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ABSTRACT

Consider a finite family of non-empty sets. The Ainten-
section ghaph of this family is obtained by representing each
set by a vertex, two vertices being connected by an edge if
and only if the corresponding sets intersect. The interseetion
graph of a family of ares on a etreularly ordered set is called
a cirewlar-are graph. In this paper we give a characterization
of the circular-are graphs and we describe efficient algorithms
for recognizing two subelasses. Also, we describe efficient
algorithms for finding a maximum independent set, a minimum
covering by cliques and a maximum elique of a eireular-are
graph.

1. INTRODUCTION

In this paper we consider only finite graphs G(V), with
no parallel edges and no self-loops, where V is the set of the
graph vertices. Two vertices of G connected by an edge are
called adjacent vertices. a subgraph of G is a graph determined
by a subset of V, two vertices of the subgraph being adjacent
if and only if they are adjacent in G. A set of G vertices is
called independent if no two of its elements are adjacent. A
mazximum independent set is one with the largest number of ver-
tices of all independent sets. The number of vertices in a
maximum independent set will be denoted by a(G). A elique is
a maximal completely connected set of vertices; a maximum clique
is one with a maximum number of elements. The number of ver-
tices in a maximum clique will be denoted by B(G). The set of
vertices adjacent to a vertex v is denoted Tv. For a set A,
IAI is the number of its elements. For two sets A, B, A-B is
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358 GAVRIL

the set of elements of A which are not in B. Throughout the
paper, we will assume that the graph G(V) has n vertices de-

noted vV = {vl,...,Vn}.

The matrices we deal with in this paper are (0,l)-matrices.
For a graph G(V) and a family Al,...,Ak of subsets of V, we

will denote by u(Al,...,Ak) the k x n matrix whose entry <i,j>
is 1 if v, € A,, and 0 if v. * A,. \
J 1 J i

Consider a finite family of non-empty sets. The inter-
section graph of this family is obtained by representing each
set by a vertex, two vertices being connected by an edge if
and only if the corresponding sets intersect. The intersection
graphs of families of sets with a defined topological pattern
have applications in genetics, psychophysics, archeology and
ecology. The paper [8] is a survey of problems and applications
of the different intersection graphs. For example, the inter-
section graph of a family of intervals on a linearly ordered
set is called an interval graph (see [1]1-[3]).

The intersection graph of a family of arcs on a circularly
ordered set is called a circular-arc graph. For example, the
graph of Figure la is a circular-arc graph represented by the
family of arcs F = {51,...,38} of Figure lb. The problem of

characterizing the circular-arc graphs first appeared in [7].
Klee discussed in [8] some problems related to this subject.
Tucker [9] characterized the circular—arc graphs by means of
their adjacency matrices, and asked for a recognition algorithm,
yvet unknown.

A graph is called a A circular-arc graph if it is the
intersection graph of a family of arcs on a circle, so that for
three arcs, if every pair intersects then the intersection of
the three arcs is non-empty. A graph is called a 6 circular-
arc graph if it is the intersection graph of a family of arcs
on a circle so that for every clique, the intersection of the
arcs corresponding to the vertices of the clique is non-empty.
Clearly, a 6 circular-arc graph is also a A circular-arc graph.

Consider the graph in Figure la. The set {vl,vz,VB,V4} is a

circuit without diagonals which can be represented only by the
arcs 31,52,93,34 as in Figure lb. For representing the clique

{v5,v6,v7,v8} by four arcs with a non-empty intersection, it is
8

necessary that the arc N ;i should intersect one of the arcs
i=5

v,,v.,v.,v,. Hence, one of the vertices v

177273774 ,v.,v._,v, must be

1’72773 '4
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A graph is called chordal if every simple circuit with more
than three vertices has an edge connecting two non-consecutive
vertices. Efficient recognition algorithms of these graphs are
described in [3] and [5]. The number of cliques of a chordal
graph is at most as the number of its vertices (see [3] and [4]).
Let us denote an oriented edge from u to v, by u > v. An orien-
tation of a graph is called an R-orientation if it has no di-
rected circuits and for every three vertices u,v,w, if u -+ v and
w » v, then either u > w or w > u. In [3] and [5] it is proved
that a graph is chordal if and only if it is R-orientable. The
interval graphs are chordal (see {1] and [2]). We can obtain

an R-orientation of an interval graph, in n2 steps, as follows.
Consider an interval graph G and its representing family of
intervals F. Without loss of generality, we can assume that the
intervals of F have no common endpoints. Then, for two adjacent
vertices u,v of G we orient u > v if and only if the left end-
point of u appears on the left of the left endpoint of v.
Clearly, this is an R-orientation of G. By the algorithms de-
scribed in [4], based on the R-orientation, we can find a maxi-
mum clique, a maximum independent set, a minimum covering by
cliques, and the set of cliques of an interval graph. For an
interval graph, the intersection of the intervals corresponding
to the vertices of a clique is a non-empty interval (see [1] or
[21).

Consider a matrix written on the lateral surface of a
cylinder, so that the rows are generating lines. The matrix has
a eircular 1's form if the 1's in each column appear in a circu-
lar consecutive order. A matrix has the circular 1's property
if by a permutation of the rows it can be transformed into a
matrix with a circular 1's form. Tucker [9] described an effi-
cient algorithm for constructing a circular 1's form of a matrix,

if one exists. His algorithm takes at most m3 steps, where m is
the number of columns in the matrix.

Without loss of generality, we can assume that the families
of arcs (on a circle) we deal with are chosen so that the arcs
are open, no two arcs have a common endpoint, and none of the
arcs covers the whole circle. By an arc a = (e,f), we mean the
arc beginning in € and continuing in clockwise direction until
f; e will be called the left endpoint of @ and f will be called
the right endpoint of @. Consider a circular-arc graph G and
its representing family of arcs F. We will assume that the
union of the arcs of F covers the circle, for otherwise G is an
interval graph. Thus we will consider only connected graphs.
The corresponding arc in F of a vertex v of G will be denoted
by v.
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2. CHARACTERIZATION OF THE CIRCULAR-ARC GRAPHS

Let G(V) be a circular-

1 arc graph and F its family of repre-
senting arcs. Two arcs ViV

5 € F are called overlapping if they
intersect and no one is contained in another.

Consider the set
S = sl,...,sr} of all the arcs on the circle,

such that every
si, 1l <i<r, satisfies:

(i) si does not contain endpoints of the arcs of F;

(ii) si is an arc of F or is the intersection of two

overlapping arcs of F.

The set S will be called the set of primitive arcs for F.
Clearly, every arc of F contains a primitive arc, and every two
different primitive arcs have an empty intersection. For every
1 <i<r, denote v, = {v]vev, s, C v}

Lemma 1: Let G(V) be a circular-

are graph and F its representing
fanily of arcs. Then u(Vj,...,

V}) has the cireular 1's property.

Proof: Without loss of generality

we can assume that the primi-
tive arcs s

1,...,sr appear in a circular consecutive order.

Hence, every arc Gj contains a circular consecutive sequence of

primitive arcs. But s, g;;5 if and only if vj € Vi' Thus the

1's in the column j of u(Vl,...,Vr) appear in a circular consecu-

tive order. Therefore, u(Vl,...,Vr) has a circular 1's form.

Q.E.D.
A family Al,...,Ak of completely connected sets of a graph
k
G(V) is called a covering system, if it satisfies: V = UAa, ;
: i=1

if 1 # j then Ai_l;Aj; for every two adjacent vertices u,v there
exists a set Ai containing them.

Theorem 1: A graph G(V) is a eircular-are graph if and only if
it has a covering system AZ""’Ak such that u(Al,...,Ak) has

the circular 1's property.

Proof: Assume that G(V) is a circular-arc graph and F is the
representing family of arcs. Clearly, the family v ,...,Vk

1
defined as above, is a covering system, and by Lemma 1,

u(Vl,...,Vk) has the circular 1's property.
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Conversely, let Al,...,Ak be a covering system of G, so
that u(Al,...,Ak) has the circular 1's property. Without loss

of generality we can assume that the matrix has a circular 1l's
form. Denote k points consecutively in the clockwise direction
on a circle, by 1,2,...,k. We construct the family F as follows,
Let the 1's in a column i appear in a circular consecutive order
in clockwise direction between the rows m and p, inclusively.

If m + 1, then Gi = (m-1,p) € F and if m = 1, then Gi = (k,p) € F.

If the column i contains only 1's then Gi = (k,k) € F. Two ver-
tices Vi'vj € V are adjacent if and only if there exists an ¢,
1 < % <k, such that Vi'vj € Az, hence if and only if

;i F\Gj D (%-1,%2). Therefore, G is the intersection graph of F.

Q.E.D.
A covering system of the graph of Figure la is:
A = v vgvgvgds By = v vgvgevgdi Ay = vy vpyivgivg ks
A4 = {V21V51V71V8}; A5 = {V21V31V51V8}7 A6 = {V3IV51V61V8};
A, = {V3'V4’V6'v8}; Ag = {v4,v6,v7,v8 .

A circular 1's form of u(Al,...,As) is given in Figure 2a. 1In

Figure 2b we see the representing family of arcs, constructed
by the above method.

’VI VZ Vs V‘ V5 V‘ V7 V° W
Pt (o] [¢] | (] [ | 0
2|1 o] [¢] 0] | | | o]
3|1 | o] o] 1 (o] | o]
4|0 | o) (o] I [¢] I 1
50 | | o] ! o] (o) |
6|0 [o] l [o] 1 | (o] 1
70 0 | 1 (o] | o] |
8 L0 0 (o] 1 I | | ]

(CY (b)
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3. RECOGNITION ALGORITHMS FOR THE A AND 6 CIRCULAR-ARC GRAPHS
Consider a graph G(V), V = {vl,...,vn}. For every vertex

v let Gi denote the subgraph defined by Pvi\J {vi}. Let

i

K be all the cliques of Gi. We will denote the maximal

i

i
Cl,...,C

n i i
elements of U {c ,...,C_ } by D
i=1 X

Consider a A circular-arc graph G(V) and its representing
family of arcs F. For every vertex Vi denote:

1,...,Dk.

~ipai - -
F, = {vjlvj = v, F\vj,vj e I'v, L){vi}}.
For two adjacent vertices Vj’vk € Pvi, we have Girw Gj F\Gk + ¢,

by the definition of the A circular-arc graphs, thus

G;IW V; # ¢. Therefore, Gi is the intersection graph of Fi' and
Fi is a family of arcs which does not cover the whole circle.
Hence, G, is an interval graph. Thus if G is a A eircular-qre i

graph, then every G, 18 an interval graph, and hence every G. é
18 chordal.

Theorem 2: G is a A eireular-are graph if and only if
u(DZ,...,Dk) has the circular 1's property.

Proof: Let G(V) be a A circular-arc graph, and F its represent-
ing family of arcs. Consider the set of primitive arcs

S = {sl,...,sr}. For every 1 < j < r, denote Vj=={vlv€V, st:G}.

Clearly, if v, € Vj' then Vj is a clique of Gi' On the other
side, Gi is an interval graph, and the intersection of the arcs

representing the vertices of a clique is non-empty and contains
a primitive arc. Therefore, Vl,...,vr are exactly all the maxi-

i

n. i
mal elements of L){Cl""'c; } and by Lemma 1, u(Vl,...,Vk) has
i

i=)
the circular 1's property.
Conversely, consider a graph G such that u(Dl,...,Dk) has

the circular 1's property. The family Dl,...,Dk is a covering

system of G and we can construct to G a family of representing
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arcs F as in the proof of Theorem 1. Consider three vertices

Vi’vj’vk' mutually adjacent. Hence vj,vk € Gi and there exists

a clique of Gi which contains the three vertices. Thus there
exist an ¢, 1 < % < k, such that vi,vj,vk e
the construction of F, Gifﬂ ijﬁ Vi 2 (2-1,2) on the circle of

Therefore, by

F. Thus, G is a A Ccircular-arc graph.
Q.E.D.

By Theorem 2, the algorithm for recognizing whether a given
graph G is a A circular-arc graph works as follows:

We check that every G;r1<1i<n, is chordal. For every
1l < i< n, we construct the set {Ci,...,Ci } of the cliques of

i

Gi' Clearly, ki < n. Let Dl""’Dk be the maximal elements of
n i i . . ,
L){Cl,...,Ck }. Then, G is a A clrcular-arc graph if and only
i=]1 i
if u(Dl,...,Dk) has the circular 1's'property. A family F of

represerting arcs of G can be constructed as in the Proof of
Theorem 1. Since the number of steps required to test chord-

. . 4 . 5
ality is at most n » the above algorithm takes no more than n
steps.

Consider a graph G, and let Cl,...,Ck be its cliques.

Theorem 3: The graph G is a 8 cireular-qre graph if and only
if “(Cz""’ck) has the circular 1's property.

Proof: Assume that G is a 0 circular-arc graph and F is the
family of representing arcs. By the definition, for every clique
C/b. = n v d. 1t is €asy to see that b_,...,b, is the set
i1 1 k
veC,
1
of primitive arcs, and for every 1 <i<k, Ci = {V,bi QLV}-
Thus by Lemma 1, u(Cl,..-,Ck) has the consecutive 1's property.
Conversely, assume that u(Cl,...,Ck) has a circular 1's
form. The family Cl,...,Ck is a covering system of G, and we

can construct to G a family F of representing arcs as in the
pProof of Theorem 1. By the construction of F, for every i,
N v = (i-1,i). Therefore G is a 6 circular-arc graph.
veC,
. Q.E.D.
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Clearly |X| §_n2. If X = ¢, then by the previous remark
£E(G) = a(G)+1l. Let us assume that X + ¢. For every

<a,b> € X, find a minimum covering by cliques of K(a,b). If
for some <a,b> € X, £ (K(a,b)) ﬁ_E(Kr)—Z, then the minimum

covering by cligues of K(a,b) together with Va\J Wi and VE\J wb
r
form a minimum covering, with E(Kr) = a(G) completely connected

sets of G and £(G) = a(G). If, for every <a,b> ¢ X,
£ (K{a,b)) > E(Kr)—2, then, by the previous remark, £(G) = a(G)+1.

If £(G) = a(G)+1l, then a minimum covering by completely connected
sets of G can be obtained by adding Wr to a minimum covering by
cliques of Kr.

. \ 5
The above algorithm requires at most n steps.
5. AN ALGORITHM FOR A MAXIMUM CLIQUE OF A CIRCULAR~-ARC GRAPH
Consider a circular-arc graph G(V) and its representing

family of arcs F. Every vertex vi is represented by an arc
Gi = (ei’fi)' Let

It

4 {v|vev and e,ev} L){vi}

Y,
i

{vlveV—X. and £,ev}.
i i

Consider the subgraph Mi defined by Xi\J Yi' Xi and Yi are
completely connected sets. Thus the complement Mi of Mi is a

bipartite graph. Therefore, we can obtain a maximum clique of
Mi by applying to Mi the algorithm for finding a maximum inde-

pendent set, described in [10].
Let C be a clique of G. There exists a vertex v, € C such

that for any other vertex v of C, v g;%i. Hence, for every
v € C such that v + Vi there exists e, € v or fi e v. There-
fore, C is a clique of Mi' Thus a maximum clique of the
circular-arc graph G can be obtained as follows:

for every Vi' 1 ﬁ_i < n, construct the subgraph Mi;

for every 1 < i < n, find a maximum clique c, of M.
a clique with a maximum number of vertices among Cl,...,Cn is a

maximum clique of G. 3
This algorithm required at most n~ steps.
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the right endpoint of tE(G)' since otherwise u, or u, is not

covered by Ci

vertex v ¢ Wr (ar.g;G) such that v doesg not intersect all the

""'Cé(G)' Let us assume that there exists a

arcs corresponding to the vertices of Ci and also it does not

intersect all the arcs corresponding to the vertices of Cé(G)'
Therefore, v ¢ C, and v ¢ CE(G)' Clearly v Cj(xl,yz). For

some j, 1 < j < £(G), Cj contains v and thus v intersects every
arc u, u ¢ c'. Therefore, every arc u, u e C., contains X, or

J
Y, and hence Cé g;ci LJCé(G), contradicting the fact that
]

Ci,...,CE(G) form a minimum covering by completely connected
sets of Kr. Therefore, for every v g Wr, v intersects all the

arcs u, u e Ci, Or V intersects all the arcs W, W e Cé(G)' For

an arc a, denote Va = {vlveUr, a §;3}. For two arcs a,b, let
K(a,b) be the subgraph of K, defined by Ur - (Va U Vb). Thus
1f al(G) = £(G), then there exist two ares

_ 1 .2 1 2
t, = (xz,t )s ty = (¢ ,y2), t e(xl,hr), t e(hr+1,y2), such that

€(K(t1,t2)).§ ECKP)-Z, and for every v ¢ W U intersects all
the arcs 5, u ¢ v

4 s or D intersects all the areg, W, w e Vt .
1 2

The algorithm for finding a minimum covering by cliques of
a circular-arc graph G works as follows.

Find a Kr such that E(Kr) = a(Kr) = 0(G). ILet
Gl = (Xl’yl)’ 52 = (x2,y2) be the arcs corresponding to vertices
of Ur such that (xl,hr) contains no left endpoints of arcs v,
vV e Ur' and (hr+1’y2) contains no right endpoints of arcs v,
v e Ur. Let A be the set of all the arcs a, a= (xl,y), such
that y is a right endpoint of an arc of F and y ¢ (xl,hr).
Similarly, let B be the set of arcs b, b = (x,y2), such that x
is the left endpoint of an arc of F and x € (hr+l'Y2)' Clearly
[A],IBI 2 n. For every arc a ¢ AU B, let

wa
r

{v,vewr, Vv intersects every ﬁ,usVa}.

Let X

a
{<a,b>laeA, beB, Wr\J W: = Wr}.
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cover the whole circle, and there exists an ai which intersects

No arcs corresponding to vertices of J. Thus J is a maximum

independent set of K,. Therefore a(G) = max a(K,). For every
1<i<2n

interval.graph Ki we can find a maximum independent set Ji by

the algorithm described in [4]. Then, a set with a maximum num-

ber of elements among Jl,...,J2n is a maximum independent set

of G. This algorithm requires at most n* steps.
Let the number of cliques in a minimum covering by cliques
of a graph H be denoted by £ (H). Every Ki' 1l <i< 2n, is an

interval graph, and thus (see [41) a(Ki) = E(Ki). Wi is a com-
pletely connected set and if we add it to a minimum covering by
cliques of Ki we obtain a covering by completely connected sets
of G. Hence
£(G) < min g(xi)+1 = min a(Ki)+l < a(G)+1.
1<i<2n 1<i<2n

But a(G) < £(G). Thus in a eircular-are graph G,
alG) < E(G) < a(G)+1.

Consider a circular-arc graph G for which a(G) = E(G).
There exists an r, 1 < r £ 2n, such that a(Kr) = a(G). Clearly,

if v ¢ Ur’ then v F\ar = ¢ (ar = (hr,hr+l)). Consider a minimum

covering by cliques Cl,...,Cg(G) of G, and denote Ci = Ci—Wr,
)

1
completely connected sets of Kr and £(G) = a(G) = a(Kr) = E(Kr)-

for every 1 < i < £(G). Clearly Ci,...,c (@) is a covering by

Therefore, every Ci, 1 <i < E(G), is non-empty and Ci,...,C'

£(G)

form a minimum covering by completely connected sets of Kr. For
every 1 < i < £(G), denote t, = M v. Clearly, i + j implies
veC,
i
£, N tj = ¢. Assume that tl""'tg(G) appear in a circular con-
secutive order and tl'tE(G) are the neighbors of a_: t1 is the

neighbor of hr and t Let

£ (G) 1°
— - - = . + the
uy (Xlryl), u, (x2,y2) be the arcs corresponding to

is the neighbor of hr+

vertices of U such that (xl,hr) contains no left endpoints of
r
arcs v, v ¢ Ur, and (hr+l'y2) contains no right endpoints of

arcs v, v g U .- Then, X, is the left endpoint of t, and y, is
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Let G be a 6 circular-

arc graph with pn vertices and F its
representing family of arcs

- For every clique C of G, NV is
veC
is at most n.
arc graph is at most
a 0 circular-arc

a primitive arc. The number of Primitive arcs
Thus the numper of eliques of a o etreular-
. A subgraph of G with k vertices is also
graph and thus it has at most k cliques.
Let G(V) be a given graph. The algorithm
if G is a ¢ circular-arc graph works as follows
First, we must check that the number of its cliques is at
most n. We do this by the algorithm described in [(6]. For
every 1 < i < n, we construct the set Pi of all the cliques of

the subraph ¢t defined by the vertices v

for recognizing

l,...,vi. For i = 1,
Pl = ({vl}). Assume that Pi-l was constructed. Fing:

Pi = {{vi} L)(CﬂFvi) , for every c ¢ Pi—l}'

Then Pi is the set of maximal elements of P' U P,

i i-1° .
is more than i, then gt

is not a 6 circular~arc graph, G cannot be either, and we
Assume that the Process ends Successfully.

If in any
stage i, the number of elements in Pi

stop.
Then Pn ={cl,...,Ck}
(This process requires

at most n3 steps.) Therefore, G is a g ¢
and only if y(c

is the set of cliques of G and k < n.

ircular-arc graph if
1""’Ck) has the circular 1's broperty. fThig

algorithm requires at most n3 steps.

4. ALGORITHMS FOR A MAXIMUM INDEPENDENT SET AND A MINIMUM
COVERING BY CLIQUES OF A CIRCULAR-ARC GRAPH

Consider a circular-arc graph G and its r

of arcs F. Let us denote the endpoints of the representing arcs
consecutively in the clockwise direction by h h

2n-l'h2n’ 1°
For every 1 < 1 < 2n, denote ai = (hi,hi+l) and a2n = (h2n,hl).

denote W= {leeV,ai C v} and
Ui = V—Wi. Let Ki(Ui) be the subgraph of G defined by Ui' The
set of arcs corresponding to the vertices of

eépresenting family

l,h2,...,h

Also, for every 1 < i < 2n,

Ui does not cover

the circle, since a; is not covered. Thus every Ki is an inter-

val graph. Let J be a maximum independent set of G.
every two vertices u,v ¢ J,uNv =g,

Hence for
Clearly, J does not
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