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“naider a family of chords in a eircle. A cirele graph
iued by representing each chord by a vertex, two vertices
- ~onceted by an edge when the corresponding chords inter-
r this paper, we describe efficient algorithms for find-
- awinwn elique and a maximum independent set of eircle

. Those algorithms require at most ns steps, where n is
“ier of vertices in the graph.

. onds: Cirvele graph, transitive graph, interval graph,
<.titlon graph, overlap graph, maximum elique, maximum inde-
oaet,

INTRODUCTION

'n this paper, we consider only finite graphs with no
=-2ilel edges and no self-loops. The complement of a graph is
» i3 h with the same set of vertices as the given one, two
i oey of the complement being connected if and only if they
7t connected in the given graph. A subgraph of a graph,
"¢ =termined by a subset of the graph's set of vertices, two
=7t o2 of the subgraph being connected by an edge, if and
»7 i! the two vertices are connected in the given graph. A
T vertices in a graph is called independent if no two of
" =lements are connected. a maximum independent set is one
Toithe largest number of vertices of all independent sets.
" 1s a maximal, completely connected set of vertices; a
" elique is one of a maximum size.
”'two vertices u,v are connected by an undirected edge, we
= it by u-v, and if they are connected by a directed edge

Q) TiEs 3 261-273
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262 GAVRIL

from u to v, we denote it by wv. The set of vertices connecteq
to a vertex v is denoted by I'v. In & Airected graph, we denote;
vt = {u|wv}.
For a set A, lAl will denote the number of elements in A.
Consider a system of chords in a circle, and draw a graph
in the following way: every vertex represents a chord, and two
vertices are connected by an edge when the corresponding chords
intersect. A graph which can represent a system of chords in
the above manner is called a eircle graph. For example, the
graph in Figure 1lb represents the family of chords of the circle
in Figure la. The circle graphs were introduced by Even and
Ttai in [1]. These graphs are obtained from permutations, and
the authors showed that the chromatic number of a circle graph
is equal to the minimum number of parallel stacks realizing the
corresponding permutation. We can see the family of chords
also as a system of roads, and then, look for the maximum number
of roads no two of which intersect. We obtain this by finding
a maximum independent set in the corresponding circle graph.

(a) (b)
Fig. 1

The purpose of this paper is to give efficient algorithms
for finding a maximum clique and a maximum independent set of
a circle graph. These problems are not trivial, since there
are families of circle graphs whose number of cliques or inde-
pendent sets grow exponentially with the number of vertices.

n

. no,_. 3

In Figure 2a there are 3 triples of chords {ai’bi’ci}i=l'

i#j, a.sb, and c. intersect a.,b, and c.; but each two of
i1 1 33 J
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ai’bi’ci do not intersect. Every clique of the circle graph
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corresponds to a sequence of chords which contains exactly one
n

: 3 s
chord from every triple, thus, there are 37 cligques. 1In a

wis

similar way. the graph of the family in Figure 2b has 3~ inde-
~endent sets.

Ci bl q,
Qaz Cc
b2
C2

C1E]
o
QWi
wjz

7 XX\

(a)
Fig. 2

consider two chords with a common endpoint in a given
¢amily of chords. We can slightly move one chord without chang-
iny the intersecting relation and the representing graph, so
‘it the two chords do not have a common endpoint anymore.
+herefore, we can assume without loss of generality that no
‘anily of chords, we deal with, contains chords with common end-
toints.

First of all, let us describe some known algorithms that
v will need. A directed graph is transitive if it has no di-
1ected circuits, and for every three vertices u,v,w the exis~
vence of the edges u>v and V2w implies ww. Let G be a transi-
tive graph with n vertices. We can rename the vertices by
t, 2, ..., n so that every directed edge will be directed from
a vertex named with a low number to a vertex named with a high
t.mber. This can be done in the following way. Since G is
finite and has no directed circuits, it must have a sink (a
vertex with no outgoing edges). We take a sink v, and rename
it n. Now, we delete it with its adjacent edges from G; let

. he the remaining subgraph. Gl is also circuit free and we

foname one of its sinks by n-1. By deleting this vertex we
“tain G, and so on. Finally, G is empty. In this way we

rcnimed all the vertices of G so that the edges go from low to
.’.it; .
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In [2], an efficient algorithm is given for finding a maxi. e

if
mum clique of a transitive graph. 1t works as follows. Consid.,

the transitive directed graph G whose vertices were renamed by-‘

1, 2, .-+, D SO that the edges g0 from low to high. Let us de- che
note the subgraph defined on the set of vertices {1,2,...,1}, ~
1<ign by Gl. To every vertex i, we will attach a set of Tht
vertices S,, which is a maximum clique containing 1 in Gl, and R
a number cf{i) = \Si\. Clearly, S; = {1} and c(l) = 1. Assunme th
by induction that sl, 52, eeey Si-—l and c(l), c(2), «.., cli-D ;*'

are known. If T;l = ¢, then Si = {i} and c(i) = 1. 1If rfl £y
i .

-1 . . . . . .
let Fi = {11,...,1k}; clearly iy, iy - i < i. For every 4

, -1 . A . i :
lj € Fi , 1 <3<k Sy U{i} is a clique of G-. For if me 5 ‘
. 3’ .

J ; i

m# i, then m>i. and i.>i; thus, by the transitivity of Gt s
3 J J S

Oon the other hand, every clique containing i of ' is obtained

1.

. . . . -1
by annexing 1 to a clique of G J. Let i € Fi be a vertex fot

which c(ir) = max c(j); hence \Si \ = max \S.\. Then

'eT_l r 'sT—l J

Jely Jeh
Si u{i} is a maximum clique containing i in Gl, and we define

r
cli) = c(ir) + 1, Si =8 U{il. Assume we constructed the
r

sequences c(l), -« c(n) and Sl’ ooy Sn’ and let k be @ veytex

for which c(k) = max c(i). Then Sk is a maximum clique of G
1<i<n

and c(k) is the number of its vertices.

This algorithm can be oxtended to a weighted graph, where
a weight w(i) is assigned to every vertex i, and we 100k for 3 ‘
maximum weight clique (a clique with the maximum sum of the 1
weight of its vertices). In this case we construct the se~
guences c(l), -1 c({n) and Sl’ cens Sn’

py: c(1) = w(l), Sy 7 {1}

-1
i

if T

= ¢ then c(i) = w(i) and S; = {i}s
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r;l # ¢ and for a vertex k, c(k) = max c(3) .

YN

. -1
]eFi

s, = Sy u{i} and c(i) = w(i) + clk)-

~hen i

-ne apove algorithms take no more than n2 steps.

Let a line pe drawn from the left to the right. Consider
, family F of intervals on this line and construct a graph G in
“he following way: every vertex v of G represent an interval
3.7, and two vertices are joined by an edge when the two corres-
~onding intervals intersect. such a graph is called an interval
eh (see [414 [5] and [6]1). Let the graph G' denote the com-
1ement of G- For any edge u-v in G', the intervals u,v are
}szoint; then, we direct wv in g' if and only if u appears to
‘e left of v on the line. This ig a transitive orientation of
v, since it igs circuit free, and also: 1if wv and v»w then v
. disjoint and ijs placed on the left of W, u is disjoint and
. placed on the left of v, thus 3 is disjoint and is placed on
vno left of w, implying u*w. Therefore, the complement of an
.aterval graph is transitively orientable. Clearly, a set of
ortices is an independent set for G if and only if this set is
1 clique for the complement graph G'. Therefore, for finding a
- izimum independent set of G we apply the above algorithm for
¢ .nding a maximum clique of G'.

A graph is chordal, if every simple circuit with more than
inree vertices has an edge connecting two non-consecutive ver-
' ices. These graphs are discussed in [3] and [7]. It is known

wec [4] and [61) ., that every interval graph is chordal. We

-.st remark that the circle graph of Figure 1b is not chordal
-l not transitively orientable, since it contains the pentagon

a,b,c,d,e} as a subgraph. Thus, the algorithms of {21 and [7]
i1 not applicable for the circle graphs.

:. AN ALGORITHM FOR A MAXIMUM CLIQUE OF A CIRCLE GRAPH

Let G be a given graph with k vertices. We say that G is
2 ermutation graph if there exists a permutation P = [pls---,Pk

£s1, 2, «o., k and a relabeling of the vertices of G by
>, ..., k, so that the vertices pi,pj are connected if and

woly if 1> § and p, < Py in P. Consider a permutation graph G

fi‘h the corresponding permutation P and the above relabeling
{ its vertices. Let us direct its edges from low to high.

<ith this orientation, the graph is transitive, since if pP;7Ps,

i,°F, then p, < < i j > ->
¥ P; pj Py and i1 > J k, thus Py Py For
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example, the permutation corresponding to the permutation graph
of Figure 3a is P = [3,6,4,1,5,2]. For the permutation P we cap
draw a matching diagram as in Figure 3b; this is called a permy~
tation diagram. In this diagram, we write on one side of the
dashed line (x,x') the permutation [1,2,...,k], and on the other
side the permutation P. We connect the number i of the first
row with the number i of the second row. Thus, every segment
has one endpoint on each side of (x,x'). It is easy to see that
the vertices pi,pj of the permutation graph are connected if and

only if the segments of P and pj in the diagram, intersect.

Consider now, a circle graph G. Let F be its representing
family of chords, and denote the chord corresponding to the ver-
tex v by v. Denote the subgraph of G on the vertices T'v U{v}
by GV. Since we assumed that there are no chords with common
endpoints, we can draw a dashed line (x,x'), on the circle,
slightly removed from the cord v, so that every chord U, where
u e Tv U{v}, has one endpoint on each side of (x,x'). We re-
name the endpoints of these chords on one side of (x,x'), and

the corresponding vertices of GV, by 1, 2, ..., k. Now, the
chords form a permutation diagram, so that two chords i and 3,
1 <i,j <k, intersect if and only if the vertices i and 3 of

G’ are connected. Thus, ¢’ is a permutation graph.
v
For example, in Figure 4, the vertices of G 1 are
vl,vz,v3,v4,v5; the dashed line was drawn on the circle of Fig-

ure 4b; and the chords 61,32,53,54,55 form a permutation diagram
of P = [5,3,2,4,1].

e ————— — -
e ——— g, ——
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Fig. 4

Therefore, in a circle graph G, for every vertex v, & is
. UV . Ve .

q permutation graph and thus G~ 1s transitively orientable.

Tet C be a maximum clique of a circle graph G, and let v
pe any vertex in C. Then the vertices of C are contained in

. v

GV, and therefore C is a maximum clique of G . Thus, an algo-
rithm for finding a maximum clique of a circle graph G can work
as follows:

v,
for every vertex v, of G, consider the subgraph G L with
its transitive orientation;

for every 1 < i < n, find a maximum clique C
through the algorithm for transitive graphs, described in

Vs Vi
lofGgt

v v
the Introduction; a maximum size clique among C l, oo, C n
is a maximum clique of G.

The graph in Figure 4 has:

v v v

4

= {v v6} and

VS v
c ° = {vl,vz,v3,v5}, C 40 Vss
Ve Vi - :

C = {vz,v3,v5,v6}. Therefore C +, for example, 1s a maximum
clique of G. Since finding a maximum clique of a transitive
graph takes at most n2 steps, it follows that the number of

. \ . 3

steps required by the above algorithm is at most n .
3. AN ALGORITHM FOR A MAXIMUM INDEPENDENT SET OF A CIRCLE GRAPH
Consider a family of intervals an a line. We say that two

intervals overlap, if they intersect and no one is contained in
the other. Let us draw a graph by representing every interval
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by a vertex, two vertices being connected by an edge if and

only if the corresponding intervals overlap. This is called an py o
OvePZap graph (see [51). Clearly, the overlap graph of the if H
given family is different from its interval graph, cum ©
interval is contained in another, then, the corresponding ver- is an
tices are connected in the interval graph, but not in the over-

since if anp

. . we wi
lap graph. Consider a family of chords on a circle, for example same
the one in Figure 5a. We take two opposite points 0,0' on the
circle so that 0 is not a chord endpoint, and we draw a tangent inter
at 0'. Now, we project the chord endpoints from O on this tan- respc
gent. 1In this way, every chord corresponds to the interval
between the projections of its endpoints. Thus we obtain a let ¢
family of intervals on the tangent, so that two intervals over~ we as
lap if and only if the corresponding chords intersect. There-
fore, the circle graph of the family of chords is isomorphic to tex =
the overlap graph of the family of intervals on the tangent. set «
Conversely, if a family of intervals is given on a line, we draw dent
a tangent circle to it and we project the interval endpoints on
the circle by a point opposite to the line. Thus, a graph is a
circle graph if and only if it is an overlap graph. Therefore, Lemm.
our problem is reduced to finding an algorithm for a maximum ;
independent set of an overlap graph. As for the families of dent
chords, we can assume here too, without loss of generality, that
no two intervals share an endpoint. Proo

Assu
6
|
! is ¢
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5 tice
l and
!
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Ui
{uy
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Let us introduce a number of notations. We will denote
H) the size of a maximum independent set for a graph H;

py o :
is a weighted graph, we will denote by aw(H) the weighted

if H
cun of the vertices of a maximum weight independent set. If H
is an overlap graph and E its family of representing intervals,
we will denote the interval graph of E by A. We will use the
e name for corresponding vertices, in H and H.

consider an overlap graph G, and its family of representing
intervals F. For every vertex v of G, we will dénote the cor-
responding interval by ¥. Let us denote also UV = {ﬁ]ﬁc:v}, and

sam

let GV be the overlap subgraph with respect to UV. Assume that

we assign a weight w(v), where wlv) = a(Gv) + 1, to every ver-

Let {v ’Vr} be a maximum weight independent

tex v of G. e
set of G, and for every 1l f_j < r, let D. be a maximum indepen-
dent set of GV . J

;|

r
Lemma: o(G) = aw(@) and U (D .U{vj}) s a maximum indepen-

J=1
dent set of G.

Proof: Let J be a maximum independent set of G and let

A= {ulueJg, and if T C W then w ¢ 7).

Assume A = {ul,...,ut}. For every 1 < i < t, the set

J = {wl wedJd and wCu.}
u, i

is an independent set of Gu . Let C be a maximum independent

i
set of G , and assume IJ | < lCl.
u ui

i
Then (J—Jui) U C is an independent set of G with more ver-
tices than J, and this is a contradiction. Therefore |Cl==lJu_I,
i
and for every 1 < i < t, Jui is a maximum independent set of
Gui. Since for every i # J, ﬁi N ﬁj = ¢, it follows that

{ul,...,ut} is an independent set of G. Therefore
t -~
= < -
a (G) ‘}—:1 wlu,) < a (G
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r
Oon the other hand, U (D.JU{v.}) is an independent set of G,
501 303
_ r r
and thus o (G) = ) w(v,) = | U OUiv.h! < ala). Therefore
w . i . 5 5 —
i=1 IJ=1
r

a(G) = aw(é), and U (DjU{vj}) is a maximum independent set
of G. 3=1
Q.E.D.

Let us now return to the problem of the algorithm for a
maximum independent set of the overlap graph G. Based on the
Lemma, we will describe a method for attaching a weight w(v)
and a set DV to every v of G, so that w(v) = a(GV) + 1, and

Dv is a maximum independent set of GV.

Let us define a family of subsets of F in the following

way:
A, = {G| there are no veF such that v C u}
A, = {u ﬁ&Al, and if ¥ C U, then VeA )}

k-1 k-1
a_={G] "¢ UA,, and if ¥ C G, then Ve UA,}
k 2y I .21 ]

J=1 =1
k
and (U A, = F.
ol
i=1

In fact, u € Ai if and only if it contains at least one inter-

val of Ai_ and all the intervals contained in it are elements

l.’
i-1 L

of UA,. By the above definition, if u, Vv € Ai, then u and Vv
j=1

overlap or they are disjoint. Also, if i # J, then Ai N Aj = ¢
Clearly, for every vertex v € Al’ w(v) = 1 and DV = ¢.
i-1
Assume by induction on i that all the vertices u, e U n,, are
j=1
attached a weight w(u) = a(Gu) + 1 and a maximum independent

set D of Gu' Consider a vertex v, Vv € Ai. For every verteX u
u

i-1
of Gv’ ae L)Aj, and thus, every vertex u of GV is already
=1
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ssigned a w(u) and D,* Now, we assign the same weights to the

a
corresponding vertices of GV‘(the interval graph of the family

of intervals UV). Since év is an interval graph, then as we

observed in the Introduction, we can find a maximum weight in-
dependent set {ul,...,ut} for it by an efficient algorithm.

applying the Lemma to the overlap graph Gv’ we conclude that
t

w(G) = ¢ (G ) and U (0 yf{u.}) is a maximum independent set
v w v . u.
=1 3 t
of G- Then, we define w(v) = a(GV) + 1 and Dv = j:&(DujLJ{uj}).

In this way, we effectively attach a weight w(v) = a(Gv) + 1 and

a maximum independent set DV of Gv to every vertex v of G. Now,

the algorithm for finding a maximum independent set of G works

as follows. Let us assign the~weights of the corresponding ver-

tices of G to the vertices of G. Since G is an interval graph,

we can find a maximum weight independent set {vl,...,vr} of it.
r

uw(é) and U (Dv U{v.}) is a maximum

independent set of G. =1 3
Since for finding a maximum weight independent set of év

Then, by the Lemma, a(G) =

2 . .
we need at most n~ steps (where n is the number of the vertices
of G), the number of steps required for the above algorithm is

at most n3.

We will apply this algorithm to the overlap graph in Figure
5b, whose family of intervals is described in Figure 5a. For
this family of intervals:

By = {93997}
B, = vy}
Ay = {970
A4 = {vl}.
Therefore:
w(V3) = m(v4) = w(V7) = w(VB) = 1;
b =D =D =D =3¢
3 4 7 8
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GV6 has only one vertex, V., and hence w(v6) = 2, DV6 = {v7}, i

The vertices of G are V_,V ,V_,V.,and a maximum weight i -
. P Ve VP ght inde

2

C i = H t =
pendent set of sz is {v3,v6}, where aw(sz) 3; thus w(v2) a,
and sz = {v3,v6,v7}. The vertices of Gv5 are Vi,V Vg which
form a clique of év .  Hence, a maximum weight independent set

5
of G is {v_}, where a (¢ ) = 2, and thus wlv.) = 3 and
v5 6 w v5 5

D = {v6,v7}. The vertices of GV are {vz,v3,v4,v6,v7}, and a

Vs

maximum weight independent set of év is {Vz}, where
1

uw(le) = 4; thus w(vl) = 5 and DVl = {V2,V3,v6,v7}. Considering
the interval graph G, its unique maximum weight independent set
is {vl} when aw(é) = 5; thus a(G) = 5 and {Vl’VZ’V3’V6’V7} is a

maximum independent set of G.
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