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ON THE GENERAL DEFINITION OF A MATROID

UDC 517.9% AND A GREEDOID

I. M. GEL'FAND AND V. V. SERGANOVA

In this note we propose the concept of a (W, P)-matroid. which includes in a natural
way the usual concept of a matroid, as well as a large class of greedoids [6]. {7]. We were
led to formulate this concept while studying certain geometric and analviic questions
connected with the general theory of hypergeometric functions {1} and m:m.ﬁm in compact
homogeneous spaces G/P, on which acts a maximal torus [2]-[4]. It seems 10 use that it
undoubtedly has an independent interest in combinatorics.

rn.~ w Wn a Coxeter group, i.e. a group with a set of generators R. subject to the
relations »* = 1 for all r € R and (nry)™"") = 1 forall r,. r, € R, where m(r.n)EN

U 0 [5). ) n

Suppose that w € W. The minimal number of factors in a decompositionw = ¢, - -
i:owm r, € R, is called the length of the element w and is denoted by /{w). ﬁ.a_ wE:w\h
partial order in W is defined as follows: wy < wy if there exist 5,, 5, € W such that
wa = swi5y and {(w,y) = I(s)) + I(w;) + 1(s,).

With each w € W we associate a new order in W as follows: w; <™ wy if wlw, <
w ™ wy. Itis clear that the Bruhat order coincides with <t ) o

rﬁ L be an arbitrary subset of the group W. An element s € L is called w-minimal in
L if for all u € L we have s <* u. We shall say that the subset L ¢ W satisfies the
mimimality condition if for each w € W there exists a w-minimal element _.n., L.

DEFINITION 1. A flag W-matroid is a pair (W, L), where W is a Coxeter group and L is
a subset of W satisfying the minimality condition.

The set L is called the base set of a flag W-mauroid.

Let P be an arbitrary subset of R. Then W} denotes the subgroup of W generated by P.
Subgroups of the form W, are called parabolic subgroups of W. Let W” denote the set of
left cosets W/Wp. If a € W7, then the left coset «, regarded as a subset of W, satisfies
the minimality condition. For any coset « € W” let a, be a w-minimal element in a
5.:%:8 a partial order <™ on the set W* by letting a <™ Bifa_ <™ B... Then ::.“
mimimality condition makes sense for any subset L ¢ W7, i i

Um_.._v.:_oz 2. A (W. P)-matroid is a triple (W, P, L), where W is a Coxeter group,
PcC x 15 a subset of the generators, and L is a subset of W satisfying the B::w:w:Q
condition. The set L is called the base ser of the (W, P)-matroid.

A flag W-matroid (W. L) is called We-invariant if W, - L = L,

WwOvﬁm_ﬂoz 1. Let W be a Coxeter group and P C R. The nawral projection of W on
W realizes a one-to-one correspondence between the set of Wy-invariant flag W-matroids
and the set of (W. P)-matroids.
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ExaMmpLE 1. Let W = §, be the group of permutations of [, = {1,...,n}, R the set of
transpositions (i.i + D for i=1.....n and P =R {(k.k + 1)}. Then W, = {we
Wiw(l,)=1,}. We show that in this case, the definition of a (W, P)-matroid coincides
with the definition of an ordinary matroid for a finite set.

The set W7 of left cosets of the group W = S, modulo the subgroup P can be naturally
identified with the set B,(1,) of all k-element subsets of /. With this identification, the
Bruhat order in B,(/,) takes the following form: for any 4. B & B.(1,), with 4 =

{ay.....a;} and B = {b..... b, }, where @, < -+ <qg, and b, < --- < b,, we have
A< Bifa <b forali=1... k An arbitrary element w € W gives a new linear
orderin /,: w(l) < --- < w(n), which defines the order <* in B,(1,).

THEOREM 1. Suppose that L C B,(1,) = W*. 4 triple (W. P. L) is a (W. PY-martroid if
and only if L is a base set of some matroid of rank k over the set I, [6].

ExampLE 2. We shall determine how the concept of a greedoid with a finite alphabet [7]
is related to the concept of a (W, P,)-matroid in the case when W = §_ and

Po={(I+1.0+2),....(n=1.m)}.

Suppose that we are given a certain set S (the alphabet). We only consider the case
{S] < = and identify § with /,. A word is defined to be an arbitrary sequence of letters
from S. The length of a word a is denoted by |aj. An arbitrary collection ¥ of words is
called a /language. The language X is called a greedoid if the following conditions are
satisfied:

o e

2) No word a« € ¥ contains repeating letters.

3) Forany a € \, « = By implies that 8 € v,

4) If a. B8 € { and |a| < |B], then there exists an x € B such that ax € .

Axiom 4 implies that all maximal words of a greedoid ¥ have the same length, which is
called the rank of the greedoid 2. The maximal words of a greedoid  are called bases.

Let ¥ be a greedoid of rank / with an alphabet /,. Then the set L of its bases can be
naturally identified with a certain subset of the set W* of left cosets. On the other hand.
to every subset L C W one can associate a language L. consisting of all possible initial
segments of words from L.

THEOREM 2. a) Ler L be a buse set of a (W, P))-mutroid. Then Lisa greedoid.
b) Let ¥ be a greedoid of rank | with an alphabet I, such that i € X for anv i € 1. Then
the base set L of X is a base set for some (W, P,)-matroid.

REMARK. For any set P = R\ {(ky.ky+ D.....(k,.k,+ D} with k,<!/ a
(W. P))-matroid is Wy-invariant if the corresponding greedoid contains together with each
word all words obtained by permuting letters 1'to k. k, + 1 to k.. etc. Thus all matroids

connected with the Coxeter group S, are greedoids.

ExaMpPLE 3. Let J, = {1.....n.1*.....n*} and suppose that an involution * is defined
on J, such that (/}* = j* and (i*)* = i. A subset A C J, is called isorropic if A N A* =
& . The set of all isotropic subsets of J, is denoted bv R(J,) and the set of ail k-clement
1sotropic subsets by R, (/).

Let L c R,(J,). The pair (J,, L) is called a svmpleciic matrotd of rank k if the
following conditions are satisfied:

1) Forany A. B € L and a € A\ B there exists a b & B such that etther (4\ {u}) U

(b} € L.or(A\ {a.b*) U {a* b} € L. .
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., 2)ForanyA.Be Land b e B\ (A4 U A*) there exists an a € A such that (A \{a})
U(b)eL. )

The set L is called the base set of the matroid ( J,, L)

Let W be a group of permutations of the set J,. commuting with the involution *, i.e.
the Weyl group of the Lie algebras sp(2n) and o(2n + 1). Then R consists of permuta-
uons r, = (i.i+1)-(i* (i+1)*). for i=1.....n— 1. and the transposition r, =
(n.n*). Let P=R\{r,}. Then W,=(we Wiw(,)= I}, and the set W7’ can
naturally be identified with R, (J,). The linear order in the set Jygivenbyl < --- < p
<n* < --- <1* induces a partial order on R,(J,) as in Example 1. If R,(J,) is
identified with W*, this order coincides with the Bruhat order. In an analogous way to
Example 1. with every w € W its own order in R, (J,) is associated.

THEOREM 3. Let L C Ry(J,) = W?. A triple (W.P. L) isa (W, P)-matroid if and only
if L is a base set of some symplectic matroid of rank k.

One way of defining a matroid M(/,) consists in giving a rank function r: B(1,) - Z:
if L is the set of bases of a matroid M( 1), then the rank function of this matroid has the
form r(A)=maxgz_,|4 N B| [6]. It turns out that a symplectic matroid admits an
analogous definition. The role of the Boolean algebra B(1,) is then played by the family
of isotropic subsets R(J,). which becomes a lattice after a maximal element 1 is adjoined
to it. We associaie to each symplectic matroid (J,. L) a rank function r: R(J,) - Z by
letting r(A) = maxz_,|4 N B|.

A symplectic matroid (J,. L) is called loop-free if for each a & J, thereexistsan 4 € L
such that a € 4.

THEOREM 4. a) Let (J,. L) be a loop-free symplectic matroid. Then its rank function
satisfies the following conditions:

DO <r(A)<|A| forany A R(JO\ 2.

2)r(A)< r(B)ifA C B.

3) r(AY+r(B)zr(AnN B)+r(AUB) for any A.B e R(J,) such that A U B e
R(J,).

b) Conversely. suppose that r: R( J,) = Z satisfies conditions 1)-3). Then r is a rank
Junction of some loop-free symplectic matroid (J,, L).

REMARK. The lattice R(J,) U 1 is dual to the face lattice of an n-dimensional cube. This
lattice may be defined axiomaticaily {8]. Apparently other W-matroids are related to other
interesting nondistributive lattices.

EXAMPLE 4. A symplectic matroid of rank k with base set L is called orthogonal if for
each 4 € L and a € 4 such that (4 N{a})U {a*} € L there exists b &€ A for which
(AN {a})) U {b). (A\{a})u {b*} € L. The same arguments as in Example 3 show
that the concept of an orthogonal matroid is equivalent to the concept of a (W. P)-matroid.
where W is the Weyl group of the Lie algebra o(2n) and W, is a maximal parabolic
subgroup.

Let T be a root system in R”. equipped with a nondegenerate inner product (-. -) 38
O.....0, a system of simple roots and W the Weyl group of X, ie. the subgroup of
motions in R” generated by reflections with respect to the simple roots g,.....09,. As we
know. W is a Coxeter group, so the concept of a (W, P)-matroid makes sense.

Let P C {a.....0,} and let W, be the corresponding parabolic subgroup. Consider
the point w, € R”, defined by the conditions
(wp.0,) (1 fora &P,

(0,.6,) |0 forg e P.

Since the group W, is the stabilizer of the point wp, we have a map u: W* — R™ which
sends a left coset w- W, to the point w(w,). Call it the momen: map. To any subset
L € W’ we associate the polytope 4,. equal to the convex hull of the points p( L).

DeFINITION 3. The polytope A, . where L is some subset of WP, is called a hypersim-
plex if all of its edges are parallel to vectors in X.

THEOREM 5. (W. P, L) is a (W. P)-matroid if and only if A 1. IS a hypersimplex.

REMARK. The order <™ on the set of vertices of a hvpersimplex can be defined
geometricallv. Let C, be the convex cone in R” consisting of vectors y = L] m w(a,) such
that m, > O for i = 1.....n. Note that 3, = N, ., (p(w) - C,). Define in R" a partial
order <™. letting x <™ y if v — x € C,. The restriction of this order (o the set p(Wwry
of vertices of the hypersimplex A,,.» coincides with the order <* on W?.

ExampLE 1. Consider the polytope A, corresponding to a maximal flag matroid. There
exists a bijection between the set of its faces and the set Upc g WP with the dimension of
the face corresponding to a left coset w - Wp equal to [P The polytope A, is called a
Coxeter complex.

For W= S,. A, is a regular hexagon. while for W = Se. Ay is a semiregular
polyhedron in R* with 24 vertices, 8 hexagonal faces. and 6 square faces.

EXAMPLE 2. Let M(/,) be a matroid with base set L. To each base B € L we associate
a point 8, with coordinates (8;), = 0if i € B. and 1 if i € B. Then the hypersimplex &,
is the convex hull of the points &,

Let M,(],) be a free matroid of rank . ie L = B, (1,). The corresponding hypersim-
plex &, , < R” is given by the constraints Yix, =k 0<x <1.ign The polytope &, ,
was considered in [2] and [9]. Note that A, . is the convex hull of centers of &-dimen-
sional faces of a regular (n — 1)-dimensional simplex.

Consider the matroid MF(1,). given by the configuration of all seven points of a
projective plane over the field £, with 2 elements. Bases of the matroid MFi( 1.y are triples
of points in general position. Then the corresponding hypersimplex A, in R’ is given by
the conditions L] x, = 3.0 < v, < 1. x, + X, + X, € 2.(i. j k)& L. and has the svmme-
try group PGL(3. F,). It has 28 vertices. 126 edges. and 245 two-dimensional. 238
three-dimensional. 112 four-dimensional. and 21 five-dimensional faces. Analogously. one
can construct a sertes of polytopes with PGL(x. F,) as a symmetry group.

EXAMPLE 3. Let (J,. L) be a symplectic matroid of rank 4. Then the hypersimplex J§,
has as its vertices certain vertices of the cube E,={x€R"|x|< 1)} and as edges the
edges of £, or diagonals of its two-dimensional faces. The symplectic matroid constructed
from A, will be orthogonal if and onlyv if all edges of the polvtope A, are diagonals of
two-dimensional faces of the cube.

EXAMPLE 4. The moment map y can be defined for any finite Coxeter group W' since W
15 generated by reflections with respect to a finite set of vectors in R” [5]. Let B = H, ie.
W is generated by generators r,.r,.r, and the relations (r,r,)° = (ryry) = (ri)” =L
For maximal parabolic subgroups W, < IV. we have the following hypersimplexes: A, is
a dodecahedron if P = {r.r,}, and an icosahedron if P = {ri.r}. whereas f P =
{ri.ry} then 3,0 is the convex hull of midpoints of edges of an icosahedron.



Let (W, P. L) be some (W. P)-matroid. A subgroup W ¢ W conjugate to some para-
bolic subgroup of W is called a separator of the (W. P)-matroid if L c W - for some
a€ L.

PROPOSITION 2. Let W he 4 separator of the {W. P)-matroid (W. P, L). L c Wy W, =
w DE:O.E.,_. and [ = Tus.._ n %_Q € L}. Then (W.P.Lyisa (W, PY-matroid.

A (W. P)-matroid is called nondegenerare if it does not have a separator other than W

PROPOSITION 3. Let W be u Weyl group. (W.P. L) a (W.Pymatroid, und A, u
corresponding hypersimplex. Then (W. P. L) is nondegenerate if and only if the dimension of
the hypersimplex A, is equal 1o the number of generators of the group W.

The authors are grateful to A. V. Zelevinskii for his interest in this work and valuable
advice.
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ON SUMMABILITY OF EXPANSIONS IN

OF SELFADJOINT OPERA
UDC 517.9%

V. I. GORBACHUK

Let 4 = 0 be a selfadjoint operator acting with discrete
let {e, }T be an orthonormal basis of its eigenvectors. an
corresponding eigenvalues. arranged in increasing order ar
many times as its multiplicity. It is assumed that ¥, , .-
note we consider a linear topological space ¢’ > » in wh
C! being the complex plane) converges to an element of
describe in terms of the growth of Fourier coefficients
generalized elements in ®” connected with 4. Also. we 1
investigate the summability of Fourier series expansions w
in Banach spaces in ¢’.

1. Let

o,=lresir= T qe el
| Pt J

{obviously, ® is dense in $ and invariant under 4), ¢

continuous antilinear functionals on ¢. with weak conves
= ((F".fY = (F.f) n— oo ¥f &€ ® (the symbol over
which the convergence is being considered. and (F, f) is
an element f). The correspondence © > [ — F, € ¢ (F
the inner product in ©) determines an imbedding © C ¢
imbeddings are dense and continuous. Elements in ¢’ are ¢

Let s be the space of all numerical sequences {s;}T
convergence. The isomorphism #: F — { F, = (F.e;)}T
the set of finitary sequences (only finitelv many nonzero
Here the operation { f; }T = {A.f,}T corresponds to ¢
extended to a continuous operator A: AF = J (A, F, }%.

The series L Fie,, where F, = (F.e,). 15 called the
F € @’ and the numbers F, are called its Founer coefficic
the Fourier series of any generalized element F converges
series L ¢ e, converges in ¢’ tosome F € ¢’ and ¢, =
as the space of formal series of the form L} Fle,.
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