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Remarks. (1) Many other solutions of our system have been constructed in
[4] for the case when k = ! =3, corresponding to the Grassmannian G,(C®). All
these solutions are of the form ®((8; I);v) for some basis A and some A-admissible
base 1.

(2) Many nondegenerate strata of the Grassmannian G,(C**') are represented
by open subsets in C? for some J = [1,k] x (1,11 (for example, in the case of G4(C%)
only one stratum, up to the action of the Weyl group, is not of such a form).
Hypergeometric functions on such strata satisfy the system of the form (1), (2) for
some subgroup H; and some lattice L' (see the proof of Theorem 1). It is clear
that all lattices L’ are simple, s0 that hypergeometric functions on these strata can
be constructed with the use of Proposition 2 and Theorem 3. For example, if
k=1=p and J consists of 2p points (1,1), 2.2),...,(p.pk (1,2), 2.3)....(p=Lp)
(p, 1) then the action of H, on C’ is isomorphic to the one from the examaple in
Sect. 3, so that the hypergeometric functions constructed in the above example
correspond to a special stratum in G,(C?).
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10.
(with A.N. Varchenko)

On Heaviside functions of configuration of hyperplanes

Funkts. Anal. Prilozh. 21 (4) (1987) 1-18

§1. Introduction

The ring of integer-valued functions defined on M, the complement of a finite
union of hyperplanes in a real affine space, whose values on the components are
constants, has been considered. The ring is denoted by P; it contains distinguished
multiplicative generators, namely, Heaviside functions of hyperplanes defined in
the following manner: for a given hyperplane, fix a function which is equal to 1
on one side of the hyperplane and 0 on the other. Each element of the ring is a
polynomialin Heaviside functions. A filtration of the ring by degrees of polynomials,
denoted by {P*}, k 2 0, introduces some properties into P which are close to those
of the cohomology ring of the complement M to a union of complexified
hyperplanes in a complexified affine space.

The ring H*(M_) has been described by V.I. Arnold [1], E. Brieskorn [2], and
P. Orlik and L. Solomon [3]. Orlik and Solomon have attracted attention to the
fact that the dimension of the space H *(M)is equal to the number of components
of the set M. The present paper proposcs an explanation of this fact based on
comparison of the rings P and H*. P is a commutative ring endowed with an
increasing filtration {P*}, H* is an anticommutative ring endowed with a
graduation {H*}. We formulate the properties of the ring P by referring to similar
known properties of the ring H*. .

The rings P and H* can possibly be included in a one-parameter family of
rings which have independent meanings in themselves.

This paper is related to investigations of general hypergeometric functions
[4-10] and deals with the geometrical aspects of the theory.

The authors express their gratitude to V.I. Arnold for useful discussions.

1. Definition. Consider a finite set of linear functions {f;}, i€l, on an
n-dimensional affine space V over the field R. Denote by S the union of hyperplanes
A, ={veV!|fi)=0}, i=1 We call the couple S and {f;} 8 configuration of
hyperplanes. Consider the ring P(S,Z) of integer-valued functions on M=V\S,
which are constant on every connected component. We consider, in the ring P, the
multiplicative generators, i, the Heaviside functions X;, icl, determined by the
conditions: x;(v) =1 if f;(£)>0 and x;(v) =0 if fi(v) <O. Every function x€P(S, Z)
is written as a polynomial, with integer coefficients, in {x;},iel. The minimum

degree of polynomials in {x;} representing x is called the degree of the function
xeP(S,Z).
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Define an increasing filtration
OcPlcPlc---cP,

where P* is a subspace of functions which can be represented by polynomials of
degree not exceeding k. In particular, the PO are the constant functions. Obviously,
PP = P**!. We call {P*} the degree filtration.

Example. Consider a configuration of lines on a plane, {4}, iel. The degree
filtration in the ring P consists of three terms: the constant functions P, the linear
combinations of Heaviside functions P! and P2 = P. Suppose that no three lines
intersect at one point. A basis over Z in the ring consists of the constant function
which is equal to 1, the Heaviside functions and all the monomials x;x; with
intersecting lines 4, and A;. The dimension of P? is equal to 1. The dimension of
P1/P? is equal to the number of lines. The dimension of P?/P! is equal to the
number of points of intersection of lines.

We say that if the alternating sum of four of the values of the function xeP
on four components of the complement approaching the point of intersection of
two lines is equal to zero, then the function has a zero index at the point. A function
xeP has degree < 1 if and only if it has zero index at every point of intersection.

2. Properties of the ring P

Theorem 1. P* = P, that is, any piecewise constant function on the complement
to the union of hyperplanes in an n-dimensional affine space is a polynomial of degree
not exceeding n in Heaviside functions of hyperplanes.

Let ¥, be the complexification of the space V, A, the complexification of a
hyperplane 4,, i€l, S¢ the union of hyperplanes {A,c}, iel, and M¢=Vc\Sc.
Theorem 1 is an analogue of the statement: H(M¢) =0 for k> n.

The configuration S on V naturally induces on every affine subspace Uc V a
new configuration denoted by Sy. S, consists of hyperplanes {AnU|4€S, U & A}
determined by linear functions { fily},i€l.

If an affine subspace U is not contained in § then a natural homomorphism
ju: P(S)— P(Sy) is defined so as to restrict functions of P(S) on U\Sy.

Any non-empty intersection F of hyperplanes of a configuration is called an
edge. The Codimension of an edge is denoted by r(F). In particular, hyperplanes
are the edges of codimension 1. The set of all edges is denoted by £.

A d-dimensional affine subspace U c V is called a generally positioned space
if U is transversre with respect to all the edges and crosses all the edges whose
codimensions do not exceed d.

Theorem 2. If U < V is a generally positioned subspace, then the homomorphism
jy restricted to P*(S) defines an isomorphism between PX(S) and P*(Sy), for k<d.

This theorem is an analogue of Brieskorn’s theorem [2]): if Uc<= Ve is a
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sufficiently general d-dimensional subspace, then HYM)—» H MnUQ) is an
isomorphism for k £ d.

Let F be an edge of a configuration and I < I the set of all the indices i such
that F c A,. We denote by S¥ the configuration composed of hyperplanes {4},
iel*, that is the hyperplanes containing F. We say that S¥ is a localization of the
configuration S at the edge F. Consider the ring P(SF,Z) of the configuration S¥.
A natural inclusion P(SF,Z)— P(S,Z) exists, defined by restricting the functions
of P(S¥,Z) to M. lts image is the subring generated by functions {x;}, iel*. The
inclusion pressrves the degree filtration.

Theorem 3. The natural mapping
@ PHSHYP (ST~ PSP ()

Fe#
iFi=k

is an isomorphism for every k > 0.

Corollary 1. If the configuration hyperplanes have only normal intersections, then
dim, PX(S)/P*~!(S) is equal to the number of k-codimensional edges.

Let ME=V\,#A,c. According to Brieskorn [2], the natural mapping
@Prer HYME Z)—HY M, Z) is an isomorphism for every k > 0. Theorem 3 is
nFy=k
an analogue to Brieskorn’s theorem.

Corollary 2. dim, PX(S,Z)/P*~ (S, Z) =dim, H{M, Z) for k2 0.
This corollary can easily be deduced by induction with respect to the dimension

of the containing space, from an observation by Orlik and Solomon:dim, H*(M¢) =
dim, C,(S), from Theorem 3, and from Brieskorn’s theorem.

Remarks: 1. In particular, the corollary implies that M»weAI:. dim, PX(S)/
P*~Y(S) is equal to the number of bounded components of M (cf. the combinatorial
formulae for dim H¥(M_) and the number of bounded components [3,13]). 2. If
k,i are positive numbers, then the unique decomposition of k exists:

k= n + iy + o+ "
i i—1 j

where n; > n;_, > -+ >n; 2 j 2 L. Following [14], we define

_ :..+_ _{_ ,_
(e (e () 090
i+ i j+1

An integer vector (ko.k,,...,Kk,) is called an M-vector ifkg=1and 05k, &

“"for 1 £i<d 1. Itfollows from [15] that the sequence of numbers dim, P¥(S)/
P 4(8), k20, is the M-vector.

We call a monomial x; -+~ x;, € P an admissible monomial if df;, A - A df, #0.
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A k-dimensional simplicial cone multiplied by an (1 — k)-dimensional affine
subspace is a support of an admissible monomial.

Corollary 3. The set of admissible monomials generates P as a module over 7.

3. Dual degree filtration. Consider the ring P(S,Z) of a configuration of
hyperplanes in an n-dimensional affine space as a linear space over Z. We define
on the dual space P* a decreasing filtration

OcPtcPt c---cPf=P*

by making use of the condition P# =Ann P* ™. We call {P}'} a degree filtration.

We present here another construction of the filtration. We point out a finite
set of vectors of P* which are called flag cochains. Every flag cochain has a degree.
Then P? coincides with the linear hull of all the flag cochains of degree not less
than k. Now we proceed to the construction itself.

The connected components of M are called the regions. The regions are
the n-dimensional polyhedra (not necessarily bounded). Open facets of any
dimensions of these polyhedrons are called the facets of the configuration. In
particular, n-dimensional facets are regions. Zero-dimensional facets are called
vertices.

Let F,_,c F,_,,, << F,=V be a sequence of edges of a configuration S,
the dimension of F; being equal to j, and let the coorientation of the edge F; in
the edge F ., be given. We call this the flag of the edges of degree k and we denote
it by F. Let 4 be a (n —k)-dimensional facet of the configuration lying in F,_,.
The flag F, together with the facet 4, is called a distinguished flag.

2% regions are related to a distinguished flag, with 4 being included in the
closures of every region. Indeed, there are exactly 2* regions that can be reached,
first by a small move in any direction along F,_, ., then by a still smaller move
in any direction along F, _, . 5, etc. until a move is made from F, _ | in any direction.
To any such region corresponds an ordered sequence « of length k, which consists
of pluses and minuses, + or —, occupying the position j, depending on whether
the motion into the region was along or against the coorientation of F, _, ;. in
F._.—;. The region with the index « is denoted 4, (see Fig. 1).
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A vector Yy 4€P* is defined as follows: for any xeP,

Yr ax) =Y (= 1)9x(4,),

where &(a) is the number of minuses in the sequence a, is called a flag cochain of
the distinguished flag. k is called the degree of the flag cochain.

Theorem 4. The linear hull of flag cochains of degree not less than k coincides
with Ann P*~1,

Theorem 4 can be used to determine the degree of a given function (cf. the
example in Sect. 1.1).

4. Relations between heaviside functions. Here we suppose that V is a linear
n-dimensional space, the {f;}, iel, are linear functions on V and that all the
hyperplanes {4,} pass through the origin.

Let a; f;, + - +a,f, =0 be a linear relation; the J, are the numbers of all
the linear functions with positive factors in the relation, and the J _ are the numbers
of those with negative factors.

Theorem 5. The Heaviside functions of the configuration {f;}, iel, satisfy the
relations:

(1) x? —x; =0, iel,
and

@ ITx [l -0=]]tx;—D ] x.=0

jedy  ked_ el Ked _

Jor any linear dependence o f; + - +a,f; =0.

If all the coefficients in the linear relation differ from zero, then there is a
polynomial in (2) of degree s —1 having precisely s monomials of degree s — 1.
Equation (2) is an even analogue of the Orlik—Solomon relation [3] for differential
forms, namely, consider differential forms §mum\m\w:/\l|_\». if fi,....[,; are
linearly dependent, then

S (=1 Ttwy Ay AWy, =0

=1
A ,H_.n.e_.n-: 6. Equations (1) and (2) determine P. More precisely, if 8 is an ideal
in the ring of polynomials Z[ X ;;ie ] generated by the left-hand sides of the relations
listed in Theorem 5, then the natural Fomomorphism Z[Xiell/3—P is an
isomorphism.

Theorem 6 is an even analogue of an Orlik-Solomon theorem [3], which
describes the ring H*(M(, Z), namely, consider the external algebra of the vector
space whose basis is ¢;, iel. Consider its ideal generated by the clements
Tie(=1Y"te;, -8 ¢, where (f),,.... ;Y= {f;}, i€l, is an arbitrary subset of
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linearly dependent elements. Then the factor algebra of the external algebra with
respect to the ideal is naturally isomorphic to H*(M,Z). Under the isomorphism,
elements e, are transformed into the cohomology classes of forms w;. Consider in
a Euclidean space with dhe coordinates {x;}, il, a unit cube whose boundaries
are the hyperplanes x; =0,x; = 1,iel. A subset of vertices of the cube is related to
the configuration { f;}: for every component M, of the set M, we mark the vertex
of the cube at which x; = 1if fi(Mo)> 0, and we mark the vertex at which x; =0
if fi(My) <0. Let X be the set of all marked vertices of the cube. Obviously, the
ring of integer-valued functions on X is isomorphic to P. Theorem 6 yields the
system of equations defining X as a subset of the Euclidean space: if, in Euclidean
space, the system of equations cited in Theorem 5 is considered, the set of its
solutions coincides with X.

We point out a basis over Z in the ring P. A subset J =(j,--ohyelis called
a circuit if covectors fj,...., f;, are linearly dependent, but this does not hold for
any proper subset of J.

Fix a linear ordering in I. A subset J < I'is called a broken circuit if there exists
an index joe! such that (jo, 1+ ,jx) is a circuit, j being less than any element of J.

We make a monomial x;,---x, €P correspond to any subset 1< J. leP will
correspond to the empty set.

Theorem 7. The system of all the monomials corresponding to subsets of I which
do not contain broken circuits forms a basis over Z in P. Moreover, the system of
all distinguished monomials of degree not exceeding k is a basis in P*,k 20.

Theorem 7 is an analogue of Theorem 11.1 of [7], which in turn goes back to
[11]. By Theorem IL1, the system of differential forms wj, A - A W, for all the

subsets J < I not containing broken circuits is a basis in H*(M¢, Z). See also the
theorem in [12].

6. A comparison with cohomologies. Here we define a non-canonical linear
mapping 1, P~ H' (M, Z) whose kernel coincides with P*71. 7, is determined
by a choise of coorientations of all the edges of codimension k.

Fix coorientations of all the k-codimensional edges. Determine the image of
a monomial x=x, X, ISk Set m,(x)=0 when I< k or when I=k and
dfi, n-~dfy, =0 If]=kanddf;, A Adf, #0sct nlx) = wi, A AW
where the plus sign is chosen when the fixed coorientation of anedge f;, = - =
coincides with the coorientation induced by the form df; A - A afis
minus sign is chosen otherwise.

Theorem 8. m, can be continued so as to become a well-defined linear mapping
P*— H* (M, Z) whose kernel coincides with P¥™ 1.

Define m, in a geometrical way. Set mix)=0 if 1<k, or if 1=k and
dfi, nondf, =0 If =k and df;, A - ~df, #0 then set m(x) equal to the
following linear function on H, (M, Z). the index of intersection of classes of
H, (M, Z) with a non-compact (2n — k)-dimensional cycle ?mzn_b,?vvp..;
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Silvy> S. whose orientation we define with the help of the complex orientation of
{veMf,0)=0,..., [, (v)=0} and of the previously fixed coorientation of the
edge (veVIf,, () =0,..., f,(v) =0} in V.

7. The ring of functions which are constant on facets. Let a configuration S of
hyperplanes in an n-dimensional real affine space V be given. Consider the ring
0(S, Z) of integer-valued functions on V which are constant on every facet of the
configuration. Consider, in the ring Q, the multiplicative generators which are the
Heaviside functions x;, X, i€/, given by the relations: x,(v) = 1if f,(v) >0, x;(v) =0
if £(v) £0, and X,(v) =1 il f;(v) =0, X(v) =0 if f,(v) #0. In other words, {x;} are
the functions defined by the conditions of Sect. 1.1 and {X,} are the characteristic
functions of hyperplanes of the configuration. Every function xeQ(S, Z) is written
in the form of a polynomial in {x,, X,}, iel, with integer coefficients. We call the
minimum degree of polynomials in {x;, X, } representing x the degree of the function
x. Define a degree filtration

0cQcQlc--c@

where @ is the subspace of functions which can be presented as polynomials of
degree not exceeding k.

The properties of the ring Q and its filtration are analogous to the properties
of the ring P. We have discussed in detail in this paper the analogues of Theorems
1-4 for Q. It is not difficult to produce the analogues of Theorems 5-8.

8. Chains. An integer linear combination of facets is called the integer chain
of the configuration. An integer-valued linear function on a linear space of chains
is called an integer cochain. The functions of Q(S,Z) are in 1-1 correspondence
to the chains of the configuration xeQr ¥ x(4)A with the summation running
over all the facets A of the configuration. The functions of P(S, Z) are in 1-1
correspondence to n-dimensional chains of the configuration. This is a linear
correspondence. The present paper uses the geometrical language of chains and
cochains.

Denote by C,(S) the space linear over Z of integer k-dimensional chains,
by C*(S) the space linear over Z of integer k-dimensional cochains, and by
Co™P(S) = C,(S) the subspace of integer linear combinations of bounded
k-dimensional facets.

Key issues in the present paper are dimensional and degree filtrations in the
space of chains C,(S) = @i -oCi(S) defined below.

Set D,(S) = Co()BC (B - DCu(S), k2 0.
Then
0 cDy(S)c Dy(Syc - = D,(8) = C,(S)

This filtration is called the dimensional filtration.

We say that a configuration S, is included in a configuration S, if the union
of hyperplanes of the first configuration is contained in the union of hyperplanes
of the second configuration. Any facet of the configuration S,, regarded as a set,
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is represented as a sum of the facets of the oosmmcns:o: S,. Thus, a natural
inclusion C,(S,)S Cy(S3) of the chains is defined which preserves the degree

filtration.

Example. Let V be one-dimensional, S, a point 4, and S, two points a <b.
Then the facet {veV|a <v} of the configuration §, is the sum of the three facets
of configuration S,:{veV]a<v < b} + {b} +{veV|b<uv}.

We call a configuration which has all its Eﬁn_ﬁ_w.:nm passing through one point
and intersecting normally an elementary oosmmEm.:o:.

Let §, be an elementary configuration consisting of k planes. Qnm_..? k< n.
Suppose that S, is included in S;. Images of the facets of the configuration S, in
C,(S,) will be called the elementary chains of degree k of the configuration §,.
The space V itself will be called the elementary chain of degree 0.

Examples. A hyperplane and the open subspace bounded by it are elementary
chains of degree 1. A vertex of a configuration is an elementary chain of degree n.

Define a subspace W, = C,(S) as the linear hull of elementary chains of degree
<k, 0gk<n Then

OcWycW,c--c W, < C,(S).

This filtration will be called the degree filtration. .

Set gr,D=Dy/D,.,, WirD =(W,nD,+D,_,)/Dy, gre t—\Q:ﬁ =W,gr,D/
W, -,griD.gr,D is canonically isomorphic to Cy(S), .ﬁ W,gr,D}, k 20, is the degree
filtration induced on gr,D, and {gr,Wgr,D}, k 20, its factor-spaces. .

It is rather easy to see that Theorems 1-8 are statements on degree filtration
induced on gr,D. It is not difficult to produce generalizations of Theorems 5-8,
while the generalizations of Theorems 1-4 are in Sect. 4.

Remark. Theorems 14 are proved in Sect. 4, Theorems 5-8 in Sect. 5.

The appendix to this paper (Sect. 6) contains a multidimensional wgn@:Ns:on
of the theorem on decomposition of a rational function into simple fractions, the
idea behind which is linked to geometric constructions of the present paper.

§2. Chains of a configuration

This section contains some combinatorial information, preparatory to proving
the theorems formulated above.

1. Cones and angles. A configuration having at least one vertex is S:am.m
regular configuration. If a configuration has a non-empty intersection of all :m_
hyperplanes, it is called a central configuration. >:<. chains of a regular og:.w_
configuration will be called a linear cone. Any chain of w.so_._._.nmc_w_. centra
configuration will be called an angle. The form of the angle is the direct product
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$ S°
1
| 4 v sur
D —
2

Fig.

of a line and a chain of the configuration induced on a generally situated hyperplane
by the given configuration.

Any chain of the configuration S° considered as a chain in S is called a cone
with vertex v of the configuration S. Any chain of the configuration S* considered
as a chain in § is called an angle with edge F of the configuration S. We recall
that S* and S¥ are localizations of the configuration in the edges v and F.

2. Linear functions and configurations. A facet of a configuration is said to be
bounded from above in relation to a linear function ¢ defined on V if the facet
lies in an appropriate half-space ¢ < const. The set of all facets bounded from
above is called a skeleton of the configuration S with respect to ¢, and is written
S,. The space of integer linear combinations of the facets of S, is denoted by C,(S,).

We call an affine localization S of the configuration $ with respect to a point
veV and a linear function ¢, a configuration cut out from the configuration S* on
a level hyperplane {xeV|p(x) = @(v) — 1} (see Fig. 2). Let I" be a bounded facet
of the configuration $*°. Consider a cone with vertex v and guide I, the vertex v
being deleted from it. This set is denoted by K(I', v). The mapping p: I'— K(I',v)
gives a monomorphism of the space C™(S?) into the subspace of chains of the
configuration S* bounded from above.

A linear function on V is called a function in general position with respect to
the vertex v of the configuration S if it is not constant on edges of positive dimension
passing through v, and it is called a function in general position with respect to
the configuration S if it is not constant on all the edges with positive dimension
and has pairwise different values on vertices.

Lemma 1. Let ¢ be a generally positioned function with respect to the vertex v.
Then p sets an isomorphism C°P(§*®) = C, , ((S,)-

The proof is obvious.
3. Loose configurations. We call a configuration a loose configuration if every
one of its hyperplanes intersects with every one of its edges of positive dimension.

We list its obvious properties.

Lemma 2. 1. Let S be a loose configuration and U a hyperplane which
transversally crosses all its edges. Then S, is a loose configuration.
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2. Let S be any configuration and @ u function generally positioned with respect
to the vertex v. Then §°° is d loose configuration.

3. Let S be a loose configuration and F its edge. Then Sy is a loose configuration.

4. Let S be a loose configuration and @ a linear function vanishing on the
hyperplane A€S. Then ¢ is generally positioned with respect to all the vertices of
the configuration S which do not lie in A.

4. Distinguished substar (Cf. [9]). Let f1..., fn be an ordered set of linear
functions on the n-dimensional affine space V and S the configuration determined
by the functions. Define a linear order of vertices of the nozmmcﬂm:oa Sw<wif
for a certain k, (f;(0))? HAb?\:N if j<k, TAC)k <(fi(w))*. The maximal vertex
of a bounded facet will be said to be distinguished. The set of all bounded facets
with a common distinguished vertex is called a distinguished substar of the vertex.
The dimension of a distinguished substar is called the multiplicity of the
corresponding vertex. We describe a distinguished substar of a vertex of a loose
configuration.

Let v be a vertex of the configuration §. For any facet I"* of the configuration
$° there exists a unique facet I of the configuration S whose germ in v coincides
with the germ of the facet I’ in v. The facets e, I will be said to be mutually

induced in v.

Lemma 3. Let v be a vertex of the loose ordered configuration f,(v) > 0. Then
an edge I belongs to a distinguished substar of avertex v if and only if T is induced
from the facet of the configuration §¥ bounded from above with respect to f.

The proof is obvious.

Similarly, let veA,NnAN O Ay f)>0. Consider a configuration S cut
out from S by 4, n--NAi_y-

Lemma 4. The facet I” belongs to a distinguished substar of the vertex v if and
only if T is induced from a facet of the configuration S* bounded from above with
respect 10 fi.

Corollary. A loose regular configuration has exactly one vertex of zero multiplicity.

5. Euler characteristic of some chains. Let I” be a facet of the configuration S,
I* a cochain which is equaltotonl’ and 0 on other facets, and d(I")the dimension
of a facet. The cochain X =Y (=TI, summation being carried out over all
the facets, will be called the Euler characteristic cochain.

Let A be a chain which is equal to the sum of all bounded facets of the
configuration S. Let F be an edge of the configuration S, I” a non-closed facet of
the configuration §F, and 4 the chain which is equal to the sum of all bounded
facets of the configuration § which lie in I,

Theorem 9. Let S be a regular loose configuration. Then xA)=1,14r) =0.

On Heaviside functions of configuration of hyperplanes

The proof is obtained by induction on the dimension of the configuration. If
dim V =1 Theorem 9 is obvious. Suppose that the theorem is proved for loose
configurations in a space of dimension not exceeding n — 1. Prove it for dimension
n, the case d(I") =n being sufficient.

Enumerate the hyperpianes of S so that the first hyperplanes are those
containing (n — 1)-dimensional facets of the polyhedron I

Prove that X(4)=1. Let A{v) be a distinguished substar of the vertex v. We
have A =Y, A(v). For only one vertex v with multiplicity 0, we have v = A(v). Prove
that 2(A(v)) =0 if the multiplicity of the vertex is positive. Indeed, in this case, by
virtue of Lemmas 1-4, k-dimensional facets of the distinguished substar correspond
i-1 to (k — 1)-dimensional bounded facets of a suitable loose configuration in a
space whose dimension is less than n. By assumption in the induction, it follows
that the Euler characteristic of the distinguished substar is 0.

Prove that X(4 ;) =0. Denote by A r(v) the sum of the facets of the distinguished
substar which fall within I". We have 4 = S, 4 (v), summation being carried out
over all vertices which are in the closure of the set I If a vertex v belongs to the
interior of the set I, its multiplicity is positive, its distinguished substar coincides
with A (v) and, as proved above, X(4 -(v)) =0. Prove that x(4 (v)) =0if v belongs
to the boundary of the set I” and Ar(v) is non-empty. In this case v does not
belong to the first of the hyperplanes and 4 (v) consists of positive-dimensional
facets. Let, to be certain, f,(v)>0. By Lemmas 3 and 1, the facets of Ar(v)
correspond 1-1 1o bounded facets of the affine localization S*/* on the hyperplane
H u.ﬂxm_\_\_gﬂ\_gl: which are in a set I'(v) determined by v and I
Describe I'(v) and prove that Theorem 1 is applicable to it. Thus Theorem 1 for
dim V = n will be proved.

Let a facet I” be defined by the inequalities f;, >0, f;,>0,... ,f,>0ina small
neighbourhood of the point v. The hyperplanes }_...;}_.m.ﬁ and v belong to
A=A, n--nA,. The conditions f;, >0,..., f;, >0 define a subset I'(v) of H. The
set A contains F lying in 4;. Thus I'(%) is bounded by hyperplanes whose
intersection is non-empty, and, therefore, I"(v) is a union of non-closed facets of
the configuration (s*°y*"". For I'(v) in H, Theorem | implies that X(4 (v))=0.

§3. Decomposition into cones

1. Theorem 10. Let ¢ be a linear generally positioned function with respect to
the configuration S and A the chain composed of facets bounded from above. Then
A can be represented as the sum of cones of the configuration S bounded from above.
(3) A=Y K, where the summation is over the vertices of the configuration. The
decomposition (3) is unique. Every cone in (3) has dimension not greater than the
dimension of the chain A.

Proof. The values of the function at the vertices determine the order of the
vertices. In a neighbourhood of the greatest of the vertices, v, of the chain 4, the
chain has the form of a cone K, of the configuration S bounded from above.
Subtract the cone from A. We do the same with the rest of the chain. The uniqueness
of the representation is obvious.
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For a description of the cone K, of the decomposition (3) E terms of the
behaviour of the chain A in a neighbourhood of the vertex v, see Sect. 3.5.

Corollary. The natural mapping
P C$H=C,(8)
Fex
is an epimorphism.

Proof. 1t is easy to show, by making use of Theorem [0, that every facet of
the configuration S is a sum of the cones (provided it has a vertex) or a sum of angles.

Denote by. I(S) the subspace of chains generated by the uam_aw of the
configuration. In other words, I(S) is the image of the natural mapping
@ C,(5")=C(S)

Fex
nFy<n

The dimension filtration induces a filtration on [:1,(S) = :&.D Dy(S), 1 2 0. Denote
by CI(S) the factor-space C,(S)/I(S). The dimension filtration CI(S)=(D, +1)/I
is defined on CI(S).

Theorem 11. Let ¢ be a linear function, and A the chain whose dimension ne.&
not exceed |, 1 20. Then there exists a linear ae-:?.:e:o} of angles 3" I, with
dimensions not greater than | such that the chain A IM.ﬁ. is bounded from &E%
with respect to ¢. In other words, the natural mapping C,(S,)— CI(S) is an

epimorphism.

Proof. Let a number 1, be given, such that for any t > t,, the _n<o_ :wvn_.v_.msn
of the level ¢ of ¢ crosses transversally ail the edges of the configuration S. Consider
a configuration S, cut out on the hyperplane Q ={xeV|o(x)=ty}. .

Let I” be a cone of the configuration Sy with vertex at v. Then there exists
an angle I of the configuration S such that ' =T nU. The edge of I is
one-dimensional and passes through v. Similarly, let I" be an m:m_n of the
configuration S;. Then there -exists an angle I of the ooz_._m:qm:.oz S whose
intersection with U is I. The intersection of an edge of the angle I is an edge of
the MMW_M N.o the original chain and AnU its intersection i:.: Q.. By the corollary
of Theorem 10, AnU can be represented as a msnm_. combination of angles m.sa
cones of the conliguration S;:Au U =3 I',. Let I', be the m:m_ow_.n.rn configuration
for which I', = I",~U. It is easy to see that the chain 4 — 3 T, is bounded from

above.

2. Skew cochains. A cochain of the configuration is SE to be _oow:Nnn_ ata
given vertex if it is equal to zero on any facet which is not included in the star of
the vertex. A cochain is said to be a skew cochain if it is equal to zero on any
angle of the configuration. .

We will produce a great store of skew local chains.
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Let ¢ be a lincar function on V. The cochain =3 rommgo —110* jg
called the cochain associated to ¢. The value of the cochain on an arbitrary chain
is equal to the Euler charucteristics of the part of the chain which falls into the
semispace ¢ < 0. Any cochain associated to a linear function in general position
is called an Euler cochain of configuration. The set of all Euler cochains is finite,

Theorem 12. An Euler cochain is equal to zero on any angle.

Proof. Let X, be an Euler cochain and 4 an angle with an edge F. It suffices
to investigate the case when 4 is a fucet of dimension n of the configuration §¥,

Let I” be a facet of the configuration S lying in A {p < 0}. Let the maximum
of the function ¢, which is bounded on the closure of the facet I be reached at
the vertex v. Denote by A(v) the sum of all such facets. Then X48) =Y, XA4A(®v)).
Prove that X(A(v)) =0. If v belongs to the interior of the set 4, then A(v) consists
of all the facets of the star of the vertex v on which the maximum of the function
¢ is reached at v. These positive-dimensional facets correspond 1-1 to bounded
facets of the affine localization $*°. Now the equality X(4(v)) =0 follows from the
first part of Theorem 9, .

If v belongs to the boundary of the set 4, then the equality similarly follows
from the second part of Theorem 9.

3. Linear combinations of Euler cochains. Let @ be a generally positioned
function and ¢, <1, < -+ <1, its critical values, i.e. its values at the vertices of the
configuration S. Consider an Euler cochain X, - Itdoes not change when teft;, by, ,)
Xei=01for t<t,. If vis a vertex such that o(v) =t, set Koo=Xyoso =X,
where & is a small positive number. X 1s the cochain localized at v. More precisely,
Lo =X (=11 * with the summation taken over all the facets of the star of the
vertex v such that the maximum of ¢ is reached at v. That is, all the facets going
from v in the direction of decreasing ¢ are taken into the summation. The cochain
X,,. will be called the local Euler cochain centred at v,

Theorem 13. Let u,v be two different vertices of the configuration S,K, the cone
of the configuration S with vertex ar u, and X, , the local Euler cochain centred at
v. Then X, (K,)=0.

Proof. The cone K, in a neighbourhood of v looks like an angle. Thus, by
Theorem 12, X, (K,) =0.

4. There is a sufficient number of Euler cochains.
Theorem 14. Let A be a non-zero cochain of the configuration S, bounded Jrom
above with respect to a function ¢ which is in general position. Then there exists a

linear combination of Euler cochains whose value on A is not equal to zero.

Corollaries. 1. A4 non-zero chain which is bounded from above is not a linear
combination of angles, that is the natural mapping C,(S,}~ CI(S) is an isomorphism.
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2. Any skew cochain is a linear combination of Euler cochains. In other words,
Euler cochains generate a space dual 1o CI(S).

Proof. This is proved by induction in the configuration’s dimension. If
dim V =1 the theorem is obvious. We prove an inductive step.

Decompose A4 into a sum of cones bounded from above with respect to
¢:4 =Y ,K,. Choose a vertex v at which the cone does not equal zero. By Theorem
13, it suffices to prove the existence of a linear combination of local Euler cochains
centred at v whose value on K, differs from zero.

If the vertex v enters K, with the coefficient 4, then X_,, (K,) = 4. If 4 # 0, then
the theorem is proved. Further, we assume that v enters K, with zero coeflicient.

Let X, . be a local Euler cochain. The isomorphism of Lemma | transforms it

a.v

into a cochain ¥ on bounded chains of the localization §*.

Lemma 5. y is an Euler cochain of the configuration $** associated to a linear
function a~a(v) restricted to the space of affine localization.

Proof. Lemma is obvious.

Turn back to the cone K,. It induces a non-zero bounded chain K in §**. By
inductive assumption, for the configuration S there exists a linear combination
of its Euler cochains having non-zero value at K. This fact and Lemma 5 imply
the theorem.

§. Characterization of the cones of decomposition (3). Let ¢ be a linear function
in general position on S, 4 a chain bounded from above, and 4 =3 K, a
decomposition into a sum of cones of the configuration S bounded from above
with respect to .

Theorem 15. 1. For any local Euler cochain X, centred at v
X o(A) =X, (K,)

2. Let K be a cone of the configuration S bounded from above with respect to
@. Suppose that, for any local Euler cochain X, , centred at v, X, ,(A) =X, ,(K). Then
K=K,

The first part of the theorem is a corollary of Theorem 13, the second is a
corollary of Theorem 14.

6. Combinatorial connection (Corollaries of Theorem 14). Let ¢,, ¢, be linear
functions in general position. The following two statements result from Corollary 1.

Corollary 3. C,(S,,) and C(S,,) are canonically isomorphic to each other.

Let S be a central regular configuration with vertex v and let ¢, @, be linear
functions in general position.
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Fig. 4.
Corollary 4. CP™P(8¢1), C™(S™*) are canonically isomorphic to each other.

.m.a».:_v_o L. Let S be a regular central configuration and ¢ a function in general
position. We point out an isomorphism 7: C,(S,)— C,(S_,) consisting in the fact
that the cone going down with respect to ¢ is transformed into a cone going
upwards, by adding angles.

Theorem 16 (¢/-_Theorem 7 of [9]). Let I'eC,(S,) be a k-dimensional facet.
Then n(I") =(—1)T", where I is the closure of the reflection in the vertex v of the
Jacet I (see Fig. 3). )

Example 2. Consider a configuration in R? consisting of four planes passing
through zero, and being in a general position. If ¢ is a function in general position,
then §*? is a configuration on a plane consisting of four generally positioned lines.
ﬂe suitable ¢,,¢,, the configurations are given by Fig. 4. We point out the
isomorphism of bounded chains: Fr» —F*, CF+» —CF* —C, EF —EF* _E,
CEF — CEF* — CE, where CF,CF* EF,EF* are open intervals and CEF, CEF*
are the open triangles. The rest of the facets are transformed into the facets with
the same names: 41— A, etc.

4. Dimensional and degree filtrations

1. Decomposition into simplexes.

Theorem 17. If S is a loose configuration then there exists a basis of C2™(S)
consisting of open simplexes of different dimensions. The basis has the \Ewa:;.g
property: if there is a chain whose dimension does not exceed |, the dimensions of
simplexes of its decomposition in terms of the basis elements are not greater than |,
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Proof is by induction on the dimension of a space. When dim ¥ =0, the vn::
is the only facet. Let dim V =n > 0. Order the E\_uo_.u_uswm of the no:_._mcam:oq...
Let A be the hyperplane with minimal number. By inductive assumption, there is
a simplicial basis of C™P(S,). Complete it to a basis of C>™(S). Let v be a vertex
outside A. Include in the basis the zero-dimensional chain v. Let ¢ be a linear
function such that ¢(A4) =0, ¢(v)>0. Consider an affine localization m_._s.. Its
hyperplanes form an ordered set. Using induction, we choose a &Bv:&w_ basis n.v_,
C™P(S**). We make a simplex K(/") correspond to Q_o:‘o— its elements; this
simplex is a cone with vertex v, guide I', base lying on A, with v N.:a the bottom
base not being included in K(I). It is easy to see that 4:5 basis of ﬁ,we..va;.y
together with the simplexes constructed for all vertices outside A, composes a basis
of C»(S) which has the property formulated in the theorem (sce the proof of

Theorem 10).

Theorem 18. For any configuration of hyperplanes, S, in C,(S) there exists a
basis consisting of elementary chains. The basis has the property that a chain whose
dimension does not exceed | can be decomposed into a sum of elementary chains with
dimensions not greater than I

The proof is by induction on the dimension of the configuration and follows
easily from Theorem 17 (cf. Theorems 10, 11, and Lemma 1).

2. Properties of dimensional and weight filtrations in chains.

1. W,=C,(S). A .
2. D, is a linear hull of elementary chains whose dimensions do not exceed I,
for 12 0. . A .
3. If S, =5, and i: C,(S,) = C,(S,) is the natural inclusion, then i(W,(S,)) <
Wi(S,), i(Dy(S)) = Dy(S,) for k,1= 0. ‘
4. W,(S) coincides with the image under natural mapping:
@ C,(8H-C.i8) “

Fex
rnFlsk

where SF is the localization of the configuration at the edge F and r(F) is the
codimension of the edge. . . A

5. If U<V is a subspace and j: C,(S)-» C,(Sy) is the natural epimorphism,
then jy (W,(S)) = Wi(Sy).

The third property is a corollary of the definition of filtrations. The first and
second properties are corollaries of Theorem 18. .

We prove Property 4. Obviously, W,(S) is contained in the image of mapping
(4). By Property 1, C,(S7) = W, (S¥). Thus, W,(S) coincides with the image of the
mapping (4). _

Property 4 can serve as a definition of a degree filtration. . .

We prove Property 5. Each elementary chain of degree k of C,(Sy) is an image
of an elementary chain of degree k of C,(S). Thus j, (W, (5)) > W,(Sy). An image
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of an elementary chain of degree k is a facet of a configuration on U consisting
of no more than k hyperplanes. Property 4 implies that the image belongs to
W, (Sy)

6. If Ae W, ~ D, then 4 can be represented as a linear combination of elementary
chains whose degrees do not exceed k and dimensions do not exceed .

The proof is by induction with respect to the dimension of the configuration.
For n =0, the theorem is valid for any k,I. Let n>0. Let @ be a linear function
in general position with respect to the configuration S. Let t, be a number
such that, for any t > 1, the hyperplane of constant level t of ¢ crosses all the
edges transversally. Consider the configuration S, cut out on the hyperplane
U ={xeV|p(x) =1y} Then the dimension of the chain AnU is si-1.

Let k<n Then AnUeW,(Sy)nD,_,(Sy). By the inductive assumptions,
AnU=3%a,A4,, where a,€Z and {4,,} c Wi(Sy)n D, _\(Sy) are elementary chains.
For every elementary chain 4,, there exists an elementary chain a.e W (S)nDy(S)
such that 4,,~U = A,,. The chain 4 = A —Y a,4, has no intersection with U. By
the choice of U, the chain 4 is bounded from above. By Theorems 12 and 14,
A=0. Property 6 is proved. For k =n, the property follows from Theorem 18.

7. WinD,=0fork +l<n.

8. Let U c V be a d-dimensional subspace in general position with respect to
the configuration . Then the natural homomorphism Ju: €4 (8) = C,(Sy) reduces
the dimension of any chain by n —d and, for any 0 S k, | < d, sets an isomorphism

WilS)N Dy w—a(8) = Wi(Sy)N Dy(Sy).

Proof. 1t suffices to consider the case of U being a hyperplane. The fact of the
generality of the hyperplane U obviously implies Dy, 1(8) — Dy(Sy), Wi (S)— W,(S,).
We prove the absence of the kernel of Julw,_,- Indeed, if AcW,_(S) belongs to
the kernel of the homomorphism j, then A = A, +4_, with 4, lying at different
sides of the hyperplane U. It follows from Theorems 10-13 and 14 that
4, =A_=0. Thus, j, sets an inclusion W (S)n Dy, ((S) G W, (Sy)nDy(Sy), for
k<n-—1. _.,b..m W(Sy)n D,(Sy) then, by Property 6, there exists Mm:ﬁ&)b? +(S)
such that j,(4) = 4. Property 8 is proved.

9. Under the conditions of Property 8, j, sets an isomorphism W,gr,, , _,D(S)—
Wogr,D(Sy) for any 0 <k, I1Sd.

Property 9 is a corollary of Property 8, since W,gr,.D = Wen D /D A W,.

10. For any k = 0, the natural mapping
D WS W, (ST) = W (S)/W,_,(S)

Fe¥
rF)=k

1s an 1somorphism.
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Proof. Let ¢ bealinear function in general position. Then, by Hzno_.nam 51:,
C,(5,)= @y C4(Sh). According to Corollary | of Theorem 14, this equality

implies P.om%nmm 10, for k=n. The case of arbitrary k can be reduced to the

case just considered, with the help of Property 8. The same argument proves
Property 1.

11. For any k,1 20, set Dygr,W =D, W,/D;n W, _,. Then the natural mapping

@ D,gr W(SF)— Digr, W(S)
Pk

is an isomorphism.

12. A chain from W,(S) is uniquely determined by its general k-dimensional
cross-section. More precisely, if U — V is a subspace in general position with respect
to §, dim U =k, and ce W,(S) is the chain with cnU =0, then ¢ =0.

Property 12 follows from Property 8.

13. Let U,,U,c V be subspaces in general positions with respect to the
configuration S, dim U, =dim U,. Then C,(Sy,) is canonically isomorphic to
C,(Sy,)- The isomorphism is defined by Property 8. .

The isomorphism will be called the combinatorial connection. In [9] the
combinatorial connection is defined for a similar situation.

3. The ring P(S,Z) defined in the introduction. Properties 1, 9 and 10 yield
Theorems 1-3. :

4. The filtration dual to degree filtration. Define a degree filtration in C*(S) by
making use of the condition W* =Ann W, _,. We have

OcWiceW' lc-..c Wo=C*(S).

We give another construction of the filtration. Let X{(S) = C*(S) be a linear :c.: of
Euler cochains. Let U,,...,U,_,, U, =V be affine subspaces whose dimensions
are, respectively, 1,...,n — 1, n. Suppose that the subspaces are in general positions
with respect to the configuration S. Let ji: C*(Sy,)—~> C*(S) be the natural
monomorphism.

Theorem 19. For any k20,

WHS) = XUS) +ja— 1 X(Sy, )} + - +/H(S, )

n-1

Theorem 19 follows from Corollary 2 of Theorem 14 and from Property 8 of
Sect. 4.2.

S. Flag cochains.
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Lemma 7. An arbitrary flag cochain of degree n is a linear combination of Euler
cochains.

The proof is by induction with respect to the dimension of the configuration.
In carrying out this proof, one has to descend to an affine localization of a
zero-dimensional edge of a flag and to use Lemma 5.

Lemma 8. Flag cochains of degree n generate the space which is dual to
C (SY(Cp— ((S) + W, - (C,(8))).

The proof is by induction with respect to the dimension of the space. Let ¢ be
a function in general position. By Theorems 10-14, it suffices to prove that the
flag cochains of degree n generate C*(S,). Moreover, it suffices to investigate the
case of S being a regular central configuration. We denote its vertex by v. Pass to
the affine localization §**. Then C,(S,) = C;>"P(5*?). Flag cochains of degree n
on S transform into flag cochains of degree n—1 on $*?. By the inductive
assumption, for a non-zero chain from C{2"P(S*%), there exists a flag cochain of

degree n — | which does not vanish on the former. The lemma is proved.

Proof of Theorem 4. Lemma 8 coincides with the statement of Theorem 4 for
k = n. The case of arbitrary k follows from Lemma 8 and from Property 9 of Sect. 4.2.

§5. Comparison to cohomologies and relations

1. Comparison to cohomologies. Let S be a configuration of hyperplanes in a
real n-dimensional affine space V.

Every oriented n-dimensional facet 4eC,(S) determines a cohomology class
[A)e H"(M, Z) which is equal to the index of intersection with a non-compact
cycle A (we suppose M to be complex-oriented).

Fix an orientation on ¥ and thus on every n-dimensional facet. Define a linear
mapping n: C,(S)— H"(M¢,Z) by establishing correspondence between linear
combinations of facets, Y a,4,, and classes ¥ a,[4,].

In order to describe the kernel of the mapping n, we consider the natural
isomorphism i: C,{S)—gr,D.

Theorem 20. kern =i~ (W, _,gr,D).

Proof. Relate a class of homologies in H, (M, Z) of the torus defined
below to each flag F ={F,c F, c--- < F,), namely, let ¢,,...,&,> 0. Consider a
torus T(e) = {zeC"||z;] =¢;} in C* Fix its orientation. Affinely mapR" with
coordinates z,,...,z, onto ¥V so that the standard flag {z, =---=2,=0} <
{z,=+=2,=0}c .- ={Z,=0} = R" be mapped onto the flag F. Consider a
complexification C*— V. of the mapping. Torus T(e) for 0 <&, « g, « - «g, « 1
is mapped into M. and defines a homology class not depending on &. Denote it
by Tg.
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Lemma 9. Consider a cochain on C,(S) which is equal to the index of intersection
with Tg. Then the cochain is equal to the flag cochain ¢ up to a multiplication by +1.

The proof is obvious.

The linear hull of the classes T obtained for different flags F of degree n will
be denoted by L. By Lemmas 8§ and 9, dim, L =dim, C,(S)/i” (W, _gr,D). By
Corollary 2 of Theorem 3, dim, ILK?NVNa_BNG,E\T;S\.yE:S. As a
corollary, we obtain Theorem 20 as well as the statement L=H,M_1Z)

Example. Consider a configuration of coordinate hyperplanes A \.H?g_uo.v.
j=1,...,n, in R". By making use of the form dz; A - A dz,, set an orientation in
rio M consists of 2" octants. The space C,(S)i™'(W,_,g4r,D)=gr,Wyr,D is
one-dimensional and is generated by a positive octant {z;>0,...,z,> 0}. Under
the mapping n, the positive octant is transformed into a cohomology class of the

form (=1~ W2w, A --- A w, where w; =dz;/2n./ —1z;.

Notice a useful corollary of Theorem 20. Let ¢ be a linear function in m.n:n_.w_
position. Then the mapping = restricted on C,(S,) gives an ,woBoGEwB of
n-dimensional chains of the configuration and the space H"(M(,Z) which are
bounded from above.

Proof of Theorem 8. For k =n, Theorem 8 is a corollary of Theorem 20, of
the previous example and of Properties 10 and 11 of Sect. 4.2. The case k<n
follows from the case k = n, by making use of Property 9 of Sect. 4.2.

2. Relations.

Proof of Theorem 5. The statement is reduced to the case of the circuit
fivooSiepn fi= =+ + fi_,) for which the relations x -+ x, =0, (x; — 1)
{x, —1)=0 hold.

Proof of Theorem 6. By Theorem 5, it suffices to show EE.&B Z{x]/9 =
dim H*(M ). The relations x}? = x; annihilate the monomials which include at ieast
one of variables raised to a power greater than 1. One has to prove that the work
of the relation concerning the rest of the monomials can be deduced :.o._.: 2).
Under the isomorphism PP s H (M), relation (2) is transformed into a
homogeneous relation of degree s — 1

(3}

i al 4 a spi ..} and factorized by making
According to [3], the external algebra spanned on .?_m: an
use of relations (5) for all the circuits is isomorphic to H*(M¢). Thus Z[x]/9 has
the needed dimension.

s 1
Wi, A AW =W AW A AW +(=1FT w A AW,

Theorem 7 is a coroilary of Theorems 6 and 8 and of the Theorem based on
[7,11,12]
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§6. Appendix. Decomposition into elementary fractions

There exists an clementary analytical analogue of Theorem 18 on the decom-
position into simplicial cones that is a generalization of the theorem on the
dccomposition of rational functions into elementary fractions.

1. Decomposition. Consider a rational function R = P/Q on an n-dimensional
linear space ¥, where P and Q are polynomials. Suppose that Q can be decomposed
into a product of polynomials of degree 10 Q = [T, f¥. Let z,,...,z, be the linear
coordinates in V.

Theorem 21. The function R can be represented in the form:

R “M:_vu_i.::vn:lre AOV

where either a; 20 and 1, =z;, or 2;<0 and 1, is a polynomial of degree 1 in 2,
Zjatven s Zns With 1 us the coefficient of z;; the A, , are numbers. The representation
is unique.

Proof. Restrict R to each of the lines parallel to the z,-axis and decompose it
into elementary fractions in z;. We thus obtain a representation
R=Y % [JIBi+Y7C
iel (,<p<y 1
where B,; and C, are rational functions in z,,...,z,, whose denominators are
products of polynomials whose degrees are equal to 1. This representation is unique.
The functions B, ; and C, can be treated similarly.

Example. 1/(z) —z;) (z; —2,) (2, — 2, —z3) =Wz, — 23} (z3—2;) (—25) +
Wy —z3) (2 —23) (—o3) 4+ 1o, —z,—23)z,2, = Wz, — 23) (23— 2,) (—23) +
ey —23) (=202 + Uz, — 20 (2, — 230 A= 23) + Mz, — 2, — 23)2,25.

Theorem 21 is close to Theorem 5.2 of [7].

Let all the linear functions {f,_,} bc homogeneous and the set 1,,...,t, enter
(6) with negative coeflicients «,,...,x, We point out the relation between [FT
and the covectors { fi,}. 1, is proportional to one of the {f,,}. We project the
rest of the covectors of { /., } along 1|, onto a hyperplane in ¥* which is orthogonal
to the vector (1.0,...,0). Thus we obtain a sct of covectors {g}. Then t, is
proportional to one of those covectors. Project along 1, the rest of the covectors
of {4}, onto an (n — 2)-dimensional plane orthogonal to the plane in V, spanned
on (1,0,...,0),(0,1,0....,0). We get a set of covectors {h}. Then 1 is proportional
to one of those, etc.

If the set of covectors | fi; } is closed with respect to the projection operations
Just described, then, for %, <0, the polynomial t; of (6} is proportional to one of
{ fie:}- The following are examples of such families:

t. Type A. @ is the product of degrees of polynomials z; =z,, j < k.
2. Type B. Q is the product of degrees of polynomials z,,z; 4+ z,,j < k.
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2. Application. Consider a linear mapping h:RY —R", under which the j-th
basis vector is transformed into a vector h;. Suppose that all the h; lie in the
hall-space x, >0, where x,,...,x, are the coordinates in R". Define the function
U on R". U(x) is the (N — n)-dimensional volume of the intersection of the fibre
lying above x and of the positive octant in RY, where, as a form of volume, the
ratio of, respectively, volume forms on R¥ and R" is taken. For details of the
function see [7].

Theorem 22. For the set {h,,} in general position,

U 5 (hg,s-. b, _..czl.x; o
¥) = - a7
(S5 sn (N —n) : (hy,,....h,)

5wy RTDI
1S5, 8N

0]

where (vy,...,v,) is the determinant whose columns are v,,...,v, and Xyse., 150
characteristic function of the simplicial cone generated by the vectors [
hs,...snr where by, o, for p> 1, is the projection of the vector h,along {h,,...,h, |}
on the coordinate plane {(0,...,0, 1,,0,...,0),...,(0,...,0, 1)}, its sign being taken
so that its p-th coordinate is positive.

In particular, for n =2, X; is the characteristic function of the cone generated by
the vectors h 5, (0, 1)

For arbitrary n and N =n, (7) assumes the form:

Ux)= ¥ x,

s€Sn

Gy, k).

s

In this case, U(x) is piecewise constant and is proportional to the characteristic
function of the cone generated by the vectors hy,...,h,.

Remark. If we drop X from (7), the sum will be identically equal to zero. For
example, for n =2, f;=(1,a;), we have

N
_.uMmA

To prove the theorem, it suffices to consider the Laplace transformation of the
function U(x) (see [7]), to decompose the rational function thus obtained into
elementary fractions and to perform the inverse Laplace transformation of the
terms of the sum.

(x, Ia..x_vzf~

=0
ay—a;)(a. —a)ai, —a)-(ay —a;)
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