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1 Introduction

There has been a great deal of research on how homological properties of face rings
(Stanley-Reisner rings), such as being Buchsbaum, Cohen-Macaulay (C-M), and
Gorenstein, are reflected in topological properties of their associated simplicial com-
plexes and vice versa. One aim of this paper is to investigate the ascent and descent
of these homological properties when taking the Segre product of two face rings. As
the Rees algebra of an algebra 4 can be viewed as a Segre product, our results are
valid in particular for Rees algebras of face rings. We also show that the Rees algebra
of a face ring k[A] has lots in common with the face ring of the closed cylinder of A,
with an appropriate triangulation. The paper is organized as follows. In Section 2
we give some basic facts on the Segre product of two graded algebras. We interprete
the Rees algebra R(A) of an algebra A as the Segre product of 4 and kft,,t,], and
show that R(A) is a Koszul algebra (see next section for the definition) if and only if
A is. In Section 3 we restrict to face rings. We derive criteria for the Segre product
of two face rings to be Buchsbaum, C-M, and Gorenstein, respectively. This im-
plies corresponding criteria for the Rees algebra. In Section 4 we compare the Rees
algebra of a face ring k[A] with the face ring of the cylinder of A.
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2 Preliminaries.

We begin by giving some definitions and results in the general setting of graded
algebras. A standard graded k-algebra is an algebra A = @,5y4;, which is not
necessarily commutative, where Ay = k is a field, A4 is generated—by Ay, and A, is a
finite dimensional vector space. The graded maximal ideal @;5yA; will be denoted
by m. We will use the term algebra as shorthand for a standard graded k-algebra.
We define the Segre product of two algebras A and B to be AQB = @®;>4A: @ Bi,
where the multiplication is induced by a; ® b; - a3 ® by = a1ay,Q by b-,._ We define
the Rees algebra of an algebra 4 to be R(4) = GB,-_>_(,m‘. The first result was, in the
commutative case, already noted in [H], p. 123.

Proposition 1 If A is an algebra, then R(A) ~ AQk(t1,t,] as graded algebras.

Proof Let A=k < Xy,...,Xp> /I =k <z1,...,20 >, where k<Xy,.. .., Xn>
is the free associative algebra and z; is the image of X;. Then

RAY~k<zy,....20,21t,...,Znt >,
where t is a central variable of degree 0. Now
AQklty, ] @k < zyth, ... zaty, 2aty, . . Toty >,

with ¢; and t, central of degree 0. The mapping AQk[t:,t;] — R(A) induced by
ty — 1,2y — t is obviously an isomorphism.

The Hilbert series of an algebra 4 is HilbA(t) = ;5 dimy At’.
Proposition 2 If A is an algebra, then Hilbg(4y(2) = .sz(t Hilb 4(t)).
Proof. Let Hilba(t) = Ty h;t*. Since Hilbg(e, ) (¢) = Tina(i + 1)t', we have
;i d ; d
. _ . 4i_ 4 iy = 9 ‘
Hilbg( 4y = g:"(x + DAttt = dt(tgoh,t ) = (tHilbA(1))

An algebra A is called a Koszul algebra if (Tor{(k,k)); = 0 for i # j. This
condition is equivalent to P4(t) Hilba(—t) = 1, see e.g. [B-F], where P4(t) =
o dimg Torf (k, k).

Proposition 3 An algebra A is a Koszul algebra if and only if R(A) is a Koszul
algebra.

Proof. R(A) = A®klt,,t,), so if A is Koszul then R(A) is Koszul by [B-F], Theorem
4(b), since k[ty,t,] is Koszul. By the same techniques as in the proof of this theorem
it follows that if A®B is Koszul, 4 not artinian, then B is Koszul.

Remark. We note that Koszul algebras have gained new interest in connection
with quantum groups, see [M].
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Corollary 1 If A is a Koszul algebra, then

(Pa(t))?

PRl = B -

- 1 - ) -1 (Pa()?
Proof. Pr(a)(t) = Rilbria (=0 ~ Z(eHiba(-1) ~ £z PA(t)A_tP;(g).

From now on we restrict to commutative algebras, hence an algebra will hence-
forth be shorthand for a standard graded commulative k-algebra, where k is an
infinite field.

An algebra is called generalized C-M if the local cohomology modules (A) are
of finite length for i < dimA. To avoid special cases we assume from now on that
our algebras have dimension at least two. The following proposition was proven in
(S-V], Proposition 1.4.10.

Proposition 4 If 4 and B are algebras of dimension > 2, then A®B is generalized
C-M if and only if A and B are both generalized C-M.

3 The case of face rings.

Now we restrict further to face rings (or Stanley-Reisner rings). If A is a sim-
plicial complex on vertices {X1,...,Xn}, we denote by k[A] the face ring of A,
i.e. k[Xy,. .,Xn)/I, where I is generated by all squarefree monomials which cor-
respond to non-faces of A. Recall that we consider only the case dimk[A] > 2, ie.
dim A > 1. A good general reference to face rings is [St].

Proposition 5 The following conditions are equivalent
(i) k[A)®k[A'] is a Buchsbaum ring.
(ii) k|A)Qk[A'] is generalized C-M.
(i1i) k{A] and k[A'] are both Buchsbaum rings.

Proof. That (i) implies (i) is trivial. That (ii) implies (iii) follows from Proposition
4 and [Sch], Theorem 6.2.1 (see also [S-V], Lemma I[.2.4). Finally that (iii) implies
(i) follows from [S-V], Lemma [1.2.4 and Proposition 11.2.10.

Proposition 6 k[A)@k[A'] is a C-M ring if and only if both k[A] and k[A] are
C-M rings and both A and A’ are acyclic (i.e. Hi(A;k) = Hi{A'; k) = 0 for all i).

Proof. Let R = k[A], R’ = k[A"],d = dim R, d' = dim R’ and let the graded maximal
ideals of R and R' be m and m', respectively. Assume that RQR' is a C-M ring.
By Proposition 5 we have that R and R’ are Buchsbaum rings. Hence the local
cohomology modules Hi(R),1 < i < d—1and Hy(R),1 <i < d —1,are
concentrated in degree 0. Moreover H\(R) = H%,(R') = 0. Hence

(H'(R)a = k® Hn(R)
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and
[H(R)o = k & Hy(R').
Using the Kiinneth formula we get

(H gome (ROR Yo = ((Hi(R)y @ ) & - -

for 2 < ¢ < d. Moreover, from the C-M property of RQR' we also have for 2 < i <
d-1

(1 © Hu(R) = [H}L(R)
and
(2) [H:.(R)]o = 0.

Moreover, from the exact sequence (0) we have
(H'(RQR o = [RRR']y = k
Using the Kiinneth formula again we obtain
[HY(RRRN = [H(R)o ® [H(R'))y = (k ® [H},(R)o) ® (k & [HL,(R')]u)

k@ (k@ [Hp(R))® (k@ [HL(R))® -

Hence
®) (HL(B) = [Ha (R = 0.

From (1) and (3) it follows that R is a C-M ring. By Reisner’s criterion [R], Theorem
1, we have that fli(A;k) =0 fori < dimA = d—1. Moreover, by a result of Hochster
(not published by him, see [G], Theorem 2) we have [HA(R)lo =~ Hy_1(A; k). From
(2) it follows that A is acyclic. By symmetry it follows that &' is also a C-M ring
and that A’ is acyclic. For the converse, we can again use the Kiinneth formula to
compute the local cohomology of RQR' in order to show that R®R' is a C-M ring.
This implication was proven by [S-V), Theorem 1.4.6(i) (see the remark below).

Remark. By the result of Hochster mentioned above, it follows that kE[A)isa CM
ring and A is acyclic if and only if k¥[A] is a proper C-M ring in the sense of Chow
(see e.g. [S-V], Corollary 1.4.8).

To formulate the next proposition we need the following definition. For an al-
gebra A of dimension d, let a(4) = max{t;[H1(A)]; # 0}, see [G-W], Definition
3.14.

Proposition 7 k[A]Qk[A'] is Gorenstein if and only if k[A] and k[A] both are
Gorenstein and a(k[A]) = a(k[A']) < 0.



SEGRE PRODUCTS AND REES ALGEBRAS OF FACE RINGS 3373

Proof. Suppose that k[A]®k[A'] is Gorenstein. By Proposition 6, we know that k[A]
and k[A'] are C-M. Hence the result follows immediately from [G-W], Theorem 4.4.9.
For the converse we first note that k[A] is C-M and a(k{A]) < 0 if and only if £[A]
is C-M and A is acyclic, see the proof of Proposition 7. Hence, by Proposition 6, we
get that k[A]@k[A'] is C-M. By [G-W], Corollary 4.3.3 it follows that k[A]®k[A'] is

Gorenstein.

Corollary 2 Let k[A]2™ = k[A]® - - - Qk{A] (m times).

(i) k[A)2™ is Buchsbaum if and only if so is k[A].

(ii) k[A}2™ is C-M (Gorenstein, respectively) if and only if so is k[A] and A is
acyclic.

Proof. By Proposition 5 we have that k[A]2™ is generalized C-M if and only if
k{A] is generalized C-M. Moreover, in this case we also have that the graded module
H' gm(K[AJ®™) is concentrated in degree 0 for i < dim(k[A)2™), and that depth
E{A]®™ > 0. By the Kiinneth formula we obtain a(k[A]2™) = a(k[A]). Following
the same lines as in the proofs of Propositions 5, 6, and 7 we can conclude by
induction.

Example. If A is a sphere of any dimension, it follows from [G-W], Theorem 4.3.1,
that k[A]2™ is quasi-Gorenstein, i.e. the canonical module of k{A]2™ is isomorphic
to k{A}J2™ up to some shift. By Corollary 2, k[A]2™ is not C-M, but Buchsbaum.
Hence this gives an example of a Buchsbaum, not C-M, quasi-Gorenstein algebra.

Since the Rees algebra of k[A] is isomorphic to k[A]®k[A'], where the complex
A = {8, {1}, {2}, {1,2}}, we also have:

Corollary 3 (i) R(k[A]) is Buchsbaum if and only if so is k[A].
(i) R(k[A]) is C-M if and only if so is k[A] and A is acyclic.
(iii) R(k[A]) is Gorenstein if and only if so is k[A] and a(k[A]) = —2.

Remark. A central point in proving the results of this section is the properties
of local cohomology modules of face rings given in [S-V], Lemma I[.2.5. Graded
F-pure rings (in case of characteristic p > 0) and graded rings having a presentation
of relative F-pure type (in case of characteristic 0) enjoy the same properties, see
[H-R}], Propositions 2.4 and 4.7. Hence all the results of this section are also true
for such rings R, only replacing the condition “A is acyclic” by the condition “R is
a proper C-M ring”.

4 Topology.

In this section we will show that there is a great similarity between the Rees
ring of the face ring of A and the face ring of (a natural triangulation of) the
cylinder of A, Cyl(A). We start by defining what we mean by Cyl(A). Let A
be a simplicial complex on vertices {X), X4,...,Xn} and let A’ be a copy of A
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on vertices {Y1,Y,,...,Y,}. Then our triangulation of Cyl(A) will have vertices
{X1, X, .., Xn, V1,Yy,...,Ya}. For each maximal simplex {Xii, ..., Xigh <
-+ < ig} of A we let the maximal simplices of Cyl(A) be

{{th"'1Xi1|},l'n"'y}/ig};il <<lk,l§l$k}

This obviously gives a triangulation of |A] x [0,1], where we identify jA| with
|A} x {0} and A'| with |A] x {1}. If k[A] = E[Xy,...,Xn)/I, then k[Cyl(A)] =
E[X1...,Xn,Y1,...,Yp)/I', where I' is generated by

{ViX;.i<j}
and by
(X5 XYy, - Yimi 0 << jm, 0L <m X, - X, € I}

This means that if we extend the ordering V; < Vo < -+ < Yn< Xy <Xy i <
Xn lexicographically to all monomials in k[X;,...X,,Y;,.. .Y,], we have that the
generators of I' are the initial monomials of the natural generators

{X:Y; - X;¥i1<i< j<n)

and
X XY, o Yt < < jm, 0 S U< m, X, - X, € 1)
of the defining ideal J for the Rees algebra R(k[A]) = k[X;,... X, 13,.. Yal/J.

Proposition 8 Let A be a simplicial complez and let Cyl(A) be the naturally tri-
angulated cylinder of A. Then

(1) Hilbgicyica)(t) = Hilbrxiap(t)-

(i) k[Cyl(A)] is @ Koszul algebra if and only if R(k[A]) is so.

In case both are Koszul algebras, we get Pyioyay(t) = Prap(t)-

Proof. We have shown before the proposition that the initial forms of the generators
of J are the generators for I'. We will use that both rings are multihomogeneous,
deg X; = deg¥; = (0,...,0,1,0,...,0) (the one in place i). Then it is easy to see
that they have the same size in each homogeneous part, hence have the same Hilbert
series. A Koszul algebra has only relations of degree two, so a face ring is a Koszul
algebra if and only if all relations are of degree two, see e.g. [B-F]. Hence it is clear
that k[Cyl(A)] is Koszul if and only if k[A] is Koszul, and by Proposition 3, the same
is true for R(k[A]). If the two algebras are Koszul, their Poincaré series coincide,
since their Hilbert series do so.

Remark. We have shown that the generators of J in fact constitute a Grébner
basis of J and that I' = in(J). This means that if k[A] is Koszul, then R(E[A]) is
a Poincaré-Birkhoff-Witt algebra (PBW-algebra), see [P].

In the proof of the next proposition we n_gfd the following definitions. Let o be
a simplex in A. The closed star of o in A, St(), is the union of all simplices in A
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having o as a face. The link of ¢ in A, Lk(c), is the union of all simplices in A lying
in St(o) that are disjoint from . The join Ay * A, of two simplicial complexes A,
and A, consists of all faces oy Uoy, where 0y € A, and 0 € A,. Note that A, x Ay
1s acyclic if Ay or Ay is acyclic.

Proposition 9 Let A be a simplicial complez. Then k{Cyl(A)] is Buchsbaum if
and only if R(k[A)]) is Buchsbaum.

Proof. We use the following two characterizations of Buchsbaum complexes, essen-
tially due to Schenzel, see [St], Theorem 8.1. Let X = |A]|. Then we have that k[A]
1s Buchsbaum if and only if

Hi(X,X —z;k)=0, forevery z€ X and i<dimX.
or
Hi(Lk(c);k) =0, forevery o€ A,0#8, andevery i< dim(Lk(c)).

Let Y = X x [0,1]. We know that k[A] is Buchsbaum if and only if R(k[A]) is
Buchsbaum, see Corollary 3. Hence, what we need to prove is the following. The
following two conditions are equivalent:

(1) Hi(X,X —z)=0, forall z€ X, andall i<dimX
and
(i) Hi(Y,Y ~y)=0, forall ye€Y, andall i<dimY.

Assume (i). Triangulate X so that z is a vertex and let U = St(z), which is a closed
contractible neighborhood of z in X. Choose an ordering of the vertices, such that
z = X (the last one). Let y = (z,t), and first assume that t = 0. Triangulate Y
according to our description of this section. Let W = Cone(U) = {(z,1)} «U. Then
W = St(y) is a closed contractible neighborhood of y. We have Hi(Y,Y — y) =
H{(W,W —y), see [Mu], Lemma 35.1, and H;(W,W - y) = H;(St(y), Lk(y)), [Mu],
Lemma 35.4. The long exact sequence in reduced relative homology, [Mu], Theorem
23.3 yields,

-+ — Hi(W) — Hi(W,Lk(y)) — Hio1(Lk(y)) — -+

Obviously Lk(y) = Cone(Lk(z)), and since both W and Cone(Lk(z)) are con-
tractible, we get that H;(W,Lk(y)) = 0 and we are through. The same argu-
ment of course applies if y = (z,1), so assume that y = (z,t) with t € (0,1).
For simplicity let ¢t = 1/2. Triangulate U x [1/2,1] according to our description
and mirror this triangulation to U x [0,1/2] to get a triangulation of Y. Let
W = s(U) = ({(z,0)} U {(z,1)}) « U, the suspension of U. Then W is a closed
contractible neighborhood of y. We use the long exact sequence in relative re-
duced homology again. Obviously Lk(y) = s(Lk(z)), and we have H;(W) = 0 and
Hipr(Lk(y)) = Higr(s(Lk(z))) = Hi(Lk(z)), [Mu] Theorem 25.4. It is well known
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that dim(Lk(z)) = dim(X)~1 foreach z € X. Hence Hi(Lk(z)) = 0,i < dim(X)~1,
50 I.{.-(Lk(y)) =0,i < dim(X) = dim(Lk(y)), and we are through.

Now assume (ii). Let z € X and U/ = St(z) as before. Let y=1(z,1/2). We get
that Hyy1(Lk(y)) = Hi(Lk(z)) = 0 for i < dim(Lk(z)).

Proposition 10 Let A be o simplicial compler. Then k[Cyl(A)] is C-M if and only
if R(k[A]) is C-M.

Proof. We use the following characterization of C-M complexes, due to Reisner and
Munkrees, see [St], Corollary 4.2 and Theorem 4.3. Let X = [A}. Then k{A] is C-M
if and only if I?(X;k) = Hy(X,X - z;k) = 0 for every £ € X and { < dim X. Let
Y = X x [0,1]. We know that k[A] is C-M and A acyclic if and only if R(k{A]) is
C-M, see Corollary 3. In view of the preceding proposition, we only have to note
that H(Y) =0 for i < dimY = dim X + 1 if and only if Hi(X) = 0 for i < dim X.

Corollary 4 Let Cyl™(A) = Cyl(Cyl(--- (Cyl(A)) -+ ) (m times). Then we get
that k[Cyl™(A)] is Buchsbaum (C-M, respectively) if and only if k[A] is Buchsbaum
(C-M, respectively).

For the Gorenstein case the situation is more complicated. This reflects the fact
that being Gorenstein is not a topological condition. It is a necessary condition
for k[Cyl(A)] to be Gorenstein that R(k[A]) is Gorenstein. This follows from the
spectral sequence of Grabe, [G2] Satz 4.1 (see also the proof of Proposition 12
below). The condition is however not sufficient. If k[A] is Gorenstein with a(k[A]) =
—2, it depends on the ordering of the variables if k[Cyl{(A)] is Gorenstein or not.
Let, for example, A; be the Gorenstein simplicial complex on {X1,X2,X3,X4}
with maximal faces {X;, X3, X3} and {X4, X3, X4}. Let E[Xy,...,X4) = k[X] and
k[Xy Yoy X4, Y] g ,Y4] = k[X, Y] Then k[A1] = k[X]/(X|X4), hence a(k[A,]) =
—2, and

k[Cyl(Ar)] = k[X:Y]/(YIX'A,YIXR,YIXA.YzX:i,}"zX4.)’:«XA.X1X4,X1 Yy, V1Y),

which is not Gorenstein. But for the simplicial complex A, on {X],Xg,X;{,X,g}
with maximal faces {X1,X,, X4} and {X1, X3, X4} (which just corresponds to a
renumbering of the vertices), then k[A,] = E[X)/(X2X3), and

k[Cyl(Az)] = E[X,Y]/(Y1 X2, Y1 X3, Vi Xa, Yo X3, Vo X4, YsXa, Xo X3, X1V, Y.Ys),

which is Gorenstein. The first example gives an algebra R(k[A,]) = E[X,Y]/J for
which a minimal system of generators for the defining ideal J constitutes a Grobner
basis for J, so that the first Betti numbers for the algebra and its “associated graded”
‘are equal,

by (k[X,Y]/J) = by (K[X, Y]/in(J)),

but k[X,Y]/J and £[X,Y]/in(J) have different higher Betti numbers,
bi(k[X, Y1/ ) # bi(k[X, Y]/in(7)), i > 1.
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We will however show that if we choose a good ordering of the variables, then
k[Cyl(A)] is Gorenstein if and only if R(k[A]) is Gorenstein.

We need a preliminary result. Let A be a complex on V = {X,,..., X, }. We
recall the definition of the core of A. At first we set Core(V) = {X: € V;St({X:}) #
V'}. Then we define Core(A) to be Acare(v), the full subcomplex of A on Core(V).

Proposition 11 If A is @ Gorenstein compler on V = {X,,..., X, }, then
(5) a(k[A]) = # Core(V) — n.

Proof. Let d = dim k[A]. We use that if Hilby4j(t) = p(t)/(1 - t)%, then a(k[A]) =
deg(p) — d (this follows e.g. from [G-W], Remark 3.16), and that Hilbya(t) =
14 fot/(1 —t) 4 -+ + fayt?/(1 — t)%, where f; is the number of i-simplices in A,
see [F], Lemma 6. This gives that a(k[A]) = 0 if and only if the alternating sum
famr=fa—z+ (= 1)*= fy+(~1)* # 0, which is equivalent to that the alternating
sum of dim H;(A) is not zero. This in turn is true if and only if H4_ 1(A) # 0, since
Hi(A) = 0 for i < d— 1. Using [St], Theorem 5.1(c) we see that Hy_(A) # 0 if
{X\,...,Xn} = Core(V). The claim follows by factoring out variables which do not
belong to Core(A). This operation increases the value of both sides in (5) with one
for each variable, and does not affect the condition of being Gorenstein.

Remark. Proposition 11 makes it possible to classify each face ring of dimension <
4, whose Rees algebra is Gorenstein. We know that k[A] = k[Core A][Y}, Y2], where
k[Core A) is Gorenstein of dimension dim(k[A}]) - 2, and with a(k[Core A]) = 0. So
if dim(k[A]) = 2, there is only one possibility, namely k[X,, X;]. If dim(k{A]) = 3,
then k[A} must have Hilbert series (1 +t)/(1—t)*, hence k[Core A} has Hilbert series
(14 1)/(1 - t), which gives only k[Xy, X4, Y7, Y2]/(X1X2). If dim(k[A]) = 4, then
Hilbya)(t) = (1 + mt + #2)/(1 — t)* (m > 1), hence Hilbygore aj(t) = (1+ mt +
t2)/(1 — t)2. Then

E[A] = E[X, X3, X3, 17, Yo /(X0 X o X3)
or (for m > 1)
EXq,..., Xm42, V1, Yol /(XiX;5 1§ = 31 # 0,1 (mod m + 2)).
Other examples, of higher dimension, are the complete intersections
E[ Xy, Xo, V0, Y0 /(X0 - Xy X1 Xy oo Xiyr - Xn)

where 1 < iy < iy < -+ < ig < n. The next proposition will provide lots of further
examples.

Proposition 12 Let A be a simplicial complez. Then k[Cyl(A)] is Gorenstein if
and only if R(k[A]) is Gorenstein and the ordering of the variables is such that
Core(V) = {X'Zy . ,Xn_]}.
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Proof. Suppose that k{Cyl(A)] is Gorenstein. We will use the following characteriza-
tion of Gorenstein complexes, see [St] Theorem 5.1(b). The ring k[A] is Gorenstein
if and only if for each face o in Core(A) we have

Hi(Lkgore(a) o3 k) =0 if i < dim(Lkgore(a) @),
and B
Hi(Lkcore(a) o; k) >k if i= dim(Lkgore(a) 7)-
Denote the set of variables in Cyl(A) by W = {X,,...,X,,,Y1,...,Ya}. Our proof

is based on a calculation of links of points in Core(W). If X; € Core(V), then
Xy € Core(W). Clearly also Yy € Core(W). Now we have

Lkcare(cyrcan {11} = {X1} » 0,

where o is a subcomplex with vertices in {Y,,...,Y,}. This join is acyclic, hence
we have a contradiction to the Gorenstein property of k[Cyl(A)], and we con-
clude that X, ¢ Core(V). Analogously, by considering Lkcare(oyi(a) {Xn} (if
Xn € Core(V)), we get that X, ¢ Core(V). Now it easily follows that Core(W) =
{X2,..., XnY1...,Yny}. Further, if X; ¢ Core(V), where 1 < i < n, then it is
easy to see that
LkGore(cyian{¥i} = {Yi} x o,

for some . Again this join is acyclic, which gives a contradiction. Hence we get that
Core(V) = {Xy,..., Xn1}. o ={Xi,,..., Xi;6 < -+ < i1} is a face of Core(A),
then we set 7 = {Xj,,..., X, Y;} which obviously is a face of Core(Cyl(A)). It is
easy to check that Lkgare(cyi(a)) 7 = Lkgare(a) - By the criterion above it then
follows that k[A] is Gorenstein. By Corollary 3(iii) and Proposition 11, we get that
R(k[A]) is Gorenstein.

For the other implication we will use the following characterization of Gorenstein
complexes, due to Bjorner, see [St] Theorem 5.1(d). We have that k[A] is Gorenstein
if and only if ¥[A] is C-M and Core(A) is an orientable pseudomanifold.

Suppose that R(k[A]) is Gorenstein and that Core(V) = {X,,..., X1 }. It was
noted above that

Core(W) = {Xy,..., Xn,V1,..., Yoz}
We must show that £[Cyl(A)] is C-M, and that Core(Cyl(A)) is an orientable pseu-
domanifold. That k[Cyl(A)] is C-M follows from Proposition 10. It is not hard to
see that Core(Cyl(A)) is Cyl(Core(A)) with its top joined to Yy and its bottom
joined to X, which is homotopic to s{Core(A)), the suspension of Core(A), with
suspension points X, and Y3, (smash Cyl(Core(A)) to Core(A)).
This gives that

H;(Core(Cyl(A))) = Hi(s(Core(A))) = Hi~(Core(A)) = 0,
if i < dim(Core(Cyl(A))) = dim(Core(A)) + 1, and that
Hi(Core(Cyl(A))) = &,

if 1 = dim(Core(Cyl(A))). It follows that Core(Cyl{(A)) is orientable. We have
that Core(Cyl(A)) is a pseudomanifold if and only if each face of submaximal di-
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mension dim({Core(Cyl(A))) - 1 lies in exactly two faces of maximal dimension in
Core(Cyl(A)). That this is true, follows directly from our definition of the cylinder
and our description of Core(Cyl(A)).

Corollary 5 Suppose that k[A] is a Gorenstein face ring on V = {X;,...,X,}
with Core(V) = {X,,..., Xn=1}. Then k[Cyl™(A)] is Gorenstein.
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