cdd+ Reference Manual

Komei Fukuda
Institut fur Operations Research
ETH Zentrum, CH-8092 Zurich, Switzerland
fukuda@ifor.math.ethz.ch
and

University of Tsukuba, Tokyo, Japan
fukuda@gssm.otsuka.tsukuba.ac.jp

(cdd+ Version 0.73, September 6, 1995)
(Manual Version September 6, 1995)

cdd+ Reference Manual

Komei Fukuda
fukuda@ifor.math.ethz.ch or fukuda@gssm.otsuka.tsukuba.ac.jp
Institut fur Operations Research, ETH Zentrum, CH-8092 Zurich, Switzerland,
and University of Tsukuba, Tokyo, Japan

(cdd+ Version 0.73, September 6, 1995)

1 Introduction

The program cdd+ (cdd, respectively) is a C++ (ANSI C) implementation of the Double De-
scription Method [MRTT53] for generating all vertices (i.e. extreme points) and extreme rays
of a general convex polyhedron given by a system of linear inequalities:

P={reR*: Az < b}

where A is an m X d real matrix and b is a real m dimensional vector.

The program cdd+ is a C++ program converted from the ANSI C program cdd. One major
advantage of this C++-version over the C version is that it can be compiled for both rational
(exact) arithmetic and floating point arithmetic. Note that cdd runs on floating arithmetic only.
Since cdd+ uses GNU g++ library, in particular Rational library, one needs a recent (2.6.0 or
higher) gcc compiler and g++-lib. One should be also warned that the computation can be
considerably (10 - 100 times) slower if the rational arithmetic is used.

One useful feature of cdd+ (and cdd) is its capability of handling the dual (reverse) problem
without any transformation of data. The dual problem is known to be the (convex) hull prob-
lem which is to obtain a linear inequality representation of a convex polyhedron given as the
Minkowski sum of the convex hull of a finite set of points and the nonnegative hull of a finite
set of points in R%: P = conv(vy,...,v,) + nonneg(ry,...,r,). As we see in this manual, the
computation can be done in straightforward manner. There is one assumption for the input for
hull computation: the polyhedron must be full-dimensional. See the “hull” option in Section 3.

The program cdd+ (and cdd) reads input and writes output in Polyhedra format which was
defined by David Avis and the author. The program called rs developed by David Avis is a
C-implementation of the reverse search algorithm [AF92] for the same enumeration purpose,
and it conforms to Polyhedra format as well. Hopefully, this compatibility of the two programs
enables users to use both programs for the same input files and to choose whichever is useful for
their purposes. From our experiences with relatively large problems, the two methods are both
useful and perhaps complementary to each other. In general, the program cdd+ tends to be
efficient for highly degenerate inputs and the program rs tends to be efficient for nondegenerate
or slightly degenerate problems.

Among the hardest problems that could be solved (in floating-point arithmetic) by cdd+ is
a 21-dimensional hull problem given by 64 vertices. This polytope, known as the complete cut
polytope on 7 points, has exactly 116,764 facets and some of facets contain many vertices. It took
205 hours (eight and half days!) for cdd to compute the facets exactly on a SUN SparkServer
1000. The input file (ccp7.ine) of this polytope is included in the distribution. A considerably
easier problem is ccc7.ine which is a variation of the problem (see e.g. [G90]).

The size of an input file hardly indicates the degree of hardness of its vertex/ray enumeration.
While this program can handle a highly degenerate problem (prodmT5.ine) with 711 inequalities
in 19 dimension quite easily with the computation time 1-2 minutes on a fast workstation, a

8-dimensional problem (mit729-9.ine) with 729 inequalities can be extremely hard. It takes two
days to compute all (only 4862) vertices by a fast SUN SparkServer 1000. The latter problem
arises from the ground state analysis of a ternary alloy model, see [CGAF93]. Both input files
are included in the distribution.

Although the program can be used for nondegenerate inputs, it might not be very efficient.
For nondegenerate inputs, other available programs, such as the reverse search code rs or ghull
(developed by the Geometry Center), might be more efficient. See Section 9 for pointers to these
codes.

This program can be distributed freely under the GNU GENERAL PUBLIC LICENSE.
Please read the file COPYING carefully before using.

I will not take any responsibility of any problems you might have with this program. But
I will be glad to receive bug reports or suggestions at the e-mail addresses above. Finally, if
cdd+ turns out to be useful, please kindly inform to me what purposes cdd has been used for.
I will be happy to include an application description in future distribution if I receive enough

replies. The most powerful support for free software development is user’s appreciation and
collaboration.

2 Polyhedra Input and Output Format

Polyhedra input format is quite simple:

various comments

begin

m d-+1 numbertype
b A

end

various options

where numbertype can be one of integer, rational or real. When rational type is selected,
each component of b and A can be specified by the usual integer expression or by the rational
expression “p/q” or “—p/q” where p and ¢ are arbitrary long positive integers (see the example
input file rational.ine). There is one restriction in the current polyhedra format: the last d
rows must determine a vertex of P. The program cdd+ does not care whether this condition is
satisfied, as long as the polyhedron contains at least one vertex. But one can specify that the
last (d+1) rows be chosen as the initial set of (d + 1) rows for the double description algorithm.
See initbasis_at_bottom option in Section 3.

Polyhedra output format is quite similar to input format:

various comments produced by a program

begin

n+s d+1 numbertype
1 (5%
1 Up
0 T1
0 Ts

end

where v;,...,v, are the vertices and ry,...,r, are the extreme rays of the polyhedron P. Here

we do not require that the vertex list and the ray list are output separately; they can appear
mixed in arbitrary order.

For example, let P be the following unbounded 3-dimensional polyhedron given by
P={zeR:1<1,<2,1<1,<2, 1< 13},

which is a 3-cube without one “lid”. For finding all vertices and extreme rays, the input file for
cdd+ is

file name: ucube.ine
3 cube without one "1id"

begin
5 4 integer
2 -1 0 o
2 0 -1 0
-1 i 0 O
-1 0 1 0
-1 0 o0 1
end
incidence
adjacency

input_adjacency

The meaning of options “incidence”, “adjacency” and “input_adjacency” will be explained
in Section 3. After you run cddf+ (the floating-arithmetic version of cdd+) with this input file,
you will get an output file, say ucube.ext, which looks like:

* cdd+: Double Description Method in C++:Version 0.73 (September 6, 1995)
* Copyright (C) 1995, Komei Fukuda, fukudaQifor.math.ethz.ch

* Compiled for Floating-Point Arithmetic

*Input File:ucube.ine(5x4)

*HyperplaneOrder: LexMin

*Degeneracy preknowledge for computation: None (possible degeneracy)
*Vertex/Ray enumeration is chosen.

*Computation starts at Fri Aug 11 14:46:45 1995

* terminates at Fri Aug 11 14:46:45 1995

*Total processor time = O seconds

* Oh Om Os
*FINAL RESULT:

*Number of Vertices =4, Rays =1

begin

5 4 real
1211
1111
1121
1221
0001
end

hull

The output shows that the polyhedron has four vertices (2,1,1), (1,1,1), (1,2,1), (2,2,1)
and only one extreme ray (0,0,1). The comments contain information on the name of input file,
and the options chosen to run the program which will be explained in the next section.

Finally the “hull” option is set for the output file so that if you run cdd+ with this output file,
cdd+ will perform the convex hull operation to recover essentially the original input inequality
system. Note that this back-and-forth transformation of a polyhedron works only when the
polyhedron is full dimensional and contans at least one vertex.

3 Options

The following options are available for cdd. These options are set if they appear in input file
after the “end” command. Independent options can be set simultaneously, but each option must
be written separately in one line, and two options should not be written in one line. When two
or more non-independent options are specified, the last one overrides the others.

hull option
When this option is chosen, the program cdd will do the reverse operation. That is, the
input is assumed to be a set of points and directions (rays). When this option is set, it is
required that each data line must start with either “1” or “0”, meaning points and rays,
respectively. More specifically, if the input file is of form

comments
begin
n+s d+1 numbertype
1 (51
1 Un
0 T1
0 Ts
end
hull

Then the input is interpreted as the polyhedron in R%:

P = conv(vy,...,v,) + nonneg(ry,...,r,) and the output will be a minimal system of
linear inequalities to represent P.

verify_input option
When this option is chosen, the program will output the input problem as cdd+ inter-
preted. The default output file is “*.solved”. This option helps user to verify what problem

is actually solved. The default for this option is off. See the sample files verifyinputl.ine
and verifyinput2.ine

dynout_off option

When this option is chosen, the program will not output vertices and rays to the CRT in
real time. The default is dynout_on.

stdout_off option

When this option is chosen, the program will not output any progress report of computation
(iteration number. etc). The default is stdout_on.

logfile_on option
When this option is chosen, the program will output to a specified file (*.ddl) some infor-
mation on the computation history. This can be useful when the user does not know which

hyperplane order (mincutoff, maxcutoff, mixcutoff, lexmin, lexmax, minindex, random) is
efficient for computation.

incidence, #incidence options
When the incidence option is selected, the incidence relations between the vertices/rays
and the inequalities will be output in a separate file (*.icd). Here, a vertex is said to be
incident with an inequality if the inequality is satisfied by equality. An extreme ray r
is said to be incident with an inequality aT = < b if a” r = 0. For example, since the
incidence option was set for the example input file ucube.ine in the previous section, the
program outputs the following ucube.icd file:

*Incidences of output(=vertices/rays) and input (=hyperplanes)

* for each output, #incidence and the set of hyperplanes containing it
* or its complement with its cardinality with minus sign

*cdd input file : ucube.ine 5 4

*cdd output file: ucube.ext

*After <begin>, three numbers are output_size, m and ml,

*where ml is m+1 (for vertex/ray enumeration) or m (for convex hull).

begin
5 5 6
3: 145
3: 345
3: 235
3: 1265
-1 5
end

After “begin”, there are three numbers 5 5 6. The first number 5 is a number of output
(vertices and rays). The next number 5 is m, the number of inequalities in the input

file. The last number 6 is usually m + 1, and m if the input linear inequality system
is homogeneous (i.e., has zero RHS) or the hull option is chosen. The number m + 1
corresponds to the infinity constraint which is added for vertex/ray enumeration when the
input system is not homogeneous.

The incidence data starts right after these three numbers. At each line, the cardinality of
incident inequalities and the list of their indices are given. There is an exception that, when
there are more incident inequalities than non-incident ones, then the program outputs the
list of non-incident inequalities with its size with negative sign. This is to save space of
output.

For example, the first output line 3 : 14 5 corresponds to the first vertex of ucube.ext file
in previous section, that is, the vertex (2,1,1). The first number 3 is simply the number
of incident inequalities and the rest is the indices of those inequalities, and so the 1st,
4th and 5th inequalities are satisfied by equality at this vertex. The last output —1 : 5
corresponds to the ray (0,0,1). Since all inequalities except the last (5th) inequality are
incident with this ray, the output is the complementary list with its cardinality (=1) with
negative sign. Note that the full list would be 5 : 12 3 4 6, where 6 is the infinity plane.
One can ignore the infinity plane for some purposes, but for analyzing the combinatorial
structure of polyhedra, it is very important information.

The #incidence option can be used when you do not wish to output the incidence file
but to output only the cardinality of incidence for each output, at the end of each output
line.

The incidence file (adjacency file, input_adjacency as well) can be created independently
after *.ext file is created, see “postanalysis” option.

nondegenerate option
When this option is set, the program assumes that the input system is not degenerate, i.e.,
there is no point in the space R* satisfying more than d inequalities of input with equality.
It will run faster with this option, but of course, if this option is set for degenerate inputs,
1t is quite possible that the output is incorrect. The default is this option being off.

adjacency option
This option can be used when you want to output the adjacency of output. When the
output is the list of vertices and rays, the program will output the adjacency list. For the
example input “ucube.ine”, the following extra file, say “ucube.adj”, will be created:

*Adjacency List of output (=vertices/rays)
*cdd input file : ucube.ine (5 x 4)
*cdd output file: ucube.ext

begin

5

13:2465
23:13856
33:245
43:1365
54 :1234

end

The first number 5 is simply the number of outputs of cdd, the number of vertices and
rays in this case. The second line1 3 :2 4 5 says that the first output of ucube.ext
file has degree (valency) 3, and its three neighbours are 2nd, 4th and 5th output.

When the computation is to obtain the hull (inequality system), the adjacency is of course
that of inequalities (i.e. facets).

The adjacency file (incidence file, input_adjacency file) can be created independently after
*.ext file is created, see “postanalysis” option.

input_adjacency option
This option is for outputing the adjacency of input inequalities. Here, two inequalities are
defined to be adjacent if they are nonredundant and there is no third input inequality which
is satisfied with equality at all points of the polyhedron that satisfy the two inequalities
with equality. In more intuitive language, two inequalities are adjacent if each determine

a facet of the polyhedron and the intersection of the two facets is not contained in any
other facet.

The default file name for this output is *.iad. This file lists the redundancy information of
input also. For the example “ucube.ine” above, the following “ucube.iad” will be generated:

*Adjacency List of input (=inequalities/facets)
*cdd input file : ucube.ine (5 x 4)
*cdd output file: ucube.ext
*row 6 is redundant;dominated by: 1 2 3 4
begin

6

D O b W N -
O b Wwwww
o N =N
N W b W b
wWw oo o0;m

end

Observe that the artificially added 6th inequality (infinity) is redundant because the first
four facets intersects at a single infinity point (corresponding to a unique extreme ray) and
hence the polyhedron has no infinity facet, although the polyhedron is not bounded.

The input.adjacency file can be created independently after *.ext file is created, see “post-
analysis” option.

postanalysis option

It is often more desireble to compute the adjacency, input_adjacency and incidence relations
independently from the main (and often heavy) computation of enumerating all vertices
and extreme rays. The “postanalysis” option can be used together with “adjacency”
and/or “incidence” options for this purpose to create *.adj and/or *.icd files from both
*.ine and *.ext files. If *.ine file contains this option, cdd+ will open the corresponding
*.ext file and output requested *.adj, *.iad and/or *.icd files. An error occurs when *.ext
file does not exist in the current directory.

lexmin, lexmax, minindex,mincutoff, maxcutoff, mixcutoff, random options
The double description is an incremental algorithm which computes the vertices/rays of a

polyhedron given by some k of original inequalities from the precomputed vertices/rays of
a polyhedron given by k — 1 inequalities. It is observed that the efficiency of the algorithm
depends strongly on how one selects the ordering of inequalities, although a little can be
said theoretically. These options are to select the ordering of inequalities to be added
at each iteration, and it is recommended to do small experiment to select good ordering
for a specific type of problems. Unfortunately, a good ordering depends on the problem
and there does not seem to be THE BEST ordering for every computation. From our
experiences, lexmin, lexmax, mincutoff, maxcuoff work quite well in general.

The default is lexmin ordering which simply order inequalities with respect to lexico-
graphic ordering of rows of (b, —A). The lexmax is reverse of lexmin. The mincutoff
(maxcutoff) option selects an inequality which cuts off the minimum (maximum) number
of vertices/rays of the (k — 1)st polyhedron. The mixcutoff option is the mixture of
mincutoff and maxcutoff which selects an inequality which cuts off the (k — 1)st polytope
as unbalanced as possible. The maxcutoff option might be efficient if the input contains
many redundant inequalities (many interior points for hull computation). The minindex
option selects the hyperplanes from the top of the input.

‘The random option selects the inequalities in a random order. This option must be followed
by a random seed which is positive integer (less than 65536). For example, random 123
specifies the random option with the random seed 123.

initbasis_at_bottom option
When this option is set, the program tries to select the initial set of rows for the double
description method from the bottom of the input. This means that if the last (d+1) rows
are independent, they will be chosen to initiate the algorithm.

This option is not default. The default follows the same ordering as the ordering of
inequalities chosen. This means that if lexmin is the ordering of inequalities, then the
initial independent rows will be chosen sequentially with lexico-min ordering. There are
exceptions when this rule is not applicable, i.e. when one of mincutoff or maxcutoff options
is chosen. In such cases, lexmin ordering will be chosen.

maximize, minimize options
When maximize option is set with an objective vector ¢y ¢; ;... cg, the program simply

solves the linear program: maxcg + ¢121 + co2 + - -+ + 44 over the input polyhedron P.
The grammer is simply

various comments

begin

m d+1 numbertype
b —-A

end

maximize

Co € C - ¢4

The minimize option works exactly same way for minimization of a linear objective func-
tion. See the sample input file “Iptest.ine”. The program cdd will output both primal and
dual optimal solutions if the LP is solvable. If the LP is infeasible (dual infeasible), then
it will output an evidence.

For the moment, the LP solver is primitive: one can use either the dual simplex method
(option “dual-simplex”, default) or the criss-cross method by Terlaky-Wang. The latter
method can be specified by option “criss-cross” and is very sensible to the ordering of
inequalities. The ordering options such as maxindex, lexmin and random will affect the
behavior of this solver. Try to use a different ordering, if the computation takes too much
time.

Also, in order to see the intermediate LP sign tableau one can use “show_tableau” option.
Also use “manual_pivot” option to select pivots manually. Of course, these options are
intended for very small problems.

find_interior option
When this option is set, the program solves the linear program: maxzg4; subject to
Az + exqqy < b, where e is the column vector of all 1’s. If the optimum value is zero, the
polyhedron has no interior point. If the optimum value is negative then the polyhedron is
empty. If the LP is dual inconsistent, then the polyhedron admits unbounded inscribed

balls. To find any interior point in this last case, one must add some inequality(ies) to
bound the polyhedron.

facet_listing option
When this option is set, the program checks for each i-th row of the input whether the
associated inequality A;x < b; determines a facet of the polyhedron.

tope_listing option
When this option is set, the program generates all full-dimensional regions (which are
sometimes called topes) of the arrangement of hyperplanes {h; : i = 1,2,... ,m}, where
h; = {z : A;jxz < b;}. Each tope will be represented by its location vector, i.e. a sign vector
in {+, —}™ whose ¢-component indicates the (positive or negative) side of the hyperplane h;
the tope is located. This procedure assumes that the input polyhedron is full-dimensional
and thus the vector of all +’s determines a tope.

partial enumeration, equality, strict_inequality options
With partial.enumeration option (or equivalently equality option), one can enumerate
only those vertices and rays that are lying on the set of hyperplanes associated with
specified inequality numbers. If you want to compute all vertices /rays lying on hyperplanes
associated with & inequalities 4;,1s,...,4 (1 < i; < m), then the option should be specified
as

various comments

begin

m d+1 numbertype
b -4

end
partial_enumeration

L ST PO 1

The strict_inequality option follows the same grammer as partial_enumeration or equal-
ity. With this, cdd outputs only those vertices and rays not satisfying any of the specified
inequalities with equality. See the sample files, partialtestl.ine and partialtest2.ine.

These options make no effect on LP maximization or minimization.

preprojection option
This option is for a preprocessing of orthogonal projection of the polyhedon to the subspace
of R* spanned by a subset of variables. That is, if the inequality inequality system is of

two-block form A,z + A,z < b, and the variable indices for z,, say 1,4, 6,7, are listed in
the input file as

begin

m d+1 numbertype
b —-A

end

preprojection

4 1 4 6 7

Then, cdd+ will output the inequality system, A;z; < b, together with the list R of extreme
rays of the homogeneous cone {z : z > 0 and 274, = 0}. Consequently, the inequality
system { rTA;z; < rTb: r € R} represents the projection of the original polyhedron
onto x;-space with possible redundancy. The default file names for the inequality system
output and the extemal ray output are *sub.ine and *.ext, respectively if the input file is
named *.ine.

There is a supplementary C program, called domcheck, written by F. Margot, EPFL,
which generates quickly a minimal (i.e. nonredundant) system from these two outputs.
This program can be obtained from the standard ftp site for cdd.

4 How to Use

The program hardly has any user interface. Once you have compiled executable files, cddf+ and
cddr+ (see Section 5), and once you create an input file, say, test.ine, you have basically two
ways to run the program. The simplest way is just to run the program with

% cddf+ test.ine

or, if you want to compute with rational (exact arithmetic)

% cddr+ test.ine

Then the program will open necessary output files with default file names, and output the re-
quested results. The default names are test.ext, test.solved, test.icd, test.adj, test.iad, testsub.ine
for the extreme points/ray file, the input verification file, the incidence file, the adjacency file,
the input.adjacency and the preprojection variable sub-inequality system, respectively. If you
want to specify the output file names different from default, simply run the program by

% cdd

and input desired file names at each of file name requests. Even after you run cdd this way, one
can change to the automatic mode by inputing the input file name with additional semicolon,
e.g. “test.ine;”.

10

5 Source Files and Compilation

(1)

[Files and Compilation] The source files for distribution are
cdd+.readme The readme file
cdd.C C++ main source file
cddarith.C C++ main arithmetic code
cddpivot.C C++ pivot operation arithmetic code
cddio.C C++ 10 code
cddrevs.C C++ reverse search code
cdd.h The header file for ¢cdd.C
cdddef.h cdd+ definition file (whose two lines are to be edited by user)
cddtype.h cdd+ arithmetic type definition file
cddrevs.h The header file for cddrevs.C
setoper.C C++ library for set operation
setoper.h The header file for setoper.C
cddman.tex Latex source file of cdd+ Reference Manual
cddHISTORY brief description of changes made at each updates
ine A subdirectory containing sample input files
ext A subdirectory containing sample output files

COPYING GNU GENERAL PUBLIC LICENSE

For compilation of cdd+, one needs a recent (2.6.0 or higher) gcc compiler and g++-library.
Once gce and g++-library are installed, please edit Makefile according to the setup of a
GNU gcc compiler and g++-library, and type

% make all

which creates two executables, cddr+ and cddf+. The executable cddr+ computes with
rational (exact arithmetic) and cddf+ computes with floating-point arithmetic. If you want
to create only one of them, use "make cddf+” or "make cddr+”. Once these executables
are created one might want to remove all object files *.0 by

% rm *.o0

We experienced some problems with older versions of gec. Also, be aware that gec and
g+-+-library that come with NEXTSTEP 3.2 have bugs in the Rational library. Please
use gcc and g++lib on the newest version NEXTSTEP 3.3, or build a recent gcc and
g+-+library on older systems. Generally, cdd+ seems to be most stable when compiled
with gce-2.6.3 and libg++-2.6.2.

Note that cddr+ reads Polyhedra data in integer or rational number type, while cddf+
reads data in integer or real number type.

[Recompilation] The first two constants in the program cdddef.h are to be changed by the
user if necessary, and the program must be recompiled each time after any change is made.
These constants are simply to specify the largest size of acceptable input data (b, —A):

#define MMAX 5001 /* USER’S CHOICE: max row size of A plus one */
#define NMAX 101 /* USER’S CHOICE: max column size of A plus one */

11

If this input data has m rows and d + 1 columns, then in the program, MMAX should be
at least m 4+ 1 and NMAX should be at least d + 1. Although it has no sense to set the
sizes MMAX and NMAX much larger than necessary, the program only creates spaces for
MMAX-+NMAX pointers and uses only necessary storage space for each input, and thus
large MMAX and NMAX won’t be too harmful.

Unlike the pascal version pdd, one can set the size MMAX as large as one wants. It is no
more restricted by the SET TYPE element sizes of usual Pascal compilers.

(3) [TURBO/THINK C Users| Since cdd+ uses the GNU gcc libraries, it cannot be compiled
with other compilers. Use the ANSI C program cdd instead which can be found in the
same ftp site as cdd+.

6 Some Useful Tips for Usage

The computation is done by floating point arithmetic in cddf+ and done by rational arithmetic
in cddr+. Since cddr+ runs much slower, use it when you need to make sure that the output is
correct.

Clearly, there is no guarantee that the program cddf+ outputs the correct result. However
cddf+ seems to work correctly for many different types of polyhedra if one carefully prepares
input data files. The followings are some useful tips for input data preparation to avoid badly
behaving computations with cddf+.

e In cddf+, any real value is considered as zero if its absolute value is less than 10~%. Since
the computation is performed with double precision arithmetic, the correctness of zero
recognition depends greatly on how accurate the input matrix (b — A) is. For example,
you should never use 0.9999 for the value 1. Just use the correct value 1 as it is. Unlike
many LP softwares, perturbation of data can cause some serious problems. If you want to

perturb your data (e.g. right hand side) for some reason, do it with large enough constants,
say of order 1073,

o If your matrix contains some irrational number, say v/5, please use an approximation which

is correct in at least ten digits, i.e. 2.236067977. See the sample input file reg600-5.ine in
the ine subdirectory.

e For the same arithmetic reason, please try to scale your input matrix as even as possible
by multiplying appropriate constants to some rows and columns . The program cdd does
not perform any scaling before computation.

7 Bugs

e When the input system is a homogeneous system of linear inequalities (i.e. the right hand
side vector b is a zero vector) and the homogeneous cone determined by the system is
pointed (i.e. the origin is a vertex) , the program cdd does not output this unique vertex.

e Tope enumeration requires much storage space when the exact computation is applied.
Currently we do not know how this happens although it is certain that it is something to
do with Rational class library of g++. In future, this problem will be hopefully eliminated.

12

8 FTP site

An anonymous ftp site for the programs is set at:

ftpsite: iforl3.ethz.ch (129.132.154.13)
directory: pub/fukuda/cdd
filename: cdd+-***.tar.gz

Since the file is compressed binary file, it is necessary to use binary mode for file transfer.

9 Other Userful Codes

There are several other useful codes available for vertex enumeration and/or convex hull com-

putation such as rs, qhull, porta and irisa-polylib. The pointers to these codes are available
at

1. Geometry Center Software List:
http://www.geom.umn.edu/software/cglist/
(look for "arbitrary dimensional convex hull"),

2. Linear Programming FAQ:
http://www.skypoint.com/subscribers/ashbury/linear-programming-faq.html
(Qook for "convex hull"),

3. ZIB Berlin:
ftp: elib.zib-berlin.de (130.73.108.11)
directory: pub/mathprog/polyth.

Acknowledgements. I am grateful to Prof. Th. M. Liebling (EPFL, Switzerland) who
provided me with an ideal opportunity to visit the department for the academic year 1993-1994.
Without his generous help and encouragement, the present form of this program would not have
existed. There are many people who helped me to improve cdd, in particular, I am indebted to
Dr. Alain Prodon (EPFL) , Dr. Francois Margot (UBC, Canada) , Dr. Henry Crapo (INRIA,
France), Dr. Alexander Bockmayr (Max Planck Institute, Germany), Mr. David Bremner
(McGill University, Canada) and Mr. George Frankhauser (ETH Zurich).

Finally, but not least, I would like to thank Prof. H.-J. Liithi (ETH Zurich) who has made
the current new development (cdd+) possible. Some important new features, including the exact
computation and the tope listing, have been added to cdd with his support.

References

[AF92] Avis, D. and Fukuda, K., “A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra,” Discrete Comput Geometry 8 (1992), pp. 295-313.

[CGAF93] Ceder, G., Garbulski, G.D., Avis, D. and Fukuda, K., “Ground states of a ternary
lattice model with nearest and next-nearest neighbor interactions,” Physical Review B,
Vol.49, No. 1, (1994) pp. 1-7.

[G90] Grishukhin, V.P., “All facets of the cut cone for n=7 are known,” European Journal of
Combinatorics 11 (1990), 115-117.

[MRTT53] Motzkin, T.S. , Raiffa, H., Thompson, G.L. and Thrall, R.M., “The double descrip-
tion method,” in “Contribution to the Theory of Games, Vol. II” (H.W. Kuhn and A.W.
Tucker, eds.), Annals of Math. Studies 28, Princeton University Press, 1953, pp.81-103.

13

