangulation algorithms in the literature.

The next section discusses some basic tools used to implement the algorithms.
It outlines a graph data structure for representing triangulations and convex hulls,
and gives geometric primitives used by many of the algorithms. Perhaps the sim-
plest Delaunay triangulation algorithm in two dimensions is the “flipping algorithm,”
discussed in section 4.2. It attempts to produce the Delaunay triangulation by local
modification of an arbitrarily-chosen triangulation. Naively, it has no connection with
convex hulls, but a good way to understand it turns out to be with the lifting map of
section 2.2. Section 4.3 gives an incremental algorithm for Delaunay triangulations,
where the sites are added one by one. The incremental algorithm generalizes nicely
to arbitrary dimension; the best way of understanding it is as an incremental convex
hull algorithm on the set of lifted sites, that is, as the beneath-beyond algorithm.>® If
the sites are inserted in random order, then it turns out that the expected worst-case
running time of the incremental algorithm is improved; this is discussed in section
4.4. The plane-sweep algorithm in section 4.5 is one of the few algorithms that has
no apparent connection with convex hulls. However, there is a way of understanding
it using a different mapping to three dimensions. Section 4.6 briefly discusses other
algorithms. The general position assumption and the real RAM model are recon-



sidered in section 4.7. Finally, some implementation issues and results are given in
section 4.8.

4.1 Primatives for Delaunay triangulation algorithms

This section describes two geometric primitives, the “orientation test” and
the “incircle test,” that are sufficient for implementing many Delaunay triangulation
algorithms. Also, there is a description of a simple graph data structure that can be
used to represent a triangulation or convex hull.

The orientation of a sequence of d+1 points (pi, ..., pay1) in E? is either —1,
0, or +1; 1t 1s 0 if the set of d+ 1 points lie on a common k-flat for ¥ < d. Otherwise it
is defined recursively as follows: for d = 1, (p;, p2) has positive orientation if p; < p,
and negative otherwise; for d > 1, identify E“ with the hyperplane spanned by points
P2,--.,Pds1 so that p; lies in the positive halfspace of E?, then the orientation of
(P1,.-.,Pas1) is the orientation of (ps,...,pay1) in E% Thus for d = 2, (p1, ps, ps)
has positive orientation if p; lies to the left of the line directed from p, to ps, or
equivalently if py, py, ps are in counterclockwise order. For d = 3, (p1, pa, p3,ps) has
positive orientation if looking from p; to the plane spanned by ps, ps, ps, (p2, 3, ps)
has positive orientation. Orientation is preserved under an even permutation of the
points and negated under an odd permutation. If p; = (pi1,pi2,.-.,pia), then the

orientation of py,...,psy1 is given by the sign of the determinant
P11 Pz ... pua 1
P P2 --- P 1
Pd411 Pd+1,2 --- Pdy1d 1

(The value of this determinant is the signed volume of the simplex spanned by
P1,---,Pd+1, up to a constant factor depending only on d). The orientation test
on d + 1 points is just to evaluate the sign of this determinant. The orientation test
is sufficient to determine ‘convexity properties’ of a set of points; Edelsbrunner and
Miicke?® give a number of examples of its use.

Suppose the sequence of d+1 points (py,...,pay2) in E? has positive orien-
tation. By the results of section 2.2, p; is outside the circumsphere of py, ..., pii2
exactly if A(p; ) is above the hyperplane spanned by A(p,), ..., A(pas2), which happens
exactly if the orientation of (A(p1),..., A(pat2)) is positive, which in turn happens
exactly if the determinant

P11 ...  DPud P+ ...+l 1
P21 -e+ P2 P§1+---+P%d 1

2 2
Pd+21 ... Pdt2,d Piyo +.o..F Pdy2.4d 1



1s positive. If the determinant is zero, then it is easy to see that p;,..., pgo are
cospherical, and if the determinant is negative, then p, is inside the circumsphere of
P2,--.,Pd+2- The evaluation of the sign of this determinant is the incircle test®® for
points py, ..., Pdya.

A triangulation algorithm requires some data structure to represent the trian-
gulation. There are known data structures that will represent arbitrary d-dimensional
cell complexes.”*® However, because of the general position assumption made earlier
the Delaunay triangulation D of the set of sites S is proper, that is, all cells are sim-
plices. Hence a fairly simple graph data structure can represent the triangulation.
Bach d-cell C' of the triangulation should be represented by a node in memory; the
node contains a vector of the indices of the d+1 sites that determine the cell and a
vector of d+1 pointers to the nodes for the d-cells that are opposite C in the trian-
gulation. A facet common to two d-cells is thus represented by two pointers, one in
each direction between the nodes representing the two d-cells. A convenient corre-
spondence is that the kth pointer stored in a node corresponds to the facet obtained
by deleting the kth site from the node. Facets on the boundary of the triangulation
could be distinguished with null pointers. A perhaps preferable alternative is to give
the triangulation the topology of a sphere. One way to do this is to create a dummy
vertex v (thought of as somewhere in the unbounded complement of the triangula-
tion) and to triangulate the complement topologically using v, that is, to add a d-cell
formed from v and each boundary facet of the triangulation. Then the boundary
facets are obtained by examining the d-cells containing v.

Cells of dimension d—2 or less are not represented explicitly; each such cell is
determined by a subset of the sites of some d-cell. Some care is needed to exploit
the structure implied by lower-dimensional cells. For example, the facets and d-cells
incident to a ridge form a cyclic order around the ridge. Traversal of this cyclic order
is possible at the expense of some manipulation of facet pointers. Suppose cell(R) is
a d-cell with ridge cell(Q)). A convenient representation of cell(Q) is the pair of sites
in R — (). Each such site s determines a facet cell( R — {s}); these are the two facets
on either side of cell(R) in the cyclic ordering. If the pointer for facet cell(R — {s})
is traversed to reach a d-cell cell( R'), then R’ — @ is obtained from R — @ by deleting
s and adding a site s’; s’ can be deduced by examining all facet pointers of cell(R'),
since the pointer for facet cell(R' — {s'}) points to cell(R). Similarly, the ridges,
facets, and d-cells incident to a (d—3)-cell have the topology of a sphere, which can
be traversed in an analogous though more cumbersome fashion.

Essentially the same data structure can be used to represent the boundary of
the convex hull of a lifted set of sites, since all the faces are still simplices. Notice
that the boundary of the convex hull already has the topology of a sphere. Clearly,
the Delaunay triangulation can be obtained by just selecting the lower faces of the
convex hull and ignoring the vertical coordinate of a lifted site.



4.2 Flipping

Let S be a set of n > 3 sites in E?. The simplest algorithm for computing the
Delaunay triangulation of S is edge flipping:

1. Determine some triangulation of S.

2. While there are two opposite triangles abc and acd that are not locally Delaunay,
flip the diagonal, that is, replace the two triangles with triangles abd and bcd.
This flip is a Delaunay diagonal flip.

A simple way to determine a triangulation of S is to add the sites one by one in
z-sorted order (using y-order to break ties). The triangles for a new site s; are
constructed using boundary edges of the current triangulation visible from s;; these
can be determined by traversing the boundary of the triangulation first clockwise,
then counterclockwise, from the previous last site s;_;. For the second step, the
incircle test from section 4.1 can be used to determine if two opposite triangles are not
locally Delaunay. Notice that if two opposite triangles are not locally Delaunay, they
together form a convex quadrilateral, so indeed it is possible to flip the diagonal. To
save scanning the triangulation at every iteration, a queue of edges can be maintained
between opposite triangles that are not locally Delaunay. The queue is initialized
once at the beginning, and updated as necessary using the bounding edges of a
quadrilateral involved in a flip. Working out the details, it is easy to see that the
algorithm can be made to run in time O(nlogn + f), where f is the number of flips.

Why is the number of flips finite? A triangulation 7' i in E? lifts to a polyhedral
surface T' in E3 by mapping a face F = cell(R) into a face F' = cell(A(R)). Suppose
that two opposite triangles A; = abc and A, = acd are not locally Delaunay. An ob-
server sitting at a negative vertical position looking up at the surface will see that the
two lifted triangles A; and A, form a concave dihedral angle. Flipping the diagonal
results in a triangulation T” with triangles A] = abd and A/, = bed substituted for A,
and A,. The lifted surface 7" now has two triangles A' and A forming a convex di-
hedral angle. The symmetric difference between T and 77 is essentlally the boundary
of the tetrahedron A(a)A(b)A(c)A(d); T has resulted from T by substituting the two
faces of the tetrahedron visible from below for the two faces obscured by the interior
of the tetrahedron. Thus 7" is everywhere equal to or below T. In particular, the
edge M(a)\(c) lies above T”, and above every subsequent lifted triangulation. Hence
edge ac will never reappear in any subsequent triangulation. Since there are only (2)
possible edges among the n sites of S, and some edge disappears forever after every
flip, the number of flips is at most (;)

This quadratic bound can be achieved in the worst case. Consider the tri-
angulation T" in Figure 8a; the Delaunay triangulation D of the same set of sites is
depicted in Figure 8b. At least (n?) Delaunay flips are required to transform 7' into
D, no matter in what order the flips are performed.?® Notice that only O(n) diagonal
flips are necessary to transform T' into D-this bound holds for the flip distance be-



(a) (b)
Figure 8: Q(n”) Delaunay flips are necessary to transform triangulation T in (a) into D in (b).

tween any two triangulations of a convex polygon—but not all the flips are Delaunay
diagonal flips.

Not much is known about the number of flips required to transform a ‘ran-
dom’ triangulation into the Delaunay triangulation, in part because of the lack of a
satisfactory definition of a ‘random’ triangulation. Empirical evidence suggests that
edge flipping is a reasonable algorithm in practice; see section 4.8. If the sites are
added in random order, and flips are performed to update the triangulation to the
Delaunay triangulation after each addition, then Guibas, Knuth and Sharir®® show
that the expected number of flips is linear. The expectation is over the permutation
used to order insertions and holds for any set of sites.

Naively, it seems that the flipping algorithm should extend to higher dimen-
sion. The notion of a ‘flip’ is now more complicated; it does not suffice to consider
just two adjacent simplices. Let S be a set of sites in F¢, and consider a set R C S
of d 4 2 sites so that all sites are on the boundary of the convex hull of B. The set
A(R) forms a simplex in E9+!. Viewed from below, some facets are visible and some
facets are obscured by the interior of the simplex. A Delaunay flip in a triangulation
T of S substitutes a set of cells V for a set of cells O if V and O are projections of
the visible and obscured facets of such a simplex A(R). For example, for S C E3, a
simplex of d + 2 points in £* has five tetrahedral faces, either two or three of which
can be visible; hence a Delaunay flip either replaces two tetrahedra with three, or
three tetrahedra with two. Clearly, if 7" results from T by a Delaunay flip, then 7"
is everywhere at or below T'. Since some simplex disappears forever at each flip, and
there are only a finite number of simplices with vertices chosen from S, it would seem
that the Delaunay triangulation results after a finite number of flips. Unfortunately,
flipping can get stuck. Joe®® shows that there are non-Delaunay triangulations in. E3
for which no Delaunay ﬂlp apphes Roughly speaking, the problem is that two op-
posite simplices can be locally nonDelaunay, but the union of the two is not convex,
so no flip is possible. This is possible for the first time in E°; in E? if two opposite
triangles do not form a convex quadrilateral, then they are locally Delaunay. Joe®
shows that an incremental form of flipping does work in three dimensions; the incre-
mental flipping is similar to the incremental algorithm, discussed below. Incremental
flipping was extended to general dimension by Rajan,*® with a logarithmic overhead




‘h/
Figure 9: P is given by dark edges and its triangulation using dashed edges.

per flip, and by Edelsbrunner and Shah,? with an amortized constant overhead per
flip.

4.3 The incremental algorithm

The incremental algorithm adds sites one by one; at each addition, the De-
launay triangulation of the previous set of sites is updated to include the new site.

In two dimensions, the incremental algorithm is easy. For simplicity, choose an
initial triangulation so that all subsequent sites lie inside the triangulation. Given a
new site s, find the set 7T, of triangles of the current triangulation whose circumcircles
contains s. The boundary of the union of triangles T, is a polygon P star-shaped
from s (that is, for any point p in P, segment sp is contained in P). See Figure 9.
Let T be the triangulation of P whose triangles are each formed from an edge of
P and s, and replace T, by T,. The resulting triangulation is Delaunay since it is
locally Delaunay: each edge lies between two old triangles, or between an old triangle
whose circumcircle does not contain s and a triangle formed using the edge and s, or
between two new triangles formed from s and the vertices of an old triangle whose
circumcircle contains s. In the worst case, every triangle of T could appear in 7,, so
adding a single site takes linear time, and adding all sites takes quadratic time. The
non-worst-case analysis is given below.

This algorithm generalizes to higher dimension. However, the generalization is
best understood as an incremental convex hull algorithm, applied to the set of lifted
sites A(S). Thus the incremental Delaunay triangulation algorithm is just a version
of the beneath-beyond algorithm.>?

A useful observation concerns the changes to the convex hull of a point set
when a new point is added. Suppose RU{r} is a finite affinely independent point set
in B¢, H is the convex hull of R, r is outside H, and H' is the convex hull of RU {r}.
Then the faces of H' are exactly the faces of H invisible from r and on the horizon
from r, faces of the form cell(F U {r}) for some horizon face F of H, and r itself.”
See Figure 10. (This characterization requires affine independence, in particular,
that 7 is not contained in the affine span of any horizon face. The general position



Figure 10: Obtaining H' from H. The heavy lines are the horizon faces.

assumption implies that the set of lifted sites A(S) is affinely independent. Figure 10
is drawn with nontriangular faces to make it appear more like a three-dimensional
polyhedron.) Notice that any face of H visible from r lies in the interior of H'.

Let S be a set of at least d + 2 sites in E4. The incremental algorithm will
produce the convex hull of the lifted sites A(.S). The convex hull is represented using
a graph data structure (7, as described in section 4.1. The first step of the algorithm
1s to choose a subset of d + 2 sites. The d + 2 lifted sites form a simplex in E%t! with
d+1 d-faces, so G starts with d+1 nodes.

Suppose R C S and the convex hull H of A\(R) has been constructed. The
iterative step of the algorithm is to choose a new site s€ S—R and construct the
convex hull H' of A(RU {s}). Using the observation given before, adding s can be
split into two steps:

1. Find the set H, of d-cells of H visible from A(s).

2. Replace H, with the set of d-faces H, = {F; : F, = cell(F U {\(s)}), F € H}},
where Hy, is the set of horizon (d—1)-faces of H from A(s).

(1t should be clear that the algorithm in two dimensions given earlier is essentially the
same, but described in terms of the triangulation itself.) For the first step, it suffices
to find a single face in H,, since as described in lemma 4.1 below, the remaining faces
can then be found by a graph search in G.

Sets H, and H, form topological d-balls with the same boundary Hj. However,
their worst-case sizes are different. H, can be essentially all of H. Since H is a
convex polytope in d+1 dimensions, by the upper bound theorem it has at most size
O(m[¥?)| where m is the number of sites determining H. H; is the set of d-faces
incident to a single vertex of a convex polytope in d+1 dimensions. This set has at
most the size of a convex polytope in dimension d, i.e. O(m!%2). One way to see
this is to push a hyperplane supporting H' at A(s) into H' slightly. The resulting
intersection is a convex polytope in d dimensions with faces in one-one correspondence

with the faces of A, (and also Hy).

Lemma 4.1 Given a single face in H,, it is possible to determine H, in time O(|H,).



Proof. Here is a sketch of one algorithm. The data structure nodes for the d-faces
in H can be created if the horizon (d—1)-faces Hj are known. These are exactly
the (d—1)-faces between faces in H, and faces not in H,, and can be enumerated by
a depth-first search through the graph data structure G starting at any face in H,,
backtracking at a transition from a face in H, to a face not in H,. The adjacencies
among the faces in H, can be discovered as follows. There is a (d—1)-face between
d-faces I; and F, of H, exactly if (d—1)-faces F and F’ in H} have a common (d—2)-
face. Furthermore, any (d — 2)-face f of a face in Hj, is incident to exactly two faces
of Hy, since H}, is topologically a (d—1)-sphere. The d-cells of H incident to such .
a (d—2)-face f are cyclically ordered around f, and in particular the d-cells of H,
form a connected portion of the cyclic order. Hence given a (d — 2)-face f of a face
in Hy, the other face of Hj incident to f can be found by walking in this cyclic order
through H, until a d-cell not in H, is discovered. The total time spent to construct
all the cells H, and to discover adjacencies is clearly O(|H,| + |Hx|) = O(|Hy|) plus
the time spent spent traversing cyclic orders around (d — 2)-faces. However, a d-cell

of H, is visited at most once for each of its (d — 2)-faces, so this time is also O(|H, ).
g

Theorem 4.2 Let S be a set of n sites in E?, d > 2. The incremental algorithm to

compute the Delaunay triangulation of S can be implemented so that in the the worst
case it uses time O(nr(dH)/ﬂ) and space O(nfd/ﬂ)'

Proof. The sites should be added in coordinate-sorted order (using lexicographic
order to break ties). Then the next lifted site always sees one of the d-cells incident
to the last lifted site added, so simply examining all such d-cells determines a d-cell
visible to the new lifted site. The total time spent in the algorithm is determined
by the number of d-cells ever created, since each d-cell gets charged once for being
created, at most once for being deleted, and at most once for being examined. If the
current hull is determined by m lifted sites, then adding a new lifted site creates at
most O(m!¥/2) new d-cells. Summing from 1 to n yields O(n[(**1)/21), The space
usage is determined by the maximum number of d-cells of the convex hull, which is
O(n1471y. 1

Edelsbrunner®* gives a careful description of this algorithm without assuming
that the set of sites is in general position. Unfortunately, the details of the algorithm
become much more complicated. _

If the set of sites is ‘random’ the running time bound of theorem 4.2 is unduly
pessimistic. The probabilistic estimates in section 2.3 suggest that | H| is linear; hence
one expects quadratic behavior from even a naive implementation that examines every
face of H to find the faces of H,. The probabilistic estimates also suggest that for a
new ‘random’ site, | H,,| is constant, so examining every face of H is unduly expensive.
However, sorting the points as in theorem 4.2 destroys randomness (at least as far as
is known), and the points may not all be available at the beginning of the algorithm.
Hence an efficient way of finding a face in H, is needed. Various heuristics have
been suggested. One is to start at a site of the current Delaunay triangulation and



walk through the triangulation in the direction of a new site s. The walk will find
either a cell containing s or leave the triangulation; either case yields a face of H,.
Bowyer® suggests that a walk starting from a site near the centroid of the Delaunay
triangulation should visit about O(n!/?) cells, although no rigorous analysis is known.
An improvement is to subdivide space with a regular grid. Before the algorithm
starts, the set of sites in each grid cell is determined. The walk for a new site can
then start at an already inserted site lying in the same or a nearby grid cell. In two
dimensions, Ohya, Iri and Murota®+°? give a ‘quaternary incremental’ algorithm that
uses a hierarchy of grids in order to maintain an approximately uniform distribution
of sites throughout the insertion process. They report linear performance for a variety

of distributions. An alternative method of finding a face of H, is presented in the
next section.

4.4 The random incremental algorithm

The random incremental algorithm inserts sites in random order, with each
permutation equally likely. One reason for considering the random incremental al-
gorithm is that its expected worst-case running time is better than the worst-case
running time of the incremental algorithm. Here the expectation is over the per-
mutation used to order insertion; ‘expected worst case’ means the expected running
time for the worst set of sites.

A requirement of the random incremental algorithm is a data structure to find
a face of the current hull seen by a new lifted site. One such search data structure
is based on a triangulation of the current hull obtained in a straightforward fashion
from the sequence of intermediate convex hulls.

The initial triangulation is just the (d+1)-simplex Hy formed by the first d+2
lifted sites. Suppose s is a new site, R is the current set of lifted sites, and H, H’,
H, and H; are as in the incremental algorithm. The triangulation of H’ is obtained
from the triangulation of H by adding, for each d-face F in H,, the (d+1)-simplex
G, formed by F' and A(s). The simplices {Gp,} fill out the volume between H and
H' in the obvious way. Each simplex G, has a single parent d-face F in H,, possibly
child d-faces in H,, and possibly sibling d-faces shared with other simplices Gpr, just
added. The triangulation can be represented using the data structure described in
section 4.1, in one dimension higher. In fact, the triangulation simultaneously serves
as the search data structure and as the representation of the boundary of the current
convex hull.

Given a new site s, depth-first search in the triangulation of H can be used to
find a face of H seen by A(s). The triangulation should be thought of as a directed
graph. The nodes are the (d+1)-simplices and arcs correspond to d-faces. There is an
arc directed from parent to child, and an arc in each direction between siblings. All of
the faces of the initial simplex Hy are child faces, directed away from Hy. Depth-first
search starts at Ho; the search proceeds from a simplex G through a child or sibling
pointer if A(s) is beyond the corresponding d-face of G, that is, if the hyperplane
through the face separates G from A(s). The search stops if A(s) is beyond some d-



face of a simplex GG and there is no opposite simplex; this happens only if the d-face is
part of the boundary of the current hull H. There is one subtlety to the search: if the
search enters a simplex, the search should continue only if the simplex is active, that
is, if A(s) and the simplex are on the same side of the hyperplane through the parent
d-face of the simplex. It may happen that an inactive simplex is entered through a
sibling pointer; the search should backtrack immediately to save unnecessary work
(and to make the analysis below go through).

Why is the search guaranteed to find a d-face of H seen by A(s)? Choose a
point / in the initial simplex Hy so that the segment from h to A(s) intersects only
d- and (d+1)-simplices, and those in vertices and open segments, respectively. The
sequence of (d+1)-simplices intersected by the segment in order from % to A(s) can be
traversed using sibling d-faces and d-faces from parent to child, since A(s) is beyond
every intermediate convex hull. Any (d+1)-simplex in the sequence is active because
the hyperplane through its father face separates h from some point on the segment
and hence separates h from A(s). It follows that A(s) and the (d+1)-simplex are on
the same side of the hyperplane. Clearly the last d-face intersected by the segment is
a d-face of H seen by A(s), so there is at least one path through which the depth-first
search can succeed.

Theorem 4.3 Let S be a set of n sites in E%. The expected running time and space
of the random-incremental algorithm are in O(n!¥?1) if d > 3. If d = 2, then the
expected running time is in O(nlogn) and the ezpected space is in O(n). This bound
holds for the worst-case set of sites; the expectation is over the permutation used to
order insertions.

Proof. Let B be the subsets of S of size d+1. An element B € B has scope k if
there are exactly k sites in the interior of the circumsphere of B. Let by and b<j be
the number of elements of B of scope k and of scope between 0 and k, respectively.
Clearly, if B has scope 0, then cell(B) is a Delaunay d-cell; hence by is the number

of Delaunay d-cells and b is in O(n!%?1). A fundamental and not especially obvious
fact!*1% is that for k > 1,

ber € O(n[¥/21EIE@)/2],

Surprisingly, good bounds on b, are not known.

The sites are inserted in some random order. We first bound the expectation
of the total number of d-faces that appear on any intermediate convex hull. For B€B
of scope k, cell(A(B)) appears on some intermediate convex hull exactly if the d+1
elements of B appear in the random order before any of the k elements lying inside
the circumsphere of B. The probability of this happening is

AR (d+1)!
P hrda )l (kL) (R42) - (k+d+1)




Thus the expected number of d-faces is

n—(d+1) n—(d+1)
Z peby = bo+ Z Pr(b<k — bek-1)
n— d-l-—l)

= bo+ Z (Pr — Prs1)b<k

n—(d+1)
O(nl¥/21) 4 3 O(k—(d+2)nfd/21kf(d+1)/21):O(n[d/ﬂ).
k=1

m

The space usage of the algorithm is determined by the total number of d-faces and
has expectation O(nf%/21),

Now we bound the total time spent traversing the search data structure for
all sites. Consider the time spent at a single non-root simplex for a single site s. We
charge the time spent leaving the simplex through child and sibling faces to the parent
face F'=cell(A(B)) of the simplex. The total charge is constant, since there are only
d child and sibling faces. Such a charge happens only if the simplex is active, that
is, if A(s) and the simplex are on the same side of the hyperplane through the parent
face, or equivalently if s is inside the circumsphere of B. Hence the total charge to
a parent face F'=cell(A(B)) is a constant times the scope of B. The expected time
spent traversing the data structure is at most the sum over all potential faces of the
probability that the face gets created times the total possible charge to the face:

n—(d+1)

Z kprby.

It d>3, essentially the same analysis as above shows that the sum is O(n[#/?1). The
case d=2 is special: the sum becomes

n—(d+1) n—3
> Ok~ 2 EIED2TY = O(p > k™) = O(nlogn).
k=1 k=1

In either case it is easy to see that the sum bounds the total expected running time
of the algorithm. O

Other analyses of this algorithm are possible. Clarkson, Mehlhorn and Sei-
del'*'® give an elegant self-contained analysis that does not require the bound on
the magic value b<y; Boissonnat et al.” give another. The analysis given here follows
the outline given by Guibas, Knuth, and Sharir® for a random-incremental diagonal-
flipping algorithm in two dimensions. The original random-incremental algorithm
for convex hulls is due to Clarkson and Shor.!’® That algorithm maintains a “con-
flict graph” that has an edge connecting each uninserted site with each ridge of the
current hull that would be destroyed by the addition of the new site. The conflict
graph makes finding the faces visible from an uninserted site trivial; the work is in



maintaining the conflict graph. The data structure described here is very similar to
one suggested by Boissonnat and Teillaud®; the idea of using intermediate Voronoi
diagrams to aid searching can be traced to Green and Sibson.®3

Chazelle'? shows that it is possible to ‘derandomize’ this algorithm, that is,
to choose deterministically an insertion order that guarantees the same asymptotic
running time. Unfortunately, the algorithm that computes the insertion order is quite
complicated.

As in the case of the incremental algorithm, the worst-case bound of theorem
4.3 1s unduly pessimistic. Suppose the set of sites S has the property that the expected
size of the Delaunay triangulation of a random subset R C S is linear in |R|. A set
of points drawn uniformly in the unit sphere satisfies this property, as discussed in

section 2.3. Then the expected running time of the random incremental algorithm is
O(nlogn).1418

4.5  The plane-sweep algorithm

The plane-sweep method constructs a cell complex in the plane by observing
the intersection of the cell complex with a line, the ‘sweepline’, as the line sweeps
across the plane. For a general discussion of the plane-sweep method, see for example
the book by Preparata and Shamos.>® We use the plane-sweep method to construct
the Voronoi diagram or Delaunay triangulation of a set of points in two dimensions.

It is perhaps not immediately obvious how to use the plane-sweep method to
compute a Voronoi diagram V efficiently in two dimensions. Suppose the sweepline
is parallel to the z-axis and is moving upwards, that is in the plus y-direction. The
vertices of V' can be split into two categories: those with two edges incident from
below and one from above, and those with one edge incident from below and two
from above. It is easy to predict the first kind of vertex, because the two edges
incident from below are adjacent on the sweepline data structure. It is not so easy to
predict the second type of event. In effect, it is caused by an edge intersected by the
sweepline and a site lying above the sweepline. However, it is undesirable to consider
all quadratically many such pairs.

In fact, there is a plane-sweep algorithm that computes the Voronoi diagram
of a set S of n sites in the plane in time O(nlogn).?® It is convenient to describe
the algorithm as producing the Delaunay triangulation D. In addition to the general
position assumption, assume that no two sites of S lie on a common horizontal line
and that no site is the topmost point of the circumcircle of any Delaunay triangle.

Let I, be the horizontal line with y-coordinate y (I, will be the sweepline).
Let ymin be the minimum y-coordinate of a site in S and assume y>ymin. For a
point p€l,, grow a circle C, with topmost point p until it touches a site in S. In
general, (', touches a single site s, and in fact for every point p in some open interval
I,(s) C I, Cp touches exactly s. See figure 11. At an endpoint p of I,(s), C, also
touches a site ¢ with interval 1,(¢) also incident to p; possibly C, touches another site
as well. The sequence of intervals Iy(s1), I,(s2) ..., I,(sx) along I, determines a path
of Delaunay edges F, = s1s9,5353,...,5k—15¢. F, need not be simple: a vertex can



Iy(r) 1,(1) Iy (s) 1y (t) Iy(w)

Figure 11: The heavy path is Fy; the curved path is the center of circles C), for pel,.

appear arbitrarily many times (though an edge can appear at most twice). F, can be
thought of as the ‘frontier’ of the set of Delaunay cells that have some circumcircle
with interior below [,.

What happens as y increases and [, moves upwards? Path F, can change in
two ways. First, [, can become tangent to the top of the circumcircle of three sites
s,t,u that form two consecutive edges st and tu along F,. Edges st and tu form
a concave angle in the sense that s,t,u and the topmost point of the circle appear
in that order around the circle. In this case, the interval I,(¢) disappears and edge
su replaces edges st and tu along F,. Notice that stu must be a Delaunay triangle
and su a Delaunay edge. Second, I, can meet some site s. If s were not a site, then
point s would lie in some interval I,(t) with intervals I,(u;) before and I,(u,) after.
Since s is a site, for slightly larger y there will be an open interval I,(s), and the
subpath of F, consisting of uq¢, tuy is replaced with ut, ts, st, tuy. Notice that st is
a Delaunay edge, and that this is the first time site s has appeared. Eventually all
sites are passed and path Fj, forms the convex hull of S; then there are no further
changes to F,.

Using this analysis, a plane-sweep algorithm can be designed that computes
the Delaunay triangulation. The algorithm maintains the current path F, and an
event queue ordered by y-coordinate. The two events are passing a site and passing
the top of a circle. Initially, the sweep line is at y = ymin, the event queue contains
all sites, and the path F, consists only of the lowest site. An invariant assertion of
the algorithm is that the event queue contains an event for each circle through sites
s,t,u so that edges st and tu are consecutive on Fj and form a concave angle. If
the next event is to pass the top of circle formed by edges st and tu, then the action
is to replace these edges with su, and to record stu as a Delaunay cell and tu as a
Delaunay edge. If the next event is a site s, then the site ¢ to be connected to s
must be discovered. Site ¢ can be found by binary search in path F,; the necessary
primitive decides if s, lies to the left or right of the topmost point of a circle tangent
to [, and touching two sites u and v so that uv is an edge of F,. Once ¢t is found, the
path is augmented with edges ts and st, and edge st recorded as a Delaunay edge.



For either event, path F, changes, so insertions and deletions to the event queue are
necessary to maintain the invariant. However, since the changes to F, are local, only
a constant number of event queue operations are required.

Theorem 4.4 The sweepline algorithm can compute the Delaunay triangulation of
n sites S C E?* in time O(nlogn) and O(n) space.

Proof. The path data structure can be implemented using a balanced binary tree, so
that insertions, deletions, and searches each take time O(logn). Similarly, the event
queue can be implemented as a heap, so insertions, deletions, and determining the
next event also each take time O(log n). The number of events is equal to the number
of sites plus the number of Delaunay triangles, which is O(n). Each event uses only
a constant number of operations on the path data structure and the event queue, so
the total running time is O(nlogn). The total space is determined by the maximum
length of the path F,, which is linear, since the number of edges in the triangulation
is linear. O

There is an interpretation in three dimensions that may clarify the algorithm.
We sketch the interpretation here; Guibas and Stolfi®” discuss it at greater length.
Call the plane spanned by the z- and y-axes the base plane, as usual, and now let the
vertical direction be the z-direction. Put a three-dimensional cone C(s) over each
site s; the height of the cone over a point = in the plane is equal to the distance from
z to s. Paint each cone a different opaque color; then an observer sitting below the
plane looking up sees the lower envelope of the cones. Clearly the vertical projection
of the lower envelope of the cones on the base plane is the Voronoi diagram.

Consider a plane P that makes the same angle with the base plane as the cones
and that intersects the base plane in a line [ parallel to the z-axis. The intersection
of P with a cone projects onto the base plane as a parabola; the intersection of P
with the lower envelope of the cones projects to a sequence of a parabolic arcs. In
fact, the sequence is just the locus of centers of the circles C,,, as p varies along [. See
figure 11.

Now imagine sweeping the plane P in the positive y-direction, so that [ moves
in the positive y-direction as well. For small motions of P, P intersects the same
sequence of cones on the lower envelope; however, the parabolic arcs obtained by
projecting on the base plane become less sharply curved. The intersection of P and
the lower envelope can change combinatorially in two ways. First, [ can hit a new site
and P the corresponding cone; notice that in fact P becomes tangent to the cone.
After a slight additional motion of [ and P, the new cone yields a new parabolic arc
in the projection of the intersection of P and the lower envelope. Second, P can pass
through the point of intersection of three cones on the lower envelope; this corresponds
to the sweepline discovering a vertex of the Voronoi diagram (or a Delaunay circle).
One of the cones now disappears from the intersection of the lower envelope and P,
and the projection onto the base plane loses a parabolic arc.

What happens if the set of sites S lies in three dimensions? One might hope
that a ‘space-sweep’ algorithm would be output-sensitive, that is, its running time



would be approximately proportional to the number of Delaunay tetrahedra. The
algorithm does generalize to three dimensions. It is perfectly possible to define the
‘frontier’ F, as the set of Delaunay cells that have a circumsphere touching a sweep
plane parallel to the zy-plane at height 2. F, can be given the structure of a plane,
just as in two dimensions the frontier has a linear structure. There are now three
kinds of events: discovering a new site (and connecting the site by a Delaunay edge
to a previously discovered site), discovering a triangle, and discovering a tetrahedron.
The first event is of course easy to predict; finding the connecting edge requires point
location in a dynamic planar subdivision, but there are reasonably efficient algorithms
for that. The third event can also be predicted, because at least two triangles sharing
a common edge are involved. The difficult event to predict is the creation of a triangle.
Conceivably the current frontier has a vertex with O(n) Delaunay edges incident to
it. The next Delaunay triangle may be formed from two of those edges. However,
there are O(n?) possible pairs, and it seems necessary to consider all of them. Hence,
as far as is known, space-sweep algorithms require at least quadratic complexity, even
if the Delaunay triangulation has linear complexity.

4.6 Other algorithms

The divide-and-conquer algorithm was the first worst-case optimal algorithm
for Voronoi diagrams in two dimensions.?® It splits the set of sites into two halves of
approximately the same size with a vertical line, recursively computes the Voronoi
diagram of the two halves, and then merges the two triangulations. The merge takes
linear time in the worst case, so the worst-case running time of the algorithm on n
sites is O(nlogn). Guibas and Stolfi give a careful description of the algorithm in
terms of the Delaunay triangulation.>®

If the set of sites is uniformly distributed in the unit square, then the expected
running time can be improved. Bentley, Weide, and Yao® show that a combination
of bucketing techniques and any O(nlogn) algorithm leads to an algorithm with
expected running time O(n). Dwyer shows that a simpler algorithm, essentially
first splitting with a vertical line, then a horizontal line, has expected running time
O(nloglogn). This is further improved to O(n) by Katajainen and Koppinen.*!

A Delaunay triangulation can always be computed by lifting the set of sites and
using a convex hull algorithm. One alternative to the beneath-beyond algorithm is
the ‘gift wrapping’ algorithm.®® The gift-wrapping algorithm takes time O(ns), where
n is the number of points and s is the number of facets on the convex hull of the set
of points. Hence, in the worst case it is slower than the beneath-beyond algorithm.
However, Dwyer?! is able to show that if the set of sites is uniformly distributed in a
sphere, then a version of the gift-wrapping algorithm applied to the lifted sites takes
linear time. The linear time results from the use of bucketing techniques in addition
to the linear expected combinatorial complexity of the Delaunay triangulation. A
second convex hull algorithm is due to Seidel®; it takes time O(n? + slogn), where
s and n are as before. Conceivably there are situations where its use could lead to
an efficient algorithm for Delaunay triangulations.



4.7 The real RAM and the general position assumption

The ‘real RAM’ model and the general position assumption for sites consid-
erably simplify the description of geometric algorithms. However, the real RAM is
unimplementable and the set of sites of interest may not be in general position. It
is not clear how best to proceed without these assumptions; this section discusses
some of the issues. This discussion is appropriate for all geometric algorithms, not
just Delaunay triangulation algorithms.

A plausible approach is to use integers instead of reals. Thus an input point
is specified by a vector of integers; scaling of the input may be necessary to approx-
imate the input adequately on the integer grid. Most of the Delaunay triangulation
algorithms can be implemented using the geometric primitives in section 4.1 (the
sweepline algorithm has a different set of primitives). Each of these primitives is
a sign-evaluation of a determinant formed from the coordinates of the input points
and can be evaluated using integer arithmetic. The issue is the bit complexity of the
arithmetic. As far as is known, it is necessary to evaluate the determinant in order
to determine its sign. A coarse estimate of the bit complexity of the determinant
evaluation can be obtained by viewing the determinant as a polynomial in the input
coordinates. If a polynomial has degree d and the variables have bit length b, then
approximately bd bits are required to evaluate the polynomial. In dimension d, the
orientation test has degree d + 1 and the incircle test degree d + 2. Thus with only
standard 32-bit integer arithmetic, in dimension d = 2 the input coordinates can
have bit length at most b =7, i.e. the input sites have to lie on a 128 x 128 grid. It
is reasonable to take the dimension d to be constant, so extended-precision integer
arithmetic adds only a constant multiplicative factor of overhead.

Unfortunately, at least with naive implementations of extended-precision in-
teger arithmetic, the constant is large. Consider Gaussian elimination to evaluate
the determinant of a d X d matrix with integer entries. The usual estimate is that
Gaussian elimination takes O(d®) arithmetic steps. However, to implement Gaussian
elimination using integers without division, the bit length of matrix entries increases.
A better estimate of the number of b-bit primitive arithmetic operations needed to
evaluate a d X d determinant with b-bit entries is exponential in d.%? An alternative is
to use modular arithmetic over a collection of finite fields, so division is possible, and
then use the Chinese remainder theorem to reconstruct the determinant.** This re-
sults in about O(d*) b-bit arithmetic operations to evaluate a d x d determinant with
b-bit entries. No extensive comparison of determinant evaluation methods appears
to be available, at least in the context of geometric algorithms.

It 1s a considerable simplification to allow only integer coordinates. Rational
coordinates arise naturally; for example, the coordinates of the point of intersection of
two line segments are rational even if the endpoint coordinates are integer. However,
the bit-complexity estimates go up dramatically if the input coordinates are rational.
Even a single addition can double bit complexity: the appropriate measure of the
bit-complexity of p/q is the sum of the bit lengths of p and ¢, thus the bit-complexity
of p/q+r/s = (ps + qr)/(gs) is the sum of the bit-complexities of p/q and r/s.



Exact arithmetic has an advantage that certain symbolic perturbation schemes
guarantee that the input can be treated as if it were in general position.?®27:63,64
Edelsbrunner and Miicke®® suggest a scheme called ‘simulation of simplicity;’ they
work out the details for algorithms that use the orientation test and the incircle
test. Suppose that the input sites are S = {sy,s9,.. sn} C E* where s; =
(i1, 8i2,...,8.4). Imagine perturbing s;; by an amount ¢, for ¢ very small. For
sufficiently small € > 0 the resulting set of sites is guaranteed to be in general position.
Edelsbrunner and Micke show that this perturbation can be simulated symbolically,
without any computation involving € or even knowing ¢. For the orientation test on
d+1 points, they give a sequence of determinants constructed using the coordinates of
the unperturbed points. They show that the sign of the first nonzero determinant in
the sequence is the same as the sign of the determinant obtained from the perturbed
points. The first determinant in the sequence is just the determinant obtained from
the unperturbed points, so overhead is incurred only in the case that it is zero, i.e.,
in the degenerate case. A possible disadvantage of the method is the length of the
sequence of determinants; for the incircle test in dimension 2, the length is already
15. At least in principle the determinants can be generated as needed. A second
disadvantage is that there is no control over the perturbation. Thus a nonextreme
site on the convex hull of the triangulation may be perturbed to become extreme, in
effect adding a flat triangle.

The alternative to exact arithmetic is floating point arithmetic, and the bit-
complexity issue no longer arises. However, the general position assumption becomes
much more stringent. Standard error analysis techniques from numerical analysis can
be applied to the geometric primitives.!” Consider the orientation-test determinant
obtained from a set of sites s1,...,8441. In floating point arithmetic using, say,
Gaussian elimination, it is poss1ble to compute an approximate determinant A and
an error bound ¢ > 0 If |A] > 6, then the sign of A is correct; if |A| < §, then
the true sign is unknown, but there are slightly perturbed sites s},..., s}, so that
the true determinant is zero. The ‘slight perturbation’ moves sites by an amount
depending upon the relative error € of floating point arithmetic, the dimension d, and
the distance of the sites from the origin. Hence if the set S of sites is in ‘sufficiently
general’ position, that is, no determinant changes sign when the sites are slightly
perturbed, then the floating-point implementation is correct.

What happens if the set of sites is not in ‘sufficiently general’ position? A
naive implementation might interpret the ‘can’t tell’ answer as implying that the
determinant can be taken as zero. Unfortunately, this can be disastrous: choose
three sites sq1,s3,84 in the plane that form a right angle, and then add a site s3
very close to s;. The implementation might take sy, s2, 53 as collinear and s,, s3, 54
as collinear, implying the collinearity of sy, ss,s4, which 1s manifestly false. Such
problems can lead to catastrophic failure of algorithms implemented naively with
floating point arithmetic.

There has been some work applying the techniques of numerical analysis to
geometric algorithms as a whole.?%?%%° Fortune®! shows that the flipping algorithm



can be implemented using floating-point arithmetic to produce an ‘approximate De-
launay triangulation’. This means that the triangulation has almost-empty circum-
circles: any site lying inside a circumcircle is only ‘slightly’ inside. The meaning of
‘slightly’ depends upon the relative error € of floating point arithmetic, the number
n of sites, and the distance of the sites from the origin, but not on any geometric
properties of the configuration of the sites.

4.8 Implementation issues

It is not trivial to obtain a reliable and complete implementation of any of
the Delaunay triangulation algorithms. This section discusses a few implementation
issues, offers some advice, and reports experience with four of the algorithms.

A fundamental implementation decision is the choice of exact or floating point
arithmetic. This choice likely influences every other implementation decision. Exact
arithmetic is the only known way to obtain a completely reliable implementation,
at least in general. The disadvantage is the inconvenience and potential cost of
exact arithmetic. Edelsbrunner and Miicke?® use multiple-word integer arithmetic
to implement orientation-test primitives on points on an integer grid. They report
approximately a factor of 10 degradation in performance as compared to using single-
word arithmetic on points on an integer grid drastically reduced in size. They suggest
the use of special-purpose hardware to accelerate integer determinant calculations.
Karasick, Lieber, and Nackman*? implement the divide-and-conquer algorithm in two
dimensions using adaptive-precision rational arithmetic. Their effort was principally
addressed at accelerating the performance of rational arithmetic. Their ultimate
implementation was at least three orders of magnitude faster than a naive implemen-
tation of rational arithmetic, and only a factor of about 4 slower than floating point
arithmetic.

An implementation using floating point arithmetic is not guaranteed to be
completely reliable (except as cited before). However, floating point arithmetic is the
typical implementation choice and may be reliable enough in some circumstances.
A minimal requirement is to raise a flag if some primitive cannot reliably deduce
the correct answer. (This is often not done, perhaps because the required interval
analysis techniques are not understood.) If some primitive does give an ambiguous
answer, a simple trick is to repeat the algorithm after a small random perturbation
of the input data. If perturbation is not acceptable, an alternative is to examine each
use of a primitive test. Some ambiguous answers truly are ‘don’t cares’ and are easily
handled; others may require localized use of higher precision. Such analysis is still a
black art.

Whether exact or floating point arithmetic is required, it is better to construct
the Delaunay triangulation than the Voronoi diagram. One reason is to avoid ma-
nipulating computed values: in exact arithmetic, Voronoi vertices are rationals with
high bit complexity; in floating point arithmetic, Voronoi vertices may be poorly de-
termined if the defining sites are close to being affinely dependent. Another reason is
that it is simpler to manipulate a cell complex with regular bounded cells than one
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Figure 12: Performance of Delaunay triangulation algorithms, in seconds.

with irregular unbounded cells. The Voronoi diagram can be obtained in linear time
from the completed Delaunay triangulation, if required.

The worst-case O(n[%?1) complexity of the Delaunay triangulation should not
be taken too seriously. The linear complexity cyn suggested by the probabilistic
estimates of section 2.3 is more realistic in practice. However, the constant ¢y indeed
does grow exponentially with d, so Delaunay triangulations in dimension 5 or bigger
should be approached with caution.

Figure 12 gives timings for various algorithms. All algorithms are imple-
mented in the C programming language and run on a VAX 8550. The primitives are
implemented using floating point arithmetic, in some cases with heuristics to improve
reliability. The input points are chosen in the unit cube using the library pseudo-
random number generator. Both the timings and the number of lines of source code
should be taken as suggestive only, since the implementations were done by differ-
ent people and with different levels of optimization. For example, an unoptimized
version of the plane-sweep algorithm requires only half as many lines of code but
is considerably slower. The flipping algorithm sorts points by angle rather than by
coordinate. The divide-and-conquer algorithm takes advantage of the uniform dis-
tribution of input points by using both horizontal and vertical splitting directions.?
The plane-sweep algorithm uses bucketing for both the priority queue and sweepline
data structure, giving good performance on uniform data. An important optimiza-
tion for the random-incremental algorithm is to use a dot-product rather than an
orientation test in the search data structure; the child face normal is calculated when
a triangle is added to the triangulation. The running times include input and output;
at least for the plane-sweep algorithm, the time for conversion between character and
floating point representations is comparable to the time actually required to compute
the Delaunay triangulation.

In two dimensions, all of the algorithms are reasonable. The times are suffi-
ciently close that any one of the algorithms could be made the fastest by sufficient
optimization. The times are also sufficiently small that optimization may be irrele-
vant. In higher dimension, the random-incremental algorithm is attractive because
it 1s relatively simple to implement and has good running time, both worst-case and
expected-case. One alternative is to use the incremental algorithm with a different
search data structure to find a face seen by a new lifted site; another alternative is



the variant of gift-wrapping suggested by Dwyer.?!

For large problems storage may be more relevant than running time. The 5000
point example in four dimensions required roughly 70 megabytes of main storage.
Because of paging overhead, the actual clock time for the example was about a factor
of 10 larger than the running time. The implementation of the random-incremental
algorithm was not optimized to minimize storage. The search data structure is the
predominant use of storage. A variant of the random-incremental algorithm that

uses a conflict graph rather than than search data structure might require much less
storage.!®14

Appendiz 1: Definitions from the theory of polyhedra

We review some basic definitions from the theory of convex polyhedra. The
definitions are more or less standard, except perhaps for the definition of a cell com-
plex as consisting of relatively open sets. For more extensive discussion, see books
by Brgndsted,'® Edelsbrunner,?* and Grunbaum.?*

E%is d-dimensional euclidean space. A k-flat is an affinely closed subset of ¢
of dimension k; lines, planes, and hyperplanes are flats of dimension 1,2, and d—1,
respectively. A set of points in E¢ is affinely independent if no k+2 points lie on
a common k-flat, for k<d. An open halfspace is the set of points to one side of a
hyperplane; a closed halfspace includes the hyperplane. A hyperplane separates two
sets if one set is contained in one of the closed halfspaces and the other is contained
in the complementary open halfspace. A convezr polyhedron is the intersection of a
finite number of closed halfspaces; if it is bounded it is a convez polytope. A cell
is the intersection of a finite set of flats and open halfspaces; equivalently a cell is
the relative interior of a convex polyhedron. If R C E¢, then cell(R) is the relative
interior of the convex hull of R. A simplez is cell(R) for an affinely independent
set of points R; thus a two-dimensional simplex is the interior of a triangle and a
three-dimensional simplex is the interior of a tetrahedron. A sphere in E? is the set
of points in E? at a fixed distance from its center. A point of E¢ is either inside, on,
or outside a sphere; a circumsphere of a set B C E? is a sphere with all points of R
on the sphere.

A closed halfspace supports a cell or convex polyhedron P if it contains P
and its bounding hyperplane intersects the closure of P. A hyperplane supports P
if one of its closed halfspaces supports P. A face of P is the relative interior of the
intersection of a hyperplane supporting P with the closure of P. Basic facts are that
a face is a cell and that a face of a face of P is a face of P. If F'is a face of G, then F
and G are incident. A face is a k-face if its affine closure has dimension k; vertices,
edges, ridges, and facets are faces of dimension 0,1,d—2, and d—1, respectively. An
extreme point of a polyhedron is a vertex of the polyhedron. A face F' of a convex
polyhedron P is visible from a point z not in P if every hyperplane supporting P
through F separates x from P; F is a horizon face from z if there is a hyperplane
supporting P containing ¢ and F'; F is invisible from z if no hyperplane supporting



P through F separates = from P.

A cell complez is a finite collection of pairwise disjoint cells so that the face of
every cell is in the collection. Two k-cells of a cell complex are opposite if they have a
common (k—1)-face. A triangulation T of a finite point set S is a cell complex whose
union is the convex hull of S and whose vertex set is S. Any cell of a triangulation
is cell(R) for some R C S. This is a convenient but nonstandard definition because
cells are not required to be simplices. A proper triangulation is a triangulation all
of whose cells are simplices. Any triangulation can be completed to a proper trian-
gulation by appropriately subdividing nonsimplicial cells. A convex polyhedron can
be partitioned into a cell complex, in fact, a triangulation: one cell is the relative
interior of the polyhedron and the other cells are its faces.

Appendiz 2: Proof of theorem 2.1

We first show that if V(R) and V(R’') are both Voronoi cells, then V(R') is
a face of V(R) iff R C R'. Suppose R C R'. For reR', se¢S—R', let H,, be the
hyperplane equidistant from r and s with positive halfspace containing R'. Let I be
NH.; and @Q the closure of V(R). We can choose a hyperplane H so that QNI = QNH
by choosing H through B avoiding the intersection of the positive halfspaces and the
intersection of the negative halfspaces. Thus the relative interior of Q N I is a face.
However the relative interior of QN1 is V(R'), since V(R') is a relatively open subset
of I, and any point of @ is equidistant from all sites in R’. The converse direction,
that V(R') a face of V(R) implies R C R/, is easy: any point in a face of V(R) is in
the closure of V(R), and hence is in V/(R') for some R’ D R.

The first claim is that V(R) is a cell complex with union E¢. Clearly, V(R)
is a cell and any point of E? lies in some Voronoi cell. If F is a face of V(R), then
any point z€F is on the boundary of V(R), so z€V(R') for some R’ O R. Therefore
F'=V(R') since V(R) is a face and « lies in exactly one face of V(R).

The second claim is that the Delaunay triangulation is a triangulation. We
must show that Delaunay cells are pairwise disjoint, that the face of a Delaunay cell
is a Delaunay cell, and that the union of the Delaunay cells is the convex hull of S.
The disjointness of distinct Delaunay cells D(R) and D(R') follows by considering
circumspheres ' and C’ of R and R', respectively, and observing that either C' and
C" have disjoint interiors, or if not, then RN R’ C C N C’ and by the empty-sphere
property, R— R’ and R'—R lie on opposite sides of the hyperplane through C n C".
A face of a Delaunay cell D(R') is cell(R) for R = R' N H and H a hyperplane
supporting the convex hull of R'; since R lies on a hyperplane, it is easy to see that
the empty circumsphere of R’ can be perturbed to be an empty circumsphere of R,
and so cell(R) is a Delaunay cell. Let ¢ be a point in the convex hull of S; we show
that ¢ is in some Delaunay cell. Assume that there is some Delaunay d-cell D(R)
(if not, then S lies in some lower-dimensional flat, and the proof works in that flat).
Choose a point p€ D(R) so that pg avoids all k-cells for ¥ < d—1 and so that pq
intersects any Delaunay (d—1)-cell in at most a point. The sequence of Delaunay d-



and (d—1)-cells intersected by pq in order from p to q can end only at ¢: a Delaunay
d-cell intersecting pg has a (d—1)-face that is also Delaunay and further along pq;
a Delaunay (d—1)-cell intersecting pg must have an incident Delaunay d-cell further
along pg, since g is in the convex hull of S. Hence ¢ is in the closure of some Delaunay
d-cell, and in some Delaunay cell.

The third claim is duality. Suppose V(R) and V(R’) are both Voronoi cells,
so both D(R) and D(R') are Delaunay cells. Then all the following steps are easy or
have been established: V(R') is a face of V(R) iff R C R’ iff R = R' N H for some
hyperplane H supporting the convex hull of R’ iff D(R) is a face of D(R').

The fourth claim is an easy exercise.
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