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ALGEBRAIC AND COMBINATORIAL ASPECTS OF THE GENERAL THEORY OF
HY™£RGEOMETRIC FUNCTIONS

I. M. Gel'fand and A. V. Zelevinskii UDC 517.58

INTRODUCTION

1. This article is a part of a program of study of the general hypergeometric functions
introduced in [6}. Basically, we set forth here the algebraic and combinatorial aspects of
the theory; other results on general hypergeometric functions are given in {7, 9]. We also
cite some applications, including some applications to the study of the continuous analogue
of the partition functions of Kostant [21] introduced in [4].

General nhypergeometric functions are essentially functions on a Grassmannian. A Grass-
mannian 1s a manifold of k~dimensional subspaces in an n-dimensional vector space V over the
field R or C. At the present time, these manifolds play an important role in a large number
of problems wnich are closely related to each other (see [8, 10], for example; we note also
that the well-known twistor program of Penrouz [12] is based on a study of Gassmannians of
two-dimensional planes in C*). The Grassmannian of k-dimensional subspaces in V will be de-
noted by Gr(V).

Although the Grassmannian Gg(V) is a homogeneous space with respect to the group GL(V),
we will first be interested in the action of a maximal torus H in the group GL{V) on it. The
choice of a maximal torus fixes a basis e;,...,eq in V, i.e., it allows us to identify V
with the coordinate space R? or CU'; moreover, in the complex case, this torus is the group
of all diagonal matrices, and, in the real case, the group of diagonal matrices with positive
elements. The orbits of H on Gx(C") are toroidal manifolds; in the real case these orbits
reduce to interesting manifolds, so-called Grassman simplexes [19] (see also [13, 20]). In
this article we will concern ourselves only with real Grassmannians, which makes it possible
for us to give a well-rounded treatment of the combinatorial and geometric aspects. However,
a complete understanding of the situation is impossible without entering the complex domain;
the complex theory will be treated in a subsequent article,

2. Definition of a General Hypergeometric Function. The existence of the torus H in
GL(R®) allows us ro distinguish the class of homogeneous functions w(x) in R®. For each set
@ = (@14y...,apn) of complex numbers with sum n — k, we consider the homogeneous function

@;-1
+

T ()= II (z )% here r=(z1,...,%Zs)E=R", and (zg§fl==x?r1 for x{ > 0 and (z;)%" =0 for xj < 0.

.
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Now let =G, (R™ be a k-dimensional subspace in R%, and let S(g) be a "sphere" in ¢
(by a "sphere" in  we understand a factor space £ \0 with respect to the action of the multi-
plicative group R4 “ 0, or an arbitrary smooth surface in { which intersects every ray from 0
in one point). Let . be a nonzero exterior k—form on ¢. The general hypergeometric function
$(as 7, w) 1is defined by

Dl 5) = | 7a(2)B(2). (1
S(Q)
Here w(x) is a (k — 1)=form on ¢\ 0 induced by w in a natural way: if t;,...,tgx are coordi-
nates in gand w=d, N ... Adlr,then &= (— 1)-1t;dty A ...dtiy Adtin A\ ... . Since Na;=
T i

n — k, the form 7,(x)w(x) has degree of homogeneity 0, which means it decreases on the
"gphere" S(g); in addition, S(g) is furnished with a natural orientation which is induced

in a natural wav bv w. An expresssion for $(a; %, w) in the local coordinates on the Grass-
mannian 1s given in Sec. 1.
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Since the integral in (1) diverges for some a and L, the definition of ¢(a; 2z, w) re-

quires scme revision for these values; the precise definition, using analytic continuation

with respect to a and the method of partitionings, is given in [6]. We note that, along with

¢(a; ¢, w), the function ¢(a, €; ¢, w) is also defined for all sets € = (€;,...,eq), where

€{ = *1; we have the relation ¢(a, €; ¢, w) = ¢(a; €z, €w), where the pair (ez, ew) is ob-

tained by acting on (I, w) with the diagonal matrix € = diag (€1,...,€4). A holonomic system

of differential equations which all of the functions (o, €; £, w) satisfy is constructed

in [7].

Every function ¢(a, €; ¢, w) satisfies the intrinsic homogeneity condition with respect
to the action of the group H: for A = diag (A, . . ., A)E H we have that (e, €; AT, Aw) =
mq(A)¢(a, €; ¢, w). Thus if the value of this function is known at any point ¢ whatever of
the Grassmannian, thenit is known on the entire orbit of ¢ under the action of H, i.e., it
is actually a function on the space of orbits Gk (R™) /H.

3. Decomposition of a Grassmannian into Strata. In view of the fact that we have iden-
tified a maximal torus of H, the coordinate subspaces R'1---1m = RJ play an important role in
R, We say that two points ¢ and ;' of the Grassmannian Gk (RM) are equivalent if dim x
(80 RY) = dim (' N RY) for all RJ. The equivalence classes are called strata in Gk (R™) . There
exists a unique open stratum called the general stratum; it consists of subspaces { & Gy (RM),
which are in general position with respect to all coordinate subspaces.

It is possible to define strata in many ways: as the intersection of Schubert cells re-
lated to various orderings of the basis vectors in RD; by means of Pliicker coordinates; in
terms of mappings of moments [19, 13, 20]; and from the point of view of combinatorial geome-
try (see below). The relationships among these definitions are studied in an article of
Segranov and Gel'fand, and they are carried over to "Grassmannians" and flag manifolds for all
semisimple groups.

As shown in [6], the restriction of every function ¢(a, €; 7, w) to any stratum in Gy (RD)
is real analytic. 1In addition, on a general stratum the number of linearly independent ones

among them 1is s;(:::%) (see [7]); the homological interpretation of this number is given in

the present article. By considering the restrictions of general hypergeometric functions to
various strata, it is possible to obtain many classical hypergeometric functions of one and
several variables (see [6]; this question is treated in greater detail in [9]). Thus the
Gauss hypergeometric function F(a, b; c; z) turns out to be related to the general stratum
in G2 (R*) (see {6] and Sec. 2 of the present article).

4. In this and subsequent articles we study the analytic behavior of the restrictions
of the general hypergeometric function to various strata in Gk (R") [henceforth, we will speak
only of the function ¢(a; Z, w), but everything we say carries over with obvious modifications
to all functions ¢(a, €; 7, w)]. Since we are interested here in the algebraic and combina-
torial aspects of the theory, we consider only special integer sets of the indices o called
polynomial sets (see Sec. 4). In this case ¢(a; 6, w) is actually piecewise rational. The
case of general indices will be treated in a subsequent article.

The restriction of ¢(a; Z, w) to a stratum T in Gk (R™) has singularities on the bound-
aries of I'; therefore it behaves differently on different connected components of I', The
connected components of I' are called cells. The description of cells in the general case is
very difficult and can even be an unsolvable problem. It turns out, however, that in the
study of ¢(a; Z, w), not individual cells, but certain unions of them, which we call large
cells, are essential. Large cells on the stratum I' are parametrized by the (n — k + 1)-
dimensional coordinate subspaces RJ in RD in general position with respect to I, i.e., such
that dim ({ M R) =1 for { = TI; the corresponding large cell I'(J) consists of subspaces [ & T
such that the direction vector of the line { N R’ has positive coordinates.

As we shall see in Sec. 4, for polynomial « the function ¢(a; z, w) admits an expansion
of the form

Dfa; L 0) = F s (38, ), (2) .
{

on I', where every function ¢;(a; 7, w) is rational in the large cell T'(J) and equal to 0 out-
side of T(J). However this expansion is not unique. A central result of this article con-
sists in the choice of a "basis in the space of large cells,” i.e., a system B of large cells
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such that the expansion of the form (2), where the sum extends over all J & B, exists and is
unique; we call such a system B fundamental.

For the case of a general stratum [ as B, it is possible to take the system of all large
cells I'(J) such that RJ contains a certain fixed two~dimensional coordinate subspace in RO,

. . . . -2 . .
Thus the number of functions ¢j(a; ¢, w) in the expansion (2) is (:__1) in this case.

An expansion of the form (2) also has meaning for general indices a. Every function
dy(a; 6, w) 1s equal to O outside of ['(J) as before, and "has unique analytic behavior" in
[(J); this means that its analytic continuations into the complex domain from different cells
in I'(J) are consolidated into a single branch of an analytic function. If the stratum I is

-2 . . . .
general, we therefore get (Z__1> linearly independent solutions of the holonomic system of

equations in [7]; taking into account an estimate in [7], we get that these functions form
a basis in the space of solutions. Explicit expressions for the ¢y can be given in terms of
integral representations in the complex domain; this will be done in a subsequent article.

A precise statement of the result concerning the expansion (2) is given in Sec. 4 (Theo-
rem 4.2). Roughly speaking, this result isas follows: we construct a group of homological
origin with respect to the stratum I', and we define a class of special bases in it; to each
basis in this class there corresponds an expansion of ¢(u; Z, w) on T in a sum (2) whose terms
are parametrized by elements of this basis.

The above homology group can be defined in several different ways topologically (see
[2, 15]), algebraically, and geometrically (see Sec. 3). It is remarkable that, making use
of results of Orlik and Solomon [22], it is possible to give a purely combinatorial definition
in terms of so-called combinatorial geometry (or the theory of matroids). One of the conclu-
sions of the present article is the fact that this theory, which has been developed in the
last 30 years by Whitney and by Birkhoff and MacLane and which has received a new impetus
thanks to the work of Rota and his school (see [1, 17, 23}), is a natural combinatorial basis
for the theory of general hypergeometric functions.

5. Theorem 4.2 is closely related to a result concerning the expansion of rational func—
tions which is of interest in itself (Theorem 5.2); this result gives a multidimensional gen-
eralization of the expansion of a rational functiom in simple fractions. Let £ be an I-
dimensional vector space (over R or C) in which there ig given a finite family ¥ = (f;)icz of
nonzero linear forms. For each set a = (a;);z; of nonnegative integers, we let F, denote a

rational function (IIf#)-t on ¢. The problem solved in Theorem 5.2 consists in the construc—
iel

tion of (linear) basis in the family of all functions F,. The rank of a subset J C I is
defined to be the rank of the family of linear forms (f;)j=7. We will assume that I has rank

{, and we will consider functions Fy only for sets a = (a;)i=t» such that supp a = {i=1I: ;% 0)
has rank [ (the general case can easily be reduced to this one).

We denote the vector space H = H (§, ) generated by the functions F; = nf?, where J
runs through all l-subsets of rank I in Z. e

We call a system B consisting of l-subsets in I of rank I fundamental if the functions
Fy for J& B formabasis inthe space H. Theorem 5.2 asserts that, for every fundamental system
B, the functions F,' with suppx’= B form a basis in the space spanned by all F,.

There is also an explicit method for constructing fundamental systems in arbitrary lin-
early ordered sets I (Theorem 3.1), which makes Theorem 5.2 more effective.

We note that (for a suitable choice of £ and ¥ ) the space H (8, F) is one of the real-
izations of the homology group with which we were concerned in the preceding section; indeed,
the special bases mentioned there are bases of functions Fy, where J runs through any funda-
mental system. It is interesting that the concept of a fundamental system also admits a
purely combinatorial definition; the method of constructing them given in Theorem 3.1 in a
combinatorial situation is due essentially to Bjorner [14] (more precisely, it is obtained
by adapting a result of Bjorner to a construction of Orlik and Solomon [22]).

6. Another application of Theorem 4.2 relates to the following beautiful geometry prob-
lem. In R® we consider the family of k-dimensional affine planes ¢ + f which are parallel to
a given subspace { = G, (R"). We consider the polyhedra obtained by taking the intersection of
these planes with the positive octant R?. The problem consists in studying the volume of such
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a polyhedron as a function of f; we denote this function by ¥(f). This function has a com—

plicated piecewise polynomial behavior. In Sec. 5 we show that it can be obtained as a re-

striction of the general hypergeometric function ¢(o; 7, w) (for special values of a) to some
submanifold. Applying Theorem 4.2, we get that the behavior of ¥(f) is governed by the same
homology group as above, and that there is a class of explicit expressions for it correspond-

ing to the various choices of a basis in this homology group. i

It turns out that the continuous analogue of Kostant's partition function [21] which is
introduced in {4] and which plays an important role in representation theory can also be de-
fined as a function of the form ¥(f) for some special choice of R® and of ; this means that
all of what has been described above is also applicable to it. For systems of roots of type
A7 the continuous analogue of Kostant's function is calculated in [11]; this result is in-
cluded in our general scheme.

A very interesting question is whether it is possible to apply the various methods de-
scribed here to a study of Kostant's function itself. 1In geometric terms, it revolves around !
the study of the 'discrete analogue" of Y(f) obtained by replacing the volume of the poly-
hedron by the number of integer points in it. This question will be taken up in another ar- '
ticle, where explicit expressions will be obtained for various systems of roots.

7. This article is organized in the following way. The necessary definitions and nota-
tion are brought together in Sec. 1. In Sec. 2, we establish useful functional relations for .
general hypergeometric functions, which we call Gauss relations (for the Gauss hypergeometric /
function they reduce to the classical Gauss relations [3]). 1In Sec. 3 we study a homology
group which plays a central role in the article, and we obtain a number of realizations of it.
In Sec. 4, we obtain the main theorem, Theorem 4.2 and in Sec. 5 we bring together some of '
its applications.

The material from combinatorial geometry which we need is developed in the Appendix. We ‘
describe there the construction of Orlik and Solomon {22] and Bjornmer's theorem [14] in forms {
which are convenient for our purposes. So that this article can be read independently, we :
give a new proof of this theorem,

1. DEFINITIONS AND NOTATION

Instead of R®, it will be convenient to consider the vector space Rl with a preferred
basis (e;);e;, indexed by the finite set I. For each J C I we let RJ denote the subspace of RI
spanned by the vectors (¢j)jer , and we let R{ be the (open) positive octant in RY, i.e., R{ =
{leﬂj:xj>>o}. We denote the number of elements in the finite set J by 1JI; if {J! = m, then
=

we say that J 1s an m-set.

We denote by Gk(RI) the Grassmannian of k-dimensional vector subspaces in RI. The co-
dimension of the subspaces, i.e., the number |Il — k, will always be denoted by I.

Let { = G4«{R!). We denote by gl the subspace of linear forms on RI whose restrictions
to ¢ are equal to 0. We put L = L(z) = RI/z. We denote the pro;ectlon Rl > L by q, and
we put [, =q (&) =L fori=[. Ve 1dent1fy L with the dual space of z; in particular, the fj
will be regarded as linear forms on tL. The family (f;)iz1 of vectors in L will be denoted by

F =F(D.

We consider the pregeometry of rank I on I corresponding to F(L) (see the Appendlx), the
rank function of this pregeometry is given by r{(J) = rk (fi)jes = dim (R¥/{ | R’). It is clear
that two points 7 and ' lie on a single stratum I' in Gx(RI) if and only if the pregeometries
on I-corresponding to them coincide. We will use the terminology of the Appendix relative to
this pregeometry, adding, if necessary, a designation to ¢ {(or T). Thus a subset J of I 1is
independent for { if { M R =0, and is a basis (of the pregeometry) for ¢ if { o R/ = R!,

The set of all bases of the pregeometry for { is denoted by B(z). We note that the list
of T defined in [6] consists of the k=subsets of I which are complements of subsets of B(Z).

For every l-subset J C I we put IV = {{ &Gy (RI):{ ® R’ =R!} . The set IV is a coordi- :
nate neighborhood in Gk(RI): the elements of T'J are parametrized by the real matrices Z = :

(zig)i=1y, jes» and the subspace {{Z) & IY with basis (e;+ E%ZHQ%EI\J corresponds to the matrix
7. e

We denote by Gx(RI) the set of pairs ¢ = (g, w), where { = Gx(R!), and w is a nonzero
skew symmetric k-linear form on {. The projection { -+ { converts GK(RI) into a fiber bundle



over Gi(RL) with fiber R\ 0; for each subset I' CC Gy (R!) we will denote the preimage of I under

this pro;ectlon by I’C:G';r (R . In particular, the sets [, where I' is a stratum in Gk (RL), are
called strata in Gg(RD).

Suppose that { = (g, w) &= Gy (R , and let a = (a‘)i'e’ be a set of complex numbers whose
sum is . The general hypergeometric function ¢(a; ¢) = ¢(a; g, w) is defined in the Intro-
duction [see (1)]. For fixed ¢, the function ¢(a; ¢) is univalent and meromorphic in a, and

for fixed 4 it is a real analytic function of 7 if we restrict it to any stratum in Gk(RI)
(see [6]).

From our agreement concerning the choice of an orientation on the "sphere" S(z) it fol-
lows that @ (a; §,Aew) = |A | @ (a; &, 0) for 0s#A=R. In particular, the function ¢(a; T, w
remains unchanged if we replace w by ~w. Making use of this, we will often give w only to
within its sign.

Example 1.1. Let k = 1. We choose a generator ) be; of the line { & G, (R!) so that at
least one of the coordinates bj is positive. Then !

D (38 0) = [] (B I @ (2 bie‘) l :
iel i

We write ¢(a; z) in the local coordinates introduced above. Let J be an l-subset in I,
and let Z=(z;j)icrns,jes be a real matrix. Let w(Z) be a k-form on 2 (Z) taking on the values

+#1 on the set of vectors (e+ 2 Zigiierns - Let I\J = {iy,...,ix}. In this notation, (1) can
be written

o@t@o@)= § I @ II( 3 a5, 3

s(RI\J) ienNJ et iel\J)
where

4
B(z)= 3 (—1ylzydz, A... Ndxi, Adzi g A... A\ dzy. ()

1<k
For brevity, we will write ¢(a; Z) instead of ¢(a; g(Z), w(Z)).

If a = (2;)ier and f = (B;)ie; are two sets of indices, then the set (&; -+ Biier will be
denoted by o + 8. For each JC I, we use 1j to denote the set (,);e;, where ;=1 for je=J
and \; = 0 for i J. We will write 1j instead of 1{i}. For example, a — 1j denotes the set

(i)ier, where @i = a; — 8;5. Finally, we put {al:Eai and Suppa = {i = I: a; 5= 0}.
1

2. GAUSS RELATIONS
THEOREM 2.1. Let T = ({, o)< & (R,

a) Let B = (PBi)ier be a set of complex numbers with sum . — 1, and let v= D azn St be
a linear form which is identically O on ¢. Then el

‘él @ (B + 1;7T) =0.

b) Let ¥ = (Vi)iez be a set of complex numbers with sum 7 + 1, and let y= _ZlbieiEQ. Then
=

2 bi(pi— 1) O (y —1;;5) =0. 6)

(5)

The relations (5) and (6) are called the Gauss relations for the general hypergeometric
function on an arbitrary stratum (see example 2.1 below); altogether, they give k + 1 I|*
independent relations which relate the values of ¢(a; ) for fixed { and "contiguous" in-
dices a. The relations (5) follow directly from the definitions, and the relations (6) follow
from (5) and a duality theorem in [9]. For a general stratum, it is convenient to construct
the proof in local coordinates. We choose an l-subset J [, and we consider the function
$(a; Z) definmed in (3).

Proposition 2.1. a) For fixed j&J, the function ¢(a; Z), as a function of the column
(2iy)izrg > has degree of homogeneity (aj — 1) (i.e., for X > 0, if we make the replacement
zij - Azij for all i=7I\J in %(a; Z), this multiplies the functions by AaJ“l).

*Something missing in the Russian original — Publisher.
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b) For fixed i=7I\J, the function ¢(a; Z), as a function of the row (z;;)j=; , has degree
of homogeneity (-aj).

c¢) For all i= I\ J and all j=J,
oD (a3 2)oz;; = (2 — 1) @ (a + 1, — 155 2). (7)
All of these assertions follow immediately from (3).

COROLLARY. a) For every j=J,
O(;2)= D 20+ 1i—1;2) (8)
ienJ

b) For every i= I\ J,
@ (@2) + 3 (@ — )20 (@ + 1= 1;2) =0. (9)

To prove (8), we write the homogeneity condition of ¢(a; Z) with respect to the column
(z;j)iznv in the Euler form
> 500 (a; 2)/0z;=(a)— 1) D (a; Z).
iERJ

Substituting this into (7), we get (8). The result in (9) is proved in exactly the same way.

Equations (8) and (9) are the Gauss relations for the general hypergeometric function on
a general stratum. We note that (7) and (8) (in our terms, for a general stratum) have been
proved by Aomoto [24, 25].

Example 2.1. Let J = {1, 2}, I\J = {0, 3}, and let k = 2, so that we are dealing with
the Grassmannian of two-dimensional subspaces of R'. By virtue of Proposition 2.1 (a), (b), to
calculate ¢(a; Z) we may assume that all of the matrix elements of Z, except the first, are
fixed. We put z31 = 232 = —1, 293 =1, 292 = z; by virtue of (3) we have for such a matrix Z

B (2 2)= {221 (1 — z)pr1(z — 2)% 1 4z,

Hence it follows that
D(;Z)=0 for 2O,

oy T{e) T (ag)
D@ z)= T (a: + as)
T () T (a3)
T (a1 + as)

za‘+a‘_1F(1_a1’aa;az+as;z) fOr O<z<1y (10)

O (o; 2) = 2971F (1 —ag, a5 00 + ag; 272)  for 21,

where F(a, b; c¢; z) is the classical Gauss hypergeometric function.

If we make a suitable choice of a basis of four relations in the space of relations of
the form (5) and (6), and if we transform them by making use of (10), we get the classical
Gauss relations for F ([3], 2.8. (38), (42), (35), (43)); it is easy to verify that all 15
of the Gauss relations ([3], 2.8. (31)-(45)) are linear combinations of these four relations
(applied to various sets of indices aj).

3. THE SPACE H(z) AND ITS REALIZATIONS

We fix a stratum I in Gk (RI) and a point { & T. We construct a finite-dimensional space
H(Z) and we describe a special class of bases in it; these concepts play a central role in
what follows. We obtain several different realizations of H(z). If ¢ contains any basis
vector ej, then we put H(Z) = 0; we note that the strata I with this property are said to be
degenerate in the terminology of [6]. Thus in what follows we assume that this is not the
case; in other words, all of the vectors £i in the space L = L(z) are different from O.

Algebraic Definition. For each J& B ({) we let Fj denote the rational function H ot
el
on ¢+ (see Sec. 1). By definition H(g) is the vector space generated by all such functions
Fj.

Topological Definition. Let Cé be the complexification 1, and suppose that X = tE\\
_(lEJIfi‘L is obtained from cé by deleting the hyperplanes orthogonal to all of the fj. The space
L1
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H(gc) is isomorphic to the highest cohomology group HI(X) of X. More precisely, we have the
following result,

Proposition 3.1 [2, 15]. The mapping H ({) ® A'(L)— H! (X), which sends each element
F @ o into the class of cohomologies of the differential I-form Fw on X is an isomorphism.

Combinatorial Definition. We consider the pregeometry of rank ! on I constructed with
respect to ¢, l.e., corresponding to the family of vectors ¥ = (fidier in L. Let ;= A, (])
be the space corresponding to this pregeometry under the construction of Orlik and Solomon
(see the Appendix). Then H(Z) and «, ({) are isomorphic. More precisely, we can construct a
natural isomorphism between 4, ({) and H () @ A’ (L).

The requirement that J & B () means that the restriction of the projection ¢: Rl — L
to RJ is an isomorphism of RJ with L; for each J & B (), we again denote by q = qJ,; the iso-
morphism A' (R7) = A' (L), introduced by this isomorphism. We recall (see Appendix) that there
is a natural epimorphism & ¢, =4, with kernel 6% 1.1, where the space ¥; is identified with
c & AYRY).
JeB®)

Proposition 3.2. The mapping %,— H ({) ® A" (L), which carries o & Al (R C ¢, into
F; & gqs,; (0), is an epimorphism, and its kernel coincides with 6%1,1. Thus this mapping induces
a natural isomorphism of W; with H () ® A'(L).

This result is essentially due to Orlik and Solomon [22]. Combining Propositions 3.1
and 3.2, we get an isomorphism between {; and HZ(X); in [22] it is shown that the algebra

A =& Am constructed in the Appendix is isomorphic in a natural way to the cohomology ring
mel

H*(X) .

It is possible to restate Proposition 3.2 in a purely algebraic fashion in terms of H(Z).
Indeed, let J be an (I + 1)-subset in I having rank [ (for z); this means that dim (;NRY) = 1.
Let y= ) be;, be a nonzero vector in t; in other words, this means that ) b;f;=0. Dividing

jed et
this last equality by H fi» we get the following linear relation in H(Z):
jel

5; biFs ;=0 (11)
J

(it is easy to see that bj; # 0 if and only if JA\jEB(?;)).

Proposition 3.3. Every linear relation among the elements F,;(J = B ({) in H(z) is a
consequence of relations of the form (11).

This follows directly from Proposition 3.2.

We note a similarity between (11) and the Gauss relations (6). This similarity is not
accidental; we will make the connection with the hypergeometric function later.

I Geometric Definition. We assume that 7 satisfies the additional restriction that t N

R} = ¢ (it is easy to see that, for any stratum I', the set of such ¢ is nonempty and open

in T). In other words, this means that all vectors fi lie in some semispace in L{(Z); if the
fi are regarded as linear forms on ¢¥, then this means that there exists a point ze& 2L, for
which £i(x) > 0 for all i 1. For each subset J I of rank 1 (for z), we let Cj denote the
open cone in L generated by the £y for J & J (in other words, Cy is the image of R{ under the
projection ¢: RI—>L). Let L° be the subset in L consisting of those vectors f which are in
general position with respect to the system F = (fi);=;y (i.e., f does not lie in any character-
istic subspace in L spanned by a subsystem of ¥). We put C} = C, N Lo and we let xj = Xy, ¢
denote the characteristic function of the set C%. Let H' = H'(7) be the vector space of ~’
functions on L generated by the functions Xy for J= B (L). We choose a nonzero skew-symmetric
{-linear form w on L, and, for each J = o .-} & B(L) we put ¢;(0) = |0 (fy, .. afi) b

Proposition 3.4. The mapping which carries Xy into c3(w)Fy for all J <= B(§), can be ex-
tended to an isomorphism of H'(g) and H(Z).

Proof. We put CT={z=¢(*:f(z) >0for fe C1}; from the condition that { N Ri=( is
a nonempty open convex cone in ., We congider the Laplace transformation which carries a
function ¢ on Cp into the function Pg¢ on CT given by

Po @)= o (Het™a (). (12)
L
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We can see immediately that PX; = cj(w)Fy for all J =B (5). In addition, it is easy to
see that the restriction of P to #'() is injective; therefore it gives the required isomor-
phism.

We pass to the special basis in H(3). We call a subset B — B ({) a fundamental system
for 7 if the functions Fj for J =B form a basis in H(g). By virtue of Proposition 3.2, this
definition agrees with the combinatorial definition in the Appendix; according to Proposxtion
3.4, a system B is fundamental if and only if the function xy for J =B form a basis in H'(Z).
We describe a general method for constructing fundamental systems.

We say that a subset ['Z [T is a circuit (for 7) if the vectors fj for i =1 are linearly
dependent, but for any characteristic subset of I' this is not true. Now suppose that a lin-
ear ordering has been introduced on I; we call a subset of I an open circuit if it is obtained
from some circuit in I by deleting the maximal element. <

THEQOREM 3.1. The system of all subsets in B(3) which do not contain open circuits (with X
respect to an arbitrary given linear ordering of I) is fundamental.

In the combinatorial situation, this result (and an even more general one) has been
established by Bjorner [14] (Theorem IIL.!1 in the Appendix). Theorem 3.1 follows from Theorem
I1.1 if we make use of Proposition 3.2.

In particular, if 7 is a point of a general stratum in Gk (RI), then dimH(Z) = dimH'(z) =
=1 . . . .
(l I‘—ih” and we may take as a basis in H(7) (B'(z7)) the family of functions FyJ (+3), where J

runs through all {-subsets of I which contain a certain fixed element i< I (Appendix, Example
2).

4. TFUNDAMENTAL SYSTEMS AND GENERAL HYPERGEOMETRIC FUNCTIONS

In this section we apply the concepts developed in Sec. 3 to a study of the general hyper-
geometric function. Again, let [ be some fixed stratum in Gk(RI) We consider the set I =
I { {0}. obtained bv adjoining a distinguished point, denoted here by O, to I. A technicality
that arises here is that the space H(Z) and the fundamental system constructed with reference

™

te the stratum [ are to be applied to a study of the general hypergeometrlc function, not on
T, but on some stratum ' in Gy.;(RI). More prec;Lsely, we put T = {t e Gy RY): (7~ RHyeT},
and we let p: I — I denote the pro_]ectlon given by p(I) =t R!. It is not difficult to see

that I is a fiber bundle over T whose fiber at each point { & I' is isomorphic in a natural

way to the space L ({) = R! {. Indeed, every subspace %< Gy., (R!) such that = R/ = I. is ob-
tained by adjoining to { some vector of the form e; + f, where f is in RI and is defined
uniquely modulo f; thus it is possible to assume that f& L (I), and the mapping Z - f is the
required isomorphism between p~Y(z) and L(3). Taking this isomorphism into account, we will
write the elements of [ as pairs (7, f), where (& T, and f& L =L (). It is easv to see

that there is precisely one open stratum [° = {(, he I fe L% in f (we recall that an open
subset L®(C L ({) consists of vectors in general position with respect to the familv of vectors
{{die1 ; see Sec. 3).

We put .=t Hhel LR =), and we let & = (a;),;
= |1]|~Fk., We will be concerned with the restriction of the function ® (&; {,®) to the open
subset r9=f°ﬂf- of T°.

be a set of indices with |&| =

We recall that, for each subset JC [/ of rank I (for g), we use Cj to denote the open
convex cone in L = L(3) generated by the vectors fj for jeJ. We put T. ()= {(s.)e Tl

feECiy and 2 )y =TT, (J). 1t is clear that [+(I) consists of those subspaces & I,
for which Qﬁ Rl % (¢ ; hence it follows that the restriction of ¢(a; Z, &) to ;2 is concen-

trated on the subset *+SI) We note that if |JI = 7, then T.,,(J) is the intersection of FE
with the large cell in [° corresponding to the coordinate subspace RJLit (see the Introduc-
tion). '

As we have already remarked, we will be concerned with special integer indices a. But
first we discuss the situation for general o in an informal way. Let B be an arbitrary funda-
‘mental system of l-subsets in I for the stratum [ (see Sec. 3). We assert that the function
¢(a; L, w) on '} can be expanded in a sum

O (5; 5, ®)=Jéﬂ 0P (3,8, @), (%)



where \D“(,B) is equal to 0 for L IY (/) and "has unique analytic behavior" in F$(J); this means
that if we continue the restrictions of 9{B) to the various cells of ray analytically into
the complex domain, we get a unique branch of an analytic function in some region U in the
complexification f§ of the stratum f°. 1If U is a sufficiently small region and E(U) is the
(finite-dimensional) space of restrictions to U of solutions of the holonomic system of equa-
tions in {7], then it }g possible to suggest that dimE(U) = dimH(z) (where % lies in the

stratum T, covered by I'") and that it is possible to obtain a basis in E(U) by continuing
@JB> analytically into the complex domain. These questions will be treated in another article.

We pass to the precise statements. First of all, we introduce the normalization of the
function ¢(a; Z, w) which is suitable for continuing it analytically with respect to a. Let
t: (5, f)o”:‘f‘g , and let w be a nonzero k-form on ¢ such that {=({, w)=T (see Sec. 1). From
w we construct the (k + 1)-form «:;_on 7 given by @(yl,...,yk, e + £) = w(yi,...,yk), where
{y1,.++,ykl is a basis in ¢, and f is an arbitrary representative of the vector f=L =R

in RI. wWe will write the point (§, ® =1 in the form (z, £f) = (¢, w, £), and the set of in-
dices o as a pair (a, up), where a = (;);er is an arbitrary set of complex numbers, and ag =

l— Y a,. We put
izl
¥ (@ oo N=0@Loe ) [IT@) (13)
i=l

It will be important to clarify the behavior of Y(a; ¢, w, f) as a function of o in a
neighborhood of a point where some of the oj can vanish. More precisely, let a® = (a{”),,;
be a set such that Supp a® =J, where J is some m-subset in I which has rank 7 for z; we

denote the subset (2{”),.; by af. wWe put Ly = L ) R7; thus ;= Gn; (R’). From the k-form w

on ¢ we construct the (m — 1)-form wj on ¢j whose value at the vectors Yy + + s Ym1 = o7 is

@ (Yys+ - s Ym-tr €iys + + . €;), where {ips. . iy =TI\ J, and the. e{ are vectors in { congruent to e;

modulo RJ (it is easy to see that such a form wJ is uniquely determined up to its sign; see
Sec. 1). We note that there is a natural isomorphism between L(zj) = RJ/CJ and L(z) = RL/
= (RI + 0)/c.

Proposition 4.1. Under the above assumptions, ¥(u; £, w, f) can be continued analyti-
cally with respect to a to the point a0 » and its value at this point is ¥ (@; & e, f).

The proof of this proposition will be given in another article.

COROLLARY. We suppose that the set J = Supp o consists of I elements. Let I \ J =
{i1,...,1x}, and suppose that the vectors & =1§ for ie=]\J are as above. Then

b4 {a: &y o, f) = }m(éin ceey éik)l' H (xi)fj—l/r (af)’ (14)
el

where the xj are the coordinates in the expansion of f with respect to the basis (fj)jer of L.
In particular, Y(a; %, w, f) is concentrated on F$(J), and can be continued analytically to
ry (3.

This follows directly from Proposition 4.1 and Example 1 of Sec. 1.

We call a set a = (@i)ier polynomial for ¢ (or for the stratum I) if all of the aj are
nonnegative integers and Supp o has rank I for z. The following theorem gives a sharpening
of the expansion (%) for polynomial a.

THEOREM 4.2. Let the set « == (a;);c; be polynomial for I', and let B C B ({) be some funda-
mental system of [-subsets in I. Then the restriction of the function ¥(a; ¢, w, f) to I
can be written as a linear combination of the form :

(e Ljw, /) = Deaa (G 0) ¥ (a5 5, 0, )
2;

where a' runs through the polynomial sets for I' such that la'l = lal and Supp @’ & B, and the
coefficients cy4' (%, w) do not depend on f but are analytic functions of ({, o) & I'. The expan-
sion with these properties is uniquely determined.

We note that every function ¥(a'; ¢, w, f) in the theorem is given by (14); hence it
follows, in particular, that ¥(a; %, w, £) is piecewise polynomial with respect to f of degree
lal — 7. 1If we collect the terms corresponding to those sets o' with the same support, Suppa’,
we get an expansion of the form (%),
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Main Steps in the Proof of Theorem 4.2. 1. Let I'' be a general stratum in Gk(RI). We
adjoin to B certain l-subsets which are dependent for I' in order to obtain a'system B' which
is fundamental for I'' (see Proposition II.1). We show that Theorem 4.2 holds for T'' and the
fundamental system B', and that, in addition, we have the following refinement: all of the
coefficients cgn'(%, w) can be continued analytically from f' to I', and this continuation is
equal to O if Suppa' is dependent for I'. It is clear that the existence of the expansion in
Theorem 4.2 for arbitrary T follows from this refinement.

2. We fix the system B'. We call a polynomial set of indices o good if the refinement
in Step 1 holds for ¥(a; ¢, w, f). We must show that every set o is good.

LEMMA 1. If the set a is good and i & Suppa, then a + 1 is also good.

LEMMA 2. Suppose that 7 I and that|J |> 1. We assume that all of the sets a' such

e e et

that Supp o' is obtained from J by deleting some elements are good. Then 1} is good.

Lemma 1 can be deduced from (7) in Sec. 2, and Lemma 2 from the Gauss relations (6) (or

(9.

3. By virtue of Lemmas ! and 2, it suffices to verify the assertion that all of the a
are good for a = 13, where J & B({). But by virtue of (14) the function ¥(13; 2, w, £), re-
garded as a function of f for fixed ¢ and w, is proportiomal to the function xj introduced
in Sec. 3. Therefore the fact that 13 is good follows from the results in Sec. 3. This
proves the existence of the expansion in Theorem 4.2. The uniqueness requires a separate
argument, which we do not give here.

We postpone a detailed proof of Theorem 4.2 to a later article, where we will also con-
sider the case of general indices.

5. AN APPLICATION OF THEQREM 4.2

We regard the function ¥(a; %, w, f) defined by (13) as a function of f& L= L ({)for
fixed £ and w. For brevity, we will write ¥(a; f) instead of ¥(a; %, w, f). We note that,
with respect to the family § = (f))ie; of rank I in L, the subspace [ Gy (R!) 1s restored as
the kernel of the projection ¢: RI—L which carries e; into fij. As before, we will assume
that all of the f; are different from 0 and lie in some open halfspace in L. We will be in-
terested only in the case where all of the indices aj are positive integers. 1In this case,
¥(a; f) admits a completely "elementary" definition.

For each vector f= L we put A(f)=¢*(f) N R], which is a bounded (open) polyhedron in
the k—-dimensional affine plane q~!(f) in RI; it is obvious that A(f) # /2 if and only if f& (i,
where Cy 1s the open convex cone in L generated by all of the fj. We denote by w the k-form

on q~}(f) obtained from the form w on ¢ = q~*(0) by parallel translation, as well as its re-
striction to 4(f).

Proposition 5.1. Using the above notatiom, we can write ¥(a; f) in the form
/ -1 ;-1
¥ /) =1 T@)" { (Il 57" o@. (15)
iel A el

This follows directly from the definition.

In particular, the function ¥(11; f) is simply the volume of the polyhedron A(f) with
respect to the formo.

- THEOREM 5.1. Let a = (&;);er - be a set of positive integral indices. Let B be some funda-
mental system of L-subsets in I for f. Then for each J& B there exists a unique polynomial
¥P (a; f) on the space L of degree lal — 7 such that for f& L® we have the expansion

¥ )= 2 ¥ (@)
JEB
(for the definitions of L? and Xj» see Sec. 3). '
This theorem follows immediately from Theorem 4.2.

A theorem on the expansion of rational functions is another interesting application of
Theorem 4.2.

From the form w on f, we construct the l-form wy on L in the following way: for vi,...,
e L we put op (Uy, ...y ¥)) = 01 H1r- - o Yoo Dy - oy 50 (Y10 - .-y Yx), where yy,...,yk 1s some basis



in ¢, where 7;,&¢*(v;) for i = 1,...,0, and where wy is a (k + l)-form on RL which takes on
the values 1 on the set (€)c; (it is obvious that the form wy is defined uniquely up to its
sign). As in Sec. 3, we identify vectors in L with linear forms on ;l. Let P be the Laplace
transformation relative to wp [see (12) in Sec. 3].

Proposition 5.2. We have that PW¥(a;f)= n fa—a‘.
iel

The proof follows directly from the definitions.

For each polynomial set o, we define the rational function Fy on ¢t by putting Fy =

[IBA

el

THEOREM 5.2. Let B be a fundamental system of l~subsets for ¢. Every rational function

Fy can be represented in the form of a linear combination DcaaFe with constant coefficients
“

Caa', where o' runs through a set such that {a’|= |a | and Supp @’ & B. This representation
is unique.

This follows immediately from Theorem 4.2 and Proposition 5.2.

The expansicns in Theorem 5.1 and 5.2 are closely related to each other.

Proposition 5.3. Let Fy = 3 caxFar be the expansion in Theorem 5.2. Then the polynomial
“

¥ (2; /) in Theorem 5.1 is given by

¥ (o f) = ¢ Deaa [1 27T (@),
[-14 et
where ¢y = | oz ((f));=s) |, #° runs through the sets such that |a’ | = |a | and Supp @’ =J, and the
xj are the coordinates in the expansion of f with respect to the basis (fjwers.

This follows immediately from Proposition 5.2 and (14) in Sec. 4.

Remarks. a) It is possible to derive an algorithm for calculating the ¥P (a; f) from
the proof of Theorem 4.2; another method is to apply Proposition 5.3. Since we have a general
method for constructing fundamental systems (Theorem 3.1), it is possible in principle to ob-
tain an explicit formula for ¥(a; f). It is clear that, in concrete examples, obtaining such
a formula may not be a simple matter.

b) Proposition 5.3 is closely related to the duality theorem for general hypergeometric
functions obtained in [9].

We turn to Kostant's partition function. Let ¥ = (f)ier be the positive roots of some
system R of roots in L; we normalize the form w so that the Z-form wp, on L corresponding to
it takes on the values *1 on the set of simple roots in R. We recall that, by definition,
Kostant's function KR(f) is the number of representations of f in the form S, mif;, where all

iel
of the mj are nonnegative integers [21]. Using the terminology introduced above, we can re-
formulate this definition thus: KR(f) is the number of integer points in the closure of the
polyhedron 4(f). We define the continuous analog of Kg(f) as the volume of the polyhedron
A(f); it is easy to verify that this definition is equivalent to that given in [4]. Thus, in
the notation introduced above, the continuous analog of Kostant's function is ¥(11; £). All
of the results obtained above are applicable to this function. In particular, Theorem 5.1
shows that to each choice of a fundamental system B for the pregeometry on I given by ¥,

there is related an expansion ¥ (1j; f)==JZ%?ﬁm(iﬁ fxs(f), where each function ¥¥ (115 1) 17 ()

is concentrated in the cone Cj and coincides with the restriction of the polynomial‘??’ (Lr;
£) in it; the degree of these polynomials in the case at hand is equal to the number of posi-
tive roots in the system R minus its rank.

We give a number of examples of choices of fundamental systems in this situation. The
number of elements of B is given by the following proposition.

Proposition 5.4. The dimension of the space 4, corresponding to the pregeometry with
respect to a family of positive roots of some system of roots R of rank I is equal to product
my ... my, where the numbers mj are the indices of R (see [5]).
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In view of Propositions 3.1 and 3.2, this result is proved in [2, 15] (see also [16]).

Examples. 1. Let R be of type 4,. In this case, the set I consists of pairs (i, j),
where 1 £ 1 < j £ 7 + 1, and the family ¥ consists of vectors ej — €j, where {er. . . .. &1} is
the standard basis in R{*}. We choose the lexicographic order on I: (i, j) < (i', j") if
i<i'"or if i =1i' and j < j'. It is not difficult to verify that a subset J of I does not
contain open circuits (with respect to this order) if and only if, for each i = 1,...,7, there
is not more than one vector of the form €; —~ €;. According to Theorem 3.1, the system B of

ail such l-subsets is fundamental. Hence |Bl = 7!, which agrees with Proposition 5.4.

2. Let R be of type A7 as before. Let w be a permutation of the set {1,...,7 + 1} such
that w(l + t) = 1 + 1. For eachr = 1,...,7, we put i(w, r) = min (w(r), w(r + 1)) and j(w,
r) = max (w(r), w(r + 1)); we define the l-subset J,C I, by putting J. = {(i(w,r),j (w,r)):r =
1,...,2}. It is not difficult to verify that the system of all subsets Jy is fundamental;
we note that it is not obtained by means of the construction in Theorem 3.1. It is possible
to interpret a result in Lidskii [11] as an explicit calculation of the polynomials ¥%¥ (4;; /) =
for this fundamental system.

3. Let R be of type B7;. The set I consists of the symbols {i, (i.j)*, (i, /) 1<<i<jI},
and the family ¥ consists of the vectors f; = &, fﬁ'j)i =¢g; f-€;, We denote the subset of I
consisting of the elements i, (i, j)*, and (i, j)~ for fixed i and all possible j > i by I;.
We introduce a certain linear ordering on I such that if i < i', the elements of Ij precede
those of Ij'. It is not difficult to verify that the l-subset J of I does not con-
tain open circuits relative to such an order if and only if J intersects every subset Ij in
precisely one element. By virtue of Theorem 3.1, the system B of such l-subsets is fundamen-

tal. It is clear that |B|= II {1;]=1.3-5- ...l —1), which again agrees with Proposition
5.4. 1<l

4. For type C7, the set I and the pregeometry on it induced by the family of positive
roots is the same as for B;. In particular, the system B constructed in Example 3 is also
fundamental for C7.

5. Suppose that R is of type G,. In this case, ¥ consists of 6 vectors in R? in gen-
eral position. By virtue of Example 2 of the Appendix, the system B of all 2-subsets in I
containing an arbitrary fixed element is fundamental. In particular, !Bl = 5.

Other examples, as well as explicit expressions for ¥(11; f) related to various choicei/)<:
of fundamental systems, will be considered in a separate article.

APPENDIX. COMBINATORIAL GEOMETRY

The concept of a (combinatorial) pregeometry (or matroid) admits many equivalent defini-
tions ([1, 17, 23]). For our purposes, a definition in terms of rank functions is convenient.

Definition. Let I be a finite set. We say that a pregeometry is given on I if there is
defined on the set of all subsets of I an integer-valued function r which satisfies the fol-
lowing conditions:

1B ogrhiJ| for all J I;

A1) r(JYy<rJy) for J,CJy

(iii) r N ) +r (WU TS (T) +rJy) for all J,, J,C 1.

The mumber r(J) is called the rank of J, and r(I) the rank of the pregeometry.

Example. Let L be a vector space over some field. Then to every family of vectors (f;)ie:
in L there corresponds a pregeometry on I: the rank r(J) is defined to be the dimension of
the vector space spanned by the vectors fj for j & J. Pregeometries of this type are called
linear. This example makes the terminology introduced below seem natural.

Let I be a pregeometry defined on I with rank function r and rank r(I) = 7. A subset
J C I is said to be independent if r(J) = |J| and dependent if r(J) < !J|. Maximal indepen-
dent subsets in I are called bases of the pregeometry; it is well known that every basis has
rank .. Minimal dependent subsets of I are called circuits (this terminology originates in
graph theory).

With every pregeometry on I of rank ! is associated a graded commutative superalgebra

A= @ Am. Indeed, let § = B &n be the Grassman algebra generated by the elements
osmg! osmgil|
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.

(ei)i=s (over the rfield R, for definiteness). For each J I we put [J] = AMI (R%) for brevity,

so that ¢ = % [J]. Let 9:& =4 be the (super)differentiation of & which carries all ej
1S =m
into L. We put M= 3[J1, where the sum is taken over all dependent J Z 1[I | and we let
Jo=.1"40d7 it is easy to see that ./® and J are graded ideals in &, and J% = ./, =&, for
m > [. We define the algebra «{ = 2 .4m as the factor algebra &/J.
osml

We describe a construction of special bases in.4. Let m be an integer between 0 and 7,
and let B be some system of independent m-subsets in I. We call a system fundamental if the
restriction of the natural projection &,— Am to the subspace = [J| gives its isomorphism

JEB

with Am (in other words, if ey is a generator of the space [J], then the images in i, of
the elements ey for J =P8 constitute a basis in Am). In particular, |B| = dim4dm is an in-
variant of the pregeometry.

.

N We choose an arbitrary linear ordering "<" on I. We say that a subset J' of I is an ‘
Gpen cireuii if J' is obtained from some circuit in I by deleting a maximal element; we call °
J — I proper if J does not contain any open circuits. It is easy to see that all proper sub-

sets are independent.

THEOREM II.1. For every linear ordering on I and for all 0 € m € 7, the system of all
proper m-subsets 1in [ is fundamental.

Remarks. The definition of a pregeometry (or matroid) is due to Whitney, MacLane, and
Birkhoff (see the historical notes in [17])). The construction of the algebra 4 is due to
Orlik and Solomon [22], and Theorem I1I.1 is essentially due to Bjorner [14], but it is de-
scribed there in different terms. As given in [14], the concept of an open circuit and the
comoinatorial ideas at the foundation of Theorem II.! originated with Whitnevy and Rota. A
more general construction of fundamental sets is given in [14], but Theorem II.! is suffi-
clent for our purposes.

We give a new proof of Theorem II.!1 which is independent of [14].

First of all, it is not difficuit to show that the proof of the theorem for arbitrary
m reauces to the case m = 7.

Now let m = [, i.e., B is the family of all proper bases of our pregeometry.

1. Let ey be a generator of the space [J]. We show that the images of the vectors ej
(/' = B) under the projection &, —.{; generate all of A; . In other words, we must show that

the subspace = [J] — J} — &L, coincides with the entire space &, 1.e., contains all of the
J=B
ej?, where J° is an arbitrary l-subset in I. If J° is dependent or J? = B, then there is
nothing to prove, so we suppose that J° is a basis which is not proper. By definition, this
means that there are a subset J' = J’and an element { =/ larger than all of the elements of
J' such that J' [ {i} is a circuit in I. It is clear that i =J?; we put J = JO I {i}. The
element e- 1s a linear combination with nonzero coefficients of elements e; ; forj=J; in
addition, Z2r ; =\ J', the set J\_/ is dependent. Therefore the element ey% is congruent
f; — 9&;., to a linear combination of elements of the form ey for je=J'. But it is
€asy to see that there exists a linear order on the set of [-subsets of I with respect to
which all secs J\J for j=J' are less than J°=J \_i. Applving induction on J with respect
to this order, we get that en; for j=J' lies in = [J] = J! + ¢, ,5 this means that this is
J=B )
also true for ejJy, which is what is required.

~

2. For each m with 0 €S m < |1Il, we let B, C &, denote the sum of subspaces of [J] with
respect to all m-subsets J of rank < [. It is obvious that ;= .Y, Bn = €m for m < . and
0 (Fm) & Bm-r for all m. We put %, =¢,'03m and we denote the mapping ¥, —%m-; induced by 3

also by 3. Since 4 = &/}, and A, = &/(J! — 38.,) , there is a natural projection €, — A, ; we
denote it bv . Then the sequence
a 8 o, e
0—Bn—Epa—... =€ — A —0. (%)
arises. We assert that this sequence is exact.

The exactness of the terms 4; and ¢; is obvious. From Folkman's theorem on homologies
of geometric lattices [18] it follows easily that the complex ((Bm), 3) is acyclic everywhere
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except for #i-1 (see [16], no. 17); in addition, it is known that the complex ((&n),d) 1is
acyclic. The exactness of (%) follows immediately from this with the help of the exact se-
quence of the pair.

3. It is clear that ¥, =¥&,/#Bm can be identified, as a vector space, with 2[J] ,
where the sum is taken over all m-subsets JC— I of rank L. 1In particular, dim ¥, is the
number of such subsets; we denote it by rp. Taking the Euler—Poincaré characteristic of the
exact sequence (%), we get that dim .4, = D, (— )" rp.

m>!

4. It remains to show that |B|= 3 (—1)"r,. Let E be the set of all subsets of rank A
mt

in I which do not belong to B. For J= E , we put p(J) = (—1. We must show that
I{JEE:p(J)=1}l=]{J—EE:p(J)=—1}|. (%)

For the proof of (**), it suffices to construct an involution 0:E - E such that p(c(J)) =
—p(J) for J = E.

Suppose thatJ = £ . By definition, J contains an open circuit, i,e., there exists a cir-
cuit J° with maximal element i =/ such that J*N 1T J. We denote the maximal element i having
this property by 1(J). We define 3(J) thus: ifi(YEJ, theno () =J ) {i(/)}; but ifi(Jy=1J,
then o (/) = J \{i (/)}. Obviously ¢ (J) = E and p(c(J)) =—p(J). In addition, it follows easily
from the construction that i(¢(J)) = i(J), from which it is clear that ¢(o(J)) = J. Thus ¢ is
the required involution, which proves (*%) and completes the proof of the theorem.

Examples. 1. We suppose that there is an element i =/ such that r({i}) = 0. 1In this
case »{ = 0. In fact, the empty set . is an open circuit, so there are no proper subsets.

2. Suppose that the rank function is defined by r(J) = min (I. | J {), so all m-subsets are

independent for m € 1. 1In this case, Ap = &m for m < I. We can take all I-subsets contain-
. .. . . . I—1
ing some fixed element ;= as a fundamental system. In particular, dim u4l=={!;_1)
Other examples are given in Sec. 5 of the main text.

Proposition II.1. Suppose that some pregeometry of rank . is given, and suppose that B
1s a rundamental system of I-subsets in I relative to this pregeometry. Then B can be ex-
tended by means of certain independent J-subsets to a fundamental system of 7-subsets relative
to the pregeometry in Example 2.

This follows directly from the definition.
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LAGRANGIAN IMBEDDINGS OF SURFACES AND UNFOLDED WHITNEY UMBRELLA

A. B. Givental' UDC 513.83

INTRODUCTION

A smooth map i:C* > (M*, w) of a surface into a four-dimensional symplectic manifold
will be called Zsotropie, if i*w = 0. In this paper we study isotropic maps in general posi-.
tion.

One can show that a closed surface with odd Euler characteristic has no isotropic im-
mersions in symplectic space R*. Hence an isotropic map of such a surface has singularities,
In this paper we produce an isolated singularity of an isotropic map R? + (R*, w), an un-
folded Whitney umbrella, and we prove its stability. By a Lagrangian immersion we mean an
isotropic map whose singularities are transverse self-intersectieons and unfolded Whitney um-
brellas.

THEOREM. The Lagrangian immersions form a nonempty open set in the C®-topology of the
space of isotropic maps of a closed surface into a four-dimensional symplectic manifold.

Conjecture. The set of Lagrangian immersions is dense in the space of isotropic maps.

For a Lagrangian immersiom C? - (M*, w) of a closed surface we prove the formula

CC=x5(C)+2%%+T

(in the nonorientable case the equality is modulo 2), where C+C is the self-intersection
index of the fundamental cycle of the surface H2(M), x(C) is its Euler characteristic, # is
the number of self-intersection points counted with signs, T is the number of unfolded um-
brellas. We show that a closed surface with x < —2 has a one-to-one (i.e., without self-
intersection points) Lagrangian immersion in a standard symplectic space, and a nonorientable
closed surface withEuler characteristicwith a negative multiple of 4 even has a nonsingular La-
grangian imbedding in R". We note that awong orientable surfaces only the torus has a non-
singular Lagrangian imbedding.
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