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1. Let 4 be a finite set of Laurent monomials in the variables X, ..., x, ,and

n 2
let C* be the space of complex linear combinations of monomials belonging to
A. In [1] we constructed a polynomial E ,(a) from the coefficients (a,)pcq Of an

undetermined polynomial from C*, which we call the principal A-determinant. It is
i important both for the study of A-discriminants [1] and independently. The search
for an explicit form of the polynomial E, is of interest from different points of
view. Thus, for the case when A4 consists of the monomials Xy, L€l k], je
| I, n—k], the polynomial E, is the product of all the minors (of all possible orders)
of the matrix lla;;|l . Note that this principal determinant describes the singularities

of a hypergeometric system on the Grassmannian G,(C") [2].
Since E, is a polynomial, we can construct its Newton polyhedron M(A4) C

R Itis “secondary” in relationship to a polyhedron Q, that is constructed with
respect to the same 4. The central fact of this note is an unexpected one-to-one
correspondence between the triangulations of Q, and the vertices of M (A).

2. Trianguiations of a Newton polyhedron. As in [3], we shall represent the set A
as a finite subset of the integer lattice Z" that satisfies the following conditions:

1) A generates the group Z".

2) There exists a homomorphism of groups 4:Z" — Z such that AMw) =1 forall
weEA4.

We denote by C* the space of all functions a:4 — C, i.e., the complex vec-
tor space with coordinates (aw)we_4 (the notation RA, Z‘i, etc. has an analogous
meaning).

Let Q = Q, C R" be the convex hull of the set 4. This is an {n—1)-dimensional
polyhedron in the affine hyperplane {u € R": i(u) = 1} . We shall call it the Newton
polyvhedron of the set A.

DEFINITION 1. A triangulation of Q with vertices in 4 is the set T of (n—1)-
dimensional simplices in Q that possesses the following properties:

1) The vertices of any simplex from T liein 4.

2) The intersection of any two simplices of 7 is either empty or is their common
face.

3) Q = UgeT g.

We denote by T the set of all vertices of simplices of the triangulation T .

Let T be a triangulation of Q with vertices in .4. A function g:Q — R is said
to be T-piecewise-linear if it is continuous and its restriction to each simplex 6 € T
is a linear (inhomogeneous) function. Each function y: 4 — R gives a unique 7T-
precewise-linear function g, 7:Q — R such that &, rlw)=y(w) forall we T,.

We let C(T) C R? denote the cone consisting of those y for which g I1s a
v, T

convex function and w(w) > gw‘r(w) for we 4 - Ty.
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The triangulation T is said to be regular if the cone C(T') hasa nonempty interior
in the space R? (see [3]).

3. Vertices of the polyhedron M (4). We introduce a volume form Vol on Q by
setting the volume of an elementary (n — 1)-dimensional simplex with vertices on
the lattice {w € Z":A{w) = 1} equal to 1. For each triangulation T we define a
function ¢,;:4 —Z, by setting ¢ (@) = EweaeTVol(a).

Let E (a)=E 7 (a) be the principal A-determinant, i.e., the determinant of the
logarithmic Cayley-Koszul complex associated to the set A and the lattice Z" ; this
is a polynomial function with integer coefficients in (o , defined up to sign (see [1]).
Let M(4) C R be the convex hull of the set of functions g4 —Z, for which the
monomial [ ¢, az)(”) is included in E ,(a) with a nonzero coefficient.

THEOREM 1. a) The vertices of the polyhedron M(A) are exactly the functions @r

corresponding to all the possible regular triangulations T of the polyhedron Q with
vertices on A (in particular, all the ¢ are distinct) .

b) The coefficient of the monomial 1],c,@

w

01@) in E (a) is equal 10
eT) [1 Vol(a)" ™,
geT
where €(T) ==x1.

The signs €(7) will be described in §6.

4. Support cones at the vertices of M(A) and the asymptotic behavior of E (a). We
identify the space R* with its dual by means of the pairing (0, W)= weu p(w)y(w).
If ¢, is a vertex of M(A), we call the cone of linear forms ¥ on R? such that
(¢, w)> (g, ) for all p € M(A) the support cone to M(A) C R* at @5 -

THEOREM 2. The support cone to the polyhedron M(A) at the vertex @ corre-
sponding to a regular triangulation T coincides with the cone C(T) defined above.

Let U(T) be the domain in (C')A consisting of the a@ = (a,) e 4 for which the
vector (—Inja b, cq € R? lies in the cone C(T).

COROLLARY 1. As a — oo in U(T) the limit of the fraction

E [(a)/ [G(T) . H Vol(a)vm(a) - H aZT(‘“)}

oeT wEA
is equal to 1.

REMARK. In [3] and [6] for each regular triangulation 7' we constructed a basis
of the space of solutions of the hypergeometric system, consisting of series whose
common domain of convergence is a “neighborhood of infinity” in U(T).

5. Edges of the polyhedron M(A) and rearrangements of triangulations. In what
follows we denote by (Y) the convex hull of the set Y C R".

Acyclein 4 isa minimal linearly dependent subset Z C A (the term comes from
the theory of matroids). As shown in [4], for every cycle Z C A the polyhedron (Z)
has exactly two triangulations, T.(Z), and T_(Z), with vertices in Z. Namely,
the set Z is partitioned in a unique way into two subsets Z, and Z_(up to
replacing Z, by Z_) such that (Z,) and (Z_) intersect in their common interior
point. The triangulation T (Z) consists of the simplices (Z — {w}), @ € Z_,
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and T_(Z) consists of the simplices' (Z — {w}), w € Z_. Thus, each simplex of
maximal dimension with vertices in Z is included in exactly one triangulation of
the polyhedron (Z).

DEFINITION 2. Let T be a triangulation of the polyhedron Q with vertices in 4,
and let Z C 4 be a cycle. We say that the triangulation T is supported on Z if the
following conditions hold:

1) Inside (Z) there are no vertices of T besides the elements of Z itself.

2) The polyhedron (Z) is the union of faces of simplices from T .

3)If (I) and (I') are maximal (i.e., dim(Z)-dimensional) simplices with vertices
in Z, imbedded in the same triangulation of the polyhedron (Z),and J C A -Z
is a subset such that (JUJ) e T, then (I' UJ) e T as well.

In case dim(Z) = dim Q, condition 3) follows from 1) and 2).

Let T be a triangulation supported on a cycle Z, and suppose it induces a tri-
angulation T, (Z) (say) on (Z). We denote by s,(7) a new triangulation of Q
obtained from T by removing all simplices of the form (/U J) with (I) € T_(Z)

and adding in their place simplices of the form (I'uJ) with (I'Y € T_(Z) (the fact
that 5,(7) is actually a triangulation follows from conditions 1)-3) and definition
5). We say that 5, (T) is obtained from 7 by a rearrangement along the cycle Z.
It is clear that 5,(7T) is also supported on Z and s,(s,(7))=T.

THEOREM 3. Let T and T be two regular triangulations of Q with vertices in
A. Then the vertices ¢, and @5 of the polyhedron M(A) are Joined by an edge if

and only if T is obtained from T' by a rearrangement along some cycle Z C A.

6. Calculation of the signs €(7). Let ¢ and ¢, be two neighboring vertices of
M(A); by Theorem 6, T' = 5,(T) for some cycle Z C 4. Asubset JCA-Z is
said 1o be separating for T and T if there exists a simplex of maximal dimension
(Iy C (Z) such that TUJ is the set of vertices of a simplex (of maximal dimension)
included in the triangulation T . If dim(Z)=n-1=dimQ, then & is the unique
separating subset. We set

p(T.T)=Y (Vo{ZUJ)+[Z":E(ZUJ)]),
J

where the sum is taken over all separating subsets J for T and T, and Z(Z U J)
is the subgroup of Z" generated by Z U J .

TueorReEM 4. If T and T' are two regular triangulations obtained from each other

by a rearrangement along some cycle, then the signs e¢(T) and e(T") from Theorem

| are connected by the relation €(T)e(T') = (—l)p(T’ ™,

7. Remarks. a) The lattice of faces of the polyhedron AM(4) also admits a
combinatorial-geometric description: the faces of Af(4) correspond to some poly-
hedral subdivisions of the polyhedron Q.

b) Let D,(a) be the regular .4-determinant, i.e., the determinant of the regular

Cayley-Koszul complex associated with A4 (see [1]), and let M (A4) C R? be the
polyhedron constructed from D ,(a) in the same way as M (A4) is constructed from
E ,(a). For D,(a) and M,(A) one can prove analogues of all the results presented
above. The vertices of M (4) also correspond to regular triangulations of the poly-
hedron Q,: however, in contrast to the case of M (4) different triangulations can
correspond to the same vertex of M, (A4).

¢) In the case when A is the set of vertices of a convex polygon on the plane, the
polyhedron M (A4) coincides with the polyhedron introduced by Stasheff in his study
of the homotopy associativity of H-spaces [5], [7].
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d) In the example of §1, when E  (a) isthe product of all minors of the kx(n—k)

matrix a = |||, the polyhedron Q is the product of simplices AU AR

and A the set of all its vertices. Examples of regular triangulations of Q are given
in [3]. Even in this case, the problem of finding all regular triangulations of Q and
a more explicit combinatorial description of M(A) is a very interesting problem of
combinatorial geometry.
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