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In this paper, we present a comb

an unresy

il theorent an

ded polvhiedron for
ngulittion of the polyhedron, which can be
reted as an extension of the Generalized Sperner lemma. When the labelling
function s dual-proper. this theorem specratizes taoa second theorem on the
Nhedron, that s, an extension of Scarf's dual Sperner lemma. These resolts are
shown to be analogs of Brouwer

ted anteger fabe

fixed-peint theorem on a polyhedron. and are
torial theorems on bounded polvhedra as well.

s ventains a pseudomanifold construction for a polyhedron and it

> paper
dual that may be of interest to researchers in triangulations bascd on primal and
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Lo INTRODUCTION

article published in 1928, Emanuel Sperner demonstrited a purcls
nhinatorial lemma on the raesimpley that implied the fixed-point theoren:
Brouwer for continuous functions. The connection  hetween  com
materal theoren

and topological theorems was Turther inve: tigated by
f24H]0 who developed a combinatorial Temima that implied {he
antipodal point theorems of Borsuk and Ulam and of Lusternik and
relman [ 191 Kubo [ 15 and Fan 1 5] fater examined combinator
results on the n-cube that

R
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nply Brouwer's fixed-point theorem,
With the development of fixed-point computation algorithms <temmn

o Scarlfs seminal work {211 there has been x resurgence of rescarch i

cembinatorial analogs of Brouwer's theoren, Such analogs of Brouwer-

corem on the simplex

wlude Scarf’s “dual™ Sperner lemma f 2
Generalized Sperner lemma (111 and course. the original Spe
P

P23 Analogs of Bronwers theorem on the o

N ::.M

dual femmuas presented in [ 6], one of which is un
lim

Hogous o the constin

van der Laan and Talman [ 174 Recentiv. these com

;
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;
!
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¢ been extended to simplotopes (sce Freund [7] and

bovander Laan er al. [187), for which the simplex and cubical theorems are
special cases.

hinatorial results has

In this paper. we present combinatorial theorem on a bounded
' polyhedron for an  unrestricted tabelling of a triangulation of the
polyhedron. which can be interpreted as an extension of the Generalized
Sperner lemma. This theorem is the main theorem of Section 2, Theorem |
When the labelling function is dual-proper, Theorem specializes to a
weond combinatorial theorem on the polyhedron. that is an extension of

Searfs dual Sperner lemma. These resuls are shown in Section 3. and their

- relationship to other results on bounded polyhedra are also shown in
Section 3,

Section 4 addresses extensions and limitations of Theorem 1. We show
how the geometric representation of a polvhedron can affect the implica-
ons of Theorem 1. We

also address the issue of an extension of Sperner’s
kmma to a bounded polvhiedron. We present such an extension as
fheorem 4 of the section. However. the proof of Theorem 4 is hased on
Brouwer's theorem: it is an open question whether a purely combinatorial
provf of Theorem 4 can be demonstrated.

Section S is devoted to a combinatorial proof of Theorem 1. As part of
this proof, we present a pecudomanifold construction for a polyhedron and
s dual (Lemma 3) that may be of interest to rescarchers in triangulations
hased on primal and dual polyhedra.
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194 ROBERT M. FREUND
Lot =1%o e* ) be a finite subset of vectors in R”. The set V is said
to ben general position if each subset of 17 containing at most # + 1 mem-
bers is aflinely independent.
Let .2 be a cell in R", ie., a nonempty bounded polyhedron in R”. Lel
I be a finite collection of m-simplices together with all of their faces. T
is o finite mianerdation of 4 if

o h,,a

(M) a.celimply entis a face of o and of 1.

(il Af ais an (o Dsimplex of 7. g s a face of al most two

mesumplices of 7

AN abstract complex consists of a set of vertices A" and a sct of finite

subsets of A" denoted A such that

() re K" implies {r! e K. and

(i) x=rek implics ve K.

Note that the empty set (F is an allowable member of a complex K. An cle-
ment .y of Ais called an abstract simplex. or more simply a simplex. If ve A
and 'xi=n+ [, then x is called an n-simplex, where |-| denotes cardinality.
Technically, an abstract complex is defined by the pair (K", K). However.
since the set A" is implied by K. it is convenient to denote the complex by
A alone. An abstract complex K is said to be finite if K is finite.

An n-dimensional pseudomanifold. or more simply an n-pscudomanifold.
where 7> 10 0s a complex A such that

() xve A mmplies there exists re Kk with [yf=n+1 and x <y, and

(11 ve Aand [v] = a0 then there are at most two n-stmplices of K

that contain v,

Let A be an n-pscudotanifold. where # 2 1. The boundary of K, denoted
CAL s defined to be the set of simplices x e K such that x is contained in
an bz T-simplex ve K and v s a subset of exactly one s-simplex of K.

Let 2 be an mecell in R”, and let 7 be a fintte triangulation of .#°. For
cach nonempty face © of cach mi=simplex o of T, define = !riris a vertey
of =7 Then the collectiop K = [TIT 18 @ nonempty face of a simplex of 77
an rre-pseudomanifold. and is called the m-pseudomantfold corresponding
e
If o and b oare o
and component of
and subvector of 4 and b corresponding to the

matrix and a vector. let 4, and h, denote the ith row
and 7 denote

i i

A and hoorespectively, and et o

sahmuatriy rows and

fand ~andexed by gl respectively,

O
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3. Tuy MAIN THEOREM

Consider a bounded polyhedron .7 of the form

= e R Av<h), (1)

where o and b are a given (m ~n)-matrix and m-vector, respectively. et
denote the set of vertices of 77 and
m} be the

I'be a finite triangulation of 7. let &
let K be the pscudomanifold corresponding to 7. Let M = | |
set of constraint row indices. and let L) K - Af be a labelling function
that assigns a consteaint row index 7 (o cach vertex v oof K. Our interest

lies in ascertaining (the combinatorial implications of such a labelling func-
tion. under boundary conditions or not. in the spirit of and as a generaliza-
tion of other combinatorial theorems on bounded polyhedra [5 7. 10, |5,
1718, 22, 24, 257, Toward this goal. it will be convenient to make the
following assumption regarding

ASSUMPTION A, .7 is bounded. solid (ic.. dim A =mn).and centered tice.,
A" contains the origin in its interior). The system of inequalitics (1) has no
redundant constraints: ic.. every row of (A h) corresponds to a facet of .7

and the rows of (4. h) have been scaled so that Ji=l..ntic.
h=e¢).

ach b, =

It should be noted that any zi-dimensional bounded polvhedron .7° can
be orthogonally transformed and translated so that it satisfies Assumption
A. without disturbing the combinatorial structure of .7 Some of the
components of Assumption A will be retaxed later on. in Section 4.

Let 2" = {veRv=,10. />0 ,.h—| i Then .27 is bounded. solid.
and contains the origin in its interior, Furthermore, .27 can alternately be
described as .70 -y R

i~ whereby .77 s seen to e
the polar of ¢isce [2003 and it 27 = e Ry

vVias Lo all ve

I for any yve. )
A7 s also a combinatorial dual of 77 je. there s & one-to-one inclusion
reversing mapping from the A-faces of .2 1o the (1 —k - 1)-faces of .7
[13]).

Because (1) has no redundant constrainis, cach row of
¢ lurthermore. every point Fecan be expressed as 4 convex com-
hination of (1 + 1) extreme points of 2 el (1) rows of 4. A point
ve s called a regrdar point of 7 il 1+ cannot be expressed as a conves
combination of n or fewer rows of 4. Because 4 is bounded. .7
s is o regular point of 27 ien the sel of
roisaoset of measure sero. and 7

{sec

Aas o vertey of

is solid.
and so almost every point
has

points in 7 th

posiive measore. Figure 1 itlustrates the above remarks. In the figure,

s g regular point. and

nota regular point. The circled numbers on 1he
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- consists of the four sets {1.3.4]. 11.3.5]. {1,2,4}, and {1.2,5}. plus all
other subsets of A7 that contain onc of these four sets. Likewise, the mini-
v : mal members of Gaare JE 2051, {13, 5] and {1.4,5}. Regarding G ..
1 the minimal members of ¢~ are |1, 2.3}, {2,4}, and {2, 3,5}.
Now let T be a finite triangulation of 2 let K be the pseudomanifold
corresponding to 7. and fet L(-): K > M be a labelling function from K .
RIS ! the set of vertices of A, to M, the set of constraint row indices of .4, For
- fasimplex ae A et Lio)= {ie M|i=L(r) for some vrea!. For a given
subset S of .7, defline C((S)={ie M|.A4,x=h, for all xeS§}. For a point
ve £ define Cv)y=C({x]) The mapping C(-) identifies the “carrier”
hyperplanes of the sct S or point .
: With the above notation in hand. we can state our main theorem:

THEOR L. Let 2 be a polvhedron that satisfies dssumption A. Let T
» he a finite tricngilation of 0 let K be the pseudomanifold corresponding to
X Toand ler 1.0y K s M obe a labeliing function. Then
As (i} Jor any vegular poing v 2 there are an odd number of simplices
. ae K such that (Lio)y o Clo)ye G . wid henee at Teast one.
. (i) for any point ye it . there is at least one simplex e K such
Sy that (L{g)w Cla))e (5.
A3 A To illustrate the theorem, let us continuc with the example of Fig. [
Iy Figure 2 shows a triangulation 7 of .#" and a labelling of K. Regarding v'.
a regular point of 27 . there are five simplices o of K for which (L(g)u :
ve o
. » ;
¥
R\
\ . A

Boundary of .2 in the figure indicate the row constraint index for the faceis

indicated.

For o <ubset 7 M. define S, =11reR" ,
pe . S s the conves hull of the rows of L1 indexed over 2. We have S, -/
for v = M. and S, 0 for all xo M. For every ve.d delme
Go= 72 M. 1reS, . Then 6 consists of the row index sets of vertices of 4
cells S.that contain the point v, Referring to Frg. 1 agam. we see that ¢,

ho= 1

5

A,
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Note that L(lw.r])="!]. . Clw o)) =
CSUoand hence (2 FP O C el ) =141.3.5 1 €G 1. Regarding L
there are three s ae KA for which (Llo)u o)) eGa= (11,25,
CLAS s namely {pogoul, Hroed and (x.1. 2} In the case of

.
the pentagon 2 in Fig. 1. Theorem | actually makes cleven assertions
u._n_:;

e =134, KRR N (L2051 namely .
Lkl and (. G, |
1
[y

abont the odduess of certain instances of Eibels. one assertion for
the eleven regions composing .4,

Fhe assertions of Theorem | do not depend on
of the labelling 7¢0-) on the boundary of 2" If we restrict the labelling ()
on the boundary of 27 we ean obtain o stronger form of Theorem LA
abetling 7908 5 37 is called dual-proper it Lieye Ce) for all pe oy,
re N ey s dual-proper. L(r) must index a binding constraint at ¢ if
¢ lies on the boundary of .7 This restriction was first introduced by Scarf
[ 227 for the simplex. The denotation here is consistent with the notion of
a dual-proper labelling as used in [7] A triangulation T of 7" is said to be
bridectess if for each g e 7. the interscetion of all faces of . that meet o is
nonempty. This concept is illustrated in Fig. 3. for n=2. In the figure, cach
of the simplices 7, 7..and g, fails the intersection property. Essentially if
7 is bridgeless. then no simplex o of T meets too many faces of .# that arc
disparate.

62011 dual-proper and 7T is bridgeless, we have the following stronger
version of Theorem I

any special restrictions

5

ProriNe 20 1o 2 he o polvhedron that satisfics Assumption A Let T
hea toiiie iraangidation of ¢ and let K be ihe pseudomanifold corresponding
oLt KO R s M ohe o labelling function on K. I LG is dual-proper

arid 1o Pridecioo, then:

e any reeular poing vie 4 there are an odd number of simplices

hothar Lia e 0 and hence ar least one:

Tanvpoint veint 4 there i ar least one simplex ae K such
that Lieys ¢

-

Theorem 2 can be deduced from Theorem | as follows:

Priint 234 ‘\\:::‘,IN u

that for cach veing /2

A\ssuming Theorem 1 s true. it sulfices to show
CHlteyu Clane G, . then C(a)=¢. Suppose not.
Then e that (LiG)u C(5))e G, and C(a)+# ¢
Because (41 = o ad et whereby cach vertex of @ must satisfy
Torve Coon 10 Ly - a. meets the facet /) defined by
Fo=vs o Therefore & cvery facet I for jo /(g
every facet [ for e Cla). Denoting

I'hus

there eviss such

then v, and hene

meets

meets

aomeets 1 for cvery g
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¢ empty

15 bridgeless, et ve N, F.oe
hi

bz =1 and V=

because 7
exists A, = 0 for whic

A.b.=1. However. this implics that ¢ int .
theorem is proved. J

A, =h_ Since x€ (. there
However, v ¥=, 4 ¢=
a contradiction. and so the

Theorems | and 2 (without the oddness assertion) are equivalent to the
fixed-point theorem of 1. F. I, Brouwer [2]. stated below:

POLYHEDRON, Lot 7 he o non-
=4 he a continuous function.
N¥e ' such thar

BROUWER'S THEOREM ON A Botsnin
emptyhounded polvhedron. and ler {1} 2
Then there exists o fived pomt of f(-). ie
flx*) = x*,

o point

In order to demonstrate the equivalence of Theorems | and 2 to
Brouwer's theorem. we will use (he following lemma. which relates the
equivalance of polyhedral representations under projective transformation.

PROJECTIVE TRANSTORMA TTON L, [ or A<D he oy
polvhedron that <atistics Assumption A and ler 4 = ) R'v==id J>0,
ha= 11 Foranv ciren veint 27, then the set 1= 'y e R (4 )
v The projeciive trans-

¢ r)ish
is combinatorially equiralent 1o 4 and 47 =
formation e(xy= v (1
Furthermor e, ]

VXY maps faces of 3 onto the faces of 3 and i

melusion preserving IS a triangulation of 1 tf and only it 1”

I

vhere

IS a triangulation of ¢ isothe colleciion of simplices o = gt for

caeryoe . J

See {13 for propertios of polyhedry under projective frunsformation.

Flloit

BSre
and A be given axin Theorem |1 Let veint s

Cvcrthonr the Oddine s

Proot of Theorem 1
et 77 1.

/
from Ny

Theorent,
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be given, define .27 and 77 as in the projective transformation lemma,
let A" be the pscudomanifold  corresponding to 7, and  define
Livy=1Lig ') for t'e K. For cach v e K7, define h(v’) = ALy =0
and cxtend /() in a piccewise-lincar manner over all of .27, Define
fixD=argmin. 2 = X+ M), where |-, denotes the Euclidean
norm. Because /fif-) is continuous. f(-) is continuous and so contains a
fixed point ¥ Let @ be the smallest simplex ¢’ in 7' that contains ', and
let v =Lté"). f=C(a'), and 2 =3 w . Then the Karush Kuhn Tucker con-
dittons that ¥ — ¥ + (V)= - Mlm —¢ V) for some 4,20
Forthermore, 7y =2 (4 ¢ v). for some particular 72 0, /e
Pherefores 2,04 ¢ )+ 4.4 ¢ ). =0, whereby 2 (A4 - ¢ 1), =0 has
a nonnezative and nonzero solution. Upon rescaling the multiplicrs 4, so
that they sum to unity, we have 2,4 =y, 2,20, 4,-¢,= 1. Thus 2& (;_and
(L4a Vo Cta’ D = v whereby the simplex @ e T defined by 6 =¢  '(67) has
tLie) o Cla)y xe G proving the result. |

state
e =

The construction of the function f(-) was introduced by Eaves [3] to
convert the stationarv-point problem of #(-) to a fixed-point problem
on /-

Proof of Browwer's Theorem from Theorem 1. Let 4 be a polyhedron
that satisfies Assumption A, and let /(-): 4 — 4" be a continuous function.
Let T be a finite triangulation of 2" and let K be the pscudomanifold
corresponding to 7. Let L(-) be a labelling function on K defined so that
L(r) equals any index 7 for which A,(¢c —f(r)) =0 and is maximum over ali
rows. Because 77 is bounded. such an index 7 must exist. Now let v=0.
Then veme.s . From Theorem 1. there exists a simplex o€ K such that
(Liahe Clalle G

Now consider an infinite sequence of triangulations 77, the maximum
duimeter of whose simplices goes o zero as [+ . Then there exists a
sequenee of simplices @’ such that (Z(a)V o Cla')) e G Let ¥ be any
accumulation point of the sequence of ¢/, and let & and f# be any accumula-
non point of the appropriate subsequence of Lia’) and C(a'), respectively.,
Alsol et Civ) Theno from the continuity f(-). A, (v /(1)) =0 for all
peS Ay Herallre ffloand oo v 0 forallico o fl
Let v=0. i Because xe( . there exists 7,20, with e, A, =1 and
foAd =00 Thus S04 (8- £ =0, If there exists an index 70 for which
s> then 40y V) =00 and hence A(S - /(1)) = 0. because the indices
rwere chosen maximally: this implies that ¥ = (V). because .7 is bounded.
It thus remains to show that 2, =0 for some 7€ d. Assuming the contrary.
voand hence rod, =4, =0, fo O and ¢y -2, = 1. But i

then O = v Vs s v contradiction. Thus

coand so i

then 7.0 =

this were triue

Yo 4 o= 3]
st 5 . iLood

»
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Relation of Theorems U and 2 to Other Combinatorial Results on Bounded
Polvhedra

In this subscction, we show how various other combinatorial labelling
results on bounded polyhedra can be derived as specific instances of
Theorems | and 2. We first examine how Theorem ! specializes to a strong
form of a recent thcorem due to Yamamoto, for labellings of a triangula-
tion of a bounded polyhedra. We next show how Theorems ! and 2
specialize to some well-known combinatorial theorems on the simplotope
and the simplex, including the Generalized Sperner lemma [ 117 and Scarfs

dual Sperner lemma [227.

A Theorem of Yamamioro

Let .2" be a polyhedron satisfying Assumption A, let 7 be a triangulation
of . let K be the pscudomanifold corresponding to .7, and let
L{-): K — M be a given labelling function. If ¥ is a nondegenerate extreme
point of .70 then C(¥)=f for some subsct i of A7 with cardinality n.
Furthermore, S, then is a facet of .2 and is an (17— I)-simplex. Let 1 be
an element of relint S, and let r be any regular point of .#° lving suf-
ficiently close to ¥ Then the minimal members of G, consist of all sets of
the form ffw {j}. where je Af . From Theorem 1. then. there exist an odd

number of simplices o K such that L(g)u Cloy2fu{j; for some

”

jeM\B. Thus therc are an odd number of simplicies o K with the

property that Lig)u C(a) properly contains C(¥). This last statement is a
stronger version of a recent result due to Yamamoto:

TrEOREM 17 OF Yamamoro [25] Let 4= xe R"|Ax<h! he «
hounded polvhedron. let T he a triangulation of . let K be the pseudo-
manifold corvesponding 10 T, and let 1(-): K — M he labelling function
defined on the row indices M of the constraint matriv. Then it Xois oa
nondegencrate extrene point of . there exises at least one simplex o6 K
with the propernyv that 1(o) o Cla) properly contains C(¥).

Thus Yamamoto’s theorem can be seen as an instance of Theorem 1. and
his result can be made stronger, Indeed. as the previous remarks state, (here
are an odd number of such simplices ¢ with the indicated labelling property.

Combinatorial Theorems on the Simplex and Simplotope

We now show how Theorems | and 2 specialize to known results on the
simplex and the simplotope. The three major combinatorial results on the
simplex. namely Sperner’s lemma [ 23], Scarfs dual Sperner lemma [22].
and the Generalized Sperner femma [ HT L all assert the existence of an odd
number of simplices with certain label configurations. However. when these
three results are extended to the cube and simplotope, the oddness asser
tion disappears. and the dimension of the specidly Tabelled simplices of
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mterest 18 reduced (see [7. 18]). The inability to assert that there are an
odd number of specially labelled simplices stems from the constructive
proofs of these simplotope theorems. Herein, by casting the simplex and
simplotope theorems as instances of Theorems | and 2 for particular values
of ve o we will see that the oddness assertion holds on the simplex
preasely because vois a regular point in .77, and the oddness assertion on
the simplotope (and henee the cube) does not hold, preciscly because i is
not a regular point in 4,

Lol S"=!veR'x>e —0-v< 1l
simpley. By defining

Then S§” is an  n-dimensional

A7 = and b=

NG

we can write 8" as 8= {xve R" A"x<h]. Let T be a triangulation of S”,
K the pscudomanifold corresponding to T, and L(-): K~ — M. where
M= 11l .. m = L ..o+l because m=n+1. For #=5" the sct

Ao =qviv=4" 2200 -2 =1 is an n-simplex that contains the origin.

and any veint 4 is a regular point in .7 . In particular. ¥ =0 is a regular
pointin .2 Land G, = M| ={1...n+ 1} Because S” satisfies Assump-
tion A we can apply Theorem 1, and assert that therc are an odd number
of simplices se X with the property that (Lic)uClo)eG,, ic
Iiabo Cloy=(1...n+ 1. This is preciscly the Generalized Sperner
lemma [117]. and is seen to follow as a specific instance of Theorem 1.
Now suppose that the labelling L(-) is dual-proper: ie.. for cach
re S Livy=7 must be chosen so that A,r=h, Furthermore. suppose
that  no  smplex  of 7 meets cverv facet F, of S". wherc
= veS' 4, x=h, i=1...n+1. Then it can be shown that for any
simpley ¢ of 70 the intersection of all faces of " that mect & is nonecmpty:
re. Tas bridgeless, whereby the conditions of Theorem 2 are satisfied. Thus
there exist an odd number of simplices oe A such that I(a)e . ic.,
[i6)=" n-+ 110 This fatter result is precisely Scarf's dual Sperner
lemma [22]. and it is seen to follow as a specific instance of Theorem 2.
We now turn our attention to thecorems on the simplotope. A simplotope
Sis defined to be the cross-product of 1 simplices, S=.5""x x 8",
where for simplicity, we will assume that cach m, > 1. j— [ ... p. Any point
veS s oa vector in RN where N=37 m, and v ocan be written as
. p.and x s the concatena-

' "

vy oy where cach cach Ye R =1L
tion of the novectors X j= 1oL po Defining 47 as above. let us define .1 as
the 1NV = b V) matrix,

i

—_ 0

L0 A

I s as desceribed previously.

W

T —
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Then S can be described as S={xe RY|Ax<h} where he R¥*” and
h=e. Define M= {(j k)j=1, . p k=1...m+1}. The rows of A can be
indexed by the ordered pairs (/. k)e M where row (j, k) of 4 is in fact row
number (3] | (m,+ 1)+ k) of A. Likewise. a vector iec R¥*” will be
indexed by the ordered pairs (j. k)e M. Let T be a triangulation of S. let
K be the pscudomanilold corresponding to 7. and let L(-): K* - M be a
labelling function. For .2 = S .0 satisfies Assumption A. and so the condi-
tions of Theorem | are met. We have 4 = veERy=d4,c-h=1 220!
and ¥=0e.¢". However, ¥ =0 is not a regular point of .27 To sce this,
pick any one index j from among je {1....p).

Then sct N
; jo ifisj
ST S e .
' f;:: + 1) ifi=j,
)
y
2N . 0
a, o
a 5,
o, o on
e it z »
(.0 K
a, A !
0 o
(2,
. :4 ﬁ
i
.
J/ T -+
\\
AN \\
Fron vy 4
W 4T
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for cach (i k)e and note that 420, ¢-4=1, and AA=0=7 I we
define o= (i 1. (fom, . )], we sce that 0eS,, but |, _IE <
N+ 1. so long as p> 1. Thus F=0is not a regular point of Thus, by

Theorem . we can only assert that there exists at least one simplex o
i K such that (Liayu Clo))eG,.. However, G,={acM|jeS,}=
x Mix=x, for some je {l....p}}. Thus there exists a simplex ¢ of K
,:c: that (1(aYy O ClaN 240, Dew (o, )} for some je {1, . pl. This

15 precisely Theorem Fol [ 7] or Lemma 3.2 of 18],
Figure 4 iflustrates the :F,o?,_: for m=m,=1 and p=2 With
SO G D (2N 20 LT (2L (2020, 2 1) (2,2),

:._._,. R
o) Clon e G, namely gy,

(. N: V.o There arc six  simplices of S with
w0 i the figure. The set 477 is (he convex
hull of the pomts (1.0 ¢ 0) (0. ). and (0, - 1), the diamond shown
in the figure. As the figure shows. =0 is not a regular point.
Suppose now that the labelling £2.0-): A7~ M is dual proper, i.c.., for each
"S. Lty must be chosen so that A, v =h,. Furthermore. suppose that no
simplex ae A meets cach facet \1: o= AveSIA, yx=b ], for all
(j.hlex. for any j=1....p Then it can be shown that the requirements
of Theorem 2 are met. This being the case, the logic employed herein can
be used to show that there exists a simplex e K such that L(s)=a, for
some j€ 1. This latter statement is precisely Theorem 2 of [7], and
thus is a specific instance of Theorem 2 of this paper.

(2.2,

4. LsitaTioNs AND EXTENSIONS OF THEOREM |

Much of the beauty that lies in the classic combinatorial results that are
from the fact that the results arc
completely combinatorial in nature. and are independent of any particular
geometiic representation of the underlying polyhedron. FFor example, the
Sperner femma and Tuckers lemma are purely combinatorial statements
about labelled pscudomanifolds whose boundaries have particular com-
binatormal properties. and vel these lemmas are precise analogs of theorems
m continuous topology. namely Brouwer's fixed-point thecorem and the
Borsuk Ulam antipodal-point  theorem. respectively, The other com-
binatonal theorems cited in the introduction to this paper all have (his
property as well.

The rescarch that has led to the development of Theorem [ was
motivated by to extend these other purely combinatorial results fo
the most to present a purely combinatorial theorem for a
bounded independent of the geometnie
representation of the

Brouwer's Nixed-point theorem. This section discusses the extent to which

anatogs of topological theorems stems

a desire
mc:oi: case:
polvhedron that s completely

polvhedron, and i«

a combinatorial analog of
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this goai has been achieved. and presents open questions for further

rescarch.
Vartance under Geometric Representation

In developing a general combinatorial theorem for a labelled triangula-
tion of a bounded polyhedron .2, one of the aims is to state a result that
is invariant under the geometric representation of the polyhedron. ie.. that
is identical for all polvhedra of the same combinatorial type. Theorem 1. as
stated, depends on the rows of the constraint matrix (A, b) of .2, and so
appears (o be dependent on the geometric representation of . In Theorem
L7 must satisfy the geometric conditions of Assumption A. namely that
A is bounded. solid. centered. and that the rows of (A, h) have been scaled
and contain no redundant constraints. Here we discuss the extent to which
these assumptions can be relaxed without affecting the conclusions of
Theorem f,

The assumption that 2" is bounded is fundamental to Brouwer's theorem.
as well as to the finite counting arguments to be developed in the proof of
Theorem | in the next section, and so cannot be climinated. Because
redundant constraints do not contribute to either the geometric or com-
binatorial properties of a polvhedron, we retain the nonredundancy
assumption to maintain the simplicity of the system, without detracting
from the generality of the conclusions of Theorem 1. The assumptions that
#is solid, centered, and scaled, can be eliminated. but the definition of .7
must then be changed.

Let us first consider the case when 7 = ~:_ f. < by is solid but not
centered and scaled. For any given v ¢ :: _x, A= lxe R Av <h — Ax)

is just a translation of .7 by —y . and can alternatively be written as

A= {xe Av<e!l. where d, = (h,—A.x"). 2" now is centered and
scaled, and so the assertions of Theorem | apply. In this case the set
Fr=tve Ry -2 0 _.\, 00 RU =24, 2200 4 (h— 4y )
H:.. and for < M. S, e R = J.v_f\.;m.:. Ayth =y ), =11

Thus Theorem 1 (and _F.:cc _:Q:.Q: 2} can be modificed to include the
case when .77 is not centered and scaled.

When .7 is neither solid nor centered and scaled. then the affine hull of
4 as well asapoint v e relint./ can be determined. using the methodol-
ogy in [&]1. for example. and 7 can be 3:52:.:::7 transformed and
translated to an equivalent combinatorial tyvpe .77 that satisfics Assumption
> Theorem | can then be respecified through the transformed polvhedron

Details of this gencralization of Theorem 1 can be found in Theorem
N of [97.

Theorem |
polyhedron, as follows. Tt
and let .7

can be stated more abstractly for any given bounded

only satisfy the boundedness assumption.

be any given polvhedron that is o combinatorial doal of 7 1ot
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the vertices of .27 be the points A4, ... 4, and let A4 be the matrix whose
rows are given by these extreme points. Fvery face I of .27 corresponds to
a unique dual face Foin 270 where 17 = {re 7| LA, for some 4,20
that satsfies 2,20 and Z,¢,=1} for somec unique subset a of
M= {1 . m!. Thus cvery face of .2 can be denoted by F, for a particular
index set xo M. For any subsct S of .7, let C(S) be the index o of the
smatllest face /7, that contains S. For each 1e .47, the set G, is defined by
G,o= yxc Miv=2s,4,.4,20,¢,-4,=1 has a solution for some 4,}: and
re.? s a regular point in .47 if every set o composing (7, has at least d + |
clements. where J=dim.?7". With this notation in mind, we have the
following generalization of Theorem 1.

1

k3

THEOREM 3. Ler .2 he a bounded polvhedron, and let .7 he any given
combinatorial dual of . #. Let T be a finite triangulation of & and let K be
the  psewdomanitold  corresponding 1o 1. Let L)y K — M, where
M= 11 omY mdexes the vertices of 4. Then:

(0 It v s a regular point of A | there exist an odd number of simplices
ae I with the property that (L(o)u Clo)ye G, and hence at least one.

(1) If verelint. 2, then there exists at least one simplex o€ T with
the properiy that (Lia)yw Clo)Ne G .

We will not prove Theorem 3 here. Its proof follows as a natural
generalization of the structure of Theorem I, as will be seen in the proof
of Theorem 1 in the next section.

One question that arises in light of Theorem 1 and Theorem 3 is whether
the family of sets 7, is invariant, regardless of the geometric representation
of .2 or 7. Stated another way. is it possible, given two combinatorially
cquivalent polvhedra .2 and 7. to obtain dual polvhedra .2 and .7, such
that the set ¢ arises for some veint .27, but has no counterpart G, for any
veint X 7 If the answer to this question is no, then Theorem 1 is, in
essence. completely independent of the geometric representation of the
underlving polvhedra .7 and 7.

A partial answer of "ves™ to the above question is given by the two dual
polvhedra 7 and 7 shown in Fig. S. Both are hexagons, and can be con-
sidered cach as the duat of a polyhedron .7 or .7 which are combinatorially
equivalent. The set .7 gives rise to the index set G, whose minimal
members are J2030000 (204,60 120350 (L4 6] 12,450 1135
LA S and 13060 Such a oset is not realizable in the hexagon 77,

' R

however, and so the polyvhedra .7 and .7, though combinatorially identical.

» different mdex sets for Theorem 1. This shows that the conclu-

P

gIve Tise
f Theorem 1 do indeed depend on the geometric representation of

1
sgons of T

the undertving poivhedron X,
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>

[N

.

However. if the indices of the extreme points of 7 are reordered
appropriately. e if we replace A, by A, A, by A, 7, by Ao and LT, by
Ay then G =6 and the two dual polvhedra give rise to the same collec-
tion of index sets . tand (7.) as 7 tand ) varies over all points in .7 (and
7). This the question of the combinatorial structure of the
collection of sets {G i-e0 )
Are

rarses

This set is not unigue for combinatorially
however. significant properties of
rriant for combinatorially equivales

there.
iny

cquivalent polvhedra 7
“\«. (=N A

the sets
polyhedra .7

Y
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A Generolizarion of Sperner’s Lemnia

Theorems I and 2 have been shown to gencralize combinatorial resuits
on the simplex and the simplotope that have unrestricted or dual-proper
labels. respectively. The Sperner lemma. and its extension to the simplotope
[7.17]. is based on proper labels, and does not appear to be a specific
instance of Theorems 1 or 2. Sperner’s lemma can be derived from the
Generalized Sperner lemma (see [67) but this derivation fails to carry over
to the simplotope. In the remainder of this section, we present a theorem
that generalizes the results on the simplex and simplotope for proper labels,
imchiding Sperner’s Lemma [ 23],

Let 20 1o and L¢-) satisly the assumptions of ._.:c:_n_: 1. and let
TE xj =4 22004 c= 1 Forany yeint.#7 let D = {(a. fi)e

/A

t, - 2,4, =y hasa ,ﬁ:_:::: Aue 4, such ::: e c, 4,20, and
.\. -1}, We have:

Twrorist 4o Jer U= (xe R Ax = b satisfy Assumption A Let T be a
rriangidation of 2. let K be the \v.:;:\::ES\:E corresponding to T, and let
LU K = M be a labelling function. Then if veint .4 | there exists at least
one simplex ae Kowith the property that (L{g), Clo))e D,

Proof. Let T L(-). and A be given as in Theorem 4. Let ifeint 7
be given. and define .27 and 7" as in the projective transformation lemma.
et A" be the pscudomanifold corresponding to 77, and define
Litry=Lig "' for v'e K7, where g(-) is as defined in the projective
transformation lemma. For each '€ K, define A'(v')= ~ (A, -, + 7). and
extend A1) in a _:o cewise-linear manner over all of 47 Definc
fix)=argmin. .y 12— "+ /'(x")If». where __.“,_“ denotes the Euclidean
norm. Because /'(-) is continuous, /() is continuous and so contains

fixed pomt 1 Let aL be the smallest simplex o in 7 that contains ¥, and
fet w=Lio). f=Cta"). Let =g (). Then x= L(#) and = C(é). The
Karush Kuhn Tucker tate that X' X" (XY = \.\;; eV

conditions
for some v >0 Furthermore, /(%)= —/4, 4, — ¢ for some particular

S0, = UTherefore, 2y Ay~ A A, = (e Ay+ ¢ 2,) i After normaliz-
ing the vectors 2 and £, so that the sum of the component of both vectors

oones we see that (o Y= (14a). Clane D, |

Fhe proof of Theorem T using Brouwer's theorem, presented in Section
2. derives from the existence of an ::_E:?_ normal of the function 4. The
existence of an inward normal of () is equivalent to the existence of

fived pomt of 700 (see Eaves [3]) When v — 0, the function #'(-) in the
proof abose s just A0y and the existence of aninward normal of i) is

ETRTS existence of an outward normal of 47
- N . : . N i EETON
T'o show that Sperner’s femma denves from Theorem 40 et 87 ho
ned as o Secvon 20 et T obe a triangubation of 87 et A he the

e

COMBINATORIAL FIXFD-POINT THEOREMS 209

pscudomanifold ¢ c:?s::ﬁ::m to
\

each re K. L(r) is the index of an element of M Cle), Liv) is (e
index of a nonbinding contraint of ¢, for re K’. For A =5§" the set
A ={reR"|y=44" i20,¢-7=1)is an n-simplex that contains the
o:.m_:. and so v =0eint 7" The conditions of Theorem 4 are met. and so
there exists a simplex ae K with the property that (L(a), Cle)e D, for

=0. Let a= L(7), f-=C(5): then there exists Ao \z such that v *: =
\u ALy =004 0 ey Ay be, A, = [ Because E,; is proper. yj\w =
208 that for any i je M. i#]. ;”_.;:m:. Thus Aj(47)" < E:_ 50
02 A, AR A= (LA A, A7) >0 whereby \.,i_:u:.. ::; x= M-

{hoonmd Dloandeso Lio) = {1 . n+ 1. This is precisely Sperner’s lemma.
without the oddness assertion. .

The logic used above can also be used to prove Theorem 3 of [77 (see
also van der Laan and Talman [ 17 1), which generalizes Sperner’s femma
to the simplotope.

Theorem 4 does not contain an assertion about the oddness of the
number of simplices under consideration. The basic constructs used to
prove Theorem 1| combinatorially do not appear to carry over directly to
the case of Theorem 4. It is an open question whether there exists a com-
binatorial proof of Theorem 4 which asserts the existence of an odd
number of simplices 7 e K for which (L{r). ((5)e D, . when yis regular,

5. A COMBINATORIAL PROOF OF THEOREM |

This section contains a combinatorial proofl of Theorem 1. The ide
behind the proof derive from relatively straightforward concepts that are
casy to follow in two dimensions. In higher dimensions, they become more
encumbered due to the possible presence of degencracy in 7. Hence. in
order to motivate the proof along more ::::_:, lines. we start _: showing
an example of the proof in two dimensions. We then proceed to the more
general case

Example of Proof in Two Dimensions

Let 7 and 27 be as shown in Frg. todet 7 and L4-) be as shown in
Fig. 2. and let & be the pseudomanifold corresponding to 77 Define A

be the pseudomunifold consisting of simplices o< K “joined™ with the
mdices of ¢,

(7 O )) e K

and

A A ool KAy

I.oand let L{-): K — M be a labelling
function. where Af={t ..n+1) L(-) is said to be proper if for

s o SN
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Ficio o0 The pseudomanifold A

The construction of K is shown in Fig. 6. Note that

CR =B = C(x) for some ve K

Forcach ie M. extend L(-: K > M to L{-): K M by the association
Ltiv=1forie M Foreach ve.? . let #G ., denote the number of simplices
e K with the property that Lig)e G.. In order to prove Theorem 1, it
suffices to show that # G, is odd for all regular points re . Now let
fooM= 11050 with |fl=n=2 Let R,= o' . jeM. j¢ S For
cxample, for fi= 11300 Ry= 11,2030 01, 340 10,4, 5Pl Let #R, be

at I{aye R, and let g,

the number of simplices @ e A with the property tha
K with the property that L(5) = fi. A parity

-

be the number of simplices ¢ ¢

et

T
reint t,, those simplices 6
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argument, first introduced by Kubn [167, and later used by Gould and
Tolle [12]. states that the parity of # Ry, and the parity of ¢, are the same
for any given i, with || = n. This implics. in particular. that

(ty if fech. | =2 then # Ry is odd. and
(i) if f¢ R[] =2 then # R, is even.

The first statement follows from the fact that if ffe R, then L= f. and
there 18 no other simplex de 7K with Ligy=f. Thus g,=1. an odd
number. whereby # R, is odd. As an example. let f=14,5}. Note that
fe K. There are five simplices 6e K with L(d)e R, namely (4. p. w!,
(voroz)obeoxssto tedi 2oand feoj it an odd aumber. The second state-
ment follows from the fact that if ¢ ¢K, there can be no simplices 6 & A
with 1{5)=f5. Thus ¢y =0. an even number, and hence # R, is an cven
number. As an example, let f= (1.4} and hence fi¢ cK. There are four

I 1

Lo and

m_._:s__cozmm\/,:.::\\Aimk:.::_:c_%”:.,ﬂﬁ.:h.n,,;
oM
16 Lo

Now consider the set 7", shown in Fig. 7. subdivided into the eleven
regions 1, A =11l Forany reintt,, v is a regular point of .7 Also,
for any ver, G =114 51 12,451, 1345 iec. G.=R,. wher:
f=1{4.5. Because ek, by (i) above. # Ry is odd. whercby =
is odd. because R,=(,.

-~

his proves Theorem 1 for all yeintz,. bo
K for which L(G)e G, arc (p.u. 4! 's v,

Iz vecdojyoand fe 21 The main fact that has been used is that
all veinto, are “sufficiently close™ to the face Ay A so that
yemt(y,, cconv Ay 0 A0, whereby G, = R RN I I A

jeMiie. G =R, ..

'

P 7

e i
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o
to

are in the interior of adjacent regions
. the parity of # G, cquals the parity of #G.. Since the
is odd for yeint t,. then this will mean that the parity of
nt 7. .>. =2, ... 11, proving assertion (i) of Theorem 1.
from a closurc argument.

We next will show that if v and
r, and . of
parity of #6,
#(, isodd for ve
ssertion (i) follows

Therefore. consider any two adjacent regions 7, and 1,. 1n
example 1, and to. For any veintty and e intrg, G, =
A0S 3 A4l 34050, and G.= {124}

120304 M RN r: (1.3.5) {2.3.5)) Note that G 4G, =
5 A4S = x::ﬁ. Furthermore, the face of t,m 15 that

ted by the line segment {A;, A5>. 11 is no
appears in cach of the last two statements.
. j¢ 13,5}, contains cither 1, or T4 but not

separates :A:_: T8
coincidence that the se
Frvery simplex Cfal Adsl s

both. This shows that k s cG A0 But because the line scgment
oA AN i the unique line frm: ct : separating 1 from 1, then any x that
lies in ¢ 1¢G. must contain .N l,ie. 22 (3,5}, whereby G, AG. €
R«  Thus G.1G.= R, <. For any collection D of subsets of M, let #D
ar:c? the number of f_:%:nn e K such that L(6)e D. Note that

G, =G, GHulG, NG,

wherebv

#G, = #(G, G+ #(G,.NG.),

hecause these two sets are disjoint. Similarly, we have

#G.= #(G..G )+ #(G,nG)

We obtam

2 - #G.=A(G, G~ #(GG)

= #(G, "G+ #(GG)—2#(G.G)
= HG NG = 2#(G G
4R .2H(GG))
However, # R.. . is cven. because (3.5 ¢ 0K, Therefore #G, - #G_ s

cven. e, =G, and # G- have the same parity. This completes the prool of
Theorem | for the example of Figs. 1 and
The important facts e P:::m to the proof that #G,
1 - interior to adjacent regions 1, and 7, of 47 a

Uoatia Iodare
and © are adjacent. there is a unique index set i such that

and # G have the

¢

~A T w;:‘: \

Ig

as follows

- e e
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the (n—1)-simplex Sy={veR"|y=4zd,, 2,20, ¢-Ay=1} scparates t,
from t,. Furthermore, S, cannot lic on 4", whereby B¢ oK. _.;:E:v\.
G.A4G.=R;. Thercfore #G,— #G.=#R,—2#(G \G.), which is an
even number.

Let .2, T, L(-). and K be as given in Theorem |[.
Because of the possibility that 77 is not a simplical polytope (ic., some
facet of .27 s not an (n [)-simplex). we will perturb .2 in order to obtain
a simplical polytope. Let 27 be the simplical polytope obtained by pulling
the vertices of .77 1o general position (see | 13. Chap. 5.27] for propertics of
the pulling procedure). A point e .27 is a regular point of 27 if - cannot be
expressed as the convex combination of n or fewer vertices of .77 and ze .7
is a very regular pomi of 47 0F - cannot be expressed as the affine combina-
tion of n or fewer vertices of .27, (In two dimensions. all regular points arc
very regular. In higher case.) For any
point ze .77, define 72 to be the index scts of vertices of .77 containing - in
their convex hulls.

Proof of Thearem 1.

dimensions. this need not be the

LEMMA 1. Then there exists a

regular point - e .17

Let v be a regular point of &
such that G.= G .

very

Proof.  This is evident if suttably small perturbations are used during
the pulling procedure. |

We call a member » of J an
is a face of .77, and, in fact.

Let J={xc M|
admissible index set. For ¢

= ('(v) for some xve 4
:ach admissible a, S,

J can alternatively be defined :_:::i as J= ”Rﬂ, S, s a face of 47 .
Givenn an admissible «. F,= lxe XA, v=5b_1is a facc of 7. S, is the
face of ¢ corresponding dually 5 ﬁ,: and if k=dim F,. the
n—k—1=dimsS,

Let K, be the
is the k-pseudomanifold corr
tion T to the face
lae K, and x is a proper subsct of C(a),

Because the vertices of .77 are in general posttion, all faces of .27 are sim-
plices: and because the vertices of 77 are obtained by pulling the vertices

.. with vertices K. Then K,
csponding to the restriction of the triangula-
Furthermore g€ ¢K, if and only

restriction of A" to the face F

I where A=dim I,

of 777, the faces of .77 correspond in @ natural way to a triangulation of the
boundary of .77 without introducing any new vertices. Let K he the
- 1)-pscudomantlfold corresponding to this triangulation of .77 . Let A
denote the restriction of this pscudomanifold to the face S, of .2 . where

s admissible. 1F dim =4, then R, is an (- k&
and fe kil and only if fle A7

ind s a
that 1s a proper subset of v, The above remarks
following:

1-pscudomanifold.

of some admissible set
arc summarized in the

subsct
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Lianta 200 For cach xed, let k=dim F,. Then

1y K, is a k-pseudomanifold.

(2V aedk, ifand only if 6 € K, and o is a proper subset of Cla).
(3 KN s an {n—k — 1) pseudomanifold.
) BelK, i and only if Be K, and B is a subset of some admissible

AT A

that i« proper subset of x.

With the aid of Lemma 2. we are in a position to construct the #-dimen-

stonal version ol the pscudomanifold A constructed in the proof of
Lheorem Tin two dimensions.
Define

K =K uM

and

A=laeK la=0ufl. where ae K. and fle K" and fio (o))
Qur main pscudomanifold construction is:

Lesya 30 Kis an n-pseudomanifold, and ¢K = < M| fe K'}.

Proof. Clearly K is closed under subsets. Let ogufie X, and let
*¥=Clo). Let k=dim F,. Theu there exists a simplex 6 € K, with 6 2 ¢ and
7 =k + 1L Also.since ffe K. there exists ffe K, with f2 8 and |ff| =n — 4.
Thus soficdufiek and |6Ufl=k+1+n—k=n+1. Thus every
member of A is contained in an n-simplex in K. [t remains to show that
every gn Dsimplex of A is contained in at most two n-simplices of K.

Let oo fie K be an n-simplex in K, and let o = C(a). k = dim F,. Then
by the above remarks, |al = A + 1 and (8] =n k. Any (n by-stmplex of
g fhwill either be of the form aw fir where rea or g wfivi where ieff.
W first will consider the former case. We have three subeases:

) a rd SR Then Clo ey = by Lemma 2. 1T fi o Hide K for
then o] K+t and po i e, which is a
contradiction sinee A7 s an (1 &k - D-pseudomanifold. Thus any other
n=simplex of K which contains o w ff . must be of the form a Ufirw !
for some we K Jw#e and since o ro bl is a k-simplex of A, and
7 ¢ N, such a wexists and is uniguc.

By o relK, and g e A In s case A -0, = el A
Fr-pscudomanifold. and 18] = . Thus there is no re M. i¢ . for which
1y = R Also. there is no element w # . we A . for which vl fle A

some 7o M. =N

1S an

G f = fle R

——— Ly ————_o s

H

. —— | srtaaptra it 5o

'
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(iit) o reck, and o\ v# @&, Thus there can be no we K . w#r. for
which o U e 0 i) ek Since o redK,, Clo'r)=4 contains ¥ as a
proper subsct, and ff < x < 4, which means.that fedK,. by Lemma 2. We
must have dim F,=dimF,—~i=k 1. and so K, is an (n—F)-
pseudomanifold. Therefore, there is a unique index ie M for which
fulite K, and o firulitek 4

We now consider the case when the (17 | J-simplex of o U fi is of the
form o w i for some fe . We have two subcases:

!

(i} [ 7¢ AR In this instance, there is a unique index je M. j#. or
which fisio /e K and henee o U friwite Ko Note that we cannot
have awffiv il e K for any wek . For if this then
au i Koand oo fwd ¢ P for some o which is a proper subset of . But

since fi*ie K. by Lemma 2. f ie K. a contradiction.

WEre  so.

(i) fie R In this case. there can be no Je M. j#i for which
o ffiio i e Ko However, sinee ff ie K. there exists a proper subsct ¥
of ¥ that is admissible. for which e K and hence dim F =k — 1. Thus
7eCK,. and there exists a unique vertex re A such that au [} & K,
Thus o u i (vl e k)

The construction of K hy essentially aligning faces of 4" with the dual
faces of .2~ resembles the construction of an antiprism in Broadic [ 7. but
is combinatorial in nature and so does not depend on the geometric projec-
tion property in his work. The construction of K is also closely related to
the construction of a primal-dual pair of subdivided manifolds. as in
Kojima and Yamamoto [14]. athough K is combinatorial while the
primal-dual pair of manifolds is not. An alternative construction of K that
uses a lexicographic rule for constructing the triangulation of 8.7 is offered
m the appendin of [ 9],

We now extend 7( - 1 A
fe M.

For cach ffo M| = n. define Ry= 1wl 7e M B For any collec-
tion D of subsets of M. let # D denote the number of simplices ¢ K with

SMo LR M by defining Lii) - 4 for

the property that 7o) D, We have the following result:

Lestva 4 Lo fie M owith il =
() I Beck, then # R, iy odd. and
by it fi¢ R then # R is cren,

implices 5 of FA with the property that

Proof Lt g,
Ligy = fi. A simplex 4 for which [(a) = A s called fi-complete. and o <im
plex a is called fl-verv-complete if (4}« R,oveif fLas a proper subset of
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[(d}. Then every fi-complete n-simplex contains exactly two B-complete
{11~ D=simplices. and every fi-very complete n-simplex contains exactly one
fi-complete (11— 1 )-simplex. Hencee the parity of the \w-<oQ-n03v_o.o. n-sim-
plices equals the parity of fi~complete Uo::amQ (n— 1)-simplices; i.c., the
parity of ¢, cquals the parity of # R,. If fe K and || =n, then EEH.\W
and ¢, = . whereby # R, is odd. If ¢ 0K, then ¢, =0. and hence #Ryis
cven. |}

(The parity argument used above was first introduced by Kuhn [16]
and later used by Gould and Tolle [121].)

We return now to the perturbed dual polyhedron 2
denote by e e Let fa M with |l =n be given. Because the vertices
are n general position, there is a unique hyperplane /7, that passes
through all vertices ¢, where ie . The set of all such hyperplanes H, as
fi ranges over all n-clement subsets of M induces a piecewise lincar sub-
division of .#"" (sec Faves [4]). Let t,.... 1, be the collection of n-cells
comprising this subdivision. The following is an clementary consequence of
the above remarks.

’

. whose vertices we

LEsia S0 A point ze 2" is very regular if and only if zeint t, for some
P p Iz and weoare both interior to the same n-cell t, of the subdivi-
sion. then (o=, . Furthermore, if = and w lie in the interior of adjacent
n-cells of the subdivision of 27, then either G, = G or G, AG. = Ry, for some
n-clement ser < M. and ¢ CK.

Figure 7 illustrates this lemma in two dimensions. We will need two
additenal intermediary results before we prove Theorem 1.

Lisets 6 For ecach (= D)=simplex 8 of &K, there exists some very
reerdar point Ze B por which = R,

;

Proof. Let F be the convex hull of the vertices v of .27, ie 8. Then by
definition. fie cKif and only if Fis a facet of #7. Let w be any point in rel
int Fooand det - be any point in int 27 sufficiently close to w. Then
Go=R.}

Lisa 70 Ler v he a regular point of 4. There iy a one-ro-one
correspondence benween simplices 6 € K that satisfv LiG)e G and simplices
ae Nt saristv (Iay O Cla)) e G

Lipy=1Lisvo 0 Since Ito)ufleG,.. then Lio)u Cla)e (G, . because
Ao Ctarand s closed under supersets
Conversely. let g« A such that L{o)w Clo)e G, Let £ be the smallest

Proof. Let g =awff satisly L(d)e (. By definition, ()= l{a)

m—— _a—
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face of .7" containing ¢ and let F~ be the corresponding face of the bound-
ary of .77 under polarity. Let 2= C{a). let L=L(g), and let y=1 U
Then I"=5,. Also. let k =dim F. Because reint §..dim S =n However,
dimS,=n-—k - 1. and dJim S, ol =(dimo)+ 1 <dim Y+ 1 =k + 1.
Therefore dim S. < dim S, +dimS, <»n -k -1 +k+| = n, whercby
dimS, =k + 1. and |L{ =k -+ . This means in turn that §_is a (K — 1)-fold
pyramid over S, (sce {13, Chap. 4.27). The restriction of K to S, induccs
the triangulation of &, whose maximal simplices correspond to maximal
simplices in A%, and hence are of the form Syowhere fe K., || =n -k,
and ffe o The pscudomanifold A7 induces a triangulation of S, whose
maximal simplices are S, for every maximal index set ffe K7,. Because v

is a regular point of . .y lies in the interior of exactly one maximal

simplex S, ., of S and hence 7.0 fe G, Thus s ufe kK and we have
a=cuffand L) e, |

We now have:

Proof of Theorem 1 Tet v be a given regular point of .77 From
Lemma 7. it sullices to show that #G s odd. From Lemma 1. it suffices
to show that # 7 is odd for cvery very regular point z e .47, We prove this
last statement as follows.

Let feck with |fil =n. Let - be the very regular point described in
Lemma 6. Then 2= R, and by Lemma 4. # R, is odd, and hence #¢°
is odd. Now let t, be the unique n-cell of the piccewisc-lincar subdivision

of 2" that contains = Then by Lemma S, G =G forall weint r,. Now let
1; be another n-cell of the subdivision of .2 that is adjacent to r,, and let
wnow lic inint 1,0 Then. by Lemma S, cither G, =Gl whereby #G', is
odd, or G, 1G.=R. for some 20K, |9 =0 We have =G G

(GIn G ), whereby
G #E (G ()4 kx:\.w G
Similarly, # G = #1067 G4 #(G, A G, and so

# O FG = H (GG HG G D # (G (/)

= #G M) - D #{(. G

= #R2HG G

However. by Lemma 4, # R even, and so #G7 is odd. as it has the
same parity as # (.. Proceeding in like fashion over all adjacent n-cells -
of the subdivision of 27 we see that # ¢ s odd for ali very regular poimnts
of 27, completing the prool.

U S RMAIN: L LA IS
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