BINARY OPERATIONS on STANLEY-REISNER RINGS

GÖRAN FORS

Department of Mathematics, University of Stockholm S-106 91 Stockholm, Sweden *

ABSTRACT

Starting from a set of simplicial complexes all of whose vertices lies in a common "universe" W, and then defining the concept of "non-simplices" relative to this universe, we reach, after some "local modifications", equivalences between the most common binary operations on simplicial complexes and Stanley-Reisner Rings i.e. $R[\Delta'\hat{*}\Delta''] = R[W]/(I_{\underline{\alpha}} \cap I_{\underline{\alpha}'})$, where $\hat{*}$ is an exstension of the classical join to the case of possible common vertices, and $R[\Delta' \cap \Delta''] = R[W]/(I_{\underline{\alpha}} + I_{\underline{\alpha}'})$, and changing the "universe" to $W \times W$ we have $R[\Delta' \times \Delta''] = R[\Delta'] \otimes R[\Delta'']$ where $\overline{\otimes}$ is a tempered Segre Product. Moreover, for a finite universe,, we get an isomorphism on distributive lattices, induced by the "Stanley-Reisner Ring assignment functor".

Definition. An (abstract) simplicial complex Δ on a vertex set V_{Δ} is a collection (empty or non-empty) of finite subsets δ (empty or non-empty) of V_{Δ} satisfying

- (a) If $v \in \mathbf{V}_{\Delta}$, then $v \in \Delta$.
- (b) If $\delta \in \Delta$ and $\tau \subset \delta$ then $\tau \in \Delta$.

Definition. A subset $s \subset \mathbf{W} \supset V_{\Delta}$ is said to be a non-simplex of Δ , denoted $s \not\in \Delta$, if $s \not\in \Delta$ but $(\bar{s})^{(\dim s)-1} \subset \Delta$ (i.e. the $(\dim s-1)$ -dimensional skeleton of the simplicial complex consisting of all proper faces of s is a subcomplex of Δ). For a simplex $\delta = \{v_{i_1}, \ldots, v_{i_k}\}$ we define m_{δ} to be the squarefree monic monomial $m_{\delta} := 1_{\mathbf{R}} \cdot v_{i_1} \cdot v_{i_k} \in \mathbf{R}[\mathbf{W}]$ where $\mathbf{R}[\mathbf{W}]$ is the graded polynomial algebra on the variable set \mathbf{W} over the commutative ring \mathbf{R} . In particular $m_{\emptyset} = 1_{\mathbf{R}}$. Let $\mathbf{R}[\Delta] := \mathbf{R}[\mathbf{W}]/\mathbf{I}_{\Delta}$ where $\mathbf{I}_{\Delta} := (\{m_{\delta} \mid \delta \not\in \Delta\})$. $\mathbf{R}[\Delta]$ is called the "face ring" or "Stanley-Reisner ring" of Δ over \mathbf{R} . Frequently $\mathbf{R} = \mathbf{k}$, a field.

Note. i. Since $\emptyset \in \Delta$ for every simplicial complex $\Delta \neq \emptyset$ we see that for every element $v \in W \setminus V_{\Delta}$, $\{v\}$ is a "non-proper" non-simplex of Δ (i.e. $[v \notin V_{\Delta} \neq \emptyset] \Leftrightarrow [\{v\} \not\in \Delta \neq \emptyset]$).

ii. In particular, if $\Delta = {\emptyset}$, then the set of non-simplices equals **W**, and so $\mathbf{R}[{\emptyset}] = \mathbf{R}$.

iii. If $\Delta = \emptyset$, then the set of non-simplices equals $\{\emptyset\}$, since $\emptyset \notin \emptyset$, and $\overline{(\emptyset)}^{((dim\theta_0)-1)} = \overline{\{\emptyset\}}^{(-2)} = \emptyset \subset \emptyset$, implying $\mathbf{R}[\emptyset] = 0$ ="The trivial ring", since $m_\emptyset = 1_{\mathbf{R}}$.

iv.
$$\mathbf{R}[\Delta] = \frac{\mathbf{R}[\mathbf{v}_{\Delta}]}{(\{m_{\delta} \in \mathbf{R}[\mathbf{v}_{\Delta}] | \delta \notin \Delta\})}$$

In [Fo] p. 2 we gave a proof, working for arbitrary simplicial complexes, for the following graded k-algebra isomorphism; $\mathbf{k}[\Delta'*\Delta''] \cong \mathbf{k}[\Delta'] \otimes \mathbf{k}[\Delta'']$, but it is possible to improve the strength of this join related "Stanley-Reisner Ring assignment functor". To do so, we extend the definition of "join" to a join, denoted " $\hat{*}$ ", defined for all pairs of simplicial complexes over \mathbf{W} , i.e including joins of pairs with intersecting vertex sets. So, we make the following definition, where $[\delta]_{\Delta} := \delta \cap V_{\Delta}$ and \mathcal{P} , the power set:

$$\Delta_1 \hat{*} \Delta_2 := \{ \delta_1 \cup \delta_2 \in \mathcal{P}(\mathbf{W}) \big| \ [\delta_i \in \Delta_i, \ i = 1, 2.] \land \big[[[\delta_1 \cup \delta_2]_{\Delta_1} \in \Delta_1] \lor [[\delta_1 \cup \delta_2]_{\Delta_2} \in \Delta_2] \big] \}.$$

^{*} E-mail; goranf@matematik.su.se

"*" is associative and (trivially) commutative. The associativity of "*" is a trivial consequence of the following Lemma where \mathbf{R} is an arbitrary ring, but where, as well as in the rest of this paper, we'll assume $\Delta_i \neq \emptyset$, since \emptyset , due to the fact that $\Delta \hat{*} \emptyset = \emptyset$ for all Δ 's, doesn't fit into the lattice structure we are about to deduce:

Lemma. If $\Delta_i \neq \emptyset$ i = 1, 2, then in $\mathbf{R}[\mathbf{W}]$: 1. $\mathbf{I}_{\Delta_1 \hat{*} \Delta_2} = \mathbf{I}_{\Delta_1} \cap \mathbf{I}_{\Delta_2}$. 2. $\mathbf{I}_{\Delta_1 \cap \Delta_2} = \mathbf{I}_{\Delta_1} + \mathbf{I}_{\Delta_2}$.

Proof. 1. The following set generates $\mathbf{I}_{\Delta_1} \cap \mathbf{I}_{\Delta_2}$ as an ideal;

 $\{m_{\delta} \in \mathbf{R}[\mathbf{W}] | [[\delta \subset V_{\Delta_1} \cup V_{\Delta_2}] \land [\delta_i \in \Delta_i, i = 1, 2.] \land [\exists \delta_1 \subset \delta; \delta_1 \not\in \Delta_1] \land [\exists \delta_2 \subset \delta; \delta_2 \not\in \Delta_2]] \lor \lor [\delta = \{v\}; v \in \mathbf{W} \setminus (V_{\Delta_1} \cup V_{\Delta_2})] \}$ where "p" stands for "is a **proper** non-simplex of" oppose to beeing just a non-vertex. This set determines (and is determined by) the following set of δ 's, the complement of which is;

$$\{\delta \in \mathcal{P}(\mathbf{W}) | \left[\delta \subset V_{\Delta_1} \cup V_{\Delta_2}\right] \wedge \left[\left[\exists \delta_1 \subset \delta; \delta_1 \not\in \Delta_1 \right] \vee \left[\exists \delta_2 \subset \delta; \delta_2 \not\in \Delta_2 \right] \right] \} = \Delta_1 \hat{*} \Delta_2 \qquad \Box$$

2. The following set generates $\mathbf{I}_{\Delta_1} + \mathbf{I}_{\Delta_2}$ as an ideal;

$$\{m_1 + m_2 \in \mathbf{R}[\mathbf{W}] \middle| m_i \in \mathbf{I}_{\Delta_i}\} = \{m_\delta \middle| \delta \in \Delta_1^{\mathbf{c}} \cup \Delta_2^{\mathbf{c}}\} = \{m_\delta \middle| \delta \in (\Delta_1 \cap \Delta_2)^{\mathbf{c}}\} = \mathbf{I}_{\Delta_1 \cap \Delta_2} \quad \blacksquare$$

" Δ^{c} " denotes the set-theoretic complement of Δ in $\mathcal{P}(\mathbf{W})$.

 $\mathbf{I}_{\Delta_1} \cap \mathbf{I}_{\Delta_2}$ and $\mathbf{I}_{\Delta_1} + \mathbf{I}_{\Delta_2}$ are generated by a set (no restrictions on its cardinality) of squarefree monomials, if both \mathbf{I}_{Δ_1} and \mathbf{I}_{Δ_2} are. It is known that these squarefree monomially generated ideals form a distributive sublattice $(\mathcal{J}^{\circ}; \cap, +, \mathbf{R}[\mathbf{W}]_+)$, of the ordinary lattice structure on the set of ideals of the polynomial ring $\mathbf{R}[\mathbf{W}]$, with a counterpart, with reversed lattice order, called the squarefree monomial rings with unit, denoted $(\mathbf{R}^{\circ}[\mathbf{W}]; \cap, +, \mathbf{R})$. $\mathbf{R}[\mathbf{W}]_+$ is the unique homogeneous maximal ideal and zero element. We can use this structure to define a distributive lattice structure on $\Sigma_{\mathbf{W}}^{\circ} :=$ "The set of non-empty simplicial complexes over \mathbf{W} ", with $\{\emptyset\}$ as zero element and denoted $(\Sigma_{\mathbf{W}}^{\circ}; \hat{*}, \cap, \{\emptyset\})$, as follows:

Definition. $\Delta_1 \geq \Delta_2$ if $\mathbf{I}_{\Delta_1} \leq \mathbf{I}_{\Delta_2}$.

Lemma.
$$\begin{cases} \operatorname{lub}(\Delta_1, \Delta_2) = \Delta_1 \hat{*} \Delta_2 & (\operatorname{since glb}(\mathbf{I}_{\Delta_1}, \mathbf{I}_{\Delta_2}) = \mathbf{I}_{\Delta_1} \cap \mathbf{I}_{\Delta_2}) \\ \operatorname{glb}(\Delta_1, \Delta_2) = \Delta_1 \cap \Delta_2 & (\operatorname{since lub}(\mathbf{I}_{\Delta_1}, \mathbf{I}_{\Delta_2}) = \mathbf{I}_{\Delta_1} + \mathbf{I}_{\Delta_2}) \end{cases}$$

Summing up, we get:

Theorem. The "Stanley-Reisner Ring assignment functor" defines a monomorphism on distributive lattices from $(\Sigma_{\mathbf{W}}^{\circ}, \hat{*}, \cap, \{\emptyset\})$ to $(\mathbf{R}^{\circ}[\mathbf{W}], \cap, +, \mathbf{R})$, which is an isomorphism for finite \mathbf{W} .

Below, we'll use the notations from [B-H 2] § 7.1 p. 289 ff., but skip the simple verifications.

Definition. The Graded Hodge Algebra structure on a Stanley-Reisner Ring

H:=W (The partial order on H is irrelevant for dicrete graded Hodge Algebras).

 Σ has $\{index\ of\ m_{\delta}\mid \delta \not\in \Sigma\}$ as its set of generators.

 (\mathbf{H}_2) $m_{\delta} = 0$ for every $\delta \not\in \Delta$

Dealing with monomially generated ideals only, we get the following results; $\mathbf{I}_{\Delta_1\hat{*}\Delta_2} = \mathbf{I}_{\Delta_1^{\cap}}\mathbf{I}_{\Delta_2} = (\{m \mid m = \text{Lcm}(m_{\delta_1}, m_{\delta_2}), \ \delta_i \not\in \Delta_i, \ i = 1, 2\})$ and $\mathbf{I}_{\Delta_1 \cap \Delta_2} = \mathbf{I}_{\Delta_1^{\perp}} + \mathbf{I}_{\Delta_2} = (\{m_{\delta} \mid \delta \not\in \Delta_1 \lor \delta \not\in \Delta_2\})$. Now, deleting all elements in the generator sets, resp. having other elements as proper factors, we'll get a presentation of the Hodge Algebra structure on $R[\Delta_1\hat{*}\Delta_2]$ resp. $R[\Delta_1 \cap \Delta_2]$

Definition. A graded R-algebra R is called a Segre product of R_1 and R_2 over \mathbf{R} , denoted by $R = \sigma_{\mathbf{R}}(R_1, R_2)$ or $R = \sigma(R_1, R_2)$, if for every $p \in \mathbf{N}$, $[R]_{\overline{p}} = [R_1]_p \otimes_{\mathbf{R}} [R_2]_p$. The "canonical Segre product", denoted $R_1 \otimes_{\mathbf{R}} R_2$, is equipped with componentwise multiplication.

Given a monomial m, let $\operatorname{Supp}(m)$ be the squarefree monomial defined by putting every non-zero exponent (of the variables) in m equal to 1. Put $p_1(w_{\lambda,\mu}) = p_1((v'_{\lambda}, v''_{\mu})) := v'_{\lambda}$, $p_2(w_{\lambda,\mu}) := v''_{\mu}$ and if $\operatorname{Supp}(m) := w_{\lambda_1,\mu_1} \cdots w_{\lambda_k,\mu_k}$ put $[\overline{p_t}(m)] := \{p_t(w_{\lambda_1,\mu_1}), \ldots, p_t(w_{\lambda_k,\mu_k})\}$ and $p_t(m) := p_t(w_{\lambda_1,\mu_1}) \cdots p_t(w_{\lambda_k,\mu_k})$ for t = 1, 2. (The same notations when $w_{\lambda,\mu} := v_{\lambda} \otimes v_{\mu}$.)

Put $C' := \{w_{\lambda,\mu}w_{\nu,\xi} | \lambda < \nu \wedge \mu > \xi\}$ where $w_{\lambda,\mu} := v_{\lambda} \otimes v_{\mu}$ with $(v_{\lambda}, v_{\mu}) \in \mathbf{W} \times \mathbf{W}$ and where the subindices reflects the linear ordering, now presupposed on \mathbf{W} and $D := \{\mathbf{w} = v_{\lambda}, \dots, v_{\lambda}\}$ where $v_{\lambda,\mu} := v_{\lambda} \otimes v_{\mu}$ with $(v_{\lambda}, v_{\mu}) \in \mathbf{W} \times \mathbf{W}$

$$D := \left\{ \mathbf{w} = w_{\lambda_1, \mu_1} \cdot \dots \cdot w_{\lambda_k, \mu_k} \mid [\mathbf{w} \text{ is a chain}] \wedge \left[\left[\left[\left[\overline{p_1}(\mathbf{w}) \right] \not\in \Delta_1 \right] \wedge \left[\left[\overline{p_2}(\mathbf{w}) \right] \in \Delta_2 \right] \wedge \left[\begin{matrix} \lambda_1 < \dots < \lambda_k \\ \mu_1 \leq \dots \leq \mu_k \end{matrix} \right] \right] \vee \right] \right\}$$

$$\vee \left[\left[\left[\overline{p_1}(\mathbf{w}) \right] \in \Delta_1 \right] \wedge \left[\left[\overline{p_2}(\mathbf{w}) \right] \not\in \Delta_2 \right] \wedge \left[\begin{matrix} \lambda_1 \leq \ldots \leq \lambda_k \\ \mu_1 < \ldots < \mu_k \end{matrix} \right] \right] \vee \left[\left[\left[\overline{p_1}(\mathbf{w}) \right] \not\in \Delta_1 \right] \wedge \left[\left[\overline{p_2}(\mathbf{w}) \right] \not\in \Delta_2 \right] \wedge \left[\begin{matrix} \lambda_1 < \ldots < \lambda_k \\ \mu_1 < \ldots < \mu_k \end{matrix} \right] \right] \right] \right\}.$$

Definition. The Graded Hodge Algebra structure for the Canonical Segre Product of two Stanley-Reisner rings, denoted $\mathbb{R}[\Delta'] \otimes \mathbb{R}[\Delta'']$.

 $H:=W\times W$ equipped with the product order.

 Σ has $\{index\ of\ m\ \big|\ m\in C'\cup D\}$ as its set of generators.

$$(\mathbf{H}_2) \quad g := \begin{cases} w_{\lambda,\xi} w_{\nu,\mu} & \text{if } g = w_{\lambda,\mu} w_{\nu,\xi} \in C' \\ 0 & \text{if } g \in D. \end{cases}$$

By [Fo] p. 4 lemma and [B-H] p. 291 Prop. 7.1.3 this Hodge Algebra is graded algebra isomorphic to the canonical Segre Product of two Stanley-Reisner Rings, but it's not discrete and so, not that of a Stanley-Reisner Ring, but this is fixed by "the discrete algebra on the same data as the Canonical Segre Product" (c.f. [B-H 2] p. 292), denoted $\mathbf{R}[\Delta'] \otimes \mathbf{R}[\Delta'']$, so we just change the last "(\mathbf{H}_2)" to become -"All elements in $C' \cup D$ are put to 0". In [Fo] p. 4 lemma, we gave a proof, working for arbitrary simplicial complexes, for the following graded \mathbf{k} -algebra isomorphism; $\mathbf{k}[\Delta' \times \Delta''] \cong \mathbf{k}[\Delta'] \otimes \mathbf{k}[\Delta'']$, but in this proof, it turns out that the role played by the coefficient field \mathbf{k} , is totally irrelevant to the success of the proof method, so we actually proved that $\mathbf{R}[\Delta' \times \Delta''] \cong \mathbf{R}[\Delta'] \otimes_{\mathbf{R}} \mathbf{R}[\Delta'']$, for any coefficient ring \mathbf{R} . Note: $C' \cup D = \{m_{\delta} \mid \delta \notin^{\mathfrak{P}} \Delta' \times \Delta''\}$ under the identification $v_{\lambda} \otimes v_{\mu} \leftrightarrow (v_{\lambda}, v_{\mu})$. [Fo] p. 5 Th. 2 resp. [Fo] p. 10-11 Th's 7-8 combined with [F-H] p. 3371 Prop. 5-6 gives

Proposition. $R[\Delta'] \underline{\otimes} R[\Delta'']$ is Koszul (Buchsbaum, Cohen-Macaulay) if and only if $R[\Delta'] \bar{\otimes}_{\mathbb{R}} R[\Delta''] \cong R[\Delta' \times \Delta'']$ is.

Necessary and sufficent conditions for the Gorenstein version of the last proposition is easily extracted by combining [Fo] p. 17 Th. 11 and [F-H] p. 3372 Prop. 7 where $-a(k[\Delta])$ for Cohen-Macaulay rings should be interpreted as the number of cone points in Δ .

For completeness, we quote from [E] p. 251 the following ASL-construction for a Stanley-Reisner ring. Now, the partial ordering on H is vital, since it fully determines Σ .

Definition. The ASL-structure on a Stanley-Reisner Ring

$$H:=\{ \ m_{\delta} \ | \ \delta \in \Delta \} \ \text{where} \ m_{\delta} \leq m_{\tau} \ \underline{\text{iff}} \ \delta \supset \tau.$$

$$(\mathbf{H}_{2}) \ m_{\delta}m_{\tau}:= \begin{cases} 0 & \text{if } \delta \cup \tau \not\in \Delta \\ m_{\delta}m_{\tau}^{\dagger} \text{written as a standard monomial} & \textit{else} \end{cases}$$

[†] This condition was originally given in [E] as " $m_{\delta \cup \tau}$ else" which gives the wrong order if $\delta \cap \tau \neq \emptyset$.

The partial ordering, i.e. reverse inclusion, given to H, could seem somewhat odd, but the fact is that it is the most common way to order H in an ASL-structure, and so, it has been given a name, i.e. if $\deg h_1 \geq \deg h_2$ for all $h_1, h_2 \in H$ with $h_1 \leq h_2$ then the ASL-structures is said to be a "monotonely graded ASL" [B-H 1].

References.

- [B-H 1] W. Bruns & J. Herzog: On the Computation of a-invariants; Manuscripta Math. 77 (1992), 201-213.
- [B-H 2] W. Bruns & J. Herzog: Cohen-Macaulay rings, Cambridge Univ. Press. 1993.
- [E] D. Eisenbud; Introduction to Algebras with Straightning Laws; In "Ring Theory and Algebra III", proceedings of the third Oklahoma conference, Ed. B. R. McDoonald, Marcel Dekker, New York, 1980.
- [F-H] R. Fröberg & L. T. Hoa; Segre Products and Rees Algebras of Face Rings; Comm. in Alg, 20(11), (1992), 3369-3380.
- [Fo] G. Fors; Algebraic Topological results on Stanley-Reisner Rings; To appear in Proceedings of the Trieste Workshop on Commutative Algebra.