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ABSTRACT

This is a paper on Stanley-Reisner rings, “k[A)”. For Hilbert series, we prove,
that k[A’xA"'|=k[A'|®k[A"] where k is a field and A’ x A" denotes the “Simpli-
cial Cartesian Product”, while k[A’|®k[A"'] denotes a “Segre Product”. Segre
products together with k[A’xA’'] are proved to be Koszul algebras if and only
if both k[A’] and k[A”] are Koszul algebras.

Modulo some minor modifications we give algebraic topological proofs for the
claim that “the simplicial cartesian product” respectively “the join” of two
simplicial complexes have the property of being Buchsbaum (Cohen-Macaulay,
Gorensten) if and only if both factors possess the property in question. Our
results generalize some related results of Baclawski on products of posets.

1. Hilbert Series
We will use the following definition of a simplicial complex;

Definition of an abstract Simplicial Complex. An (abstract) simplicial com-
plex ¥ on a vertex set V is a collection (empty or non-empty) of finite subsets o
(empty or non-empty) of V satisfying

(a) IfveV, thenv € Z.

(b) fceX and T Co thent € X.

This definition doesn’t differ from the classical except for the fact that it allows
us to choose the non-empty collection containing nothing but the empty subset
of V, i.e. {0}, as a simplicial complex. All simplicial complexes, in this paper, will,
if nothig else is said, be finite, i.e. they have finite vertex sets.

Given two simplicial complexes A’ and A” with vertex sets Var:= {v],...,v.}
and Var:= {v{,...,v}} resp. where all the vertices belong to a common “universe”

W. 5 defines in Def. 8.8 p. 67 “The Cartesian (Simplicial) Product, A’ x A”, of
A’ and A"”, and shows in Lemma 8.9 p. 68 that A’ x A” triangulates |A’| x |A”].
By definition we have that Varxar = {(v1,v7),..., (v}, vy)}, where we put w; ; :=
(vi,v7). Simplexes in A’ x A" are sets {Wig jor Wiy j1s- - Wis,ju}s With w;, j, #
Wiy jesn @0 Vi) < vf <o <0l (W) < off < .. < o)) where v, v ...,
(Vi Vs e e ,Vj,) is a sequence of vertices, with repetitions possible, which consti-
tutes a simplex in A’ (A”).
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Definition. A subset s C W D Va is said to be a non-simplex of A, denoted
s/, if, when we regard s as the full complex on its vertices, we have that s &€ A

but (5){4™ 9= A, (The last condition says that the ((dim s) — 1)-dimensional
skeleton of the simplicial complex consisting of all proper faces of s is a subcomplex
of A.) For a simplex § = {v;,,...,v;,} we define ms to be the squarefree monic
monomial ms = 1k - vy, - - - -v;, € k[W] where k[W] is the graded polynomial
algebra on the variable set W. In particular mg = 1. We let k[A] := k[W]/Ia
where In := ({ms | 6¢A}). k[A] is called the “face ring” or the “Stanley-Reisner
ring” of A.

Example 1. The join Ay * Ay = {6; U 8:|6; € A; (1 =1,2)}, Va, NVa, =0, gives
k[W] _ _kVa, UVaA, U(WN\ (VA, UVA,))
({ms| 601 % A2})  ({ms| [681 V 6] A [6 € Ay * As]})

k[VAl UVa, U (W\ (VAx U VAz))] =
({ms € k[Va,]| 6€D1} U {ms € k[Va,]| 682} U[W \ Va, UVa,])

=k[A1] ® k[A],

K[A1 * Ag] =

as was, originally, shown in 7. The last equality follows from 17 Theor. 35 p. 184.

Definition. A graded k-algebra R is called a graded k-standard algebra, if it is
finitely generated (over k) by zi,...,z, € [R],.

Definition. A graded k-algebra R is called a Segre product of Ry and R over k,
denoted by R = o, (R1, Rz) or R = o(Ry, Ry), if for every p € N [R]=[Ri1], ® [R2],-

Definition. i. The trivial Segre product, R10R;, is equipped with the trivial pro-
duct, i.e. every product of elements, both of which lacks field term, equals 0.

ii. The “canonical” Segre product, Ry®R;, is equipped with a product induced by
extending (distributively and linearly) the following operation defined on simple
homogeneous elements: If m} @ m{ € [Ri®Rz|, and mj ® mj € [R1®R;] p
then (m} ® m{)(m5 @ m%) := mim) @ m{mj € [R1@R2]a+ﬂ.

iii. The “canonical” generator-order sensitive Segre product, R1®Ra, of two graded
k-standard algebras R; and Ry presupposes the existence of a uniquely defined
partially ordered minimal set of generators of Ry (Rz) in [Ri], ([R2),) and is
equipped with a product induced by extending (distributively and linearly) the
following operation defined on simple homogeneous elements, each of which,
now are presumed to be written, in product form, as an increasing chain of the
specified linearly ordered generators: If (my; ® mg;) € [R1®R2] o and (m12 @
Maz2) € [R1®R2]ﬂ then (my1 ® ma1)(Mmi2 ® ma2) := ((M11Mm1a ® maymae) €
[R1®R2]a 18 if by “pairwise” permutations, (mj1my2, mo1magg) can be made
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into a chain in the product ordering, and 0 otherwise. Here, (z,y) is a pair
in (m11m12, ma1myg) if T occupy the same position as y counting from left to
right in mi1myo and maoymes respectively.

Definition. The Hilbert series of a graded k-algebra R = ;5o Ri is
Hilbg(t) := 37,5 (H(R,1))t* := 3,50(dimg R;)t?, (H:= The Hilbert function).

Note: 1. (cf.!* p. 39-40) Every Segre product of R; and R; is module-isomorphic
by definition and so, they all have the same Hilbert series.

2. If R, and R; are graded k-standard algebras, generated (over k) by zy,...,z, €
[Ril,,¥1,---,Ym € [Ra2],, resp., then R1®QR, and R1®R, are generated by (z; ®
Y1)--+, (Tn ®Ym), and dim R, @R,= dim R, @R, = dimR + dimR, — 1 (dim:=Krull-
dim, cf.? p. 201 Th. (4.2.3)). R;0R; is not finitely generated, so, non-Noetherian.
3. It is quite plain to define a generator-relation sensitive Segre product, of two
graded k-algebras R; and Rj, enclosing all the above cases.

For a given monomial m, let Supp(m) be the squarefree monomial defined by
putting every non-zero exponent (of the variables) in m equal to 1. Let p;(w; ;) =
p1((vi, v7)) = v{ and pa(w; ;) := v} and if Supp(m) := w;, j, -+ wi, j, Put [Fz(m)] =
{pe(wiy 5, ), - - pe(wiy i)} and pe(m) := pe(wi, j,) - - - pe(wiy ) for t=1,2.
Theorem 1. k[A’ x A”|=k[A'|Qk[A”], where the isomorphism is a graded k-
algebra isomorphism of degree zero.

Proof. If k[A"] = k[vi,...,v}])/Ias and kK[A"] = k[vY,...,v}]/Ia» we know (cf. the
above Note) that the Segre product k[A’|®k[A"], is generated by {(vi®v]),..., (vo®
vy)} where v; (resp. v;) now, by abuse of language, stands for the image of
v; (resp. v;) under the quotient map. Let’s define an algebra homomorphism
h : klwy1,...,wep] — k[A'I®K[A”] by giving the values of h on the gener-
ators by h(w;;) = v ® v;-’. Put Ik[A']@k[A"] := kerh. VA and Va~ has been
given total orderings and Varxar = Var X Var received thereby the product or-
dering. Now, I,z i8 generated by C' = {w;jwki| i < kA j > I} and
D= {w = wij - - Wi 5| PI(W)]EA’ or [pz(w)]¢A”}. On the other hand,
Inranr (P defines the “a-product” in Def. 8.1 p. 66) is generated by D’, and
deleting the non-chains, we see that also Iaxa~ is generated by C’' U D’. |

Corollar;y. Hilbk[A’]@k[A”] (t) = Hilbk[A/ x A1) (t) = Hilbk[A’]@k[A"] (t). |

Example 2. Let d’,d” and d denote the Krull-dimension (=(the usual simplicial
dimension)+1) of k[A'], k[A”] and k[A" x A”] respectively and let f}, ', fx stand
for the number of simplices of simplicial dimension 4,7,k in A’,A” and A’ x A"
respectively. 13 p. 63 Th. 1.4 gives the following formula for the Hilbert function
of these “standard graded algebras”, resp., where now d — 1 = (d' — 1) + (d” — 1).
E.g. H(k[A xA"],m) =520 fx(™') whenm >0 and H(k[A'xA”],0) = 1.
H(K[A" x A"],m) = H(k[A'|®k[A"],m) by the corollary which, by the definition
of the Segre product, implies 357 fi ("¢") = (Ti fI("7)) (Zi=e” £ ("7 )-
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Identifying coefficients w.r.t. the exponents of m, from the highest, downwards, i.e.

fla-v+@ -1 = fy_1fon_y (d'_lg,'*'_(f "1)). Next, f(4'—1)+(a-1)-1 = ... and so on.
By Example 1 above, analogously for the “f~vector” of A’ x A”.

Let’s define an algebra homomorphism g : kwy 1, .. ., Wes] — k[A' ]®k[A” ] by
giving the values of g on the generators by g(w; ;) := vj ®v” PutI = kerg.

Put C := {w; jwix,; — wiwg, ;| i <kAj> 1} and
D= {wzwix»h""'w‘kdk I [wis a chain]A[[[Wf(w)]&] [[_p_(w)]EA"]/\[]iZ :;: ]V

vI[Fomiea]a[mEmidh g5l v [ prondd|a e lai s sal]] |

k{a1@k[a] *

Lemma. (a) D’, above, is reduced to a minimal generating set D", for In:a o, in

DII = {“’=wi1,j1 e Wig ip | [[m(w)]&l] A [E_Z.(W)]EA”] A[Pl(wi,;{f)i;lk(wk,l)]] Vv [[[ﬁ(w)]GA,] A
A EEendhr]apresZmaen)] v [ [prenidh] a [maonidh ] Az e 28] }

pa(wy, j)#pg(wy ) if Gl

(b) CU D (C'U D) is a minimal generating set for Iianera (Iarxa” = Lyjangiiam)

and a reduced Grobner basis for Ivanesian (Iarxar = Lyangrar)-

Proof. (a) Enlarge D” to E’ by changing [pi(w)]]€A* to -[[pi(w)]|dA* ],
(1=1,2; *='"), ie. E':=

{wmwig e | [[Frnga ] [ [momiga] | apr s o] v [ [- (oo

AFaemign apres o] v | [preien’| A [Freognr] ARz o) )
Simple logic tells us that (E’) = (D’), but what about (D" ) (E"?

Take w € E'\ D", i.e. wisin E’ due to some of the two first sets of set-quantifiers,
separated by an “V”, defining E’. Say that w € E’ due to the first set of set-
quantifiers defining E'. Then [[pr(w)|€A’], [-[[Fz(w)]€A"]and [P {f)’fgk(w" 0]
and [pz(w)] € A”. Now, start deleting “vertices” from the monomial w, systemati-
cally, so that the projection [pz(w)] doesn’t become an element in A”. w is a prod-
uct of pairs in Vas X VA~ so, sooner or later we can’t do any more deletions, and this
is so exactly when [p2(*)] has become an non-simplex of A”. Call this final monomial
w’. Now w/|w and w’ # w and [p7(w)] € A/, [pz(w)]¢A” and [P2(¥ ’1)9?’;2,("”‘ 0],
since otherwise we chould have performed additional deletions, so w' € D” and
since w’ is a factor in w we conclude that (D” ) = (E’ ), so (D” ) = (D’ ) O
(b) For the same reasons as in (a), changing [pi(w)] € A* to —[[pi(w)|€A*]
(¢t = 1,2; * = n,/), won’t change the generated ideal, and now, the statement
on “generating set” is readily deduced, as is the “minimality” by actually checking
that every single generator is necessary, to make the “generating set”-statement
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remain true. The “Grobner basis”-statement is trivilly true for the monomially
generated ideals, within parenthesis.
Now, let

W1l <Wg-11 < <Wp <KWg2< <KW < KWp < - <Wpp
be the order of the variables and extend this ordering to all monomials in the degree
lexicographical way. Then In(w; jwg,; — wi wk,;) = wijwk,; (¢ < kA j > 1) which,
remebering (a), implies

(In[C U D))=(In[C] U D)=(C’ U D)=(C' U D")=(C" U D')=(In[C U D']).

Since we now have (In[C U D]) = (In[C U D’]), and (CUD) = (CUD’), we

can draw the following conclusion:
If CU D' is a Grébner basis for (CU D'), so is C U D.

So, now it is enough to show that the S-polynomial S(f, g) is reduced to 0 by CuU D’
(cf. 3 p. 191 Th. 6.2). If f,g € C this follows from 5, and if f, g € D’ this is trivial,
since D’ consists of monomials only. It only remains the case when f € C,g € D'.
Let f = w;jwg; — wiywg,;. Then S(f,g9) = —wiwk, ;9/GCD(g,In(f)). Since
Di(S(f,9))] = [Bi(9)], S(f,g) is an element in D', and so, the claim follows. That
CUD is a reduced Gréobner basis is now a trivial consequence of the fact that CU D
is a is a minimal generating set for Iijangrar. n

Definition. The Poincare’ series, Pr(t), of a graded k-algebra R is
Pr(t) = 32, (dimy, Torf(k, k))t*.

Definition. A graded k-algebra R is called a Koszul algebra if
Torfj (k,k) =0 if i # j, or, equivalently, Pr(t)Hilbg(—t) = 1, seel.

Theorem 2. If A and A’ both are of dimension > 0 we have
k[A x A'] Koszul<= k[A]Qk[A’] Koszul<=> k[A] and k[A’] both Koszul.

Proof. If k[A x A’] is Koszul we have by ! 16 p. 87 that Ia/xa~ is generated by
polynomials of degree < 2. Hence D above, consists of monomials of degree=2,
so all non-simplices of A and A’ are l-simplices. Hence by ! 17(b) p. 87 k[A]
and k[A’] are both Koszul, which by ! Th. 4(b) p. 91 gives that k[A]®k[A] =
klwy 1,. .. ’wavb]/lklA’]Qk[A”] is Koszul. Hence by ! 16 p. 87 L, angxian IS generated in
degree 2, so D above consists of monomials of degree=2, and so Jarxa~ is generated
by monomials of degree=2. By ! 17(b) p. 87 k[A x A’] is Koszul, so every implication
is actually an equivalence. [ |

Theorem 3. k[A] and k[Al] both Koszul — Pk[AxA'](t)= Pk[A]@k[A'] (®).
Proof. k[A], k[A’] both Koszul = k[A x A’], k[A]®k[A’] both Koszul by Theo-

rem 2. Hence by Hence by? 16(5) p. 87 Pijaxa(t) = (Hilbgarxar(—~t))~1 and

Praigkia)e) = (Hilbgangrar (=)™ So, Prjaxar(t) = Pkajekiar(t) by the
Corollary. n



2. Pseudomanifolds

We will use “homogeneous n-dimensional” and “equidimensional” to de-
note that all the maximal simplices of a simplicial complex have the same dimension.

Definition 1. An n-dimensional pseudomanifold is a simplicial complex K such
that

(@) K is homogeneously n-dimensional.

(B) Every (n — 1)-simplex of K is the face of at most two n-simplices of K.

(v) If s and s’ are n-simplices in K, there is a finite sequence s = 89,81,...5m = §'
of n-simplices in K such that s; N s;4.1 is an (n — 1)-simplex for 0 < i < m.

The boundary of an n-dimensional pseudomanifold K, denoted K or BdK, is
the subcomplex of K generated by the set of (n — 1)-simplices in K which are
faces of exactly one n-simplex in K. If K = 0, K is said to be an n-dimensional
pseudomanifold without boundary.

A simplicial complex fulfilling condition (7) is said to be strongly connected.

Definition 2. ¥ is a homology n-sphere over the coefficient ring A if for every

sE L
A ifi=n

- ~ A ifi=n
H,-(E;A):{O iitm O H,-_dim,_l(Lkg.sT;A)={

0 ifi#n '

Note. The first fomula in Def. 2 is a special case of the second for s =@, and if &
is a homology n-sphere then it is homogeneously n-dimensional and so dimLkys =
n —dims — 1.

In dimension > 1 there is no essential difference between these definitions above
and the classical ones. In dimension < 0 some differences occur however, this is due
to the fact that the empty set is a simplex in our definition of simplicial complex.

Definition 3. An n-dimensional pseudomanifold S is said to be orientable if, when
dim¥ > 1, H,(S,BdS; A)=A and nonorientable otherwise (i.e. when equal to 0).
Else: () is an nonorientable pseudomanifold without boundary.
{®} is an orientable pseudomanifold without boundary of dimension —1.
A zero-dimensional simplicial complex with only one vertex, denoted e, is an
orientable pseudomanifold with the boundary {0}.
A zero-dimensional simplicial complex with exactly two vertices, denoted ee,
is a (strongly connected) orientable pseudo-manifold without boundary.

We have: A 1-dimensional complex with exactly two vertices v; and v is an ori-
entable pseudomanifold with the boundary {{v:}, {v2},@}.

An equidimensional one-dimensional simplicial complex with exactly three vertices
is an orientable pseudo-manifold that either triangulates a line and then its bound-

ary is generated by its “end-vertices” or it triangulates a circle and then it has no
boundary.

T for def. of “Lk”, see next page.



3. Buchsbaum, Cohen-Macaulay and Gorenstein complexes

We first recall some well-known definitions. The “link of a simplex o € ©”
is defined by

Lkgo={reZ|ent=0A[cUT € Z]}.

The “closed star of a simplex § in a simplicial complex L”, “stzé”, is given by
stgd:={re T |TUS € X}, and v € Vx is called a “cone point in " if stxt = X.
coreX := {0 € ¥ | ¢ contains no cone points}. The set of cone points of a simplicial
complex X constitutes a simplex in ¥ that we call éx, and we see that if ¥ has
nothing but cone points as vertices then coreX = {0}, so we have that [coreX #
§] < [£ # 0]) and moreover we get ¥= (coreX) * §g and coreX=Lkxndsx.

A simplicial complex ¥ is said to be Buchsbaum (Bbm), (Cohen-Macaulay
(C-M), Gorenstein (Gor)) complex over k if the face ring k[Z] is Bbm (C-M, Gor.
resp.). We won’t use the ring theoretic definitions of Bbm, C-M, Gor. resp. and
therefore we won’t write them out. Instead we will use the following three theorems,
taken from 13, as “definitions”.

Proposition 1. (Schenzel) (** Prop. 8.1) Let T be a finite simplicial complex and
let k be a field. Then the following are equivalent:
(i) ¥ is Buchsbaum over k.
(iii) For all o € £,0 # 0 and i < dim(Lkgo), H;(Lkgo; k) = 0.
(iv) For allz € ||, and i < dim Z, H;(|Z|,|Z|\ {z};k) = 0.

Proposition 2. (2 Prop. 4.3, Cor. 4.2) Let T be a finite simplicial complex and
let k be a field. Then the following are equivalent:
(i) X is Cohen-Macaulay over k.
(ii) (Reisner) For all 0 € £ and all i < dim(Lkgo), H;(Lkso; k) = 0.
(iii) (Munkres) For all x € |Z| and all i < dim %, H;(|Z|;k)=H:(|Z|, |Z| \ {x}; k)=0.

Proposition 3. (*® Prop 5.1) Let T be a finite simplicial complex, k a field and
I’ := coreX. Then the following are equivalent:
(i) X is Gorenstein over k.

y - [k ifi=dim(Lkro)

(ii) Forallo el H;(Lkro;k) = {O if i # dim(Lkro).

5 k ifi=dimTl
(i) Forallz € || A(TK) = H(TLIPN 0 = {§ 12 Gl

(iv) ¥ is C-M/k, and T is an orientable pseudomanifold without boundary.

(v) Either (1) £ = {0}, o, ee, or (2) L is Cohen-Macaulay over k, dim% > 1,
and the link of every (dim(X) — 2)-face is either a circle or a line with two or
three vertices and X(T') = (—1)4imT,

The proofs of the equivalences given above are easily found through the references in
13 except for Prop. 3. (iv) where the reader is referred to -“a remark by Bjérner”.
Anders Bjorner has, on our request, kindly sent us a very enlightening algebraic
topological proof that we now, with his permission, publish as an appendix.
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Note. R[Z], R a commutative ring, is defined in exactly the same way as k[X].
Here some results on Z[X] and Q[Z]; (cf. 1° p. 181 Prop. (2.3)+(2.4) and p. 210
Prop. (6.6) and ' p. 34, p. 37 and p. 44 Lemma 5 (+Remark 2), 8 and 11 resp.)
1) £ Bbm (C-M, Gor) over the field Q of rational numbers <= £ Bbm ( C-M,
Gor) over some field k <= ¥ Bbm ( C-M, Gor) over the prime field Z, of k. <= &
Bbm ( C-M, Gor) for all but at most finitely many prime fields Z,,.

2) ¥ Bbm (C-M, Gor) over Z <= £ Bbm ( C-M, Gor) over every prime field Z,,.

4 Joins of Buchsbaum, Cohen-Macaulay and Gorenstein complexes

For A a field ¢ Corollary 2.3 p. 126 T gives the following formula;
Hip1(81 555 A)= D (Hp(T1;A) @ (Hy(Z2; A)). (1)
pt+q=i
Directly from definition of “Link” we have that Lky® = ¥ (“the missing link”).
Lemma. If V3, NVg, =0 (& I, NE; = {0}) then
[TeXi*E] <= [T 0o;€X; (:=1,2)sothat T =0y Uos), and
Lky, x5, (oq U g2) = (LkoEIUI) * (Lk220’2) . n
which, when inserted in Eq. (1), gives

Hiy1(Lks, a5, (01U 02); A) = Hita((Lkg, 01) * (Lks,02); A)=

= @ (ﬁp(Lkzlal; A) ® ﬁQ(Lk2202; A)) (2)
ptaq=i
If o1 is a maximal simplex we have that Lky, o7 = {0} and we get
Hit1(Lks, a5, (01 Uog); A) = Hiy1(Lks,02; A). (3)
If o1 =0, we have
Hiy1(Lks, 5,02, A)= @ (Hp(T1;A) ® Hy(Lks,02; A)). (4)
p+g=i

If 01 = 0 and o7 is a maximal simplex then

Hys1(Lks,uz,02 A)=Hina (S5 A). (5)
Moreover, the lemma above gives us the following equality:
dim(l::k;;l,‘z;2 (o1 U 02)) = dim(Lkzldl) + diIn(Lkzzdz) + 1. (6)

Our theorems below are true also when A is interpreted not only as a field but also
as e.g. Z by the Note above.

T Our use of the CW-complex related results from 4 is justified by 4 Th. 6.3 Th. 3.2 and Cor. 4.9 p.
26, p. 150 and p. 170 resp.



Theorem 4. IfdimX; > 0, ¢ = 1,2 then,
¥, * X9 Buchsbaum over A <=> X;,X5 both Cohen — Macaulay over A.

Proof. (< ) Put n :=dim(Lky;, 01) + dim(Lky,02). Then:

If (a) p+ g =1 <n then p < dimLky, or ¢ < dimLkg,.

If (b) p+qg=1>n then p > dimLks, or ¢ > dimLky,.
Now, Eq. (2) gives the desired conclusion in case (a) and by dimension the result
follows in case (b). (<)
(=) If 0, is a maximal simplex in £; (i.e. d; = s1) then: dim(Lkyg,.x,(01 Uos) =
(di+ds+1)— (51 +82+1) — 1 = dz — s — 1 = dim(Lky, 02) which by Eq. (2), Eq.
(3) and Eq. (4) gives that ¥, (X equivalently) is C-M/A, since we now also have
o, = { as a legitimate option. [ |

Theorem 5. Ifdim¥; >0 (i = 1,2) then,

Y1, X2 both Cohen — Macaulay over A < ¥; x X3 Cohen — Macaulay over A
Proof. Because of Theorem 4 it only remains to prove that

(21, T2 both Cohen — Macaulay/A] = [Hi(X1 * Z2; A) = 0 if i # dy +da + 1]

but this follows from the original formula Eq. (1) on the previous page, and
the dimension calculations in the end of the proof of the last theorem,

putting s1 = s = —~1. n
Corollary. Ifdim¥; > 0 (¢ = 1,2) then, £, * £ Buchsbaum over A<
< Y1, 29 both Cohen-Macaulay over A< ¥y * X9 Cohen-Macaulay over A. [ |

Theorem 6. X, * ¥, Gorenstein over A < X1,Y, both Gorenstein over A.

Proof. We have that

Ty %Ly = (core(Xy * X2)) % vy * - - - % Ug;
)37} =(core(X1)) * vy * g * -+ - * VL5
s =(core(X3)) * v *x vy * -+ *x V;

Where {v1,vs,...,0c} ( {v{,v5,...,v} resp. {v{,v3,...,v},}) are the cone
points in X1 * Lo (X1 resp. L2).
Since coreX never has any cone points and the fact that “join” is commutative
we get
core(T * Tp) = core(X,) * core(Xq), k =K' + k"
and

E[i+1 (chore21 *22 T A) = f{i+1 (chore21 xcoreXa T3 A) =
= K i+1(choreE; xcore(Dz)T1 U 7o; A) = j;[i+1((LkCOI‘e)31T1) * (choreﬁg'rz); -A)é
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= @ (pr(choreEl T1; A) &® (I}q(choreEQT‘;’; A)))

p+q=i

Now, essentially the same reasoning as in the proof of the last theorem will, together
with Prop. 3 (ii), give the result. |

The original proof of Theorem 5 above was topological and given in P. F. Garst,
Dissertation, Univ. of Wisconsin-Madison, 1979. The original proof of Theorem 6

above was ring theoretic and given in 7, together with a ring theoretic proof of
Theorem 5.

5. Products of Buchsbaum and Cohen-Macaulay Complexes

Definition. “The simplicial cartesian product of pairs” (cf. 5 p. 67),
(B1, A1) X (B2, A2) 1= (B X T, (T1 X A2) U (A1 x Iy)) (7)
and similarly for topological pairs (cf. 12 p. 234), and for join.

Note: There are homeomorphisms || X [Z3] ~ |5; x Z,| and | * |Z3] ~
|Z1 * Za| (cf. ° Lemma 8.9 p. 68. and ® p. 99 respectively).

We will use Kiinneth’s fomula from 2 Th. 10 p. 235 ; which, for a field as
coefficient ring gives

Hy((X, 4) x (Y, B); k)=[H(X, 4; k) ® H(Y, B; k). ®)
The homeomorphism |2, | x |Z3| ~ |E; x ¥2| (mapping (z1,2) to (:1::;2)) gives,
(1211, 1Z1] \ {z1}) x (|22}, [Z2] \ {z2}) ==

= (1B1] % [Za, (1Z1] x (1Z2] \ {z2}) U (1B1] \ {z1}) x |Z2])) =

= (1] x [Z2], [21] x [Z2]\ {(z1,72)}) = (|1 x s}, [T1 x Ta| \ {(21,22)}). (9)

Our theorems below are true also when A is interpreted not only as a field but also
as e.g. Z by the “Note” ending Ch. 3. Since Ex @0 =0x X =0 and T x {§} =
{0} x £ = {0} we leave these cases out, and because of the local character of the
Buchsbaum condition, it isn’t necessary to have any other restrictions in this case.

Theorem 7. IfdimX, > 0 < dim X, then
Y1 X 2o Buchsbaum over A <= X; and ¥ both Buchsbaum over A.

Proof. {|Zi| x (|Z2|\ {z2}), (IZ1] \ {z1}) x |Z2| is an excisive couple (cf. AD-
DENDUM p 18). Our claim now follows from Proposition 1(iv), and Eq. (8)-(9),
remembering that Haims(|X|, ||\ z;A) = A if z € Into and o is a maximal
simplex in ¥. ||
Note. [dimX; > 1 £ dim %,] <= [dim(Z; x £2) > max(dim £;, dim Z2)].
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Lemma. When [dimE; > 1 < dimX5] then the following equivalences hold,
[Hi(Z1 x T2;A) =0 for i < dim(Z x T,)] <=
<= [Z; and &, both acyclic] <= [E£; x X3 acyclic].
Proof. Use [dimX > 0 = Hy(XZ; A) # 0] in Eq. (8) remembering the last note.
Corollary 1. When dim X; > 1 then, Xy X X, is never a homology sphere over A.
Proof. Follows from the last lemma and the definition of a homology sphere.

Theorem 8. Ifdim¥; > 0 < dim ¥, then

(a) If dim(X,) = 0 = dim(X;) then dim(%; x £;) = 0 and so, all three of them are
C-M over A.

(b) If only one of ¥, and ¥, is 0-dimensional, then dim(X; x ¥2) > 1 and 1 X Xy
is C-M over A iff the O-dimensional complex contains one and only one point
( i.e. C-M over A and acyclic ) and the other complex is C-M over A.

(c) When dimX¥; > 1< dimX,, then £; x £y is C-M over A <> %, and X9
are both C-M over A and both acyclic.

Proof. (a) and (b) are trivial and (c) follows immediately from Theorem 7 above,
Proposition 2(iii) and the last lemma. |

From Propositions 1-3 we get, ¥ Gorenstein over A = ¥ C-M over A = X
Bbm over A, which gives us the following corollary to Theorem 8.

Corollary 2. If dim¥; > 1 then: [I; X ¥, Gorenstein over A] => [£1 x ¥, has
at least one cone point).

Proof. If ¥; x ¥, lacks cone points, then ¥; x Tpy=core(X; x X3) which is a
homology sphere over A by Proposition 3(iii), since £; x L, is supposed to be
Gorenstein, which is a contradiction to Corollary 1. |

Since we can eliminate all cone points in a simplicial complex X, by refinements, we
have:

Corollary 3. The property of being Gorenstein is not (unlike C-M and Bbm) a
topological property of |Z|. [ ]

Counsider the following facts:
1. Using Baclawski’s notation we make the following quote from 2;
(a) p. 233, Prop. 3.3. Let P be a poset. Then P is CM if and only if A(P) is
CM and similarly for ACM (:=“Almost C-M” <=>to our use of “Buchsbaum”).
(b) p. 249. Let P and Q be posets then; A(Px Q) triangulates |[A(P)|x|A(Q)|.
The polytopes of a simplicial complex and its refinements are homeomorphic.
3. ¥ being Buchsbaum or Cohen-Macaulay over A is a topological invariant of
|2]. (Immediate from Proposition 1-2).

i

Items 1-3 together with Theorem 7 and Theorem 8 above make it possible to
generalize Baclawski’s Theorem 7.1. p. 249, in 2 on posets, to become
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Theorem 9. Ifl(P) > 0 < (Q) then;
i. PxQ ACM <= P and Q both ACM.
ii. PxQ CM <= P x @ both CM and acyclic or both antichains or one consists
of a single element and the other is CM. |

6. Products and Joins of Pseudomanifolds

Let A, and A, be two arbitrary simplicial complexes with a linear order
defined on their vertex sets V; resp. V2. When the order-relation between two ver-
tices is significant we let the subindexing be done in accordance with the appropriate
ordering i.e. v; <v; &1 < j.

A simplicial complex A can always be uniquely described as a union,

A= U 5m where the “m” in §™ denotes “maximal simplex”.
smeA

One way to represent the maximal simplices in the Simplicial Cartesian Product,
denoted A; x Aj, of two simplicial complexes A; and Aj, is by the use of what
we will call the representation matrices, denoted Msm x5y, the entries of which are
Tij := (V1,Vq5), where vy; € Vam and vq; € V5m and where [Tij < zri] © [ <
vik and ve; < vy (equivalent to [{ < k and j < []). The definition of z;; implies
that Va,xa,=Va, X Va, is given the product ordering. Mg;n xop =

Wo,0 Wo,1 ‘'t Wog (V3i0r¥2,50)  (V1yiosV2,51) o0 (V1,igrV2,5,)

Wi Wi occc Wig (V1,005 Y2,50) (V1415 Y2,50) o0 (V1,4p,Y2,5,)

Wpo Wp1 '+ Wpg (V1ips¥250)  (V14,,%2,5,) o0 (V1,4,,v2,5,)
where 67" = [v1,i, V14, - -, 1,i,] and 6 = [v2 jo, V2,5, - ,V2,j,] are maximal sim-

plices in A; resp. Az. This product order on the vertices of A; x Ay induced
from the linear orderings on VA, and V, is a partial order on Va,xa, that, in
particular, induces a linear order on the vertices of every simplex T € §7* x §5* for
every maximal simplex é* € A; (65* € A;), which, when the elements in Va,
and Va, are numbered in accordance with the linear ordering, respectlvely, can be
expressed as

[(v1,6,2,5) < (vie,v2,)] & [[(5,5) # (k, )] and [i < k and j < 1]].
Visualized in Mgmxsp, we get [(vii,v25) < (vik,v24)] € [(v1k,v2,;) does not
lie above or to the left of (vi,,vs,;)] € [(v1k,v2,:) is in the closed lower right
rectangular sector with (vy;,v2 ;) as upper left corner]. As any other simplicial
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complex A; X Ay can be written in the form A; x Az = U, m¢ AyxAs 77 which
gives us

(U dx( U d=axs,= |J 7= @ x&).

5;"€A1 6;"'€A2 TMEA I XAy 6:"'621'

Let £; and X; be simplicial complexes and let V stand either for the join

, or for the simplicial product,“x”. [We put the join-related restrictions within
brackets].

Lemma 1. A) Ifd; :=dim¥; >0 (i =1,2) [E; # 0 # 2] then,
¥, VX, is equidimensional <= ¥, and X, are both equidimensional.

B) Let the dimension of every maximal simplex in¥; be > 1 (i = 1,2) [Z1 # 0 # 2]
then; Every submaximal face of ¥, VX, lies in at most (exactly) two maximal
faces of £1VXy <> The same conditions are true for both ¥; and ¥.

C) Ifd, = dimE,- > 0 (‘i = 1,2) [21 76 @ 7’: 22] then,

31V, is strongly connected <=> ¥; and Xy are both strongly connected.

W n
*

Proof. We leave out the proof for the join case since it, in spirit, is the same
considerations concerning facets and subfacets as in the product case, and the only
difference is that now everything works totally without complications.

A) follows directly from the construction of the simplicial cartesian product.

B) («<=) Take a maximal face 7 of X; x £3. We have to show that any submaximal
face o in 7 belongs to at most (exactly) one maximal face in ¥; x Zj besides 7.
Using the representation matrix for 7, we first suppose that the deleted vertex
is in the lower right corner or the upper left corner. Then the projections of o
give a maximal face in one (say the first) factor, and a submaximal face o3 in the
other factor. There are at most (exactly) two maximal faces of ¥, containing o,.
These give at most (exactly) two maximal faces of ¥; x L2 (coming from different
representation matrices) containing o. The same reasoning applies if the deleted
vertex gives rise to a vertical or horizontal jump, so we can suppose that we have
a diagonal jump. Then both projections give maximal faces, hence any maximal
face containing ¢ must belong to the same representation matrix as 7. There are
exactly two such maximal faces.

(=) Let 01 = (1,...,ZTm) be a submaximal face of ¥;. Take any maximal face
To in X9. Each maximal face 7, of L; that contains o, gives, together with 7, rise
to a representing matrix containing

g = {(xl,yO), (1?2, y0)1 ceey (xm, y0)7 (mm,y1)7 ey (xmayn)}

as a submaximal face. But there are at most (exactly) two maximal faces of £; x 3,
containing o. This gives the claim.

C)(=>) Let 11, 71 be maximal faces of ;. Take any maximal face 2 in X5. Let
T be any maximal face of ¥; X X5 in the representation matrix coming from the pair
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(T1,72), and let ' be any maximal face of £; x X, coming from the pair (1, 73).
Then there is a sequence of maximal faces in &; x £, connecting 7 with 7/ and
with a submaximal face as intersection of two consecutive faces in the sequence.
The projection on the first factor gives a sequence (perhaps with repetitions) of
maximal faces of ¥; which fulfills the wanted condition.

(<=) Let 71 and 7; be any maximal faces of £; x X, and let 7| (r}) and
75 (72') be their projections to £; (£;). We can easily get a sequence within the
representation matrix for 7, to reach the maximal face 77 which belongs to the
first row and last column in the same matrix. Now 74/ and 7 are connected to
each other in £, by a sequence. We first describe an ideal situation when the last
vertex in the chain from 7{' to 75’ remains the same through the whole chain. Then
we get a corresponding sequence of maximal faces of “first row-last column”-faces
of different representation matrices, until we reach the representation matrix of the
pair (71, 7). Then we use the sequence in ; between 7/ and 5. If the first vertex
in this chain remains the same throughout, we get a corresponding sequence of
“first row-last column”-faces of different representation matrices until we reach the
representation matrix of the pair (75, 75). Finally we continue within that matrix
to reach 7.
To make the algorithm complete we make switches from the " first row-last column”-
face in a representation matrix to the “first column-last row”-face in the same matrix
and vice versa when it is necessary to change the last (first) vertex in the projected
chains, and then go on to do this switch back and forth. n

We now use Lemma 1 to prove some classical results, for A = k or Z.

Theorem 10. When d; :=dimX; > 0 (i = 1,2) and ; # ee [Z; # 0 # 9] then
we have the following equivalences:

10.1 %,VX; is a (dy + dy [+1])-pseudomanifold <= ¥; is a d;-pseudomanifold
10.2 Bd(XZ,VX2) = ((BdZ;)VE;) U (£, V(BAEy))

10.3 X,V is orientable over A <= ¥, X, are both orientable over A.

Proof. (10.1) follows from Lemma 1, which also works for &; = e. a
(10.2) Combining a maximal simplex from one simplicial complex with a submaxi-
mal simplex in the boundary of the other simplicial complex, it’s then quite plain to
show that the totality of all such combinations constitute the boundary of ¥;VE,
and that this totality is the very set on the right hand side of (10.2) is self-evident.
(10.3) (The “x-case”) First, let A = k. To prove the statement on orientability,
we use Eq. (8) with (X, 4) := (£,,BdE,) and (Y, B) := (Z;,BdZ,) , and thereby
immediately get a proof of our claim, since by the definition of “x” for pairs, cf.
Eq. (7) and (10.2), we have that: (Z,,BdE;) x (£;,BdE;) = (81 x 23, (S X
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Bng) U (BdEl X 22)) = (El X X, Bd(El X 22)), and so Hdim(zlxgz)((zl, BdEl) X
(T2, BdE:); k)= Hgims, (31, BdZ1; k) ® Hdimx, (T2, BdXs; k). Bjorner’s Remark 1
in the Appendix, on orientable pseudomanifolds, implies: ¥£; VX, is an orientable
pseudomanifold over Z <= T;, X2 both orientable pseudomanifolds over Z.

(10.3) (The “x-case”) Bjorner’s Remark 1 in the Appendix, on the absolutness of
the notion of orientability of pseudomanifolds can also be described in the following
way; (Supposing that char(A)# 2 because char(A)= 2 makes (10.3) trivially true.)

From condition (v) in the definition of a pseudomanifold we have the following;
If s and s’ are n-simplices in K, there is a finite sequence s = sp,51,...5m = §
of n-simplices in K such that s; N s;4; is an (n — 1)-simplex for 0 < i < m. We
can suppose that the sequence contains no repetitions. Now, if s; is an oriented
simplex then there is one and only one orientation possible for s;4; to make the
coefficient for §s; — §s;1.1 = 0. A pseudomanifold is orientable iff for any closed
sequence (i.e. s = s’) without repetitions the orientation of s’ = s induced by the
condition §s; — §s;+1 = 0 remains the same as the the original one.

(=) If one of the factors, say ¥, is non-orientable then there is an orientation-
switching sequence s; = $10, S11, - - - S1m = 8}, then for an arbitrary simplex s € X5,
s1Usg = s19US82,811US2,...81m Uz = 8] Usz is an orientation-switching sequence
in & * Xo. o(=>)

(<=) If there is orientation-switching sequence in ¥, * X, its projections
down on the factors are, perhaps after deleting repetitions, sequences in the fac-
tors, and they can’t both be orientation-switching, since then the union whould
not be orientation-switching, a contradiction. So, exactly one of the projections is
orientation-switching, implying that at least one of the factors are non-orientable.l

7. The Simplicial Cartesian Product of Gorenstein Complexes

The cone points in a simplicial complex ¥ are characterized in the following
lemma:

Lemma 2. v € V4 is a cone point in A <= v is a vertex in every maximal simplex
in A.

Theorem 10 imply the following lemma:

Lemma 3. coreX; (i = 1,2) are (orientable) pseudomanifolds iff core(X; x X3) is
one.

Lemma 4. If dimA; > 1 (i = 1,2), then Ay x A, has at most two cone points,
and both A; and A, has at least as many cone points as A; X Aj, and

@) w = (v1,v2) is a cone

point in Ay x Ay are both v, and v, minimal elements or are

v; is a cone point in A; (¢ = 1,2) and either
] o
both maximal elements in Va,, Va,.
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If any side of the last equivalence is valid, and if both A; and A, are pseudomani-
folds then,

A1 x A has exactly one cone A; has exactly one cone point
point and Bd(core(A; x Az)) =0 and Bd(core(A;)) =0

(10)

vij (4,7 = 1,2) are all different cone points
in the respective simplicial complex and
< | (say) v11, vo; are minimal elements and
V12, U2 are maximal elements in Vp, VA,
respectively (or vice versa).

wy = ('Ull:UZI) and
(ii) ws = (v12,v22)
are different cone
points in A; X A,

If any side of the last equivalence is valid, and if both A, and A, are pseudomani-
folds then,

[(Bd(core(A; x Ag)) = ] <= [A‘ ha:ngxggfgrz’zs)"f gomts . (1)
Proof. = For a vertex w € Va,xa, to be a cone point in A; X A; it must
lie in the upper left corner in every “representation matrix”, or it must lie in
the lower right corner in every “representation matrix”, since we are to allow, as
simplices, any vertex chain in the product ordering that comes out of simplices in
the simplicial product A; A A, (c.f. ® Def. 8.1 + Def. 8.2 + Lemma 8.9 p. 66,
67, and 68 resp.). So there can’t be more than two cone points in A; x Ay. By the
definition of the product ordering this also gives the statements on the presumptive
maximality /minimality of the coordinate cone points.

To prove that both A; and A, have at least as many cone points as A; X Ag we
first note that if A; x A, doesn’t have any cone points at all, then there is nothing
to show.

If w = (v',v") is a cone point in A; X Ay then v’,v” are cone points in A,
resp. Az, so if A; X A3 has exactly one cone point, say w = (v’,v"), then v/, v" are
cone points in A resp. A,, and we're done.

If Ay x A has exactly two cone points, say w = (v11,v21) and w = (vi2,v22)
then all the v’s are cone points in A; resp. A; and where now either vy; # vqp
or w1 7 V22, S&Y V21 # Uzz. Suppose that say vi; = vz, then (vq1,vq;) and
w = (v11,v22) are the cone points in A; x Aj. Since dimA; > 1 (i=1,2) there
is at least one more vertex from A; as first coordinate in some of the entries in
some of the representation matrices. But since w = (v11,v21), say, occupies the
upper left corner and w = (v11,v22) the lower left corner, or vice versa, in all the
representation matrices, there is no room for any other vertex from A;, which is a
contradiction, and we’re done since the opposite implications are trivial. O

Since dimA; > 1 (i=1,2) we know that core( A; x Az) # 0 and so we can use
Theorem 10, and so since A; X Ap= (core( A1 X Ag))* (Wi *Wz), supposing wy, # wo
are cone points, its boundary can now, by Theorem 10, be written Bd(A; x Ag) =
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= (Bd(core(A; x Az))) * (W1 *Wz) U (core(A; x Az)) * (BA(W7 * @3)) =
= (Bd(core(A; x Az)) * (W1 *Wz)) U ((core(A; x Az)) * ({{w1}, {wa},0,})) =
(Bd(core(A1 X Az)) x Wy *xW3) U (core(Aq X Ag) * {w1}) U (core(Ay X Ag) * {wa})
which tells us that
Hwy, w2} ¢ Bd(A; x Ay)] <= [Bd(core(A; x Ag)) =4]. (12)
We know, from above, that A; and As both have at least two cone points,
so we can construct sub-complexes K; and K of A; and A, respectively, defined
so that K; contains all simplices in A; that does not contain either of the two cone
points v;; or v (i=1,2). Since v;; and v;2 are different cone points in A; we have
that: A; = K; * (T;1 * ;) and therefore, observing that K;# (), we get by Theorem
10: Bd(Az) = ((BdKI) * ('Uil * ’l—)ig)) U (Kl * ({{'U,;l}, {’U-,;z}, @})) (’L = 1, 2)
We now calculate Bd(A; x Aj) using these equalities: Bd(A; x Ap) = [(Bd(A;)) x
Az]U[A1 x (Bd(Ag))] = [((BdKy) * (11 * 12)) U (K1 * ({{v11}, {v12},0})) x AsJU
U[A1 X ((BdK2) * (21 * T22)) U (K2 * ({{va1}, {v22},0})))] which tells us that
{wy, w2} € Bd(A; x Ap)] <= [(BdK; =@ and BdK; = §]. (13)
Eq. (12) together with Eq. (13) gives:
[Bd(core(A1 X Az)) = @] S [(BdKl = 0 and BdK2 = @]
But BAK;=0 is possible only if K;=coreA; which implies Bd(coreA;) = @, and the
very last sentence read in “the opposite direction” together with Eq. (13) gives us
Eq. (11).
Eq. (10) is proved in the same way as Eq. (11), only with the important differ-
ence that {w;, ws} in Eq. (12) and Eq. (13) is changed to {w}. u
Corollary 2 to Theorem 8 together with Lemma 4 above give us:

Lemma 5. A; x Az Gorenstein (with |Va,| > 1) = A; x A, has one or two cone
points.

The last three lemmas, in particular Eq. (10) + Eq. (11), and Prop. 3 (iv) now, for
A =k or Z, give us the following theorem:

Theorem 11. Let A, and A, be two arbitrary simplicial complexes with dimA; >
1 (1i=1,2) and a linear order defined on their vertex sets Va,, Va, respectively, then

(I) A1 X A, Gorenstein over A
is equivalent to the disjunction of the following two statements

(11) A; are both Gorenstein over A with exactly one cone point v;,
1 = 1,2 which either both are minimal or both are maximal.
(111) { A; are both Gorenstein over A with exactly two cone points v;;,1 < 1,
j< 2 where v;; are minimal elements in Vj,,and v;3 are maximal in Vj,.

(i.e. (I) <= (II) V (III) ) n

Note. The cases when either of the complexes have dimension less then 1 can easily
be analysed using Prop. 3. (iv) and (v).
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APPENDIX: Characterization of Gorenstein Complexes
A. Bjorner, Nov. 13-92

Let A be a simplicial complex, dimA = d — 1. Let k be a field or k = Z.

Theorem. Suppose A is C-My, and let T'=coreA. Then

A is Gorenstein ;¢—=every subfacet is contained in two facets of T'and ¥ = (—1)dimT
<= T is a pseudomanifold t and X = (=1)dimT,

Proof. The first = follows from Thm. 5.1(b) of !3. The second == follows from

the fact that (C-M)-complexes are strongly connected.

Assume now for simplicity that A = T'. Recall that if A is a pseudomanifold
then either

Hy_1(A;k)=k
and there is a unique (d — 1)-cycle with support A4~! (i.e. all (d — 1)-faces), A is
then orientable over k, or

Hy 1(Ak) =0 (A is non — orientable).

Lemma 1. Let A be a C-M\ pseudomanifold. Then

¥ =(-1)%"1 = 3 (d—1)—cycle Z s -0 such that a, = +1 for all 0 € A%~
gE€Ad—-1

Proof. C-M = f;(A) =0, i <d—1 = %(A) = 3(~1)Ifi = (~1)%fu_1.
Hence, X(A) = (-1)%7! <= B4-1(A) += H;_1(A,k)=k. But this last condition
is that A is orientable over k, which means the existence of such a (d — 1)-cycle.

Lemma 2. Let A be a C-My. pseudomanifold. Then
(1) Lk(o) is a C-My, pseudomanifold, Vo € A.
(2) If A is orientable, then so is also Lk(c), Vo € A.

Proof. (1) C-M is inherited by links, so in particular all links are strongly con-

nected. The pseudomanifold property is then also inherited by links.

(2) Take a non-zero (d — 1)-cycle Y cp4-1 80 - 0. Fix 7 € A and let A%l = {o €

A%lo D 7}. Then > sead-1 Gg - 0\ T is a non-zero (d — 1 — |7|)-cycle in Lk(7).
Now we can finish the proof of the theorem. Suppose A is a C-M /k Pseudo-

manifold and X(A) = (~1)4~1. Theorem 5.1 (b) of 13 shows that what we must
prove is

= - |k, i=dim(Lko
(%) Hi(Lko, k)= { ' 1= dim(Lko)
0, i< dim(Lko)
T “pseudomanifold” here is equivalent to our use of “pseudomanifold without boundary” in the
article.
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But Lemma 2 shows that Lk(o) is an orientable C-M pseudomanifold, which im-
lies (*).

I;{emgar)k 1. For a pseudomanifold the word “orientable” has an absolute meaning.
Since only {+1, —1}-coefficients are used in the fundamental cycle (Lemma 1) we
get orientable i, char(k) # 2 = orientable;z = orientable y, any field k. Hence,
for any field k of characteristic # 2 we have orientable;, <= orientable,z. But
every pseudomanifold is orientable over Zz, so char(k)=2 must be excluded. (This
is not clearly expressed in !3.)

Remark 2. Reisner gave the first example of a Stanley-Reisner ring k[A] whose
Cohen-Macaulayness depends on char(k). This A is a pseudomanifold with 6 ver-
tices and triangulates RP2. Is there a similar tangible example of a A such that
the Gorensteinness of k[A] depends on char(k)?

ok
£ 3

ADDENDUM: {|Z;]| x(|Z2] \ {z2}), (|1Z1] \ {z1})x|Z2]} is an excisive couple.
Definition. (X, A) x (¥, B) := (X x Y, X x BUA X Y).

We get the following theorem from 2 p. 235. (Theorem 3. comes from 2 p. 188.)

Theorem. If {X x B,A x Y} is an excisive couple in X x Y and G and G’ are

modules over a principal ideal domain R such that TorX(G,G") = 0, there is a
functorial short exact sequence

0 — [H(X, 4,G) ® H(Y, B;G")]q > H((X,4) x (Y, B); G® G') —
— [Torf(H(X, 4;G), H(Y, B; G')|g-1 — 0
and this sequence is split. —”In particular, if the right hand side vanishes (which
always happens if R is a field) then the cross product, y/, is an isomorphism”.

Theorem 3. If X;UXj = Inty x, X1UInt, i, X2, then {X,, X3} is an excisive
couple.

Which we now use to prove,
Lemma. {|4] x ([Za]\ {22}, (IZ1]\ {z1}) x |Za]} is an excisive couple.

Proof. |S1} x (|S2] \ {z2}) = (IZ1] x [Z2]) \ (IZ1] x {z2}) = ((|Z1] x [Z2]) \
{z1,22}) \ (|Z1] x {z2}) \ {z1, 22}) but (|Z1] x {z2}) \ {z1, 2} = ((|1Z1] x [Z2]) \
{z1,22}) N (|1Z1] x {z2}) and |Z1] % {2} is closed in |Z;| x |E2| implying that
(IZ1] x {z2}) \ {z1,22} is closed in (|3 x [E2]) \ {z1, 22} so0, [Z1] x (|Z2] \ {z2})
is open in (|1] x |X2|) \ {z1, z2}, ie.

08 131 v cog.ens (1] X (121 \ {z21)) = [B1] % (1Sl \ {22}) 50 (1] % [Bal) \
{z1,72} = =Int(|21|x|;:2|)\{=1,=2}(IEII x (|Z2] \ {z2}))U Int . i ximann e ,z,}((lzll \
{£1}) x |Za]), and we're through since (|S1] x ([S2/\ {z2}) U((1Z:] \{z1}) X [Zal) =
(121] x |Z2)) \ {z1,z2}. Now, [Sp] Th. 3. p. 188 gives the result. |
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