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INTRODUCTION

This paper is related to a series of papers devoted to the general theory of hypergeo-
metric functions but it can be read independently. According to (1], one can define general
hypergeometric functions as functions (and more precisely, sections of a line bundle) on a
Grassman manifold satisfying a holonomic system of linear differential equations. In [2]

a more general system of equations related to a finite-dimensional representation of a com-
plex torus (C*)* was introduced. The present paper is devoted to the detailed study of
this system. The basic results were announced in [3].

Suppose given an n x N-matrix of integers Xjj» 1<i<mn, 1< j s N, which have the fol-
lowing properties:

a) the columns xj = (le’ v an) of the matrix fxjjl generate a lattice Z";
b) there exist integers c;, ..., Cpn, such that for all j& (1, N1
D e =1 _ (0.1)

1<in
Condition b) means that all the vectors ¥; € Z" lie on a primitive affine hyperplane.

One can also consider the matrix lxjjl from another point of view. We consider the

complex torus H = (C*)" = {(t;, . . -, t,) EC £; =0 Vi}. Then the vector xj can be considered
as a character of the torus H, namely Xj(t1» cees tn) = t{lj...t%nJ. Here the lattice of
characters of the torus H, which will be denoted by H, is identified with Z". We consider
the N-dimensional vector space V = CN with coordinates (v,;, ..., VN). A collection of char-
acters {y% & H) defines an action of Hon V:

t(Oy o N =@V, oo Av Oon), tEH.

Condition a) means that the homomorphism H > GL(V) obtained is an imbedding and condition

b) means that its image contains the subgroup of scalar multiples of the identity operator
in GL(V). Namely, this subgroup is the image of the one-parameter subgroup of H consist-

ing of elements (A€1, ..., An), AreC*

We shall use additive notation to denote the group operation in the group H (correspond-
ing to multiplication of characters).

Let § = C" be the Lie algebra of the torus H. We denote by ¥;(1 < i < n) the natural

basis of b. A linear functiomal B: §—C is defined by a collection (Bys +-+» Bp), where
B; = B(X4). 1In what follows we shall assume that such a functional is fixed. We consider
the differential operators Zj = in — B1 on v(i =1, ..., n). Here in is the operator of

the Lie derivative along the vector field on V defined by X;=bh . Explicitly,

8
Z;= ( yj 'XijUj'—a;j‘) — Bi-

1<i<N

We introduce ghe lattice of relations améng characters. Zhy definition this is the set
L={a,- --nan)E1Z :Za]-xij=0ViE[1,n]} . For any a = (a,, ..., ay) €L we consider the dif-
ferential operator

(. = 1 ©avyes — 1 (@005

aj>° a]-<0
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on functions ¢(v,, ..., vN).

Definition 1. The system of hypergeometric type connected with a collection of char-
acters {x,, ..., XN} and a collection of exponents (B,, ..., B,) has the form

ZD (v, .. ,om=0 (A<<i<n); (@ =0 (asL). (0.2)

Formally the number of equations in this system is infinite since the lattice L contains
infinitely many elements. Actually, one can manage with a finite set of equations of the
form [ ,d = 0. 1

We formulate the fundamental properties of the system (0.2).

THEOREM 1 [2]. The hypergeometric system (0.2) is holonomic. In particular, its solu-
tions form a locally constant sheaf of finite rank outside a hypersurface in V.

We denote by P the polyhedron in R* = H® R, which is the convex hull of 0 and all
Y 7 E ({1, ¥ . In addition, let Q be the convex hull of the x;. Thus, P is a pyramid with
vertex 0 and base Q. We introduce a volume form Vol on R", with respect to which the volume
of the unit cube is equal to n!. Then the volume of any polyhedron with vertices in Z" C R"
will be integral.

THEOREM 2. The number of linearly independent solutions of the system (0.2) at a gen-
eral point is equal to the volume of the polyHedron P,

This theorem will be proved in Sec. 2.

The proof of Theorem 2 is based on the study of the D-module corresponding to the hyper-
geometric system (0.2). The number of linearly independent solutions of a system at a general
point is the multiplicity of occurrence of the zero section of the cotangent bundle T*V in .
the characteristic cycle of the system (cf. [4]). We calculate the characteristic cycle com-
pletely in terms of the volumes of suitable Newton polyhedra.

In Sec. 1 we construct the number of solutions needed explicitly as power series of
hypergeometric type whose coefficients are products of I'-factors.

In the concluding Sec. 3 we give a number of examples showing that many classical hyper-
geometric series of several variables (Horn, Appel, Lauricelli series, etc.) occur in our
scheme. We also show that similarly to the Grassmanian, each Hermitian symmetric space na-
turally generates a system of type (0.2).

Generally, several approaches to the theory of hypergeometric functions are possible —
in terms of differential equations, hypergeometric series, Euler integrals [5], Barnes inte-
grals. 1In this paper we consider only the first two approaches and do not concern ourselves
with integral representations. We only note that among the Euler type integrals associated

with systems of the form (0.2) there are the integrals SYTPi(h, ey hJa%f‘.-.tE"dq. .. dt,

where P; are polynomials, i.e., practically all integrals which arise in quantum field theory.
A separate paper will be devoted to these integrals.

The authors thank A. B. Goncharov and A. G. Khovanskii for helpful discussions.

1. TI-Series

In this section we concern ourselves with the construction of solutions of the system
(0.2) as power series. We shall sometimes denote the expression v?l...vBN by vb.

1.1 Tr-Series and Convergence Conditions. Suppose given a vector y = (y;, «.. yn) &ECV,
We consider the formal series

<Dv(v)=2v““/ H T(y; 4 a;+ 1),

=12 1<ISN
where T' is the Fuler gamma-function.
LEMMA 1. The series QY(V) formally satisfies the system (0.2) with collection of ex~
ponents (B,, ..., B,), where ﬁi=:2;Xer ]

If the collection of exponents B is fixed, then the possible Y run through the affine
Plane II(B) ={(Vp - - Y5 Dxisv; =B Vie[1,n]). It is parallel to the linear space Lg = L @ C.
j
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We shall call a subset I © [1, N] a base if the vectors % (i € I) form a basis for the
space R"=H @R . Thus, the set [1, N] acquires the structure of a matroid.

For each J ¢ [1, N] we denote by €’ the coordinate subspace {v& C¥: v; =0 Vjet J} in
V = CN.

_ LEMMA 2. The subset I ¢ {1, N] is a base if and onlv if the linear functions vJ-(j (=
I = (I, NINI) form a system of coordinates on N(B) i.e., the projection I(g) ~ CI is bi-
jective.

The proof is obvious.

For each base I we shall denote by (B, I) the set of those y& H (), for which
veEZ for je& I. By virtue of Lemma 2, this is a lattice on the affine plane n(g).

We shall call the series <I>Y(v) for yE Tz (B, I) (multidimensional) I-series associated
with the base I. We show that each such series is the product of a monomial and an integral
power series in the auxiliary variables x,, ..., XN-p, Which is convergent for small [xk -

First of all it is clear that ¢ .(v) = ‘I’y+a(") for ae= L. Thus, the number of different
[-series associated with the base I 1s equal to the number of orbits of L under the action
of translations by II,(B, I). It is easy to see that one has

LEMMA 3. [z (B, 1YL | = | det {(xijh<icn, el
Let A = {a(l), vees a(N'n)} be a Z-basis for the free Abelian group L. We set HA(B,
I) = {(yp--v8) €0z, I): for jEI v3= X Ma?, where 0 < A < 1}. Clearly the set
1<k<N-—n

HQ(B, 1) is a system of representatives in Nz(8, I)/L.

We shall say that the base I and the basis A c L are compatible if any vector a = (a,,
.., aN) e=Lg, for which aj 2 0 forje£ I, can be represented in the form a= 3 Ak ,

1<k<N-n
where all Ag 2 0. It is clear that any base I has an infinite set of Z-bases A which are
compatible with it.

With the Z-basis A we associate the auxiliary variables xy = va(k), 1 < ks N-—-n.

Proposition 1. If A is compatible with the base I, then each series <I>Y(v) for y &= H%(B,

I) has the form @,(v) =v"¥ > cmZ™, where the power series D) c¢,r™ converges for suf-
My, ooy M _n 20 m

ficiently small |xy]|.

Proof. By definition the series @Y(v) has the form »¥ 2 cmx™ , where cp =
My, ey mN_n)ezN"“

(HF(Yj—f—Emkag-k)—t- 1))-1 . Let yellzB,I) so all (v,-—}—zmkag-k)—l— 1) for jFI are integral.
j K . k
Hence only those coefficients cp for which y; + Smeaf® >0 for je&I are nonzero. Let
3
v; =S Aaf® , so it follows from the conditions for the compatibility of A with I that my +

k
Ax 2 0 for all k. But by hypothesis, 0 < Ag < 1, and the numbers my are integral so that one
can only get a nonzero coefficient cp when all mp 2 0. The convergence of the series Ecmz"‘

m

for sufficiently small ka[ can be established with the help of standard exstimates.[]

It follows from the proposition proved that the series ¢,(v) for y & Iz (f, I) have common
nonempty domain of convergence. We describe it in more invariant terms. We introduce the
"logarithmic" space RN with coordinates w,, ..., wy. For each base I ¢ [1, N} and point

w e RY we define a linear function ¢z« on H ® R = RV, which on x5, jI , assumes the
values w;. We define the cone C (I) CC R¥, consisting of those w for wlznich the inequalities

onw () <w;, Vil hold.” ~ = -

Proposition 2. Let I ¢ [1, N] be a base, ye1Ilz (B, I) . The series @Y(v—) converges
for those ve=CN¥ , for which (—ln[v1|, ey —ln{le)eRN lies in a sufficiently far transla-
tion of the cone C(I) inside itself.

Proof. For each k=11 we denote by b & Lg the vector for which bgk) §jx forje I;
these vectors are well-definéd by Lemma 2 and forma basis for Lp. We set yi = vb(k), so the
series <I>Y(v) can be represented as the product of a monomial ang an integral power series

in the variables yj, which converges for small Iy | (analogously to the proof of Proposition
1). Listing the conditions for the smallness of Tyk' in terms of the coordinates vj we get
what is needed.
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1.2. Triangulations of the Newton Polvhedron and a Basis for the Space of Solutions.
We recall that P denotes the polyhedron in R", which is the convex hull of the ¥;(j & [1, NI),
and zero (cf. Introduction). For a base I ¢ [1, NI we denote by A(I) the simplex in R", wkich
is the convex hull of ¥; (/& I) and 0. Speaking loosely we shall sometimes identify the
base I and the simplex A(I).

Definition 1. A collection of bases T is called a triangulation of the polyhedron P,
if J A{)=P and for any I,,J,& T the simplices 4(I,) and A(I,) intersect in a common
1ET

facetipossibly empty).

For a triangulation T we shall denote by C(T) the cone in the logarithmic space R¥,
which is the intersection of all the C(I), I T. By Vert(T) we shall denote the set of
vertices of the triangulation T, i.e., |JI.

IET

Let w & RY be a point of the logarithmic space. With it we associate a piecewise-
linear function ¢r,,: P—> R, which is characterized by the following properties:

a) @r., is continuous and for each base I = T the restriction 97, wlam is a linear
function;

b) for j& Vert (T) or, () = w;.

Proposition 3. The cone C (T)C RN consists of those w for which the function @r,w
is convex and for j&& Vert (I) one has o1 » (%) < wj.

The proof is obvious.

Definition 2. A triangulation T of the Newton polyhedron P is called regular if the
cone C (T) & RN contains jnterior points. In other words, [T i§ Tegular if there exist
strictly convex T-piecewise-linear functions on P.

Prdposition‘ﬁ.vwfg;'any collection of vectors {x;, ..., xnN} satisfying (0.1), there
exists a regular triangulation of the Newton polyhedron P.

Proof. We shall construct a triangulation together with a strictly convex piecewise-
linear function. Suppose given a collection of real numbers a,, ..., ay. In the space
R¥1 = (H ® R) X R we consider the convex hull of the union of the vertical half-lines [(x5,
a:), (x;, +)1 and [(0, 0), (0, +»)]. Under projection to H @ R the nonvertical faces o%
tﬂis poiyhedron give a partition of the polyhedron P into pyramids with vertex at 0 (possibly
not simplicial), and the numbers aj define a convex piecewise-linear function with respect
to this partition.

We shall now alter the collection (aj) stepwise, Let us assume that among the pyramids
obtained there is at least one which is not a simplex. Let x: be a vertex of it with respect
to which this pyramid is not a cone. We decrease the value o aj slightly. Then the pyramid
with which we are concerned separates into cones with vertex Xj+ Continuing in this way we
get a partition into simplices together with a strictly convex piecewise-linear function, [}

Definition 3. Let T be a triangulation of the Newton polyhedron P. The collection of

exponents B = (B,, ..., B,) is said to be T-nonresonance if the sets n,(8, I) for IE T are
pairwise disjoint.

For example, it is sufficient that Bi and 1 be linearly independent over Q.

Definition 4. Let T be a triangulation of the polyhedron P, A = {a(l), ey a(N'n)}

bila Z-basis for L. We shall say that A and T are compatible if A is compatible with I for
all I T.
4

L Proposition 5. Let T be a regular triangulation of the polyhedron P. Then there exist
infinitely many Z-bases of L compatible with T.

Proof. Let I c [1, N] be a base. We denote by K(I) the cone in Ly consisting of those
(ay, ..., ay) for which aj 2 0 for je I. The basis A is compatible with I i€ the cone generatog
by A contains K(I). We consider the projection p: (R¥)* — Ly, dual to the natural imbedding
Lg RN | e identify (RM)* with the logarithmic space RN, ™Then the cone C (I) T (RM)*
1s the preimage under the projection p of the cone K(I)(@EEI;}O K(I). If the triangulation

is regular, i.e., IFLC([) has nonempty interior, then {J K (I) is contained in an open half-
<€ i IET
Space and consequently in a closed convex cone K not containing any lines. Hence we can

choose a sufficiently "obtuse" Z-basis of L such that the cone it generates contains K. []
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We set NIz (B, T) = I%THQ ®, )

THEOREM 3. Let T be a regular triangulation of the polyhedron P, and A= {a(l), cees
a(N‘“)} be a Z-basis of L compatible with T. Then each series Oy (), y = 0z (8, T) is equal
to the product of a monomial vY by an integral power series in the variables xi = va
which converges for sufficiently small ixkl. If the collection B is T-nonresonance, then
these series are linearly independent and the number of them is equal to the volume of P.

The proof is almost completely contained in the preceding arguments. One can verify
the linear independence of the functions ¢Y not in the space of analytic functions but in
the space of formal power series. But in this space the linear independence is obvious
since in ¢Y there occur only monomials of the form v8, where 6§ =y + L. By virtue of the
T-nonresonance condition, in different series there cannot be identical monomials, from which
the linear independence follows.

Finally, the assertion that the number of series is equal to Vol P follows immediately
from Lemma 3 above since | det (Yijhi<i<n, je1l = Vol A (]).

Remarks. a) By virtue of Proposition 2 all the series @y (v), ¥ e 1% (
on the set of those (v,, ..., vy) for which the vector (-1n|vy{, ..., —In|vy
translation of the cone C(T) inside itself by a sufficiently large vector.

B, T) converge
|) lands in a

b) By Theorem 2 from the Introduction, the I-series constructed form a basis for the
space of solutions of the system (0.2).

2. Hypergeometric D-Module

2.1. Definition of the Module g and Formulation of the Theorems. In this section we
study the hypergeometric system (0.2) in detail. For this it is very helpful to use the
language of D-modules [4].

We shall denote the space CM with coordinates (Vis «ves vy) on which the hypergeometric
functions are defined by V. Let Dy be the sheaf of rings of linear differential operators of
finite order on V with holomorphic coefficients. The operators Zj and [l are global sections
of Dy. With the hypergeometric system (0.2) there is associated the sheaf of left Dy-modules
(or for simplicity the Dy-module) # = g = Dv/(EDv Z; + ZDv [h)-

The most important invariant of a Dyg-module #on the manifold X is its characteristic
manifold SS (#)C T*X and its characteristic cycle S5 (), which is a linear combination
of the irreducible components of SS (47) with the multiplicities which arise naturally [4].
In our case SS (AMp) is the set of zeros of the highest symbols of operators from the left
ideal generated by Z; and [, . The Dg-module N is called holonomic if dim SS (4#7) = dim X.

We consider the space V* dual to V with coordinates £,, ..., EN dual to v;, ..., VN.

For each a < L we consider the polynomial [, (§) = 1l & — {1 &% , which is the symbol of

aj>0 aj<0
the differential operator [, By S we denote the algebraic submanifold of V* defined by the
equations [ L, () =0 Vae L. For each face I' of the polyhedron Q (possibly T = (}) we consider

the submanifold S(r) c S defined by the conditions &5 = 0 for veET .

Proposition 1. a) The manifold S is the closure of the orbit of a torus H in V¥* passing
through the point (1, ..., 1). This orbit is a principal homogeneous space over H.

b) The orbits of H on S are in bijective correspondence with the faces of the polyhedron
Q. The closure of the orbit corresponding to the face T is S(I).

Proof. a) Let I be the subsemigroup of H, generated by X3y It follows from the defi-
nition of S that the ring C(S] of regular functions on S is isomorphic to the semigroup alge-
bra C[Z]of the semigroup I. Hence dim S = n and S is irreducible. It is clear that the
orbit of the point (1, ..., 1) is contained in S. Since the characters x; generate H it is
a principal homogeneous space over H. Hence, its closure coincides with 5.

b) These assertions follow from standard facts of the theory of toral manifolds [6}.

By virtue of (0.1) the manifold S and all the manifolds S(T') are conical, i.e., invariant
with respect to the action of homotheties in Y%, For a conical submanifold Y c V* there is
defined the dual conical manifold ¥ c¢ V. It is characterized by the fact that its projecti-
vization P (¥)C P (V) is the manifold projectively dual to P(Y)C P(V*) (cf. [7]). Let
V(r) ¢ V be the conical manifold dual to S(T) < V¥,

98




e

THEOREM 4. The characteristic manifold of the Dv-module;-/ﬂﬁ coincides with the union of
the conormal bundles T{‘,(F)V to V(T), where I' runs through all faces of the polyhedron Q. . |

It follows in particular from this theorem that # is holonomic (Theorem 1 of Introduc-
tion) since dim Ty I.)V=dimV for all T, In order to find the characteristic cycle S? ()
we must find the numbers cp equal to the multiplicities of occurrences of T{‘/(F)V in S8 (Mp).

We consider the quotient lattice HI/ZT , where ZI' C H is the sublattice generated by
characters from I'. We define two polyhedra P(T) and Q(I') in the real space(H/ZT') ® R. P(T)
is, by definition, the convex hull of the images of all xj(l < j s N) (and of zero for T =
), and Q(I') c P(T) is the convex hull of the images of only those x; which do not lie in
. The integral structure on the real space.([f/ZI‘) ®R (i.e., the de%inition of the integral
sublattice H/ZI' in it) defines a volume form Vol in it with respect to which the volume
of the elementary simplex with vertices on the lattice is equal to 1.

THEOREM 5. The multiplicty cp of occurrence of T{(ry in S5 (Mg is equal to Vol P (T)
— Vol Q (T'). In particular the number of linearly independent solutions of the system (0.2)
at a generic point is equal to the volume of the polyhedron P = P()- ‘

2.2. Proof of Theorem 4. We consider the Fourier transform of the system (0.2), i.e.,
in the equations we replace vj by (—B/BE;J-), a/avj by £;. Let J be the Dyx-module corres-
ponding to the Fourier transformed system. We denote l!)y ‘@: T*V* - T*V the natural isomor-
phism consisting of identifying both spaces with V x V¥, By (0.1) the module g is monodro-
mic in the sense of [8]. Hence it follows from the paper cited that S8 (Mg) and SS (Mp)
can be obtained from SS (./I7l5) and SS (Mp) by the action of the isomorphism ¢. i

The module g is a special case of the following construction. Given a smooth algebraic
manifold Y with the action of algebraic group G, submanifold W ¢ Y which is invariant with ‘
respect to G and splits into a finite number of orbits Wy and B:g—C, a character of the ‘
Lie algebra of the group G, then one can define a Dy-module 4" as follows.

Let Jy < Oy be the sheaf of functions which are zero on W, e; & ¢ be a basis. We set
A" == Dy/(DyJw + ZDy (Le, — B (e;))), where Lg. is the Lie derivative. In this situation one
can assert that # is holonomic and §S («/V')l - UT"JVaY (for smooth W this is proved in [4,
Theorem 5.2.12]1; for arbitrary W the proof is analogous). It follows from this that SS (M) C
U T§(r)V if one considers that the conormal bundles to mutually dual conical submanifolds
K ¢ V, K ¢ V% are carried into one another by the isomorphism ¢ : T*V* » T*#V, The fact that
there is precise equality will follow from Theorem 5.

2.3. Local Degree of S along S(I)}. Let I' be a face of the polyhedron Q (possibly I =
5). We define a toral manifold Y(T). For this, in the lattice H/ZT we consider the
subsemigroup I(T') generated by the images of the characters x;. Let G[Z (I')l be the semi-
group algebra of this semigroup, i.e., the ring of Laurent poiynomials with exponents from
Z(r). We set Y(T') = Spec C[Z (D)].

LEMMA 1. A small neighborhood of a generic point s& S (I') in the manifold S is analy-
tically isomorphic to the product of a ball in CdmT and a neighborhood of the point 0 in
the manifold Y(T).

The proof follows from familiar facts about toral manifolds. Thus, the structure of
S along S(I') is the same as the structure of Y(I') near O.

An important invariant of a singular point y on the manifold Y is its local degree, degy
Y. For Y imbedded in affine space it is defined [9] as the multiplicity of intersection at
the point y of the manifold Y and a generic affine subspace of complementary dimension pass-
ing through y. Analogously one can define the local degree degp Y of the manifold Y along
an irreducible submanifold A (cf. [9]). It depends only on Y and A.

Proposition 2. The local degree dEgS(I‘)S = dego Y(I') is equal to Vol P(I') — Vol Q(T).

Proof. We shall assume that among the characters X,, ..., XN precisely x;, ..., Xy do
note lie in the face I'. The lattice H/ZI' corresponds to the torus H (I') = Spec C [H/ZI]
fdhosg lattice of characters it is. Then the images of the characters Xy, ++:s Xm
in H/ZT which we denote by xj, define an imbedding of the toral manifold Y (I) in C"

Let Y (I)C P be the closure of Y (I') in the projective space. The degree of the
manifold Y (T') (or Y (I ) isequal to the volume of the polyhedron P (I') (cf. [10]). In other
words, if a generic plane Il of complementary dimension is drawn through the point 0 = C™ , then
the sum of the multiplicities of all points of intersection (including 0) isequal toVolP (I). On
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the other hand, the number of nonzero points of intersection is the number of solutions in
the torus H (T) of a system of equations with Newton polyhedron Q (r). According to {10]
it is equal to Vol Q (I'). Hence deg,Y (I') = Vol P (T) — Vol Q (r).

2.4. Proof of Theorem 5. To find the characteristic cycle we must define [4] a good
filtration on the Dy-module #. Let p: Dy— M = Dv/(EDvZ; + EDv[l) be the canonical homo-
morphism, I be its kernel, F.Dy be the filtration by order of differential operators. It
induces good filtrations Fgl =1 () FDv and Fy# = p (F Dy)- Then if we denote the ring

of symbols grf.‘Dv =0y [&;, ..., EN] by A, then the A-module ng./% is the quotient module of
A by the ideal consisting of highest symbols of all operators from the ideal I. The oper-
ators Z; and [, lie ifi I. ‘Let Zj and [, &4 be their highest symbols.

Proposition 3. The surjection A/(Z;, l:-—_]a)—>ng.M is an isomorphism.

In other words, to calculate the characteristic cycle it is not necessary to consider
the symbols of differential implications of the equations (0.2). The proof is based on the
following lemma.

LEMMA 2. The following equations
[Ziv Da] = ciaDar {Z;, Zj] = [Da’ Db] =0
hold, where ¢, = C are certain constants.
The proof is obvious.

We consider the ring Al(Jadecr- Its spectrum is V x S. The elements_zl, EEED Zn form
a regular sequence in this ring (i.e., each Z; is not a divisor of 0 in AlC ks Zyy - - Zi)
Hence A/(( )., Z;) has a Koszul resolution K*:

o AT (8 A 21 41T 12 2 4/,

where e,, ..., e, are anticommuting generators. The differential in the resolution carries
ej into Zj and satisfies the Leibnitz rule.

Now we construct a complex (K', F) of filtered left Dy-modules such that ng."K' = K..
We set K* = (Dy/EDy [1) les, A\ - - - /\ €] and we define the differential d,.p: KP > K'P by

dy-p ((P mod zpy (T e A--- A eip) > (=11 (Pz; mod 3 Dy O e A Aéy, A--- A eip).

1<k<p

That this definition is proper follows from Lemma 2. In K° we introduce the filtration
F induced by the filtration by order of differential operators. The equality gk =K
follows from the fact that the operators [Js have constant coefficients and hence grf? (Dv/
2Dv[ ) = A/ZA[ k. From the exactness of grfK’ =K we get that K' is a resolution of
M = Dyl (EDy[ )y + DvZy) -

LEMMA 3. Differential d,: K'— K° is strictly compatible with the filtration, i.e.,
do(K™1) N FpK® coincides with do(FpK-‘).

The lemma follows purely formally from the exactness of the sequence T, K?— gr. K1
g
gr. K° at the middle term.

From Lemma 3 we get that the sequence grf K1 — grf K® — grf # - 0 is exact. This also!
means that grf = A/(()sy Z;) . Proposition 3 is proved.

Now we can finish the proof of Theorem 5. By definition the multiplicity er is equal
to the multiplicity of the A = Clv, &l -module gr M = A/((J., Z:) along TyoV = TsoV* (cf.

{4]). Let s = (£%, ..., &) be a generic point of S(T). Any ve&E V can be considergd as
an element of T{V*. Here ve& TémV* , if and only if the plane O, = {(&, -- - EN): 1<3,-éNXi5§jvi

=0 Vie[1, n]} contains s and the whole tangent space at s to S{r). Through s we draw an
affine subspace E transverse to S(r). Then S cuts out of Z an affine manifold Y'(r) which
is locally analytically isomorphic to Y(I) and Iy cuts out an affine subspace of dimension
complementary to Y(I'). The multipicity cr is equal to the multiplicity of intersection at
the point s of the manifolds Y'(T) and Iy N £ for generic v& (TsmV*)s. This latter multi-
plicity is the local degree of Y'(I'). By Proposition 2 it is equal to Vol P(r) — Vol Q(T).
Theorem 5 is proved.

3. Examples and Applications

|9 In this section we apply the results of Sec. 1 to some classical hypergeometric series
* of one and several variables. In addition we introduce a new class of hypergeometric series
T connected with Hermitian symmetric spaces.
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In each of the examples considered below we give the following data: (a) the collection
of characters Xis --- Xy & H=~1Z" and the lattice of relations L  ZV; (b) the higher order
equations in the hypergeometric system (0.2); (c) the polyhedra P and Q and Vol P, i.e., -the
number of linearly independent solutions of the system (0.2); (d) the reﬁular triangulation
T (one or several) of the polyhedron P; (e) a Z-basis A = {a(l), ceey a( '")} of L compatible
with T, and a collection of variables xy = va(k); (f) series ¢Y(v) for y <1z (B, T) which
form a basis for the space of solutions.

We note that as L any primitive sublattice of ZN such that faj = 0 for a = (a;., o
ay) € L can arise. Here the collection of characters x;, ..., XN can be determined uniquely
up to isomorphism from L: as Xj one can take the image of the standard basis vector e¢; & ZV
in the quotient lattice ZN/L ~ Z" . Sometimes it is helpful for us to use this realization.

3.1. Series in One Variable. In this point we analyze the case n =N -1, i.e., rk
L=N-n=1.

(a) L = Za for some primitive vector a = Z¥ with coordinate sum 0. Without loss of
generality one can assume that a = (ay, ..., ap, by, ..., =bg, 0, ..., 0), where all aj,
by > 0, faj = by = p.

(b) There is one higher order equation:

LI @avy]ew =] I @ov,]0w).

1<i<r 1<k<s
(c) The polyhedron Q is the convex hull of N vectors X;, ..., xy on an affine (N — 2)-
dimensional plane related by the unique relation ) ajx; = bixr+x - 1t is easy to see
1<j<r 1<k<s

that in the normalization we use Vol P = p.

(d) For j =1, ..., N we set Iy = [1, N] \\{j}. Clearly I; is a base if and only if
1< j<r+s. There are two triangulations of the polyhedron P: T, = {Ij: 1<jsr},
T, = {Ip4k: 1 < k < s}. It is easy to see that both of them are regular.

(e) By definition the basis A, = {a} in L is compatible with the triangulation T, and
the basis A, = {—a} with the triangulation T,.

(f) Let B be a T,-nonresonance collection of exponents. We fix y° = (¢, ..., cp, —dj,
.y —dg, €1, ..., eN-p-g) € I(B). By definition, for each j =1, ..., r the set Hél(B,

'V——L‘j

Ij) consists of aj vectors Vi,v =¥+ —"alv=20,1,...,a—1), so that s (B, T,) consists
2
of p vectors Yj,v(l $jsr; 0svsay- 1). The series ¢Yj v(v) is proportional to

3

va,V-Z( I F(ma,-}-c,—{— v;cj al—{—i) I F(—mbk—dk—

m>o I=I<r i 1<k<s

v —

C; -1
J bk+ 1)) ‘Uam'.

%
We recall that the generalized hypergeometric series pr_l is defined by the formula

Gty e O ) _ (@), - (@), 2™
oFp1 (ﬁn oo By I/ = 1;:) B+ Bppd)e ™7

where (a); = I'(a + m)/T(a) = ala + 1)...(a + m — 1) (cf. [11]). Using the obvious formulas

P ma +a) =T (@) @ner T(—ma—at1)=(—fy=Lath ] (3.1)
maf @& a+1 a+ta—1
(a)ma=a (T>m< a )m( a )m’ /
it is easy to see that the series ¢Yj V(v) is proportional to
Vv p Oty o v er O )
v :
v L4 p—l<ﬂlv---v Bp—l’ T !
where x::(——i)”u“IIbzk/IIa?f, and the parameters a;, ..., Op> Bis «vv» Bp_l are linear func-
K i
tions of ¢;, ..., cps dy, ..., dg. We shall not write them out explicitly in general due to
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the cumbersomeness of the formulas; we consider only the case p = 2 in which one gets the
classical Gauss function.

3.1.1. let N=4, n=23, L=2%a, a=(l, 1, -1, —1). The following functions form
a basis in the space of solutions of the system (0.2):

cycy. Cy—dy cy—ds dy—cy, dyg—e1 | vwo
Ve Vs s 2F1< —a+1 ' v
and
cy—Cy. Ca—dy ca—d, F dy—¢€; dg—cy, Uy
vl ’Ua U,‘ 251 €1 —C + 1 ! Vgl ’

3.1.2. Let N=3, n=2,L=2-a, a= (2, -1, =1). The following functions form a basis
in the space of solutions of the system (0.2):

—%-—d, %-—dz F (dl—"cllzy dy— cy/2 . vi )
2t 1

2 Us Y2 " Gogvs
and
2\ s St @12 d—(@— D2, ] )
— 2 Vs oy 8y * Thvgvs

We note that the Gauss functions which arise in this case with special values of the
exponents satisfy quadratic transformations (cf. [11]).

3.2. Horn Series. As is known [11], there are 14 complete hypergeometric Horn series
in two variables: F,, F,, F3, F,, G,, G,, Gz, H;, ..., H,. It turns out that there are only
8 essentially different systems (0.2) corresponding to these series so that some of them
really represent one and the same analytic function, i.e., can be obtained from one another
by a monomial change of variables and analytic continuation. In each of the cases n = dim
H is the number of parameters on which the corresponding series depends and N = n + 2. Here
are these 8 groups:

dim H = 2: {G3};

dim H = 3: {G,, H;, Hy}, {H;});

dim H = 4 {F,, G;}, {F}, {H,}, {H,, Hy}:
dim H = 5: {F,, F3, H,}.

As an example we consider the system associated with the series G,, H3 and Hg; the other
cases can be analyzed analogously. We recall that

(a)m ﬂ(ﬁ)n-—m (Y)m—n m n
Gy, By v: 2z, ) = Z . m! n! Y
m, =0
(o) m n(B)w m n
Hs(ay ﬁr‘y; Z, y): (‘y)2++m!n! Yy
m, n220 m¥n

@ Bliom MDnm
HG(av ﬁv Vi Ty y)= Z : m!n!m z yn.

m, n=0

(a) Let N=5,n=3, x, = (1, 0, 0), x, = (0, 1, 0), xs = (0, 0, 1), x4 = (1, -1, 1),
xs = (1, 1, =1) & Z3. The lattice L of relations among the characters Xj is generated by
the two relations

Yo+ A = A T Xas Ys + Xs = %o T Xei

in other words, the vectors a(1) = (-1, 1, -1, 1, 0) and a(2)
for L.

(-1, -1, 1, 0, 1) form a basis

(b) The higher order equations corresponding to a(1) and a(*) have the form

20 50 2D o0
v v | Ousdvg ' 0vdvg  Gusdus

(c) All the Xj lie in the plane x; + X, + x3 = 1 in R*. 1In Fig. 1 the polygon Q in this
plane is shown.
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Fig. 1

Clearly Vol P = 3.

(d) The regular triangulation T = {{1, 2, 3}, {1, 3, 4}, {1, 2, 5}} is pictured in
Fig. 1.

(e) It is easy to see that the basis A = {a(l), a(z)} of L (cf. (a)) is compatible with
the triangulation T. The corresponding variables are: x = va(1) = Vv, /vivg, y = val2) =
vavg/viv,.

(f) We fix the vector y° = (B, By fs, 0,0)= I (B) . Clearly 4° =z (B, {1,2,3}). The
series ¢,,(v) is proportional to

D, (v) = Rofod 6y (—By, —Bo —Bs —2 —)-

Further, °— B3a® = (B, + Ps, Bs + B3, 0, 0, —B;) = IIZ (B, {1, 2, 5}) and the corresponding series
®yo-g,a(?) (v) is proportional to

@, (v) = P bt P B (=B, — Bs, —B — By 1 — Bai 2y, 1)

Finally, to the vector y° — f,a® = (B; + B,, 0,524—53,——ﬁm0)6511%(ﬁ,{1,3;4» corresponds a series
proportional to

Dy () = v oftP i By (—By — By, —Ba — Bsy 1 — P 2y, 7).

Thus, the functions &,(v), ¢,(v), ¢3;{v) form a basis in the space of solutions of the
system (0.2) in the domain 0 < [x|, |y| < € for sufficiently small £ > O.

We note that the series ¢y(v), corresponding to the vector y = y® + B2a(*) = (B, — 8.,
0, B, + B3, 0, B,), is proportional to

@, (v) = v b ol Hy (By — By, —Bar —By — Bas —2y, YY),

from which it is clear that the series H¢ can be obtained from the series G, and H; with the
help of a change of variables and analytic continuation.

3.3. Systems Connected with Hermitian Symmetric Spaces. Let X = G/P be a compact homo-
geneous space of a connected, semisimple, complex Lie group G, let ¢ D) be the Lie algebras
of the groups G and P, H be a Cartan subgroup of G, and t be a supplementary nilpotent sub-
algebra to p in g. It follows easily from the classification of Hermitian symmetric spaces
that the following proposition holds.

Proposition 1. The following conditions are equivalent:

(1) The collection of characters %«&H which are roots for the adjoint action of H
on n satisfy conditions (0.1) from the Introduction.

(2) The algebra n is Abelian.
(3) X' is a Hermitian symmetric space.

Thus, with each Hermitian symmetric space X there is associated a system (0.2) on the

function ® (v), ve= V =n. We note that the space V can be identified naturally with an open
Schubert cell in X.

If X = G, (C*) is the Grassmanian (cf. Example 3.3.1 below), then the construction in-
dicated leads to the system of equations from [1] rewritten in local coordinates. Hence,

103




the solutions of systems (0.2) associated with the remaining Hermitian symmetric spaces are
natural analogs of the general hypergeometric functions from {1]. Here we shall consider
only the classical Hermitian symmetric spaces.

3.3.1. X is the Grassmanian G, (CF).

(a) N=k&, n=k+ & — 1. The space V consists of k x 2 -matrices (vjj)igi<k,15js8>
and the action of the complex torus H on V is generated by dilatations of the rows an&
columns of the matrix (vy;). The lattice H = Z¥-! can be realized as the sublattice

{(c1, - - ck, dy,....d)yeZ¥ X Z'1 Zc¢; = 2d;} in Z¥ x 7' , and the character X;, e H is equal
to e4 + e!l, where e;, ..., e is the standard basis in Z¥, and e}, e el is the standard
basis in “Z'. The lattice L is generated by the relations xjj + Xi'j* = Xij' * Xi'j for all
Li'eL ket .

(b) The higher order equations in the system (0.2) have the form 5 go__ o0
v, au 8vij,0vw

. : k+1—2
(c) The polyhedron Q is the direct product of simplices A¥1X A” Vol P = ( ::_1 )-

(d) A regular triangulation T of the polyhedron P with (ktf:zz) simplices of volume

1 is familiar in combinatorial topology [12, Chapter II]. Bases I'EE T are indexed by all
sequenes 2 = (j,, ja» «--s Jjk+1) of natural numbers such that 1 =3j, 2 j, 2 ... 2 jk 2
jk41 = &5 the corresponding base Ig is {(i, j): 1 < i <k, jj41 s 3 < jil}.

(e) It is easy to see that the basis A = {a(i’j) =ejj T ei,jh —'ei+1,j’Fei+1,j+1(l <
i<k—1, 15 js 8&=1)} for L is compatible with the triangulation T. The corresponding
variables are: xjj = Vijvi+1,j+1/Vi+1,jVi,j+1'

(f) For simplicity we give explicit formulas for the series @Y(v) for the case k = 2
only. In this case T consists of % bases Ij(l < j=j, € &). We introduce the notation

(@)_pm By, - - By ™ -1
. —My—e =M M Ay m I-1'm z Ty
FD,j(av ﬁl’ ooy 51_1, Y Tyy oo = .’L'[._l) B (Y)J 175 1 1 -1, ':z B ,ill 1
My, vy ’"1—120 ~—rn1-~...—‘mj_1+mj+...+‘ml_1 1 -1°

in particular, Fp , = Fp is the Lauricelli function (cf., e.g., [13]). Then the series &,(v)
is proportional to

vaD.j (_‘V2J'1 —Yo1s + + +» —V2,i-10 — V1,415« + o> T V1, 1 V1j + 1;
ZyLge o - Tjgy Tge + « Timgy » « +y Tjc1s Tjy TjLinas - » s TiTjene - - Z1y)-

We note that the system (0.2) for the function Fp was found in [13]. TFor & = 2 one ob-
tains the Gauss function again; for & = 3 the series Fp ; and Fp 3 are the Appel series F,,
and the series Fp , is the Horn series G, [11].

ES

3.3.2. X is a connected component of the manifold of n-dimensional isotropic subspaces
of the 2n-dimensional orthogonal space.

(a) N = n(n - 1)/2, V= A2%CD = {(v1 ), 1 £ j < n}. The lattice # =~ Z" can be realized
as the sublattice of vectors in Z" with even coordinate sum, and the character Xi; & H is
equal to e; + e;. The lattice L is generated by the relations Xij + xke = Xik t XjL = Xig +
xjk (1 €1 <3 <k<2<n).

(b) The higher order equations in the system (0.2) are:
2D D 9D '

- - 1<i<j<k<I<n). A N
o vy Gudv, | dvgpv, A<i<i<k<isn A

(¢) The polyhedron Q is the hypersimplex A(1, n — 1) (cf. [14]), Vol P = 207! — n,

-0
(d) The regular triangulation T of 27~ 1"simplices of volume 1 consists of the basis I
where @ runs through the sequences {1 = i, < i, < ... < i, < n} with r 2 3, and

o = {(ip, ) 1<pLr—2, I <<i< Lp+1} U { (fr-gy 1)} U {(G, 34): b < i< i} U {( 0 i n}.
In general we have not been able to produce a Z-basis A compatible with T.

3.3.3. X is a Lagrangian Grassmanian in 2n-dimensional sympletic space.
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(a) N =n(n+1)2,V==8%C"= {(v;),1<i<j<n}. The lattice H is the same as in
point 3.3.2, xjj =ej +ej (1 < i< j<n). The lattice L is generated by the relations
Xij + Xke = Xik t Xje for all i, j, k, and %; here one assumes that for i > J» Xij = Xji¢

(b) The higher order equations in (0.2) have the same form as in point 3.3.1, where
it is assumed that Vij = Vji- We note that in [3] the system is not given completely.

(c) The polyhedron Q is a simplex with vertices Xii = 2e4, Vol P = 2n-1,

(d) As regular triangulation T one can take one base I = {(i, 1): 1 < i s n}. Another
regular triangulation can be obtained from the triangulation of the hypersimplex in point
3.3.2 by adding n simplices at vertices of Q.

(e) It is easy to verify that the Z-basis A = {a(ij) = ejj =

ei,j-1 ~ €it+1,j t ei+1,j-1
(1 £ i< 3jsn)} is compatible with the triangulation T.

(f) We do not write down the series QY(V) in general due to their awkwardness. If n =
2 we arrive at the series of Example 3.1.2.

3.3.4. X T P¥3 is an even-dimensional quadric.
(a) N =20+2 n=1+4+2 V=C+2={uv): i==+1 =*x2,...,+ U+ 1)} . The character
At EH =21 i< 1l+1) is equal to egy, t ej. The lattice L is generated by the rela-
tions x; + X-y = Xz + X2 = ... = Xg+1 ¥ X-g-1-
(b) The higher order equations in (0.2) are:
e Y T
dv_y — dugdv_, T T 9v,,,00_;_4 .
(c) The polyhedron Q is an (& + 1)-dimensional "octahedron" with center eg42, Vol P =
2%,
(d) A regular triangulation T consists of 2% bases
Ly oy={ei-i (1< i<, £+ 1)}, e ... g =+l
(e) The basis A = {a(k).= e + e.p —egy; —e.g-; (1 sk g 2)} of L is compatible with
the triangulation T. The corresponding variables are: Xp = vd k) = VRV-k/Vg1Vog-1-
(f) For vy Hé(ﬁ7ihmeﬂ the series ¢,(v) is proportional to
VYFe(— Yiery — V-i-1; Ve,1 + 1, Ye,o + 1, -0, Ye, -t + 4 2y T,
where
F . (a)ml+...+ml(ﬁ)m,+...+ml M. z'Inl
e bRy e Wi Ty ) = W+ W, b o]

Myy o0ny My20

is the Lauricelli function (cf., e.g., [13]). For & = 2 the series Fc becomes the Appel
series F, ([11]).

3.3.5. X C P js an odd-dimensional quadric.

(a) N=2l4+1, n=141,V=0C4"— (), —1<i<l}, H=12Z". The characters are:
Xo = €g415 X+i = eg4; £ ej(1 < i s 2), The lattice L is generated by the relations x; +
X-1 5 X2 ¥ X-2 = ... = xp + X-¢g = 2X¢-

(b) The higher order equations in (0.2) are:

D 92D .
G =t A<i<.

(c) The polyhedron Q is the same as for a 2%-dimensional quadric (point 3.3.4), Vol P =
2% (owing to a different normalization of the volume compared with point 3.3.4).

(d) A regular triangulation T; of 221 simplices of volume 2 is constructed in point
3.3.4.  Another regular triangulation T, (of 2% simplices of volume 1) consists of the bases
Igl,,,gl ={ej*i (1 <i<g), 0}, e, «.., €9 = #1.

(e) The basis A = {a(k) = ey *+ e-x—2eo0, 1 < k < 2} is compatible with the triangulation

T2. The corresponding variables are: xj = va(k) = VRv-k/vE.
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4 1
(f) For VEEI]Z(BvaHe) the series ¢y (V) is proportional to lﬂfb(——-%z,——gjb S Ye .1 t

1, ..., Yego 8 + 1y 4xy, 4x,, ey 4x£), i.e., it is the Lauricelli series Fc with one linear
relation between the parameters.
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COBORDISMS OF SYMPLECTIC AND CONTACT MANIFOLDS

V. L. Ginzburg UDC 519.43

The classes of symplectic and contact cobordisms of symplectic and contact manifolds
defined below form groups. In this paper we shall evaluate the group of symplectic cobor-
disms of two-dimensional manifolds: it is isomorphic to Z@OR . It will be proved that if
the manifold is tightened by a film of Euler characteristic zero, then the standard contact

fined below in Sec. 6, is zero.
We shall assume throughout that all manifolds are oriented.
The author is indebted to V. I. Arnol'd for his guidance.

1. Definition 1. An odd-dimensional manifold with a closed 2-form whose kernel is
one-dimensional at every point will be called l-symplectic (or quasisymplectic).

Any such manifold (M, w) with symplectic boundary (3M, w/3M) symplectomorphic to (B,,
‘ Qo) — (—Bl, $:) 1is called a symplectic cobordism betwen the symplectic oriented manifolds
A (By, Qy) and (B, Q;) (the orientations of B and @, 2n = dim B, may be different). Nota-
tion: (B, Q,) ~ (B, Q1). Symplectic cobordism is an equivalence relation.
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