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Moreover, it can be shown that {&,} is indeed a resolution of the identity
for — A(= — d*dx?) for 1 <p < «. Using the identity "% =1~ &, +¢" &,
we can show that |e**+ |, <1 for all s in (—oc, ), ie., &; is Hermitian.
The details are omitted.
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applications. We believe that combinatorial methods will play an increas-
« mg role in the future of geometry and topology.

We consider the Grassmann manifold G* , of all (n— k)-dimensional
subspaces of { By fixing the standard busis in € we obtain an action of
the torus H = (C*)" on G , which is induced from stretching the coor-
dinate axes in T (see also Sect. 1). We will describe not only the trajec-

*tories, but also the “strata” of 4 new and interesting decomposition of the
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Grassmanian (which is finer than the usual stratification by isotropy sub-
group of H). Understanding the geometry of the strata and the quotient
space of this action is useful in many situations, and this paper may be con-
sidered as an introduction to these other situations: (1) for understanding
the generalized hypergeometric functions and the Kostant partition
function [G, GG, GZ], (2) for understanding the dilogarithm and the
polylogarithms and their functional equations [GM, HM], (3) for the
study of combinatorial geometries which are associated to other Lie groups
and parabolic subgroups [GS], (4) for construction of combinatorial
Chern and Pontrjagin classes [GGL, M], (5) for the study of he represen-
tability of matroids [GoM], and (6) for the study of algebraic K-theory
IBMS].

According to [GM] the trajectories of the action of (C*)" on the
Grassmannian G* , correspond to projective configurations of n points in
P* 1(C). This torus action also gives rise to @ moment map O
(see [GM] for the case of the Grasmannian, and [A] or [GuS] for an
important generalization) with the property that the image of each trajec-
tory 1s a convex polyhedron. Our main result is that the following three dif-
ferent decompositions of the Grassmannian into strata all coincide:

{1) The set of points in G4 , such that the corresponding projective
configuration represents a fixed combinatorial geometry (see Sect. 1).

(2) The union of the orbits of (C*)" whose projection under u is a
fixed convex polyhedron (see Sect. 2).

(3) A multi-intersection of translates of Schubert cells which are
obtained by permuting the coordinate axes (see Sect. 3).

The equivalence of (1) and (2) establishes a one to one correspondence
between representable (over C) combinatorial geometries (or matroids)
and certain convex polyhedra. In Section 4 we extend this to a correspon-
dence between all matroids and certain polyhedra which are characterized
by a restriction on their vertices and edges (1-dimensional faces). This
characterization is equivalent to the Steiner exchange axiom. The marriage
of matroid theory and convex set theory should have interesting con-
sequences. The polyhedron corresponding to the Fano plane is particularly
beautiful.

We would like to thank S. 1. Gelfand for his valuable suggestions concer-
ning this manuscript.

| THE GRASSMANN STRATA AND COMBINA TORIAL GEOMETRIES

I.1. Derinimions.  Throughout this paper we fix the standard unit
veclors ¢, ¢rvn e, of €7 and let G4, denote the Grassmann manifold of
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(n— k)-dimensional subspaces of C". For cach plane PeG) , the
. projection
n,. C"->C"P

determines n vectors (some of which may be 0), m,(¢,), n,(e;),... 7m,le,) in
the quotient C"/P=C*. We obtain in this way a (representable over C)
matroid (or combinatorial geometry) of rank k on the set {1,2,3,...n}, ie,
' a “rank function” defined on subsets J< {1, 2,..., n}, which is given by

rank(J)=dim(span{n (¢} jeJ})

. and which satisfies the following matroid axions: [Wh, VW, CR, W]:

: (R1) rank(¢)=0,
., (R2) I<J=rank(/)<rank(J),
(R3) rank(/w J)+ rank(/nJ)<rank(/)+ rank(J).

m, Remark. Given any A-dimensional complex vectorspace V' and any »
. vectors ¢, U's,... ,, which span V, there is a plane PeG% , and an
“isomorphism F: C"/P = V such that F(n,(¢))=rv, (for i=1,2,., n). Infact,

" Fis induced by the surjective homomorphism F: C" — V which is defined

by Fle,)=r,.

1.2, Grassmann Strata

~ DERINITION. Two points P,, P,eGX , are said to lie in the same
» Grassmann stratum I” of G% _, if they give rise to the same matroid, ie., If
for each subset J= {1, 2,.., n} we have,

dim, span{n, (¢,)|j€J} =dim span{n, (¢ )|jeJ].

“1.3. Torus Action

The algebraic torus H = (C*)" acts on C" by stretching the coordinate
axes, Le., i £=(4A[, A1,.., 2,0 H and 1if xel{" then

The action of cach 2e H 1s linear so 1t tukes subspaces to subspaces and
“therefore induces an action on G . The fixed pomnts of this action are
easily described: for each k-element subset J< {12, n! there are coor-
dinate A& and » -- A planes,

R,=span e ise /.

R; =spanie [/i¢ ]!
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1 7 k .
It is easy to sce that the fixed points of the action of H on G, , m&ﬂn
precisely the coordinate n — & planes Rj (for arbitrary k-element subsets J).
Remark. The closure (in G5 ) of an orbit of H 7,_ a normal w_mng.m_o
subvariety of G% , which is H-stable and consists of finitely many H-orbits,
ie. it is a toric variety [D].

1.4, LEMMa. Fix PeG* , and let & denote the corresponding matroid.

’ : 3 . . " . : ; ) K f > y g
Lot H-P denote the closure (in GX ) of the orbit :.\.t which S:Enﬁ_, P.
Then the fixed points of H which lie in H- P are N:S.N,,,m.\.,. those coordinate
n—k EE,:;. R; such that J is a basis (ie., a maximal independent subset)
o @.

Proof. First, suppose that J is a basis o_,. @. This means ‘:%ﬁ
‘nule )| jeJ! are lincarly independent in C"/P, lLe., that Pn R, = {0},
A i

where

R,=spanie,|jed).
Thus the plane P can be realized as the graph of a linear transformation
/: R; —R,

in the product space C" = R @ R,. Now consider the mnao: of ﬁ* «H o::
the Grassmannian G* ,, which is induced by the following action on c™
e, if jeld,
" e, il jé¢J.

N 1 - acti Qe .AQWV,
It follows that for any plane Pe G% . the induced action satis

;- P =graph( 4/},

N~

SO

tim (4 P)=graphiQ) =R .

Y]

1. the coordinate plune R is in the closure of ,:. ﬁ here

On the other hand, suppose that J is not a busis of .Qy vcmv.:vvc.fr there
‘aists a sequence 2, € M such that £, P— R; . Then tor sufficiently large
L2 - h Tt " ‘ .

we have

since any such # —A plane which is sufficiently close 10 R; s;: necessarnly
be transverse to R,. However, this implies that J must be an independent
et of @ it it were dependent then {n(¢,)je /] would be lincarly depen

‘because the induced map P - O iy an onorphusm. Thus 2 determimes
stretches  these vectors but does not chiange ther directions. so if

Thus .1, is well defined dand we have abieady remuarked (Sect Loy that at s
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4

dent which would mean that P~ R, #0, and so the same would be true for
PR,

L5 Remarks on Projective Configurations

For any r> &, we let C/(P* ') denote the set of maps ¢: S — P* ! from
an r-element subset S< {1,2,.,n) 1o P* ! whose image ¢(S) spans PA .
¢ (Thus an element of C/(P* ') is r points, not necessarily distinet, and
: labelled by certain integers between | and ). The group PG/ (C) acts on
i the space C(P* ') A projective configuration is an element of the quotient
“space C7(P* '")PGL(C).
. Fix a plane Pe G, , and let r denote the number of nonzero vectors in |
‘the collection {n (¢}l <i<n!<cC"P. We thus obtain a configuration
1 A(P) of r ordered points (which are labelled by r of the integers between |
and n) in the projective space P(C"'P)=P* ' The following proposition
i indicates that we may transform questions involving the action of PGL,(C)
_on the space of ordered r-tuples of points in B* ' into questions involving
‘the action of the torus H = (C*)" on G*

it

ProPOSITION [GM . The association A induces a onc-1o-one correspon-
dence between the factor spaces

G* . H  and 11 o _; PGL(C).
ok B

Remark. There is a natural (non-Hausdorll) topology on cach of these
;spaces.

~ Proof of Proposition.  We repeat the essential idea behind the proof in
[GM]. Choose an r-clement subset J '1,2,.., n,. Let

G,=PeGt i Tple, ) =0 je g

It suffices to show that .1 induces a bijection

i - -

| A, GH -

YPGL L,

where C (P Hjo CHP* ') denotes the set of r-wuples of pomnts i P!
which span I** ' and are labelled by the integers m the set /.

Any element Pe G, s the kernel of surjective hnear map 747 5 0f
which is uniquely determined up to composition with elements of (L)

dunique GL -equivalence class of » nonzero vectors m ¢ % The action ol #

ic
wrresponding points in %' are well detined (modulo PG L equivalence 1.
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surjective. To see that A, is injective, suppose that P,, P;e mmnw» are
kernels of surjective homomorphisms 7, 7,: C" - C* and that A,(P,)=
A,(P,), ie., there exists an invertible linear transformation F: C* — C* such
that, for each jeJ there exists 4,€ C* with Fr,(e,) = Amye;). If 4:C"—C”
is given by the diagonal matrix
A= 2, if jelJ,

T if jéJ
then the following diagram commutes:

c" - QU»
I

4 F

ﬁ: — ﬁ»
and therefore 4(P,)=P,.

2. MOMENT Map

2 1. DEFINITION OF THE MOMENT MAP. Associated to the torus action
(Sect. 1.3) of H on the Grassmannian G} _,, there is a moment map

p G, — R

which was defined first (in this case of the Grassmannian) in [M] and
[GM], and later, for arbitrary group actions on symplectic manifolds in
[A] and [GuS]. In this section we will give an explicit expression for the
moment map.

A plane PeG*: , can be realized as the kernel of a surjective
homomorphism F: C"—C* which corresponds to a matrix M with n
columns and k rows. For any subset J< {1,2,..,n} of cardinality k, we
obtain a A x A matrix M(J) consisting of the columns of M which are
indexed by J. There are () such subsets.

PROPOSITION.  The coordinates u,: G* =R of the moment map are
giren hy

LEMM_E_%;::_(,
A= et M)

where the summation in the numerdator is over all k-element subsets J which
contain the index i, und where the summation in the denominator is over ull

k-element subsets J.
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Proof. The association P — {|det M(J)|} (where J varies over the &
element subsets of {1, 2,.., n}) gives rise to the Plicker embedding

on which the moment map is computed as in [ K].

2.2, The Hypersimplex

For any Pe G* , we have

O<udP)< and M w(P)=k.
i=1

Thus the ::mm.o of the moment map u is the hypersimplex 4% | of [GGL]
and [GM], ie, the set of all points veR"” such that 0<x, <1 and
Yu , x;=k. The hypersimplex 4* , is the convex hull of the (}) vectors

i..:mz\_ which are indexed by k-element subsets J< {1,2,.,n} and are
given by

), = 1 if jelJ
10 i jed

2.3. ConvexiTy THEOREM. We recall the convexity theorem of [GuS],
and [A]: Let H- P denote the closure in G% | of the orbit of the point P
under the action of H=(C*)". Then the image u(H- P) is the convex hull of
the points u(Q) where Q varies over the fixed points in the closure H- P. Q,z
other words, u{(H - P) is the convex hull of a certuin subset of the vertices of
the hypersimplex.) . .

LEMMA.  The preimage of each vertex of the hypersimplex is the H-fixed
point u '(e(J))=R;.
Proof. By [A] the preimage u '(e(J)) of any vertex of 4% , consists of

a single fixed point. However the coordinate n--4k plane R; may be
represented as the kernel of a matrix M: C" - * such that the minor M(J)

- is the identity and the remaining columns of M are all zero. Thercfore, for

any k-element subset K< {1, 2, n! we have

det M(K) = AM _ T

© S0

which shows that j(K; )~ ¢(J).
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2.4, SeCOND DEFINITION OF THE STRATIFICATION.  We shall say that two
points P, Qe G* |, are in the same stratum of the second stratification of
G* , if the image under the moment map of the closure of the H-trajectory
of P coincides with the image under the moment map of the closure of the

H-1trajectory of Q, e if
uH-P)y=u(H Q)

THrEOREM.  The second stratification of G* , coincides with the first
stratification of G which was defined in Secr. 1.2.

COROLLARY.  We have therefore uassigned, to cach representable com-
binatorial geometry @, a unigue convex polyhedron

A() = closure(u(1}),

where iy the stratum in GX - which corresponds to . Moreover, (by
Lemma V.4 and Lemima 2.3), the polvhedron A(@) has the simple description

ay the convex huldl of the vectors
Lel)WJ is a basis of @ .

Proof of Theorem. 1f two points P, Qe G* , lie in the same stratum [
(as defined in Sect. 1.2) then they determine the same matroid so (by
Lemma 1.4 and the convexity theorem) they have the same bases, so
wlH Py and u{H Q) are the convex hulls of the same collection of vectors,
so they coincide. On the other hand, suppose that P and @ have the
property that w(H- P)y=u(H- Q). Then the matroids corresponding to P
and Q have the sume bases. However the bases of a matroid determine the
matroid (W] so P and Q are in the same stratum /" of G% .

3. SCHUBERT CEELS AND STRATA IN THE GRASSMANNIAN

S0 Sclubert Cells

standard basis of C" gives

The standard ordering (e, eae,; of the
rise to the standard flag

\A; - \.,w - - \N: . ,A,, \_,

i

where F'=span e, .o, o,

.
A Schubcrt symbol 1s a sequence of A numbers,

_u.u:ATA <N

-y
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and determines the Schubert cell

7 N 'y v, — IR

Qiiy il ={Pec EBQ NF )<y

dim(Pr )=
ie., .::u :_.::Umﬁm 7, label the subspaces for which the dimension of the inter-
section with P jumps up.

. The .mo::g: cells form a decomposition of the Grassmannian into even-
dimensional cells. [MS].

Now let a2, be a permutation on 1. 2....n}, and consider the new
ordering {¢,,,,, €,:5,,.., ¢s .., ) of the basis vectors of C”. This gives rise to a
:ni:mm

FlaeFic o frag
where Nﬁ“m@z:”ti_? i) "o |
Grassmannian into Schubert cells,

- We obtain a new decomposition of the

Qi 0]
by replacing F” with F in the above definition.

3.2. The Third Stratification of the Grassmuannian

fn define the third stratification of the Grassmannian to be the common
refinement of the n! decompositions into Schubert cells Qi 0]
where a is allowed to vary over all permutations and 7, /, - lowed 1
vary over all Schubert symbols. (

18 allowed to

THEOREM. ,;a third decomposition of the Grassmannian coincides with
the decomposition of G* |, into the strata of Section 1.2,

- B * Y arcoy 7
Proof. _,_ PeQ7idis 0 ] then the rank  function - of  the
corresponding matroid satisfics
rloth, a2 atm)) —ne
where 7 1s umquely determined by
sy
because il FUo Py o dini F oL 8y ol other wosds,

rank function is not completely determined.
ucular subscts

Bowover s valae onthe pag

cothy o) a2y
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is determined. Now a stratum in the third decomposition of G*_, has the
form
S= ) QL]

aely
where each L, is some Schubert symbol. (Most such intersections wiil be
empty, of course, and a given stratum may rm<n. many such represen-
tations.) Thus a point Pe S corresponds to a matroid whose rank function
is completely determined: if J < {1,2,..,n}is m:w,mccmﬂ :65, <.<a om.: find a
permutation ¢ such that J = {a(1), a(2),.., (/D }. If L, = [i,i,---i,] then
the value of the rank function is r(J) = |J| —j, where

< I<iy

{The permutation ¢ is not unique. However, .: another .vm::c”m:osﬂ 18
found such that J= {t(1), ©(2),...., t(J/])} and if the resuiting .ooBva:o:
for r(J) differs from the above, then this will imply S'=¢.) This mro.im H.E:
the intersection S is contained in at most one stratum of the stratification

from Section 1.2. . .
On the other hand, suppose that I" is a stratum of the stratification from

Section 1.2. Fix a permutation o € £,. For each Pe I' the ranks of the sets

"QA_ v“w ”QA_ v. QAvaf.J ”Q.A— Y Q.ANY..J Q.Awﬂvw
are determined by the rank functionr of the matroid associated to [
However,

ria(1), 6(2),... a(m)} =dim(F;/F; N Py=m~ dim(F7" N P)

so the dimensions dim(F7 ~ P) are also determined by I". This means that
P is in a certain Schubert cell of type 2°[L,] and the Schubert symbol L,
is determined by the matroid associated to I. Thus ['c QL] If we
allow the permutation o to vary, we conclude that each stratum [ 1S

contained in a unique intersection,
re () Q°(L,]

ae X,

which completes the proof.

4. MatrOiIDS AND CONVEX POLYHEDRA

4.1, Introduction.
We can extend the correspondence (Corollary 2.4) Uagans representable
matroids and certain convex polyhedra, to all matroids. Thus, to any
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matroid @ (of rank k, defined on the set {1,2,..,n}), we associate the
convex polyhedron 4(®),

4(P) = convex hull{e(])|/is a basis of &}

In this section we will investigate which polyhedra can occur.

DerINITION.  We will say that a convex polyhedron 4 which is contained
in the hypersimplex 4% , is a matroid polyhedron if the vertices of 4 are a
subset of the vertices of the hypersimplex 4% , and if each edge (e,
I-dimensional face) of 4 is a translation of one of the vectors e, —e
(for i # j).

4.1. THEOREM.  Suppose A4 is a convex polvhedron which is contained in

the hypersimplex A% . Then there exists a matroid @ such that 4 = NPy itf

4 is a matroid polvhedron, and in this case the matroid & is uniquely deter-
mined.

Remarks. (1) The vectors e, —e, are the “roots” of the group GL,(C).
(2) Isomorphic matroids determine congruent polyhedra.

(3) This theorem implies, for example, that if @, and @, are
matroids such that 4(®,)c 4(®,) then the edges (and the vertices) of
4(®,) are a subset of the edges (and the vertices) in 4(D,).

(4) The essential observation in the proof is that an edge which is a
translate of ¢, — ¢, Joins two bases which are related by a Steiner exchange.

4.3. Proof of (=)

Fix a matroid &. For each basis Bc !1,2. .. n' of @ we denote the
corresponding vertex of A% _« by e(B), 1e.

(B — |1 if €8
B0 i s

Now suppose that [ and J are bases of the matroid @. and that the
vertices ¢(/) and e(J) are joined by an edge in the convex set (@) By
reordering the elements of the matroid, we may suppase that the vectors
etl) and ¢(J) differ only in the first 2p coordinates and that

etly=(1t. 1, 0.0, G other),

() =1{0,0..,0. 1t 1, uiher)

(there are p ones and p zeroes in each case ). We will show that unless Pl
the midpoint

" ! ¥
i Au, w,: 5 ._f otha !
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of the segment joining e(/) and e(J) is a nontrivial convex combination of
other vertices of 4(®) and therefore this segment is not an edge of A(QP).
For this discussion we can ignore the “other” coordinates, i.e., we may take
I=11,23, ,pland J={p+1, p+1,.,2p}. We will repeatedly apply the
Steiner exchange axiom to these two bases.

Step | = Step 1b.  Exchange the element | € [ with Em basis J, obtaining
a new basis B, of @ which, by reordering the elements in J, can be assumed
to be

By=B,=1-1;+{p+1}

Step 2a.  Exchange the element p + 1 € J with the basis /, obtaining o_=n
of two possibilities (up to a reordering of the elements {2,3,..p}):
By, =J—'p+1}+{1}orelse J— {p+1}+ {2} In the first case we have

2u

m=i[le(B,,)+e(B,)]

so we are finished. Thus, we can assume
{
By =J—p+1j+1{2;

is a basis of @. .

Step 2b. Exchange 2 € [ with the basis J, obtaining one of two bowm_w_m
bases (up to a reordering of the elements _..u +2, p+3,..2p})
By, =1-'2'+!p+1}orI—{2}+ {p+2] In the first case,

(=

m=i[e(By)+e(B,)]

so we are linished. Thus, we can assume
bR
Boy=1=12}+p+2]

is & basis of @. ,

Continuing in this way. we either prove that m does not lie on un edge.
or else we construct a sequence of bases 8,,, B, B-,, m.f:..; of S At the
Ath step (part a) we exchange p + A — 1 € J with the basis /, obtaining on¢
of k possibilities (up to a reordering of the elements {ec.eq, (. €, ),

Bi,=J- iptk-1]+ 11

where | <1<k However, one checks tby o strughtforward but messy com-
putation that «f i # kK then

]
moe s [elB )+ elB,
2

e telBy )+ tel(B, 0]
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and so m does not lie on an edge. This leaves only the possibility that
Biy=J—{p+k+1}—{k}

is a basis of @.
Similarly the kth step (part b) gives a basis

Bun=1T— Kk} + (p+k).

This process terminates after p steps when we exchange (in step (p+1)
part (a)) the element 2peJ with the basis /. There are one of p possible
results,

B, vyu=J—1{pj+oncof 1,23, p|

and In each case the point m can be written as a nontrivial convex com-
bination of previous vertices, as above. This completes the proof that the
edges of any A(®) must be translates of vectors e, —¢€,

4.4. Proof of (=)

Suppose that 4 is a convex hull of some vertices in the hypersimplex
4, and that each edge of 4 is a translation of some vector e, —e, We
must show that the vertices of 4 constitute the bases of a matroid. By [W ]
this is equivalent to verifying the Steiner exchange axiom: if I and J are k-
element subsets of {1, 2,.., n} such that e(/) and e(J) are vertices of 4, and
if mel—J, then there exists /€.J — [ such that the vector eltl—{m}+ 111
is a vertex of 4. By relabelling the coordinate axes in R”, we may assume
that e(/) and ¢(J) differ only in the first 2p positions, and that

eltd)y=(1,1..., 1,0,0,..., 0, other),
elJ)=(0,0,..,0,1, 1.1, other).

We may further assume that the “other” coordinates are arranged so thai
all the I's appear before the O's. In this way we have divided the set
{1, 2., n} into four intervals:

A=1{12..p!, B={p+Lp+2.. 2,

C=2p+ L2242 p+ki, D=psh+lprk+2  un

i

suchthat /=40 C, /=B, and me 4.

Since 1 15 convex, the hine segment joining oty 1o ety s completely con-
tained in 4, which is in turn contained in the conves cone which i spanned
by the edges £, £,... E, which emanate from the vertex e(/) Thay there
are nonnegative real numbers «,, u ..., u, such that

ey —ethy=(=1 1 =1 L L B0, 000 0= £ (%
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(where the semicolons are used to separate the coordinates which are in A4,
B, C, and D). By assumption, each such edge vector E which emanates
from the vertex e(l) is of the form e,—e,, for some / and k in the set
‘1, 2,.., n}. Since the vertex e(/) + E lies in the hypersimplex, which is con-
tained in the region 0 < |x,| <1 (for 1 <i<n), we must have

¢ AuC and k¢ BuD (**)

Furthermore, if such an edge vector E = e¢,— e, appears with nonzero coef-
ficient in the above sum (*), then /¢ D: otherwise this would give a positive
value to the coordinate x,, which could not be cancelled by any other
terms in the sum, because of the condition (**). Similarly, we must have
k ¢ C. In conclusion, each of the vectors E=e¢,— ¢, which appear with non-
zero coefficient in the sum (*), must satisfy /e B and k€ A.

Now consider the particular coordinate me 4. Since (e(J)—e(I)),, = — 1,
at least one of the vectors (say, E,) in the sum (*) has —11n the mth coor-
dinate. For this particular vector we have

m.,”ms\l»n\..: and leBcJ—1.

Thus, the vertex of A4 which is given by

e()+ E =e(I—{m}+{l})

verifies the desired Steiner exchange.

4.5. The Fano Polyhedron
Associated 1o the Fano configuration (which is not representable over
C),

we obtain a beautiful, highly symmetric 6-dimensional convex polyhedron
with 28 vertices, 126 edges, 245 2-dimensional faces, 238 3-dimensional
fuces, 112 four-dimensional faces and 21 5-dimensional faces. The full sym-
metry group of this polyhedron is the finite simple group PGL(F,). This
example has obvious generalizations to other finite projective spaces.
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5. REMARKS

5.1. Topology of the Strata

We do not know whether each stratum /"< G* | is nonsingular. We do
not know whether each stratum 7" is a K(n, 1) space.

5.2. Degeneration of Mairoids
If reG* i is a stratum and if Pe " — I, we shail say that the matroid
corresponding to I” degenerates to the matroid corresponding to P. In this

case, we rm.sw for any subset J< {1, 2,.., n} the following relation on their
corresponding rank functions:

rffysrpld).

However, the closure of the stratum 7™ is not necessarily a union of strata
I, m:.a may for example contain a proper subset of a stratum {7, as the
following example shows

A theorem in Eo_.m.c:.(_n geometry [ HC | states that the four points A, B, €.
m:g D mno harmonic, e, the cross ratio of (4, €, 8, Diis - | However, it
Is Uc%,__v_n to degenerate the above configurution to the following con-
figuration:

L R “vmf%‘vl&, @ e e e el

but in doing so we will only obtain 8-tuples of pownts such that A, 8, (.
and [ are harmonic,
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5.3. Other Lie Groups and Parabolics
For any complex algebraic Lie group G and parabolic subgroup P, the
moment map associated to the torus action, u:G/P — g* gives rise to new Author Index for Volume 63
combinatorial geometries and interesting convex polyhedra. These will be
explored in {GS].
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