EXTREME POINTS AND ADJACENOY
RELATIONSHIP IN THE FLOW POLYTOPE

G. GarLro (!) - C. Sopint (3

AssTracT - Extreme flows, that is extreme points of the feasible set for network flow
problems, play a fundamental role in most optimization problems. The adiacency
relation between extreme flows is investigated, and a theorem is stated, which, for
any extreme flow on a given network, defines a one-to-one correspondence between
the set of its neighboring extreme flows and a set of cycles.

1. Introduction,

Let G (N, A, b) be a capacitated nectwork, with N={1,2,...,n} the set
of nodes, A={ay, a4, ..., ¢} the set of arcs and b the m vector of capacities; let
node 1 and node n denote the source and the sink respectively. The set of
feasible flows, xe R™, of given value v is the polytope defined by:

(1.1) x<b

where E, a (n—1) x m matrix, is the node arc incidence matrix with the last
row dropped, e is a (1—1) vector with v as first component and O elsewhere.
Such a polytope will be referred to as the Flow Polytope, and its extreme points
will be called Extreme Flows.
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A variety of real lifc problems lcads to the minimization of a function f (x)
over the Flow Polytope. In most cases J (x) is a quasi concave function, which
implics that there cxists at least an extreme flow on which f (x) attains its mini-
mum. Hence the set of extreme flows plays @ major role in such minimization
problems.

A characterization of such set can be found in Zangwill (1968) for the
uncapacitated case, in Roy (1970) and Florian et al. (1971) for the capacitated
onc. An analysis of corrispondences between concepts from Flow Network
Theory and from Convex Polytope Theory can be found in Dantzig (1963),
Johnson (1966), Hartmann (1972) and Maicr (1973). In the present paper our
main concern is to characterize the sct of extreme flows from the point of view
of the adjacency relation. The relationship between pairs of adjacent exirdiic
flows and cycles in the network is investigated. Such a relationship is formally
stated in Theorem 3.2.

An algorithm, which finds al the vertices adjacent to a given vertex of the
flow polytope, is presently being implemented and tested. A description of such
an algorithm together with the results of a wide numerical cxperimentation,
will be contained in a forthcoming companion paper.

~ o

2. Basic definitions. Y pvr A av

-
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Given a flow x on the network G=(N, A, b), we partition the set of arcs
A in the following two subsets:

A (x):{a,EA: 0<x,~<b,-}
A (x)=A—A ().
The arcs of A; (x) will be called floating arcs, while the arcs of A, (x) will be
called blocked arcs.

If ACA, G (A) will denote the graph induced by A, that is the graph with

A as the set of arcs and N = {i: either (i,j) € A, or () € A} as the
set of nodes. We will call chain a sequence y=(iy, &, ... , i,) of nodes of G, such
that, for k=1,2, ... »r—1, either (ix,ir,)€A, or Gren, i) €A. If f=i,, the
sequence will be called a cycle.

Given a chain (cycle) y let us define:

AT (r)={a;€A: aj=(i, its:) for some k, 1<k<r—1}

A~ (MN={a;eA: g;=(ixy1, ix) for some k,1<k<r—1}

et -

and adjacency relationship
A(=4+()

The arcs of A~ (y) will be called forward :
be called reverse arcs of y.
A chain (cycle) y for which A~ (y)=
To cach chain (cycle) y an m vector p

1 if
wn=1{ 0 if
\—1 i

Given the sequence v, let —y denot

Clearly p (—y)=—p (7).
An m vector x such that Ex=e¢ (E:

flow) if therc exists a chain (cycle) y s

xi#0<:>a,

If the chain (cycle) is a path (circuit) an
a path flow (circuit flow).

It is well known that there is a one-t
bases of E and the set of spanning trees
call Ty the relative spanning tree ().

3. Adjacent extreme flows.
We give first a Theorem which is

Tueorem 3.1. A flow x is an extre
by A; (x) does not have any cycle.

From Theorem 3.1. it follows the 1
case, that is:

CoroLLARY 3.1. A flow x is an cx
il and only if it is a path flow.

(3) For notations and concepts concerr
treme points, adjacent cxtreme points, etc.)
other standard Linear Programming textbo
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A(=A"(nUA~ ().

The arcs of A~ (y) will be called forward arcs of v, while the arcs of A~ (y) will
be called reverse arcs of 7.
A chain (cycle) y for which A~ (y)=® will be said to be a path (circuit).
To each chain (cycle) ¥ an m vector u (y) will be associated with components

1 if aeA*(y)
i (y)= 0 if a¢A(y)
, ' ol
=1 if weA (). Ny, /19.»:';*’('7 :

Given the sequence y, let —y denote the sequence (i, i,_y, ... , 0.

Clearly i (—y)=—p (y).

An m vector x such that Ex=e (Ex=0) will be called chain flow (cycle
flow) if there exists a chain (cycle) v such that

Xi+0 = a€A (y).

If the chain (cycle) is a path (circuit) and x>0, the flow will be referred to as
a path flow (circuit {low).

It is well known that there is a ane-to-one correspondence between the set of
bases of £ and the st of spanning trees of G. Given a basis By oF Twe will

call T3 the relative spanning tree ().

T om puzaled g 10 Yo sowt shod rij\r\k((‘\

3. Adjacent extreme flows.

[y

1
We give first a Theorem which is reported in [2] and [6]. &_\m o \
Pr{) Ve e
Tueorem 3.1, A flow x is an extreme flow if and only if the graph induced &~ O
by A (x) does not have any cycle. <- AT O
From Theorem 3.1. it follows the result given in [7] for the uncapacitated
case, that is: Vet
s
. CoroLLARY 3.1. A flow x is an extreme flow for an uncapacitated network (_,(LQW iof\ » \r} ‘
il and only if it is a path flow. A \<\(\0'l\ i
S
- AR
E‘B

(® For notations and concepts concerning polyhedral sets (bases, basic solutions, ex-
treme points, adjacent extreme points, etc.) the reader may refer either to [1] or to anv
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In order to characterize the extreme flows adjacent to a given extreme
flow x°, we need some intermediate results.

Let us consider a basis Ez of E and the relative spanning tree T'.

We can assume without any loss of generality, that Es contains the last
n—1 columns of E, that is T is the graph induced by arcs from @m-ns2 t0 dm.

Let us cally y° the chain from node 1 to node n in T, and ¥ the cycle
obtained by addi9ﬁon of a; to Ts, with a; as a forward arc, for i=1.2,..m—n-+1.

LEmMMA 3.1. For any #, i=1,2,..,m—n+1, the vector:

m—ni-1 )
x=vp () + -21 tip (y)

is a solution for Ex=e.

PRroor: Since v (y°) is a chain flow and # () a cycle flow for any
i=1,2,..,m—n+1, it is

m—n+1
Ex=E (v (y")+ Z Ep (rN=e

and the lemma is so proven. OJ
Let us write

El v, E= [EN, EB]

iy ¢ _
MY)_[#B (Yi)l’ ‘=

where ¢, for i+0, is the " unit vector, £=0 and p; (v") is the portion of u (v
corresponding to the last n—1 arcs, that is to the arcs of Ts.

LEMMA 3.2, Let Ex®, k=1,2,...,m—n+1, denote the k" column of
Ey, then

ts (YY) = —Es ' Ex*®
us (YD =Es'¢€.
ProoF: For any ¢ it is:

m—n-1

E(@u"+ .-.—-21 tip(y)=e

m—n-+1 m—n-4

1
EvC Z )+ Esops O+ It (YD=e'v
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m—n41 m—n41

v s (Y)+ '21 tips (Y)=vEs e — ‘{l L (Ep~' Ex).

Hence:

us (Y)=Ep~! ¢!

Us (Y¥)= —Ep~1 Exth, k=1,2, ..., m—n+1. O

Let us now rewrite constraints (1.1) as

D, x+D, y=d
3.1

x=0, y=0

where y is the vector of slack variables, and

SHSH

with I,, the unit matrix of order m.
A basis for (3.1) is:

Eg C’ 0
DB: In—l 0 In—l
O 1m-n+l 0

where Ejp is a basis for £ and ¢'= [En, 0] with Exy a submatrix of En. The
non basic part of [D,, D;] is:

CII
DNI 0
Im—n+l

where C”= [0, Ex;], with Exs denoting the non basic part of E. By properly
reordering the variables, (3.1) can be written as:

(3.2) DN[ z”] +DB[ x”] =d
N

hZ:]

X8, ¥, Xy, yn=0.




282 G. GaLLo - C. Sobini: Extreme points

It is:
Es' 0 —Ep™'
Dy'=1{ o 0 -
—Eg7t I, Eg~'C’

EB_I (C//_Cl)
Dy‘l Dy=

Im—nH

—Eg~' (C"=(C)
C'—C'= [—Eni, Exa].

Let now assume without any loss of generality that Ey; contains columns from
1 to rof E, and Ey; columns from r+1 to m—n+1. We can now write (3.1) as:

X xO r —Eﬁ_l EN(k) i—11-}1 EB—I EN(k)
(3.3) [ i =[yoBl - X et Ve— X et Xk
Y B k=1 Ep! Ey® k=r+1 —Ep-! Ey®

X8, Y8, Xt, Yyr =0

where Ex® is the k™ column of Ey, x, and yr are flow and slack relative to arc
k respectively, and:

0
[“‘ =Ds"'d.

Vs

From Lemma 3.2 and from (3.3), remembering that x; is a (1—1+4r) vector
with components from M—n+2to m of x in the first n— | positions and with
components from 1 to r of x in the last r positions, it follows that any feasible
flow x can be written as:

’x.v°—0,- l:l, ey I
0 i=r+1,..,m—n+1
(34) xi=
r m—n1
= T Y0+ > i (¥ 6, iI=m—n+2, ... m
k=1 k=r+1

where 4;, i=1,2, e sM—n-4-1, are nonnegative parameters. In 4 more compact
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form (3.4) can be written as: 6

r m—mn1 /
(3.5) x=xX"— X p(yYN0+ = u(y*) b
k=1 k=r41

It is easy to sec that an extreme flow adjacent t can be obtained by giving
value zero to all the parameters §, but o ¥ 6, which will be given a value:

5‘(—)/") if 1<h=<r

h

- CXC) if r+1<h<m—n+1

We can state now the following theorem which characterize the adjacency
relation on the Flow Polytope.

THEOREM 3.2. Let x° be an extreme feasible flow and y a cycle with & (y)>0.
Then x'=x"4-u (y) 6 (y) is an extreme flow adjacent to x* if and orlly if the
graph induced by A ()7) U A; (x°) does not have cycles distinct from 7.

PROOF: = We prove first the necessity. Let *'=x"+u ()8 (y) be an
extreme flow adjacency to x°. By hypothesis there exists a basis corresponding to
X°, with T as associated spanning tree, and an ax¢T, such that:
either

X=x"—p (Y9 6 (—yh)
or

M= (M) 6 (vH
where y* is the cycle obtained by addiction of a; to T. From the definition
of x' it follows that: ,
either
LM EM=—u "8 (—vH
or
1) 8 (N=p ("3 (r".

Since the vector x(-) has components —1,0,1 and by definition é(-) is a
non negative scalar, it follows that:

either

S(N=6(~vY, and p()=—p(r"
or

S(M=8(", and p @) =p (".
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Then the cycle 7 except for the orientation js equal to cycle y* and is
the only cycle of the &raph induced by 4 (N UA; ).

<= Let us now assume that the graph induced by A (;)UA; () has y_as its

We prove first that xi=x"4pu G)w?(;) is an extreme flow, By definition
of 8 (y) there exists an arc a,eA (y) such that either x,'=0 or xx'=b,. Then
a¢ A (x) and the graph induced by A, (x") does not contain 1y, Since
AL(x)<A (y) U 4, (x"), and ¥ is the unique cycle of the graph induced by

A ()_f)UAl (x9), the graph induced by Ai (x") does not have any cycle, and, by
Theorem 3.1, x! is ap extreme flow.,

Let us now prove that x' is adjacent to x0. Let aie A (v) be an arc such
that either xd=b; or x=0, and T be a spanning tree associated to the buasic
solution x°, which contains all the arcs of A ()7) but a; (%), It is always possible to
find such a Spanning tree, by adding to the graph induced by 4 (Y)U A, () ~{a},
which, by hypotesis, does not contain sycles, a proper, may be empty, subset
of A, (x).

Let us consider the extreme flow adjacent to x0 defined by:

— |+ (Y 8 (vh), if x’=0
X

L (¥% 8 (—y%), if x'—p,

where y* is defined as usual, after T and @i From the definition of y*, being
S(Y)>0, it follows that:

y=1v*, if x0=0
}72—‘)/", if xkO:bk
hence:
X4y 8 (v, if x’=0

X=X4u(y) § ()=
XO—,U (y") 5(—‘)’,‘), if xk”:bk

from which it follows that x'=x, and the proof is completed, [J

The results of Theorem 3.2 can be restated for the uncapacitated case as
follows:

(Y) Notice that, because of degeneracy, many distinct bases and hence many distinct
spanning trees may correspond to the same basic solution,.
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CoroLLARY 3.2. Let x' and x* be two path flow on an uncapacitated
network G, y' and y? be the corresponding paths. Then x' and x* are adjacent
extreme flows if and only if the graph induced by A (y)UA (¥?) contains,

except for the orientation, only one cycle.

CoroLLARY 3.3. In an uncapacitated network any two path flows, such
that their paths have in common only the origin and the destination, are adjacent

extreme flows.

4. Numerical example.

Let us consider the network of fig. 1, on which each arc has been assigned
a pair of values (cj;, x%), the capacity and flow respectively.

(6,3)

3,3)

fig. 1

Since the graph induced by the set of floating arcs (thick arcs in figure) is a

tree, the flow x°=(x%) is an extreme flow.
Let us consider the cycles y'=(3,4,6,5,3) and y’'=(2,4,5,2) with

S (r)=8(y")=2.
Let us call x” and x” the flows obtained by superimposing to x° the cycle

flows 2 (") and 2u (y") respectively.
In fig. 24 and fig. 2 b flows x” and x”, with the relative set of floating arcs,

are indicated.

(a) (b)
fig. 2
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Both x’* and x” are extreme flows since the graphs induced by A1 (") and
by A, (x") are trees.

The graphs induced by A (rYU A, (x" and by A (r")U A4, X are given
in fig. 34 and in fig. 38 respectively,

@ (4)

(a)

Clearly the former 8raph does not contain any cycle but *y, while the
latter does; then by theorem 32 ¥ is an extreme flow adjacent to X’ while 3~
is not, This can be checked by considering the tableaux of the equality

In table I, for each of the basijc solutions X’ %" and X7, a row is added
which contains 5 ‘B’ in correspondence of the columns which, because of positi-

which cannot stay in the basis, because of linear dependence. The €mpty entries
are effect of the degeneracy.

It is easy to check that j¢ js possible to find 4 basis corresponding to x9 and
a basis corresponding to 4’ which differ for only one column. The same js not
true for ¥* and for X" in fact the columns relatjye 1o x»5 and to Y+« are in basjs
for ¥ and are out of basis for any basis correspondent to x*.
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