Discrete Comput Geom 2(:333-357 (1998)

Geometry

© 1998 Springer-Verlag New York Inc.

649 776

1
(AR

Primal-Dual Methods for Vertex and Facet Enumeration*
WA CH-LSNYP HETHZ T :

[e

D. Bremner,’ K.fﬁ?kﬁ&é,“ and A. }Marzetta“

'Department of Mathematics, University of Washington, AN
Scattle, WA 98195, USA
bremner@ math.washington.edu

*Department of Mathematics, -
Swiss Federal Institute of Technology, [
Lausanne, Switzerland

*Institute for Operations Research,
Swiss Federal Institute of Technology,
Zurich, Switzerland
fukuda@ifor.math.ethz.ch

*Institute for Theoretical Computer Science,
Swiss Federal Institute of Technology,
Zurich, Switzerland

marzetta@inf.ethz.ch

Abstract. Every convex polytope can be represented as the intersection of a finite set of
halfspaces and as the convex hull of its vertices. Transforming from the halfspace (resp.
vertex) to the vertex (resp. halfspace) representation is called vertex enumeration (resp. facet
enumeration). An open question is whether there is an algorithm for these two problems
(equivalent by geometric duality) that is polynomial in the input size and the output size.
In this paper we extend the known polynomially solvable classes of polytopes by looking
at the dual problems. The dual problem of a vertex (resp. facet) enumeration problem is
the facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. In this paper we propose a new class
of algorithms that take advantage of this phenomenon. Loosely speaking, primal—dual

algorithms use a solution to the easy direction as an oracle to help solve the seemingly hard
direction.

* The first author’s research was supported by NSERC Canada, FCAR Québec, and the J.W. McConnell
Foundation.

334 D. Bremner, K. Fukuda, and A. Marzetta

1. Introduction

A polytope is the bounded intersection of a finite set of halfspaces in RY. The vertices of a
polytope are those feasible points that do not lie in the interior of a line segment between
two other feasible points. Every polytope P can be represented as the intersection of a
nonredundant set of halfspaces H(P) and as the convex hull of its vertices V(P). The
problem of transforming from H(P) to V(P) is called vertex enumeration; transforming
from V(P) to H(P) is called facet enumeration or convex hull.

An algorithm is said to be polynomial if the time to solve any instance is bounded
above by a polynomial in the size of input and output. We consider the input (resp.
output) size to be the number of real (or rational) numbers needed to represent the
input (resp. output); in particular we do not consider the dimension to be a constant. We
assume each single arithmetic operation takes a constant amount of time.! A successively
polynomial algorithm is one whose kth output is generated in time polynomial in k and
the input size s, for each k less than or equal to the cardinality of output. Clearly, every
successively polynomial algorithm is a polynomial algorithm. We assume that a polytope
is full-dimensional and contains the origin in its interior; under these conditions? vertex
enumeration and facet enumeration are polynomially equivalent, that is, the existence of
a polynomial algorithm for one problem implies the same for the other problem. Several
polynomial algorithms (see, e.g.. [3], [6], [7], [9], [17], and [18]) are known under strong
assumptions of nondegeneracy, which restrict input polytopes to be simple in the case of
vertex enumeration and simplicial in the case of facet enumeration. However, it is open
whether there exists a polynomial algorithm in general.

In this paper we extend the known polynomially solvable classes by looking at the
dual problems. The dual problem of a vertex (resp. facet) enumeration problem is the
facet (resp. vertex) enumeration problem for the same polytope where the input and
output are simply interchanged. For a particular class of polytopes and a fixed algorithm,
one transformation may be much easier than its dual. One might be tempted to explain
this possible asymmetry by observing that the standard nondegeneracy assumption is
not self-dual. Are the dual problems of nondegenerate vertex (facet) enumeration prob-
lems harder? More generally, are the complexities of the primal and the dual problem
distinct?

Here we show in a certain sense that the primal and dual problems are of the same
complexity. More precisely, we show the following theorem: if there is a successively
polynomial algorithm for the vertex (resp. facet) enumeration problem for a hereditary
class of problems, then there is a successively polynomial algorithm for the facet (resp.
vertex) enumeration problem for the same class, where a hereditary class contains all
subproblems of any instance in the class. We propose a new class of algorithms that take
advantage of this phenomenon. Loosely speaking, primal—dual algorithms use a solution
to the easy direction as an oracle to help solve the seemingly hard direction.

' This assumption is merely to simplify our discussion. One can easily analyze the complexity of an algo-
rithm in our primal-dual framework for the binary representation model and in general its binary complexity
depends only on that of the associated “base”™ algorithm.

* We discuss these assumptions further in Section 2.2,

Primal-Dual Methods for Vertex and Facet Enumeration 335

From this general result relating the complexity of the primal and dual problems, and
known polynomial algorithms for the primal-nondegenerate case, we arrive at a polyno-
mial algorithm for vertex enumeration for simplicial polytopes and facet enumeration for
simple polytopes. We then show how to refine this algorithm to yield an algorithm with
time complexity competitive with the algorithms known for the primal-nondegenerate
case.

The only published investigation of the dual-nondegenerate case the authors are aware
of 1s in a paper by Gritzmann and Klee [12]. Their approach, most easily understood
in terms of vertex enumeration, consists of intersecting the constraints with each defin-
ing hyperplane and, after removing the redundant constraints, finding the vertices lying
on that facet by some brute-force method. David Avis (private communication) has in-
dependently observed that this method can be extended to any polytope whose facets
are simple (or nearly simple) polytopes. The method of Gritzmann and Klee requires
solving O(m?) linear programs (where m is the number of input halfspaces) to re-
move redundant constraints. Our approach does not rely on the polynomial solvability
of linear programming if an interior point is known (as is always the case for facet
cnumeration).

Notation

We start by defining some notation. Recall that H(P) (resp. V(P)) is the nonredundant
halfspace (resp. vertex) description of P. We use m for |[H(P)|, n for |V(P)|, and d for
the dimension dim P. The facets of P are the intersection of the bounding hyperplanes of
H(P) with P. We use O (OF) and 1 (1¥) to denote the vector of all zeros (of length k) and
alt ones (of length k), respectively. We treat sets of points and matrices interchangeably
where convenient: the rows of a matrix are the elements of the corresponding set. Given
(row or column) vectors a and b, we use ab to denote the inner product of ¢ and b. Since
we assume the origin is in the interior of each polytope, each facet defining inequality
can be written as hx < | for some vector A. For a vector h, we use A*, h—, and A°
to denote the set of points x such that /x < I, hx > 1, and hx = 1, respectively. We
sometimes identify the halfspace A* with the associated inequality 7ix < | where there is
no danger of confusion. We use P(H) to denote the polyhedron {x | Hx < 1}. Similarly
we use H(P) to mean the matrix H where P = {x | Hx < 1}. For a set of points V
we use H(V) to mean H(conv V); similarly for a set of halfspaces H, we use V(H)
to mean V(P(H)). We say that h™ is valid for a set of points X (or Ax < 1is a valid
inequality) if X C h™. We make extensive use of duality of convex polytopes in what
follows. The proper faces of a convex polytope are the intersection of some set of facets.
By adding the two improper faces, the polytope itself and the empty set, the faces form a
lattice ordered by inclusion. Two polytopes are said to be combinatorially equivalent if
their face lattices are isomorphic and dual if their face lattices are anti-isomorphic (i.e.,
isomorphic with the direction of inclusion reversed). The following is well known (see,
e.g.[5]).

Proposition 1. If P = conv X is a polytope such that Q € int P, then Q = {y | Xy <
1} is a polvtope dual to P such that Q € int Q.

336 D. Bremner, K. Fukuda, and A. Marzetta
2. Primal-Dual Algorithms

In this section we consider the relationship between the complexity of the primal prob-
lem and the complexity of the dual problem for vertex/facet enumeration. We fix the
primal problem as facet enumeration in the rest of this paper, but the results can also be
interpreted in terms of vertex enumeration. For convenience we assume in this paper that
the input polytope is full-dimensional and contains the origin as an interior point. While
it is easy to see this is no loss of generality in the case of facet enumeration, in the case
of vertex enumeration one might need to solve a linear program to find an interior point.
We call a family T" of polytopes facet-hereditary if for any P ¢ T, for any H' C H(P),
if () H' is bounded, then () H' is also in [". The main idea of this paper is summarized
by the following theorem.

Theorem 1. [f there is a successively polynomial vertex enumeration algorithm for
a facet-hereditary family of polytopes, then there is a successively polynomial facet
enumeration algorithm for the same family.

Simple polytopes are not necessarily facet-hereditary, but each simple polytope can be
perturbed symbolically or lexicographically onto a combinatorially equivalent polytope
whose facet defining halfspaces are in “general position,” i.e., the arrangement of facet
inducing hyperplanes defined by the polytope is simple. The family of polytopes whose
facet inducing halfspaces are in general position is obviously facet-hereditary.

Corollary 1. There is a successively polynomial algorithm for facet enumeration of
simple polvtopes and for vertex enumeration of simplicial polytopes.

Proof of Theorem 1 is constructive, via the correctness of Algorithm 1. Algorithm 1
takes as input a set V of points in R?, and a subset Hy C H(V) such that () Hy is
bounded. We show below how to compute such a set of halfspaces.

At every step of the algorithm we maintain the invariant that convV C P(H,).
When the algorithm terminates, we know that V(H,,,) € V. It follows that P(H.,) €
conv V. There are two main steps in this algorithm that we have labeled FindWitness and
Delete Vertex. The vertex v € V(H,)\V is a witness in the sense that for any such vertex,
there must be a facet of H (V) not yet discovered whose defining halfspace cuts off v.
From the precondition of the theorem there exists a successively polynomial algorithm

Algorithm 1. PrimalDualFacets(V, Hy)

chr <« H()

while 3v € V(H)\V do FindWitness
Findh e H(V)s.t.v € h~ DeleteVertex
HCUI’ <« HCUI’ U {h}

endwhile

return He,,.

Primal-Dual Methods for Vertex and Facet Enumeration 337

to enumerate the vertices of H,,. It follows that in time polynomial in |V | we can find
VI + 1 vertices of P(H,y,), or discover V(H,,) = V. If we discover {V| + | vertices,
onc of these vertices must be a witness. In order to find the facet cutting off a witness
(the “DeleteVertex™ step), we need to solve a separating hyperplane problem for a point
and convex set. The separating hyperplane problem can be solved via the following
linear program: maximize vy subject to Vy < 1. If y* is a basic optimal solution (i.e.,
a solution corresponding to a vertex of the polar polytope P* = {y | Vy < 1}) of the
linear program, then y*x < | is the desired separating halfspace. While there are linear
programming algorithms polynomial in the bit size of the input, there are not yet any
known that are polynomial in n = |V| and d, which is what we need for our theorem.
It turns out that because we have a halfspace description of the convex hull of the union
of our two sets, we can solve the separating hyperplane problem via a much simpler
algorithm. The rest of this section is organized as follows. In Section 2.1 we discuss how
to implement the Delete Vertex step without solving a linear program. In Section 2.2 we
discuss how to preprocess to eliminate the various boundedness and full-dimensionality
assumptions made above. Taken together, the results of these two sections will establish
the following stronger version of Theorem 1:

Theorem 2. Forany fucet-hereditary family of polytopes T if we can generate k vertices
of an m-facet d-polytope P’ € U (or certifv that P’ has less than k vertices) in time
O(f(k.m,d)), then we can enumerate the m facets of an n-vertex d-polytope P in time

m
o (nd3+mnd2+m2d+ Z fn+1,i—1,d)

i=d+2

In certain cases (such as the dual-nondegenerate case considered in Section 3), we may
have a theoretical bound for f(k, m, d) polynomial in k, m, and d. In other cases, such
a theoretical bound may be difficult to obtain, but we may have experimental evidence
that a certain method (e.g., some heuristic insertion order for an incremental algorithm)
is efficient for vertex enumeration for I". In either case the techniques described in this
section can be used to obtain an efficient method for facet enumeration as well. It is
worth noting that there is no restriction of the input points to be in “convex position.”
Redundant (interior) input points will have no effect other than to slow down pivot
operations and tests for membership in the input (i.e., m will be the total number of input
points. including redundant points).

2.1, Deleting Vertices without Linear Programming

Our main tool here is the pivot operation of the simplex method of linear programming.
Any inequality system

Hx <1 (H

can be represented in the standard “dictionary” form (see, e.g., [7]) as follows. We
transform each inequality into an equality by adding a slack variable, to arrive at the

338 D. Bremner, K. Fukuda, and A. Marzetta

following system of linear equations or dictionary:
s=1-Hux. (2)

More precisely, a dicttonary for (1) is a system obtained by solving (2) for some subset of
m slack and original variables (where m is the row size of H). A solution to (2} is feasible
for (1) if and only if s > Q. In particular, since HO < 1, s = 1 is a feasible solution to
both. The variables are naturally partitioned into two sets. The variables appearing on
the left-hand side of a dictionary are called basic; those on the right-hand side are called
cobusic. A pivot operation moves between dictionaries by making one cobasic variable
(the entering variable) basic and one basic variable (the leaving variable) cobasic.

If we have a feasible point for a polytope and a halfspace description, in d pivot
operations we can find a vertex of the polytope. If we ensure that each pivot does not
decrease a given objective function, then we have the following.

Lemma 1 (Raindrop Algorithm). Given H € R"™ o e RY, and vy € P(H), in time
O(md?) we can find v € V(H) such that wv > wuy.

Proof. We start by translating our system by —uvy so that our initial point is the origin.
As a final row to our dictionary we add the the equation z = wx (the objective row). Note
that, by construction, x = Q is a feasible solution. We start a pivot operation by choosing
some cobasic variable x; to become basic. Depending on the sign of the coefficient of
x; in the objective row, we can always increase or decrease x; without decreasing the
value of z. As we change the value of x;, some of the basic slack variables will decrease
as we get closer to the corresponding hyperplane. By considering ratios of coefficients,
we can find one of the first hyperplanes reached. By moving that slack variable to the
right-hand side (making it cobasic), and moving x; to the left-hand side, we obtain a
new dictionary in O (md) time (see, e.g., [7] for details of the simplex method). We can
continue this process as long as there is a cobasic x-variable. After exactly d pivots, all
x-variables are basic. It follows that the corresponding basic feasible solution is a vertex
(see Fig.). O

The raindrop algorithm seems to be part of the folklore of Linear Programming; a
generalized version is discussed in [16].
By duality of convex polytopes we have the following.

wvy =0

wv=¢>0
............................ -

Fig. 1. The raindrop algorithm.

Primal-Dual Methods tor Vertex and Facet Enumeration 339

Fig. 2. Pivoting from a valid inequality to a facet.

Lemma 2 (Dual Raindrop Algorithm). Given V € R™ ¢ RY, and hq such that
V C II(T. in O(nd?) time we can find h € H(V) such that ho > hyow.

Essentially this 1s the same as the initialization step of a gift-wrapping algorithm (see,
e.g.. [6] and [18]), except that we are careful that the point w is on the same side of our
final hyperplane as the one we started with. Figure 2 illustrates the rotation dual to the
pivot operation in Lemma .

We can now show how to implement the DeleteVertex step of Algorithm I without
lincar programming. A basis B for a vertex v € V(H) is a set of d rows of H such
that Bv = 1 and rank B = d. We can obviously find a basis in polynomial time; in the
pivoting-based algorithms in the following sections we will always be given a basis for v.

Lemma 3 (DeleteVertex). Given V € R Hy © H(V), © € V(H)\V, and a basis
B for v.we can find h € H(V) such that v € h™ in time O(ndz).

Proof. Leth = (1/d) Y pep b. The inequality hx < 1is satisfied with equality by &
and with strict inequality by every v € V (since v is the unique vertex of P (Hy) lying
on 7' see Fig. 3). Let y = max,cy /1v. Since © € intconvV, y > 0. Let hy = h/y.
The constraint higx < 1 is valid for conv V, but iyv > 1. The lemma then follows from
Lemma 2. [

Fig. 3. Illustrating the proof of Lemma 3.

340 D. Bremner, K. Fukuda, and A. Marzetta

It we are not given a basis for the vertex U we wish to cut off, we can use the mean of
the outward normals of all facets meeting at v in place of the vector A. This mean vector
can be computed in O(|Hyld) time.

Corollary 2. GivenV € R Hy € H(V),and T € V(H)\V . we canfindh € H(V)
such that © € h™ in time O(nd* + |Hy|d).

It will prove useful below to be able to find a facet of conv V' that cuts off a particular
extreme ray or direction of unboundedness for our current intermediate polyhedron.

Lemma 4 (DeleteRay). Given V € R and r € R\{O}, in O(nd?) time we can
find h € H(V) such that hr > 0.

Proof. The proof is similar to that of Lemma 3. Let y = max,cy rv. Since O €
intconv V., y > 0. Let hy = r/y. The constraint igx < 1 is valid for conv V, but
hor = (r -r)/y > 0. By Lemma 2, in O (nd?) time we can compute h € H(V) such
that iir > hgr > 0. O

2.2, Preprocessing

We have assumed throughout that the input polytopes are full-dimensional and contain
the origin as an interior point. This is polynomially equivalent to assuming that along
with a halfspace or vertex description of P, we are given a relative interior point, i.e.,
an interior point of P in aff P. Given a relative interior point, then (either representation
of) P can be shifted to contain the origin as an interior point and embedded in a space
of dimension dim P in O(Nd?) time by elementary matrix operations, where N is the
number of input halfspaces or points.

Finding a relative interior point in a set of points requires only the computation of the
centroid. On the other hand, finding a relative interior point of the intersection of a set
of halfspaces H requires solving at least one (and no more than |H}) linear programs.
Since we are interested here in algorithms polynomial in n, m, and d, and there not yet
any such linear programming algorithms, we thus assume that the relative interior point
is given.

In order to initialize Algorithm 1, we need to find some subset Hy C H(V) whose
intersection is bounded. We start by showing how to find a subset whose intersection is
pointed. i.e., has at least one vertex.

Lemma5. GivenV € R in O(nd?) time. Algorithm 2 computes subset H C H(V)
such that (| H defines a vertex.

Proof. We can compute a parametric representation of the affine subspace A defined by
the intersection of all hyperplanes found so far in O(d?) time by Gaussian elimination.
With each DeleteRay call in Algorithm 2, we find a hyperplane that cuts off some ray in
the previous affine subspace (see Fig. 4). It follows that the dimension of A decreases
with every iteration. . O

Primal-Dual Methods for Vertex and Facet Enumeration 341

Algorithm 2. FindPointedCone

H «— .7 «x e RN\(0). A « R’
while |H| < d do
h < DeleteRay(r, V)
H < HU{h)
A< AnpY
Let a and b distinct points in A.
F<—a—b.
endwhile
return H

We now show how to augment the set of halfspaces computed by Algorithm 2 so
that the intersection of our new set is bounded. To do $0, we use a constructive proof
of Carathéodory’s theorem. The version we use here is based on that presented by
Edmonds [10]. Similar ideas occur in an earlier paper by Klee [14].

Lemma 6 (The Carathéodory Oracle). Given H € R"* such that P(H) is a bounded
d-polytope and vy € P(H), in time O(md?) we can find V. C V(H) such that vy €
convVand |V| <d + 1.

Proof (Sketch). Let P = P(H). Apply Lemma | to find v € V(H). If v = vy, return
v. Otherwise, find the point z at which the ray v, exits P. Intersect all constraints with
the minimal face containing z and recurse with 7 as the given point in the face. The
recursively computed set, along with v, will contain vy 1n its convex hull.

By duality of convex polytopes, we have the following:
Lemma 7 (The Dual Carathéodory Oracle). Given a d -polytope P = conv V and hy
suchthatV C h(;, we can find in time O(|V |d>), some H C H(V) suchthathy € conv H
and |H| <d + 1.

Figure 5(a) illustrates the application of the Carathéodory oracle to find a subset of
vertices of a polygon containing an interior point vy in their convex hull. In Fig. 5(b) the

, = A
Ai—rv/-d—ﬁ—o—————o—-—-——l»
r

Fig. 4. Successive affine subspaces .4; computed by Algorithm 2.

342 D. Bremner, K. Fukuda, and A. Marzetta

(a)

Fig. 5. The primal and dual Carathéodory oracies. (a) Using the Carathéodory oracle to find a set of points
whose convex hull contains vg. (b) The dual problem of finding a set of facets that imply a given valid constraint
gy < 1.

equivalent dual interpretation of finding a set of facets that imply a valid inequality is
shown. In order to understand the application of Lemma 7, we note the following:

Proposition 2. Let P = {x | Ax < 1} and Q = {x | A'x < 1} be polyhedra such that
each row a’ of A’ is a convex combination of rows of A. P C Q.

Using Lemmas 5 and 7, we can now find a subset of H(V) whose intersection is
bounded.

Lemma8. Given V € R in time O(nd?) we can compute a subset H € H(V)
such that () H is bounded and |H| < 2d.

Proof. We start by computing set B of d facet defining halfspaces whose intersection
defines a vertex, using Algorithm 2. The proof is then similar to that of Lemmas 3 and 4.
Compute the mean vector h of the normal vectorsin B (see Fig.6).Lety = max,ecy —hv.
Let hy = —ﬁ/y. Note that hg is valid for V, but any ray feasible for [} B will be cut
off by this constraint; hence P(B) N Ay is bounded. Now by applying Lemma 7 we can
find a set of halfspaces H, C H(V) such that #y € conv H,. Since hg contains at least
one vertex of V, |H,| < d. By Proposition 2, P(B U H,) is bounded. |

3. The Dual-Nondegenerate Case

In this section we describe how the results of the previous section lead to a polynomial
algorithm for facet enumeration of simple polytopes. We then give a refinement of this
algorithm that yields an algorithm whose time complexity is competitive with the known
algorithms for the primal-nondegenerate case.

From the discussion above, we know that to achieve a polynomial algorithm for facet
enumeration on a particular family of polytopes we need only have a polynomial algo-

Primal-Dual Methods for Vertex and Facet Enumeration 343

Fig. 6. Illustrating the proof of Lemma 8.

rithm for vertex enumeration for each subset of facet defining halfspaces of a polytope
in the family. Dual-nondegeneracy (i.e., simplicity) is not quite enough in itself to guar-
antee this, but it is not difficult to see that the halfspaces defining any simple polytope
can be perturbed so that they are in general position without affecting the combinatorial
structure of the polytope. In this case each dual subproblem is solvable by any number
of pivoting methods (see, e.g., [3], [7], and [9]). Equivalently (and more cleanly) we
can use lexicographic ratio testing (see Section 4.1} in the pivoting method. A basis is a
subset of H(P) whose bounding hyperplanes define a vertex of P. Although a pivoting
algorithm may visit many bases (or perturbed vertices) equivalent to the same vertex,
notice that any vertex of the input is simple hence will have exactly one basis. It follows
that we can again guarantee to find a witness or find all vertices of P(H,) in at most
n + 1 bases (where n = |V, as before) output by the pivoting algorithm. In the case
where each vertex is not too degenerate, say at most d + 8 facets meet at every vertex for
some small constant §, we may have to wait for as many as n - (‘1) + 1 bases. Of course
this grows rather quickly as a function of §, but is polynomial for § constant. In the rest
of this section we assume for ease of exposition that the polytope under consideration is
simple.

Itis not completely satisfactory to perform a vertex enumeration from scratch for each
verification (FindWitness) step since each succeeding input to the vertex enumeration
algorithm consists of adding exactly one halfspace to the previous input. We now show
how to avoid this duplication of effort. We are given some subset H.,, C H(V) such that
P(Hey) 18 bounded and a starting vertex v € V(H,,) (We can use the raindrop algorithm
to find a starting vertex in O (|Hey|d?) time).

Algorithm 3 is a standard pivoting algorithm for vertex enumeration using depth-first
search. The procedure ComputeNeighbour(v, j, H.,,) finds the jth neighbour of v in
P(He). This requires O (md) time to accomplish using a standard simplex pivot. To
check if a vertex is new (i.e., previously undiscovered by the depth-first search) we can
simply store the discovered vertices in some standard data structure such as a balanced
tree, and query this structure in O(d logn) time.

344 D. Bremner, K. Fukuda, and A. Marzetta

Algorithm 3. dfs(v. Heur)

for jel---ddo
v’ <« ComputeNeighbour(v, j, Heyr)
if new(v’) then
dfs(v’, Heur)
endif
endfor

We could use Algorithm 3 as a subroutine to find witnesses for Algorithm 1, but we
can also modify Algorithm 3 so that it finds new facets as a side effect. We are given
a subset Hy C H(V) as before and a starting vertex v € V(Hp) with the additional
restriction that v is a vertex of the input. In order to find a vertex of P(H)) that is also a
vertex of the input, we find an arbitrary vertex of P(Hy) using Lemma 1. If this vertex
is not a vertex of the input, then we apply DeleteVertex to find a new halfspace which
cuts it off, and repeat. In what follows, we assume the halfspaces defining the current
intermediate polytope are stored in some global dictionary; we sometimes denote this set
of halfspaces as H.,,. We modify Algorithm 3 by replacing the call to ComputeNeighbour
with a call to the procedure ComputeNeighbour2. In addition to the neighbouring vertex
v', ComputeNeighbour2 computes the (at most one) halfspace defining v’ not already
known. Suppose we have found v (i.e., v is a vertex of the current intermediate polytope).
Since P is simple we must have also found all of the halfspaces defining v. It follows
that we have a halfspace description of each edge leaving v. Since we have a halfspace
description of the edges, we can pivot from v to some neighbouring vertex v’ of the
current intermediate polytope. If v € V, then we know v’ must be adjacent to v in
conv V; otherwise we can cut v’ off using our DeleteVertex routine. If P is simple,
then no perturbation is necessary, since we will cut off degenerate vertices rather than
trying to pivot away from them. Thus ComputeNeighbour2 can be implemented as in
Algorithm 4.

Lemma?9. With O(mnd) preprocessing, ComputeNeighbour2 takes time O(md +
k(md + nd?)), where k is the number of new halfspaces discovered.

Algorithm 4. ComputeNeighbour2(v, j. Heyr)

repeat
v « ComputeNeighbour(v, j, Hey)
If v ¢ V then
h <« DeleteVertex (v, Heyr, V)
AddToDictionary(h, Hey)
end if
untilv € V
return v

Primal-Dual Methods for Vertex and Facet Enumeration 345

Froof. As mentioned above, ComputeNeighbour takes O (md) time. The procedure
AddToDictionary merges the newly discovered halfspace into the global dictionary.
Since P is simple, we know the new halfspace will be strictly satisfied by the current
vertex v, it follows that we can merge it into the dictionary by making the slack variable
basic. This amounts to a basis transformation of the bounding hyperplane, which can be
done in O (d?) time.

Since the search problem is completely static (i.e., there are no insertions or deletions),
itis relatively easy to achieve a query time of O(d + log n), with a preprocessing cost of
O(n(d +logn)) using, e.g., kd-trees [15]. We claim that the inequality n < 2" follows
from the Upper Bound Theorem. For 0 < d < 3 this is easily verified. Ford > 4,

no<?2 (m &%Jﬂj) (Upper Bound Theorem)

2m 2
1d/2]!

< m(l/2 — z(dl()gm)/Z (d > 4)

=

[t follows that d + logn < 2md, hence the query time is O (md), and the preprocessing
time is O (nmd). Since each pivot in ComputeNeighbour2 that does not discover a vertex
of V discovers a facet of conv V, we can charge the time for those pivots to the facets
discovered. O

A depth-first-search-based primal-dual algorithm is given in Algorithm 5. Note
that we do not need an additional data structure or query step to determine
if a v’ is newly discovered. We simply mark each vertex as discovered when we
search in ComputeNeighbour2. Furthermore, for P simple, m < n. Thus we have the
following:

Theorem 3. Given V e R4, ifconv V is simple, we can compute H = H(V) in time
On|Hld?).

Algorithm 5. pddfs(v. Hy)

chr A H()
Forjel - -ddo
v" < ComputeNeighbour2(v, j, Hey) add new halfspaces to H

if new(v’) then
Hey < Heyr U pddfs(v’)
endif
endtfor
return H,,

346 D. Bremner, K. Fukuda, and A. Marzetta
4. The Dual-Degenerate Case

We would like an algorithm that is useful for moderately dual-degenerate polytopes. In
a standard pivoting algorithm for vertex enumeration based on depth- or breadth-first
search, previously discovered bases must be stored. Since the number of bases is not
necessarily polynomially bounded in the dual-degenerate case’ we turn to reverse search
[3] which allows us to enumerate the vertices of a nonsimple polytope without storing the
bases visited. The rest of this section is organized as follows. Section 4.1 explains how
to use reverse search for vertex enumeration of nonsimple polytopes via lexicographic
pivoting. Section 4.2 shows how to construct a primal—dual facet enumeration algorithm
analogous to Algorithm 5 but with the recursion or stack-based depth-first search replaced
by the “memoryless” reverse search.

4.1. Lexicographic Reverse Search

The essence of reverse search in the simple case is as follows. Choose an objective
function (direction of optimization) so that there is a unique optimum vertex. Fix some
arbitrary pivot rule. From any vertex of the polytope there is a unique sequence of pivots
taken by the simplex method to this vertex (see Fig. 7(a)). If we take the union of these
paths to the optimum vertex, it forms a tree, directed towards the root. It is easy to see
algebraicly that the simplex pivot is reversible; in fact one just exchanges the roles of the
leaving and entering variable. Thus we can perform depth-first search on the “simplex
tree” by reversing the pivots from the root (see Fig. 7(b)). No storage is needed to
backtrack, since we merely pivot towards the optimum vertex.

In this section we discuss a technique for dealing with degeneracy in reverse search. In
essence what is required is a method for dealing with degeneracy in the simplex method.

4
]
Y T C——————
/‘001 /gou
[Ty) ? [——
101 1L path of
' simplex 000
/
method 008 g
i [7 })
[S W S 110 101 11
! / 000 / 010 i
PP 111

2 100 110

’
»

(a) (b)

Fig.7. Reverse searchon a 3-cube. (a) The “simplex tree” induced by the objective —1. (b) The corresponding
reverse search tree.

3 Even if the number of bases is bounded by a smail polynomial in the input size, any superlinear space
usage may be impractical for large problems.

Primal-Dual Methods for Vertex and Facet Enumeration 347

Here we use the method of lexicographic pivoting, which can be shown to be equivalent
to a standard symbolic perturbation of the constant vector b in the system Ax < b (see,
e.g., [7] for discussion). Since the words “lexicographic” and “lexicographically” are
somewhat ubiquitous in the remainder of this paper, we sometimes abbreviate them to
“lex.”

In order to present how reverse search works in the nonsimple case, we need to
discuss in more detail the notions of dictionaries and pivoting used in Section 2. We
start by representing a polytope as a system of linear equalities where all of the variables
are constrained to be nonnegative. Let P be a d-polytope defined by a system of m
inequalities. As before, convert each inequality to an equality by adding a slack variable.
By solving for the original variables along with some set of m — d slacks and eliminating
the original variables from the m — d equations with slack variables on the left-hand
side, we arrive at the slack representation of P. Geometrically, this transformation can
be viewed as coordinatizing each point in the potyhedron by its scaled distance from
the bounding hyperplanes. By renaming slack variables, we may assume that the slack
representation has the form

Ax = b, where A =[] A'], A e R"xd (3)

For J < Z' and vector x, let x,; denote the vector of elements of x indexed by
J. Similarly, for matrix A, let A, denote the subset of columns of A indexed by J. If
rank A; = |J| = rank A, we call J a basis for A, and call A, a basis matrix. Suppose
B C {l---m]} defines a basis of (3) (i.e., a basis for A). Let C (the cobasis) denote
{1---m}\B. We can rewrite (3) as

b= ABXB + A("X(‘.
Rearranging, we have the familiar form of a dictionary
XB:AEIb—A;]A(‘Xc. (4)

The solution § = A;'b obtained by setting the cobasic variables to zero is called a
basic solution. If 8 > O, then B is a called a basic feasible solution or feasible basis.
Each feasible basis of (3) corresponds to a basis of some vertex of the corresponding
polyhedron, in the sense of an affinely independent set of d supporting hyperplanes;
by setting x; = 0,1 € C we specify d inequalities to be satisfied with equality. If the
corresponding vertex is simple, then the resulting values for xg will be strictly positive,
i.e.. no other inequality will be satisfied with equality. In the rest of this paper we use
basis in the (standard linear programming) sense of a set of linearly independent columns
of A and reserve cobasis for the corresponding set of supporting hyperplanes incident
on the vertex (or, equivalently, the set of indices of the corresponding slack variables).
A pivot operation moves between feasible bases by replacing exactly one variable in the
cobasis with one from the basis. To pivot to a new basis, start by choosing some cobasic
variable x; in C to increase. Let 8 = AE’b andlet A" = A;'AC. The standard simplex
ratio test looks for the first basic variable forced to zero by increasing xy, i.e., it looks for

348 D. Bremner, K. Fukuda, and A. Marzetta

In the general (nonsimple) case, there will be ties for this minimum ratio. Define

L(B) = [B Aj'l.
00 if a, =0,

L (B); L(B), /a/, otherwise.

To choose a variable to leave the basis, we find the lexmin row of L'(B), i.e., we
first apply the standard ratio test to 8 and then break ties by applying the same test to
successive columns of L(B). Intuitively, this simulates performing the standard ratio test
in a perturbed system Ax < b+& where §; = ¢’ forsome 0 < € « 1. This perturbation is
equivalent to perturbing the hyperplanes sequentially in index order, with each successive
hyperplane pushed outward by a smaller amount. That there is a unique choice for the
leaving variable (i.e., that the corresponding vertex of the perturbed polytope is simple)
follows from the fact that A,' is nonsingular.

A vector x is called lexicographically positive if x # O and the lowest indexed
nonzero entry is positive. A basis B is called lexicographically positive if every row of
L(B) is lexicographically positive. Let B be a basis set and let C be the corresponding
cobasis set. Given an objective vector w, the objective row of a dictionary is defined by

I=wx = wgXg + wcxc
substituting for x5 from (4),
= w;;AElb + (we — a)BAEIAc)X(‘.

The simplex method chooses a cobasic variable to increase with a positive coefficient
in the cost row w¢ — a)BAE' Ac (i.e., a variable x; such that increasing x; will increase
the objective value z). Geometrically, we know that increasing a slack variable x; will
increase (resp. decrease) the objective function wx iff the inner product of the objective
vector with the outer normal of the corresponding halfspace h; is negative (resp. posi-
tive). Every cobasis C for vertex v defines a polyhedral cone P with apex v containing
P. A cobasis is optimal for objective vector w* € RYif (v + w*) € (v — P¢) (note
that ™ is the original objective vector before transforming to the slack representation).
Reinterpreting in terms of the slack representation, we have the following standard result
of linear programming (see, e.g., [7]).

Proposition 3. If the cost row has no positive entry, then the current basic feasible
solution is optimal.

If the entering variable is chosen with a positive cost row coefficient, and the leaving vari-
able is chosen by the lexicographic ratio test, we call the resulting pivot a lexicographic
pivot. A vector v is lexicographically greater than a vector v’ if v — v’ is lexicographically
positive. The following facts are known about lexicographic pivoting:

Primal-Dual Methods for Vertex and Facet Enumeration 349

Proposition 4 [13]. Let S be lexicographically positive basis, let T be a basis arrived
at from S bv a lexicographic pivot, and let w be a nonzero objective vector.

(ay T is lexicographically positive, and
(b) wy L(T) is lexicographicallv greater than wsL(S).

A basis is called lex optimal if it is lexicographically positive, and there are no positive
entries in the corresponding cost row. In order to perform reverse search, we would like
a unique lex optimal basis. We claim that if C = {m —d + 1---m}, we can fix C
as the unique lex optimal basis by choosing as the objective function —)", _. x;. This
is equivalent to choosing the mean of the outward normals of the hyperplanes in C as
objective direction. If we consider an equivalent perturbed polytope, the intuition is that
all of the perturbed vertices corresponding to a single original vertex are contained in
the cone defined by the lex maximal cobasis (see Figure 8).

Lemma 10. Let S = {| ---m — d} denote the initial basis defined by the slack repre-
sentation. For objective vector w = [Q" ¢, =14, a lex positive basis B has a positive
entry in the cost row if and only if B #£ §.

Proof. The cost row for S is —1¢. Let B be a lex positive basis distinct from S, and
let B denote the basic part of the corresponding basic feasible solution. Let k denote the
number of nonidentity columns in Ag. If wgB < O, then there must be some positive
entry in the cost row since 8 is not optimal. Suppose that wgf = 0. It follows that
B = (8.0 since wp = [Q" % —1¥]and B > O. Let j be the first column of Ap
that 1s not column j of an (m — d) x (m — d) identity matrix. Leta = [O, a] denote row
j of Ag. Since the first m — d — k columns of Ay are identity columns, a is a k-vector.
Leta = |a', &] be column j of A", where & is also a k-vector. Since 4& = 1, we know
@ # ©. By the lex positivity of L(B), along with the fact that 8 = [g', 0*] and the fact
that the first j — I columns of A;’ are identity columns, it follows that & has no negative
entries. It follows that element j of wBA;' is negative. Since identity column j is not in
Ap, it must be present in Ac, in position j < k. It follows that element j’ of a)BAgl Ac
is negative, hence element j' of the cost row is positive. 0

From the preceding two lemmas, we can see that the lexicographically positive bases
can be enumerated by reverse search from a unique lex optimal basis. The following
tells us that this suffices to enumerate all of the vertices of a polytope.

Lemma 11. Every vertex of a polytope has a lexicographically positive basis.

Proof. Let P be a polytope. Let v be an arbitrary vertex of P. Choose some objective
function so that v is the unique optimum. Choose an initial lex positive basis. Run the
simplex method with lexicographic pivoting. Since there are only a finite number of
bases, and by Proposition 4 lexicographic pivoting does not repeat a basis, we must
eventually reach some basis of v. Since lexicographic pivoting maintains a lex positive
basis at every step, this basis must be lex positive. a

350 D. Bremner, K. Fukuda, and A. Marzetta

(b)

Fig. 8. Lexicographic perturbation and incremental construction. (a) Sequentially perturbing the halfspaces
detining a vertex. (b) Intersecting the perturbed halfspaces in reverse order.

Algorithm 6 gives a schematic version of the lexicographic reverse search algorithm.
We rename variables so that Copt = {m —d + 1---m} is a cobasis of the initial vertex
vg. The routine PivotToOpt does a lexicographic pivot towards this cobasis with the
objective function w = [@" ™7, —19]. If there is more than one cobasic variable with
a positive cost coefficient, then we choose the one with the lowest index. PivotToOpt
returns not only the new cobasis, but the index of the column of the basis that entered.
The test [sPivot(C', C) determines whether (C, k) = PivotToOpt(C") for some k.

As before, we could use Algorithm 6 to implement a verification (FindWitness) step
by performing a vertex enumeration from scratch. In the next section we discuss how
to construct an algorithm analogous to Algorithm 5 that performs only a single vertex
enumeration, but which uses reverse search instead of a standard depth-first search.

Primal-Dual Methods for Vertex and Facet Enumeration 351

Algorithm 6. ReverseSearch(H. vy)

C « Copt’j <« 1, AddToDictionary (Hy, Hey)
repeat
while j <d
C’ « ComputeNeighbour(C, j, Hey)
if IsPivot(C’, C) then
C«C,j«1 down edge
else
J<—Jj+1 next sibling
endif
endwhile
(C. j) < PivotToOpt(C) up edge
j—Jj+1L
until j > d and C = Copt

4.2, Primal-Dual Reverse Search

In this section we give a modification of Algorithm 6 that computes the facet defining
halfspaces as a side effect. Define pdReverseSearch(Hy, vg) as Algorithm 6 with the call
to ComputeNeighbour replaced with a call to ComputeNeighbour2. As in Section 3, we
suppose that preprocessing steps have given us an initial set of facet defining halfspaces
Hy such that P(Hy) is bounded and there is some vy that is a vertex of the input and
of P(Hy). It turns out that the numbering of halfspaces is crucial. We number the jth
halfspace discovered (including preprocessing) as m — j (of course, we do not know what
m is until the algorithm completes, but this does not prevent us from ordering indices).
This reverse ordering corresponds to pushing later discovered hyperplanes out farther,
thus feaving the skeleton of earlier discovered vertices and edges undisturbed; compare
Fig. 8(b), where halfspaces are numbered as in pdReverseSearch, with Fig. 9, where a
different insertion order causes intermediate vertices to be cut off.

The modified algorithm pdReverseSearch can be considered as a simulation of a
“restricted” reverse search algorithm for vertex enumeration where we are given access
only to a subset of the halfspaces, and where the “input halfspaces™ are labeled in a

Fig. 9. A perturbed vertex cut off by later halfspaces.

352 D. Bremner, K. Fukuda, and A. Marzetta

special way. Since the lexicographic reverse search described in the previous section
works for each labeling of the halfspaces, to show that the restricted reverse search
correctly enumerates the vertices of P, we need only show that it visits the same set
of cobases as the unrestricted algorithm would, if given the same labeling and initial
cobasis.

Let Ax = b, A € R""~"*" be the slack representation of a d-polytope. We can write
the slack representation in homogeneous form § = [I A’ — b] where A’ € R" =4,
Suppose at some step of the restricted reverse search the lowest indexed halfspace visited
(including initialization) is k + 1. The restricted reverse search therefore has access to
all of § except for the first k — | rows and the first k — | columns.

Let K denote {k ---m} for some k < m — d. For any cobasis C C K, let B denote
K\C. We define the k-restricted basis matrix for C as the last m — d — k + | rows of
Aj. Let R denote the k-restricted basis matrix for C, and let p denote R 'bg. By the
k-restricted lexicographic ratio test we mean the lexicographic ratio test applied to the
matrix [p R™']. By way of contrast we use the unrestricted lexicographic ratio test or
basis matrix to mean the previously defined lexicographic ratio test or basis matrix.

We observe that the restricted basis matrix is a submatrix of the unrestricted basis
matrix for a given cobasis, and that this property is preserved by matrix inversion. Let
R denote the k-restricted basis for C. Let U denote the (unrestricted) basis matrix for
C. Since k < m — d, and the first m — d columns of the slack representation form an
identity matrix, we know columns of U before & must be identity columns. It follows

that
I M
v=[6 %]
for some matrix M. The reader can verify the following matrix identity:
-1
I M I —-MR™'
—1 . _
v —[@ R] “[@ R] ()

The edges of the reverse search tree are pivots. Referring to our interpretation of lex
pivoting as a perturbation, in order that both versions of the reverse search generate the
same perturbed vertex /edge tree, they must generate the same set of pivots. We argue first
that choosing the same hyperplane to leave the cobasis (i.e., edge to leave the perturbed
vertex), yields the same hyperplane to enter the cobasis in both cases (i.e., the same
perturbed vertex).

Lemma 12. Let P be ad-polytope and let Ax = b be the slack representation of P. Let
C C tk---m}beacobasis for Ax = b. Fork < m —d and for any entering variable x,
if there is a candidate leaving variable x, witht > k, then the leaving variable chosen by
the lexicographic ratio test is identical to that chosen by the k-restricted lexicographic
ratio test.

Proof. Let B denote U~ 'b. As above, let p denote R~'bx. One consequence of (5) is
that p = Bg. If there is exactly one candidate leaving variable, then by the assumptions of
the lemma it must have index at least &, and both ratio tests will find the same minimum.
If on the other hand there is a tie in the minimum ratio test applied to $, then a variable

Primal-Dual Methods for Vertex and Facet Enumeration 353

with index at least k will always be preferred by the unrestricted lexicographic ratio test,
since in the columns of U ' with index less than k, these variables will have ratio 0. O

The up (backtracking) edges in the reverse search tree consist of lex pivots where the
lowest indexed cobasic variable with a positive cost coefficient is chosen as the entering
variable (i.e., the lowest indexed tight constraint that can profitably be loosened). The
previous lemma tells us that for a fixed entering variable and cobasis, the restricted and
unrestricted reverse search will choose the same leaving variable. It remains to show
that in a backtracking pivot towards the optimum cobasis they will choose the same
entering variable. Given a fixed set of halfspaces {h}, k3, h}} (a cobasis) and a
fixed vector w* (direction of optimization), the signs of the cost vector depend only on
the signs of w*h;, | < i < d. We can in fact show something slightly stronger, since our
objective vector w (with respect the slack representation) does not involve hyperplanes
with index less than k. As above, let K = {k---m} and B = K\C. Analogous to the
definition of a k-restricted basis matrix, we define the k-restricted cost row for cobasis C
aswe—wzR™ ! A(v where R is the k-restricted basis matrix and AC isthelastm —d —k+1
rows of Ac.

Lemma 13. For objective vector w = [Q" ™9, '], fork < m —d, the cost row and the
k-restricted cost row are identical.

Proof. As before, let R and U be the restricted and unrestricted basis matrices, respec-
tively. From the form of the objective vector, we know wg = [@k_' »wg]. By (5),

, I —MR [A

wzR"Ac. O

In the case of down edges in the reverse search tree, each possible entering variable
(hyperplane to leave the cobasis) is tested in turn, in order of increasing index. Thus if
the previous backtracking pivot to a cobasis was identical in the two algorithms, the next
down edge will be also. Reverse search is just depth-first search on a particular spanning
tree; hence it visits the nodes of the tree in a sequence (with repetition) defined by the
ordering of edges. The ordering of edges at any node in the reverse search tree is in turn
determined by the numbering of hyperplanes.

Lemma 14. Let P be a polytope. Let Hy be a subset of H(P) with bounded intersection.
Let vy € V(Hy) N V(P). The set of cobases visited by pdReverseSearch(Hy, vg) is the
same as that visited by ReverseSearch(H(P), vy) if ReverseSearch is given the same
halfspace numbering.

Proof. We can think of the sequences of cobases as chains connected by pivots. Let
C, = {(Cy, Cy,...) be the chain of cobases visited by pdReverseSearch(Hy, vg). Let
C, be the chain of cobases visited by ReverseSearch(H(P), vy). Both sequences start
at the same cobasis since the starting cobasis is the one with the lex maximum set of

354 D. Bremner, K. Fukuda, and A. Marzetta

indices. Now suppose the two sequences are identical up to element j; further suppose
that {J,.; Ci = k+ 1---m. There are two cases. If the edge in C, from C; to Cj is
a reverse (down) edge, then we start pivoting from C; to C; 4, by fixing some entering
variable and choosing the leaving variable lexicographically. C;, contains at most one
variable not present in C;, i < j; this variable is numbered k, if present. Let s denote
the position of the entering variable in C; (i.e., the column to leave the cobasis matrix).
Since the cobasis in position C; will have occurred s — | times in both sequences, we
know that ReverseSearch and pdReverseSearch will choose the same entering variable.
By Lemma 12, they will choose the same leaving variable. The test IsPivot(C; 41, C))
depends only on the cost row, so by Lemma 13 the next cobasis in C, will also be Ciyr.
Suppose on the other hand the pivot from C; to C; is a forward pivot. We know from
Lemma 13 that both invocations will choose the same entering variable, and we again
apply Lemma 12 to see that they will choose the same leaving variable. O

Theorem 4. Given V € R let m denote |H(V)|, and let @ denote the number of
lexicographically positive bases of H(V).

ta) We can compute H(V) in time O (pmd?) and space O((m + n)d).
(b)Y We can decide if conv V is simple in time O(n*d + nd%).

Proof. (a) Total cost for finding an initial set of halfspaces is O (nkd?), where k is
the size of the initial set. Since every DeleteVertex call finds a new halfspace, the total
cost for these calls is O(nmd?). In every call to ComputeNeighbour2, each pivot except
the last one discovers a new halfspace. Those which discover new halfspaces have total
cost O (m*d) which is O(pmd); the other pivots cost O (¢md?) as there are ¢d calls to
ComputeNeighbour2. The ¢ forward pivots (PivotToOpt) cost O (¢md).

(b) Atany step of the reverse search, we can read the number of halfspaces satisfied
with equality by the current vertex off the dictionary in O (m) time. From the Lower
Bound Theorem [4] for simple polytopes, if P is simple, then m < 2(n/d + d) for
d > 2. If we reach a degenerate vertex, or discover more than 2(n/d + d) facets,
we stop. If the reverse search terminates, then in O(nmd) time we can compute the
number of facets meeting at each vertex. The total cost is thus O(n(n/d + dyd?) =
O (n*d + nd?). i

Theorem 4(b) is of independent interest since the problem of given H, deciding
whether P(H) is simple is known to be NP-complete in the strong sense [11].

5. Experimental Results

In order to test whether primal-dual reverse search is of practical value, we have imple-
mented it and compared its performance with Avis’s implementation of reverse search [1].
Both programs are written in C and use rational arithmetic, which allows for a fair com-
parison. We present experiments with two families of polytopes: (1) certain simple poly-
topes which show the best and the worst behaviour of both programs and (2) products
of cyclic polytopes which are degenerate for both programs.

Primal-Dual Methods for Vertex and Facet Enumeration 355

105 7

o facet enum. by Irs
o facet enum. by pd
10" + 4 vertex emum. by Irs
~ vertex enum. by pd

103

10?

10!

[((,’P‘\ T setutuds)

100

10!

102

—_
=
o+
-
o +
o
—
—
=)
1321

Fig. 10. Running time for products of simplices Ty x Ty.

The memory requirements of our implementation are twice the input size plus twice
the output size, as the program stores four dictionaries: a constant vertex dictionary V
and a growing halfspace dictionary H,,, in unpivoted form, and a working copy of both.
The program uses an earlier version of the preprocessing step, with an upper bound
of O(nd* compared with the current bound of O(nd?). The source code is available
at http://wwwjn.inf.ethz.ch/ambros/pd.html. In what follows, pd is our
implementation of primal—dual reverse search and Irs is Avis’s implementation of reverse
search. All of the experiments have been performed on a Digital AlphaServer 4/233 with
256M of real memory and 512M of virtual memory.

Figure 10 compares the running time of the two programs on products of two sim-
plices. These 2d-dimensional polytopes have 2d +2 facets and (d + 1)? vertices. They are
simple (which is ideal for vertex enumeration by Irs and facet enumeration by pd), but
have extremely high triangulation complexity [2], which is bad for vertex enumeration
by pd and facet enumeration by Irs, because the perturbation of the vertices made by
the algorithms induces a triangulation of the polytope’s boundary. On the plot, we show
the times for enumerating both the facets and the vertices. As expected, pd is clearly
superior to Irs for facet enumeration of these polytopes. Their very few facets are all
found by the preprocessing of our current implementation; in fact, this accounts for most
of the time taken by pd on these examples.

A less asymmetric example is the product of cyclic polytopes Cy(n) x Cy(n) x « -+ x
Cy (n). These polytopes are neither simple nor simplicial. Moreover, it is known [2] that
both their primal and their dual triangulations are superpolynomial; nonetheless exper-
imentally it seems that the dual triangulations are smaller than the primal ones. This
is advantageous for pd, meaning that the perturbation made by pd for facet enumera-
tion produces less bases than the one made by Irs. This difference is reflected in the
relative performance of the two programs. The relation between the primal and dual

356 D. Bremner, K. Fukuda, and A. Marzetta

6
10 e primal (facet enumeration by lrs)
. o dual (facet enumeration by pd)

g1
Z 10
o0
E

Tt

10! ¥ t f t t t : : :

Fig. 11. Triangulation size (number of bases computed) of C4(n) x C4(n).

triangulation sizes (number of bases computed by either algorithm) of C4(n) x C4(n)
(eight-dimensional polytopes with n? vertices and O(n?) facets) shown in Fig. 11 is
similar to the relation of the running times shown in Fig. 12.

6. Conclusions

An alternative approach to achieving an algorithm polynomial for the dual-nondegenerate
case is to modify the method of Gritzmann and Klee [12]. An idea due to Clarkson [8]
can be used to reduce the row size of each of these linear programs to O(m’) where m’
is the maximum number of facets meeting at a vertex. If we assume that m’ < d + § for
some constant 8, then we can solve each linear program by brute force in time polynomial
in d. It seems that such an approach will be inherently quadratic in the input size since
the entire set of input halfspaces is considered to enumerate the vertices of each facet.

It would be interesting to remove the requirement in Theorem 1 that the family be
facet-hereditary, but it seems difficult to prove things in general about the polytopes
formed by subsets of the halfspace description of a known polytope.

10 7
E 103 +
— 2 1
Y 10
z .t
p 10 olrs
o pd
100 } } + } + + + + {
5 6 7 8 9 10 11 12 13 14

Fig. 12. CPU time for facet enumeration of C4(n) x Cy(n).

Primal-Dual Methods for Vertex and Facet Enumeration 357

Acknowledgments

The authors would like to thank David Avis for useful discussions on this topic, and for
writing Irs. We would also like to thank an anonymous referee for a careful reading of
this paper and several helpful suggestions.

References

o N e e

16.
17.

18.

. D. Avis. A C implementation of the reverse search vertex enumeration algorithm. Technical Report RIMS

Kokyuroku 872, Kyoto University, May 1994. (Revised version of Technical Report SOCS-92.12, School
of Computer Science, McGill University).

. D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? Comput. Geom. Theory Appl.,

7(5-6):265-301, 1997,

. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements

and polyhedra. Discrete Comput. Geom., 8:295-313, 1992,
D. W. Barnette. The minimum number of vertices of a simple polytope. Israel J. Math., 10:121-125, 1971.

. A Brondsted. Introduction to Convex Polvtopes. Springer-Verlag, Bertin, 1981,

. D. Chand and S. Kapur. An algorithm for convex polytopes. J. Assoc. Comput. Mach., 17:78-86, 1970.

. V. Chvital. Linear Programming. Freeman, New York, 1983.

. K. L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th IEEE Symp. Found. Comput.

Sci., pages 695-702, 1994,

. M. Dyer. The complexity of vertex enumeration methods. Marh. Oper. Res., 8(3):381-402, 1983.
. J. Edmonds. Decomposition using Minkowski. Abstracts of the 14th International Symposium on Mathe-

matical Programming, Amsterdam, 1991.

. K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices and all

faces of a convex polyhedron. Comput. Geom. Theory Appl., 8:1-12, 1997,

. P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II.

Volume and mixed volumes. In T. Bisztriczky, P. McMullen, R. Schneider, and A. 1. Weiss, editors,
Polvtopes: Abstract, Convex, and Computational, number 440 in NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., pages 373-466. Kluwer. Dordrecht, 1994.

. J. P. Ignizio and T. M. Cavalier. Linear Programming, pages 118-122. Prentice-Hall International Series

in Industrial and Systems Engineering. Prentice-Hall, Englewood Cliffs, NJ, 1994,

. V. Klee. Extteme points of convex sets without completeness of the scalar field. Mathematika, 11:59-63,

1964.

. K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geom-

etry. volume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg,
1984.

K. Murty. The gravitational method for linear programming. Opsearch, 23:206-214, 1986.

R. Seidel. Qutput-size sensitive algorithms for constructive problems in computational geometry. Ph.D.
thesis. Technical Report TR 86-784, Dept. Computer Science, Cornell University, Ithaca, NY, 1986.

G. Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17-48, 1985.

Received July 31, 1997, and in revised form March 8, 1998.

