Algorithms on Circular-Arc Graphs

F. Gavril Syracuse University Syracuse, New York

ABSTRACT

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if and only if the corresponding sets intersect. The intersection graph of a family of arcs on a circularly ordered set is called a circular-arc graph. In this paper we give a characterization of the circular-arc graphs and we describe efficient algorithms for recognizing two subclasses. Also, we describe efficient algorithms for finding a maximum independent set, a minimum covering by cliques and a maximum clique of a circular-arc graph.

1. INTRODUCTION

In this paper we consider only finite graphs G(V), with no parallel edges and no self-loops, where V is the set of the graph vertices. Two vertices of G connected by an edge are called adjacent vertices. A subgraph of G is a graph determined by a subset of V, two vertices of the subgraph being adjacent if and only if they are adjacent in G. A set of G vertices is called independent if no two of its elements are adjacent. A maximum independent set is one with the largest number of vertices of all independent sets. The number of vertices in a maximum independent set will be denoted by G(G). A clique is a maximum completely connected set of vertices; a maximum clique is one with a maximum number of elements. The number of vertices in a maximum clique will be denoted by G(G). The set of vertices adjacent to a vertex V is denoted F or a set F or a set F or a set F is the number of its elements. For two sets F is

Networks, 4: 357-369

[©] by John Wiley & Sons, Inc.

the set of elements of A which are not in B. Throughout the paper, we will assume that the graph G(V) has n vertices denoted V = $\{v_1, \ldots, v_n\}$.

The matrices we deal with in this paper are (0,1)-matrices. For a graph G(V) and a family A_1,\ldots,A_k of subsets of V, we will denote by $\mu(A_1,\ldots,A_k)$ the k × n matrix whose entry <i,j> is l if v_j ϵ A_i , and 0 if v_j ϵ A_i .

Consider a finite family of non-empty sets. The *inter-section graph* of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if and only if the corresponding sets intersect. The intersection graphs of families of sets with a defined topological pattern have applications in genetics, psychophysics, archeology and ecology. The paper [8] is a survey of problems and applications of the different intersection graphs. For example, the intersection graph of a family of intervals on a linearly ordered set is called an *interval graph* (see [1]-[3]).

The intersection graph of a family of arcs on a circularly ordered set is called a circular-arc graph. For example, the graph of Figure la is a circular-arc graph represented by the family of arcs $F = \{\bar{v}_1, \ldots, \bar{v}_8\}$ of Figure lb. The problem of characterizing the circular-arc graphs first appeared in [7]. Klee discussed in [8] some problems related to this subject. Tucker [9] characterized the circular-arc graphs by means of their adjacency matrices, and asked for a recognition algorithm, yet unknown.

A graph is called a \land circular-arc graph if it is the intersection graph of a family of arcs on a circle, so that for three arcs, if every pair intersects then the intersection of the three arcs is non-empty. A graph is called a θ circular-arc graph if it is the intersection graph of a family of arcs on a circle so that for every clique, the intersection of the arcs corresponding to the vertices of the clique is non-empty. Clearly, a θ circular-arc graph is also a \land circular-arc graph. Consider the graph in Figure 1a. The set $\{v_1, v_2, v_3, v_4\}$ is a circuit without diagonals which can be represented only by the arcs $\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4$ as in Figure 1b. For representing the clique $\{v_5, v_6, v_7, v_8\}$ by four arcs with a non-empty intersection, it is necessary that the arc \cap \bar{v}_1 should intersect one of the arcs $\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4$. Hence, one of the vertices v_1, v_2, v_3, v_4 must be

hout the ices de-

1)-matrices.
f V, we
ntry <i,j>

e interting each
edge if
ntersection
l pattern
logy and
applications
the interordered

circularly mple, the ed by the oblem of

in [7]. subject. neans of a algorithm,

is the so that for ection of rircularof arcs on of the non-empty arc graph.

y is a ly by the the clique tion, it is

the arcs

must be

connected to all the vertices v_5, v_6, v_7, v_8 . Thus the graph in Figure 1a is a Δ circular-arc graph which is not a θ circular-arc graph.

The purposes of this paper are to describe efficient algorithms for:

- (i) Recognizing the Δ and θ circular-arc graphs and constructing the corresponding families of arcs.
- (ii) Finding a maximum clique, a maximum independent set and a minimum covering by cliques of a circular-arc graph.

(b)

Fig. 1

A graph is called *chordal* if every simple circuit with more than three vertices has an edge connecting two non-consecutive vertices. Efficient recognition algorithms of these graphs are described in [3] and [5]. The number of cliques of a chordal graph is at most as the number of its vertices (see [3] and [4]). Let us denote an oriented edge from u to v, by $u \rightarrow v$. An orientation of a graph is called an *R-orientation* if it has no directed circuits and for every three vertices u,v,w, if $u \rightarrow v$ and $u \rightarrow v$, then either $u \rightarrow v$ or $u \rightarrow v$. In [3] and [5] it is proved that a graph is chordal if and only if it is *R*-orientable. The interval graphs are chordal (see [1] and [2]). We can obtain

an R-orientation of an interval graph, in n^2 steps, as follows. Consider an interval graph G and its representing family of intervals F. Without loss of generality, we can assume that the intervals of F have no common endpoints. Then, for two adjacent vertices u,v of G we orient $u \rightarrow v$ if and only if the left endpoint of u appears on the left of the left endpoint of v. Clearly, this is an R-orientation of G. By the algorithms described in [4], based on the R-orientation, we can find a maximum clique, a maximum independent set, a minimum covering by cliques, and the set of cliques of an interval graph. For an interval graph, the intersection of the intervals corresponding to the vertices of a clique is a non-empty interval (see [1] or [21]).

Consider a matrix written on the lateral surface of a cylinder, so that the rows are generating lines. The matrix has a circular 1's form if the 1's in each column appear in a circular consecutive order. A matrix has the circular 1's property if by a permutation of the rows it can be transformed into a matrix with a circular 1's form. Tucker [9] described an efficient algorithm for constructing a circular 1's form of a matrix,

if one exists. His algorithm takes at most m³ steps, where m is the number of columns in the matrix.

Without loss of generality, we can assume that the families of arcs (on a circle) we deal with are chosen so that the arcs are open, no two arcs have a common endpoint, and none of the arcs covers the whole circle. By an arc $\alpha=(e,f)$, we mean the arc beginning in e and continuing in clockwise direction until f; e will be called the left endpoint of α and f will be called the right endpoint of α . Consider a circular-arc graph G and its representing family of arcs F. We will assume that the union of the arcs of F covers the circle, for otherwise G is an interval graph. Thus we will consider only connected graphs. The corresponding arc in F of a vertex V of G will be denoted by \overline{V} .

circuit with more non-consecutive these graphs are es of a chordal (see [3] and [4]). u + v. An orienfit has no di-,v,w, if u + v and [5] it is proved-orientable. The We can obtain

teps, as follows.
ing family of
an assume that the
, for two adjacent
if the left endpoint of v.
e algorithms decan find a maxium covering by
graph. For an
als corresponding
erval (see [1] or

surface of a
s. The matrix has
appear in a circular 1's property
sformed into a
escribed an effis form of a matrix,
steps, where m is

that the families so that the arcs and none of the e,f), we mean the direction until f will be called arc graph G and sume that the otherwise G is an nnected graphs. will be denoted

2. CHARACTERIZATION OF THE CIRCULAR-ARC GRAPHS

Let G(V) be a circular-arc graph and F its family of representing arcs. Two arcs $\bar{v}_i, \bar{v}_j \in F$ are called *overlapping* if they intersect and no one is contained in another. Consider the set $S = \{s_1, \ldots, s_r\}$ of all the arcs on the circle, such that every $s_i, 1 \le i \le r$, satisfies:

- (i) s_i does not contain endpoints of the arcs of F;
- (ii) s_i is an arc of F or is the intersection of two overlapping arcs of F.

The set S will be called the set of primitive arcs for F. Clearly, every arc of F contains a primitive arc, and every two different primitive arcs have an empty intersection. For every $1 \le i \le r$, denote $V_i = \{v \mid v \in V, s_i \subseteq \overline{v}\}$.

Lemma 1: Let G(V) be a circular-arc graph and F its representing family of arcs. Then $\mu(V_1,\ldots,V_p)$ has the circular 1's property.

Proof: Without loss of generality we can assume that the primitive arcs s_1, \ldots, s_r appear in a circular consecutive order. Hence, every arc \bar{v}_j contains a circular consecutive sequence of primitive arcs. But $s_i \subseteq \bar{v}_j$ if and only if $v_j \in V_i$. Thus the 1's in the column j of $\mu(V_1, \ldots, V_r)$ appear in a circular consecutive order. Therefore, $\mu(V_1, \ldots, V_r)$ has a circular 1's form.

O.E.D.

A family A_1, \ldots, A_k of completely connected sets of a graph G(V) is called a *covering system*, if it satisfies: $V = \bigcup_{i=1}^k A_i$; if $i \neq j$ then $A_i \not\subseteq A_j$; for every two adjacent vertices u, v there exists a set A_i containing them.

Theorem 1: A graph G(V) is a circular-arc graph if and only if it has a covering system A_1, \ldots, A_k such that $\mu(A_1, \ldots, A_k)$ has the circular 1's property.

Proof: Assume that G(V) is a circular-arc graph and F is the representing family of arcs. Clearly, the family V_1, \dots, V_k defined as above, is a covering system, and by Lemma 1, $\mu(V_1, \dots, V_k)$ has the circular 1's property.

Conversely, let A_1, \dots, A_k be a covering system of G, so that $\mu(A_1, \dots, A_k)$ has the circular 1's property. Without loss of generality we can assume that the matrix has a circular 1's form. Denote k points consecutively in the clockwise direction on a circle, by 1,2,...,k. We construct the family F as follows. Let the 1's in a column i appear in a circular consecutive order in clockwise direction between the rows m and p, inclusively. If $m \neq 1$, then $\bar{v}_i = (m-1,p)$ ϵ F and if m = 1, then $\bar{v}_i = (k,p)$ ϵ F. If the column i contains only 1's then $\bar{v}_i = (k,k)$ ϵ F. Two vertices v_i, v_j ϵ V are adjacent if and only if there exists an ℓ , $1 \leq \ell \leq k$, such that $v_i, v_j \in A_\ell$, hence if and only if $\bar{v}_i \cap \bar{v}_j \supseteq (\ell-1,\ell)$. Therefore, G is the intersection graph of F. Q.E.D.

A covering system of the graph of Figure la is:

$$\begin{array}{l} \mathbf{A}_1 = \{\mathbf{v}_1, \mathbf{v}_4, \mathbf{v}_6, \mathbf{v}_7\}; \ \mathbf{A}_2 = \{\mathbf{v}_1, \mathbf{v}_5, \mathbf{v}_6, \mathbf{v}_7\}; \ \mathbf{A}_3 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5, \mathbf{v}_7\}; \\ \mathbf{A}_4 = \{\mathbf{v}_2, \mathbf{v}_5, \mathbf{v}_7, \mathbf{v}_8\}; \ \mathbf{A}_5 = \{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_5, \mathbf{v}_8\}; \ \mathbf{A}_6 = \{\mathbf{v}_3, \mathbf{v}_5, \mathbf{v}_6, \mathbf{v}_8\}; \\ \mathbf{A}_7 = \{\mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_6, \mathbf{v}_8\}; \ \mathbf{A}_8 = \{\mathbf{v}_4, \mathbf{v}_6, \mathbf{v}_7, \mathbf{v}_8\}. \end{array}$$

A circular 1's form of $\mu(A_1,\ldots,A_8)$ is given in Figure 2a. In Figure 2b we see the representing family of arcs, constructed by the above method.

	V _I	v ₂	v ₃	٧4	V ₅	v ₆	٧,	٧ ₈
1	1	0	0	1	0	1	1	0
2	1	0	0	0	1	1	1	0
3	1	1	0	0	1	0	ı	0
4	0	1	0	0	1	0	ı	-
5	0	1	ı	0	ı	0	0	- 1
6	0	0	ı	0	1	F	0	- 1
7	0	0	ı	1	0	l	0	-
8	o	0	0	1	0	ŀ	1	ı
	-			(a)				-

Fig. 2

3, so

tar 1's irection follows. ive order ively. (k,p) & F.

Two ver-

3 an l,

iph of F.

Q.E.D.

77[}];
78[}];

2a. In

ructed

3. RECOGNITION ALGORITHMS FOR THE Δ AND θ CIRCULAR-ARC GRAPHS

Consider a graph G(V), $V = \{v_1, \dots, v_n\}$. For every vertex v_i , let G_i denote the subgraph defined by $\Gamma v_i \cup \{v_i\}$. Let C_1^i, \dots, C_k^i be all the cliques of G_i . We will denote the maximal elements of $\bigcup_{i=1}^n \{C_1^i, \dots, C_{k_i}^i\}$ by D_1, \dots, D_k .

Consider a Δ circular-arc graph G(V) and its representing family of arcs F. For every vertex \mathbf{v}_i , denote:

$$\mathbf{F}_{\mathbf{i}} = \{\tilde{\mathbf{v}}_{\mathbf{j}}^{\mathbf{i}} | \tilde{\mathbf{v}}_{\mathbf{j}}^{\mathbf{i}} = \bar{\mathbf{v}}_{\mathbf{i}} \cap \bar{\mathbf{v}}_{\mathbf{j}}, \mathbf{v}_{\mathbf{j}} \in \Gamma \mathbf{v}_{\mathbf{i}} \cup \{\mathbf{v}_{\mathbf{i}}\}\}.$$

For two adjacent vertices $\mathbf{v_j}, \mathbf{v_k} \in \Gamma \mathbf{v_i}$, we have $\mathbf{\bar{v_i}} \cap \mathbf{\bar{v_j}} \cap \mathbf{\bar{v_k}} \neq \emptyset$, by the definition of the Δ circular-arc graphs, thus $\mathbf{\bar{v_j}} \cap \mathbf{\bar{v_k}} \neq \emptyset$. Therefore, $\mathbf{G_i}$ is the intersection graph of $\mathbf{F_i}$, and $\mathbf{F_i}$ is a family of arcs which does not cover the whole circle. Hence, $\mathbf{G_i}$ is an interval graph. Thus if \mathbf{G} is a Δ circular-arc graph, then every $\mathbf{G_i}$ is an interval graph, and hence every $\mathbf{G_i}$ is chordal.

Theorem 2: G is a Δ circular-arc graph if and only if $\mu(D_1, \ldots, D_k)$ has the circular 1's property.

Proof: Let G(V) be a Δ circular-arc graph, and F its representing family of arcs. Consider the set of primitive arcs $S = \{s_1, \dots, s_r\}$. For every $1 \le j \le r$, denote $V_j = \{v | v \in V, s_j \subseteq \overline{v}\}$. Clearly, if $v_i \in V_j$, then V_j is a clique of G_i . On the other side, G_i is an interval graph, and the intersection of the arcs representing the vertices of a clique is non-empty and contains a primitive arc. Therefore, V_1, \dots, V_r are exactly all the maximal elements of $\bigcup_{i=1}^n \{C_1^i, \dots, C_{k_i}^i\}$ and by Lemma 1, $\mu(V_1, \dots, V_k)$ has

the circular 1's property. Conversely, consider a graph G such that $\mu(D_1,\ldots,D_k)$ has the circular 1's property. The family D_1,\ldots,D_k is a covering system of G and we can construct to G a family of representing

arcs F as in the proof of Theorem 1. Consider three vertices v_i,v_j,v_k , mutually adjacent. Hence $v_j,v_k \in G_i$ and there exists a clique of G which contains the three vertices. Thus there exist an ℓ , $1 \le \ell \le k$, such that $v_i, v_j, v_k \in D_\ell$. Therefore, by the construction of F, $\bar{v}_i \cap \bar{v}_j \cap \bar{v}_k \supseteq$ (l-1,l) on the circle of Thus, G is a Δ circular-arc graph.

t

P

T.

Si

i٤

A٤ i٤

at

an

al

4.

of

For

Als

Uį

set

the val

eve:

By Theorem 2 , the algorithm for recognizing whether a given graph G is a Δ circular-arc graph works as follows:

We check that every G_i , $1 \le i \le n$, is chordal. For every $1 \le i \le n$, we construct the set $\{C_1^i, \dots, C_{k_i}^i\}$ of the cliques of G_i . Clearly, $k_i \leq n$. Let D_1, \dots, D_k be the maximal elements of $\bigcup_{i=1}^{n} \{C_{1}^{i}, \dots, C_{k_{i}}^{i}\}.$ Then, G is a Δ circular-arc graph if and only if $\mu(D_1,\ldots,D_k)$ has the circular 1's property. A family F of representing arcs of G can be constructed as in the proof of Theorem 1. Since the number of steps required to test chord-

ality is at most n^4 , the above algorithm takes no more than n^5 Consider a graph G, and let $\mathbf{C}_1,\dots,\mathbf{C}_k$ be its cliques.

Theorem 3: The graph G is a θ circular-arc graph if and only if $\mu(C_1,...,C_k)$ has the circular 1's property.

Proof: Assume that G is a θ circular-arc graph and F is the family of representing arcs. By the definition, for every clique $C_{i}, b_{i} = \bigcap_{k} \bar{v} \neq \emptyset$. It is easy to see that b_{1}, \dots, b_{k} is the set

of primitive arcs, and for every $1 \le i \le k$, $C_i = \{v | b_i \subseteq \overline{v}\}$. Thus by Lemma 1, $\mu(C_1, \dots, C_k)$ has the consecutive 1's property.

Conversely, assume that $\mu(C_1, \dots, C_k)$ has a circular 1's The family C_1, \dots, C_k is a covering system of G, and we can construct to G a family F of representing arcs as in the proof of Theorem 1. By the construction of F, for every i, \cap \bar{v} = (i-1,i). Therefore G is a θ circular-arc graph.

Q.E.D.

Clearly $|X| \leq n^2$. If $X = \emptyset$, then by the previous remark $\xi(G) = \alpha(G) + 1$. Let us assume that $X \neq \emptyset$. For every $\langle a,b \rangle \in X$, find a minimum covering by cliques of K(a,b). If for some $\langle a,b \rangle \in X$, $\xi(K(a,b)) \leq \xi(K_r) - 2$, then the minimum covering by cliques of K(a,b) together with $V = V_r$ and $V_r = V_r$ form a minimum covering, with $\xi(K_r) = \alpha(G)$ completely connected sets of G and $\xi(G) = \alpha(G)$. If, for every $\langle a,b \rangle \in X$, $\xi(K(a,b)) > \xi(K_r) - 2$, then, by the previous remark, $\xi(G) = \alpha(G) + 1$. If $\xi(G) = \alpha(G) + 1$, then a minimum covering by completely connected sets of G can be obtained by adding V_r to a minimum covering by cliques of K_r .

The above algorithm requires at most n^5 steps.

5. AN ALGORITHM FOR A MAXIMUM CLIQUE OF A CIRCULAR-ARC GRAPH

Consider a circular-arc graph G(V) and its representing family of arcs F. Every vertex \mathbf{v}_i is represented by an arc $\bar{\mathbf{v}}_i$ = (e_i,f_i). Let

$$X_i = \{v | v \in V \text{ and } e_i \in \overline{v}\} \cup \{v_i\}$$

 $Y_i = \{v | v \in V - X_i \text{ and } f_i \in \overline{v}\}.$

Consider the subgraph M_i defined by X_i \cup Y_i. X_i and Y_i are completely connected sets. Thus the complement M'_i of M_i is a bipartite graph. Therefore, we can obtain a maximum clique of M_i by applying to M'_i the algorithm for finding a maximum independent set, described in [10].

Let C be a clique of G. There exists a vertex \mathbf{v}_i ϵ C such that for any other vertex \mathbf{v} of C, $\bar{\mathbf{v}} \not\subseteq \bar{\mathbf{v}}_i$. Hence, for every \mathbf{v} ϵ C such that $\mathbf{v} \neq \mathbf{v}_i$, there exists \mathbf{e}_i ϵ $\bar{\mathbf{v}}$ or \mathbf{f}_i ϵ $\bar{\mathbf{v}}$. Therefore, C is a clique of \mathbf{M}_i . Thus a maximum clique of the circular-arc graph G can be obtained as follows:

for every v_i , $1 \le i \le n$, construct the subgraph M_i ; for every $1 \le i \le n$, find a maximum clique C_i of M_i ;

a clique with a maximum number of vertices among C_1, \ldots, C_n is a maximum clique of G.

This algorithm required at most n³ steps.

intersects
maximum
. For every

set J by naximum numndent set

by cliques in, is an is a comcovering by lected sets

 $\xi(G)$. Clearly, r a minimum $= C_i - W_r$, vering by $p = \xi(K_r)$. $p = \xi(K_r)$. $p = \xi(G)$ $p = \xi(G)$ $p = \xi(G)$

rcular contl is the
t
to the
points of

ints of and y₂ is

the right endpoint of $t_{\xi(G)}$, since otherwise u_1 or u_2 is not covered by $C_1',\ldots,C_{\xi}'(G)$. Let us assume that there exists a vertex v ϵ W (a $\subseteq \overset{\frown}{v}$) such that $\overset{\frown}{v}$ does not intersect all the arcs corresponding to the vertices of $C_1^{\,\iota}$ and also it does not intersect all the arcs corresponding to the vertices of C_{ξ}^{\prime} (G). Therefore, $v \notin C_1$ and $v \notin C_{\xi(G)}$. Clearly $\overline{v} \subset (x_1, y_2)$. For some j, l < j < ξ (G), C contains v and thus \bar{v} intersects every arc \bar{u} , $u \in C'_j$. Therefore, every arc \bar{u} , $u \in C'_j$, contains x_1 or \textbf{y}_2 and hence $\textbf{c}_j'\subseteq\textbf{c}_1'\cup\textbf{c}_{\xi(G)}'$, contradicting the fact that $C_1',\ldots,C_{\xi(G)}'$ form a minimum covering by completely connected sets of K . Therefore, for every v ϵ W , \vec{v} intersects all the arcs \bar{u} , $u \in C_1'$, or \bar{v} intersects all the arcs \bar{w} , $w \in C_{\xi(G)}'$. For an arc a, denote $V_a = \{v | v \in U_r, a \subseteq \overline{v}\}$. For two arcs a,b, let K(a,b) be the subgraph of K defined by U_r - $(V_a \cup V_b)$. Thus if $\alpha(G) = \xi(G)$, then there exist two arcs $t_1 = (x_1, t^1), t_2 = (t^2, y_2), t^1 \epsilon(x_1, h_1), t^2 \epsilon(h_{r+1}, y_2), \text{ such that}$ $\xi(K(t_1,t_2)) \leq \xi(K_p)-2$, and for every $v \in W_p$, \bar{v} intersects all the arcs \bar{u} , $u \in V_{t_1}$, or \bar{v} intersects all the arcs, \bar{w} , $w \in V_{t_2}$.

The algorithm for finding a minimum covering by cliques of a circular-arc graph G works as follows.

Find a K_r such that $\xi(K_r) = \alpha(K_r) = \alpha(G)$. Let $\bar{u}_1 = (x_1, y_1)$, $\bar{u}_2 = (x_2, y_2)$ be the arcs corresponding to vertices of U_r such that (x_1, h_r) contains no left endpoints of arcs \bar{v} , $v \in U_r$, and (h_{r+1}, y_2) contains no right endpoints of arcs \bar{v} , $v \in U_r$. Let A be the set of all the arcs a, $a = (x_1, y)$, such that y is a right endpoint of an arc of F and $y \in (x_1, h_r)$. Similarly, let B be the set of arcs b, $b = (x, y_2)$, such that x is the left endpoint of an arc of F and $x \in (h_{r+1}, y_2)$. Clearly $|A|, |B| \leq n$. For every arc $a \in A \cup B$, let

 $W_r^a = \{v | v \in W_r, \overline{v} \text{ intersects every } \overline{u}, u \in V_a\}.$ Let $X = \{\langle a,b \rangle | a \in A, b \in B, W_r^a \cup W_r^b = W_r\}.$ cover the whole circle, and there exists an a which intersects no arcs corresponding to vertices of J. Thus J is a maximum independent set of K. Therefore $\alpha(G) = \max_{1 \le i \le 2n} \alpha(K_i)$. For every linterval graph K, we can find a maximum independent set J, by

the algorithm described in [4]. Then, a set with a maximum number of elements among J_1, \ldots, J_{2n} is a maximum independent set of G. This algorithm requires at most n^4 steps.

Let the number of cliques in a minimum covering by cliques of a graph H be denoted by $\xi(H)$. Every K_i , $1 \le i \le 2n$, is an interval graph, and thus (see [4]) $\alpha(K_i) = \xi(K_i)$. W_i is a completely connected set and if we add it to a minimum covering by cliques of K_i we obtain a covering by completely connected sets of G. Hence

$$\xi(G) \leq \min_{\substack{1 \leq i \leq 2n}} \xi(K_i) + 1 = \min_{\substack{1 \leq i \leq 2n}} \alpha(K_i) + 1 \leq \alpha(G) + 1.$$

But $\alpha(G) \leq \xi(G)$. Thus in a circular-arc graph G, $\alpha(G) \leq \xi(G) \leq \alpha(G)+1$.

Consider a circular-arc graph G for which $\alpha(G) = \xi(G)$. There exists an r, $1 \le r \le 2n$, such that $\alpha(K_r) = \alpha(G)$. Clearly, if $v \in U_r$, then $\overline{v} \cap a_r = \phi$ ($a_r = (h_r, h_{r+1})$). Consider a minimum covering by cliques $C_1, \ldots, C_{\xi(G)}$ of G, and denote $C_1' = C_1 - W_r$, for every $1 \le i \le \xi(G)$. Clearly $C_1', \ldots, C_{\xi(G)}'$ is a covering by completely connected sets of K_r and $\xi(G) = \alpha(G) = \alpha(K_r) = \xi(K_r)$. Therefore, every C_1' , $1 \le i \le \xi(G)$, is non-empty and $C_1', \ldots, C_{\xi(G)}'$ form a minimum covering by completely connected sets of K_r . For every $1 \le i \le \xi(G)$, denote $t_1 = \bigcap_{i \in K_r} \overline{v}$. Clearly, $i \nmid j$ implies $v \in C_1'$

 $t_i \cap t_j = \emptyset$. Assume that $t_1, \dots, t_{\xi(G)}$ appear in a circular consecutive order and $t_1, t_{\xi(G)}$ are the neighbors of a_r : t_1 is the neighbor of h_r and $t_{\xi(G)}$ is the neighbor of h_{r+1} . Let $\bar{u}_1 = (x_1, y_1)$, $\bar{u}_2 = (x_2, y_2)$ be the arcs corresponding to the vertices of u_r such that (x_1, h_r) contains no left endpoints of arcs \bar{v} , $v \in u_r$, and (h_{r+1}, y_2) contains no right endpoints of arcs \bar{v} , $v \in u_r$. Then, x_1 is the left endpoint of t_1 and t_2 is

ree vertices
d there exists
Thus there
Therefore, by
the circle of

Q.E.D.
whether a given
s:
l. For every
ne cliques of

al elements of

oh if and only family F of test chord-more than n⁵ cliques.

d F is the or every clique b, is the set

 $v|b_i \subseteq \overline{v}\}.$ l's property.
rcular l's
f G, and we
as in the
every i,
graph.

Q.E.D.

Let G be a θ circular-arc graph with n vertices and F its representing family of arcs. For every clique C of G, \cap \vec{v} is a primitive arc. The number of primitive arcs is at most n. Thus the number of cliques of a θ circular-arc graph is at most n. n. A subgraph of G with k vertices is also a θ circular-arc

graph and thus it has at most k cliques. Let G(V) be a given graph. The algorithm for recognizing if G is a θ circular-arc graph works as follows:

First, we must check that the number of its cliques is at most n. We do this by the algorithm described in [6]. For every $1 \le i \le n$, we construct the set P_i of all the cliques of the subraph G^i defined by the vertices V_1, \dots, V_i . For i = 1, $P_1 = (\{v_1\})$. Assume that P_i was constructed. Find:

$$P'_{i} = \{\{v_{i}\} \cup (C \cap \Gamma v_{i}) \mid \text{ for every } C \in P_{i-1}\}.$$

Then P_i is the set of maximal elements of P'_i \cup P_i. If in any stage i, the number of elements in P_i is more than i, then Gⁱ is not a θ circular-arc graph, G cannot be either, and we stop. Assume that the process ends successfully. Then P_n = {C₁,...,C_k} is the set of cliques of G and k < n. (This process requires at most n steps.) Therefore, G is a θ circular-arc graph if and only if μ (C₁,...,C_k) has the circular l's property. This algorithm requires at most n steps.

4. ALGORITHMS FOR A MAXIMUM INDEPENDENT SET AND A MINIMUM COVERING BY CLIQUES OF A CIRCULAR-ARC GRAPH

Consider a circular-arc graph G and its representing family of arcs F. Let us denote the endpoints of the representing arcs consecutively in the clockwise direction by $h_1, h_2, \dots, h_{2n-1}, h_{2n}, h_1$. For every $1 \le i \le 2n$, denote $a_i = (h_i, h_{i+1})$ and $a_{2n} = (h_{2n}, h_1)$. Also, for every $1 \le i \le 2n$, denote $W_i = \{v | v_E V, a_i \subseteq \overline{v}\}$ and $W_i = V - W_i$. Let $K_i(W_i)$ be the subgraph of G defined by W_i . The set of arcs corresponding to the vertices of W_i does not cover the circle, since a_i is not covered. Thus every K_i is an interval graph. Let $W_i = W_i = W_i$. Clearly, $W_i = W_i = W_i$. Clearly, $W_i = W_i = W_i$.

REFERENCES

- Gilmore, P. C. and A. J. Hoffman, "A Characterization of Comparability Graphs and of Interval Graphs," Canad. J. Math., 16, 1964, pp. 539-548.
- Lekkerkerker, C. G. and J. Ch. Boland, "Representation of a Finite Graph by a Set of Intervals on the Real Line," Fund. Math. Polska Akad. Nauk, 51, 1962, pp. 45-64.
- Fulkerson, D. R. and O. A. Gross, "Incidence Matrices and Interval Graphs," Pacific J. Math., 15, 1965, pp. 835-855.
- 4. Gavril, F., "Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques and Maximum Independent Set of a Chordal Graph," SIAM J. Comput., 1, 1972, pp. 180-187.
- 5. Rose, D. J., "Triangulated Graphs and the Elimination Process," J. Math. Anal. Appl., 32, 1970, pp. 597-609.
- 6. Paull, M. C. and S. H. Unger, "Minimizing the Number of States in Incompletely Specified Sequential Functions," *IRE Trans. on Electronic Computers*, EC-8, 1959, pp. 356-367.
- 7. Hadwiger, H., H. Debrunner and V. Klee, Combinatorial Geometry in the Plane, Holt Rinehardt and Winston, New York, 1964, p. 54.
- 8. Klee, V., "What are the Intersection Graphs of Arcs in a Circle?," Amer. Math. Monthly, 76, 1969, pp. 810-813.
- 9. Tucker, A., "Matrix Characterizations of Circular-Arc Graphs," *Pacific J. Math.*, 38, 1971, pp. 535-545.
- 10. Desler, J. F. and S. L. Hakimi, "On Finding a Maximum Independent Stable Set of a Graph," Proc. of Fourth Annual Princeton Conference on Information Sciences and Systems, Princeton, New Jersey, 1970.

Paper received January 28, 1974.

remark ery (a,b). If minimum a and $V_b \cup W_r^b$ ely connected X_r , $\xi(G) = \alpha(G)+1$. etely connected n covering by

?-ARC GRAPH
>resenting

y an arc

d Y are
of M is a
m clique of
ximum inde-

 v_i ϵ C such or every \bar{v} . Therefithe

1 M_i;
>f M_i;
...,C_n is a

Supported by the Rome Air Development Center under Contract F30602-72-C-0281.