FAST COMPUTATION OF THE SMITH
FORM OF A SPARSE INTEGER MATRIX

MARK (GIESBRECHT

Abstract. We present a new probabilistic algorithm to compute the
Smith normal form of a sparse integer matrix A € Z™*". The algo-
rithm treats A as a “black-box” — A is only used to compute matrix-
vector products and we don’t access individual entries in A directly.
The algorithm requires about O(m?log || A||) black box evaluations w —
Aw mod p for word-sized primes p and w € Z7*', plus O(m*nlog || A|| +
m®log? || 4]|) additional bit operations. For sparse matrices this rep-
resents a substantial improvement over previously known algorithms.
The new algorithm suffers from no “fill-in” or intermediate value explo-
sion, and uses very little additional space. We also present an asymp-
totically fast algorithm for dense matrices which requires about O(n -
MM(m)log || A|| + m®log? || A||) bit operations, where O(MM(m)) oper-
ations are sufficient to multiply two m x m matrices over a field. Both
algorithms are probabilistic of the Monte Carlo type — on any input
they return the correct answer with a controllable, exponentially small
probability of error.

Key words. Sparse integer matrix, Smith form, probabilistic algorithms
Subject classifications. 15-04, 15A21, 15A36, 11D04

Introduction

It was shown by Smith (1861) that any A € Z™*" is equivalent to a unique
diagonal matrix S € Z™*" under unimodular transformations. That is, there
exist unimodular P € Z™*™ and () € Z"*" (i.e., det P, det Q = #1) such that

S=PAQ = Sr = diag(s1,...,5,,0,...,0)

0 T

Submitted to Computational Complexity: October 20, 1996

1

2 M. Giesbrecht

where 1 = rank(A) and s; | ;41 for 1 <7 <r —1. S is called the Smith normal
form of A and sq,...,s, € Z\{0} the invariant factors of A.

Computing the Smith normal form of an integer matrix is useful in many ap-
plications. including Diophantine analysis (see Newman 1972, Chou & Collins
1982). combinatorics (see Wallis et al. 1972), and determining the canonical
structure of Abelian groups (see Newman 1972). Recently, algorithms for the
Smith normal form have been used to compute the structure of the class group
ol a number field (see Hafner & McCurley 1989, Buchmann 1988).

It is often the case that A is sparse (lots of zero entries), and it is desirable
to take advantage of this sparsity when computing the Smith form. Existing
algorithms do not do this, and suffer from “fill-in” (much like Gaussian elim-
ination) as well as coefficient growth (see Kannan & Bachem 1979, Chou &
Collins 1982, Domich et al. 1987, Tliopolous 1989; the problem of coefficient
growth is somewhat avoidable — see Havas et al. 1993, Giesbrecht 1995, Hafner
& McCurley 1991). It is suggested by Hafner & McCurley (1989) that perhaps
the “black-box” methods of Wiedemann (1986) for solving sparse linear sys-
tems might be adapted to computing the determinant of a sparse lattice. We
show that this is indeed the case, and that in fact the complete Smith form can
be computed using an iterative, black-box approach.

For convenience we use “soft-Oh” notation in our cost analyses: for any
f.g: RS R, f=07g)if and only if f = O(g - log®g) for some constant
¢ > 0. For v € Z"™1 we write |[v|| = ||v]|eo, for B € Z™*" we write || B|| =
|B|la = max;, |Bj;], and for g = Y., biz' € Z[z] we write ||g]| = max; |b;].

We give two algorithms here. The first is for sparse matrices A, and is based
on a combination of techniques developed in Wiedemann (1986), Kaltofen et
al (1987, 1990) and Kaltofen & Saunders (1991). An extended abstract of a
similar algorithm to this first appeared in Giesbrecht (1996). The second algo-
rithm is for dense matrices and is based on some of the same techniques with
asymptotically fast matrix arithmetic replacing Wiedemann’s sparse matrix
methods. An extended abstract describing an algorithm similar to this ap-
peared in Giesbrecht (1995). In the current paper we present a more uniform
and complete exposition of the techniques developed.

Throughout we suppose A € Z™ ™ has rank r and bottom n — m rows
zero, so < m < n (so rectangular matrices are embedded in square ma-
trices by padding with rows of zeros to allow for a more uniform treatment;
the relative sizes of m and n are exploited by the algorithm and reflected
in the analyses). Recall that the kth determinantal divisor dy € Z of A
is the GCD of all £ x k& minors of A. The Smith form can be written as
S = diag(dy,dy/dy, ... ,d,/d,—1,0,...,0) € Z"*". We use this formulation in

Smith Form of a Sparse Integer Matrix 3

the algorithms here, and compute the determinantal divisors from which the
Smith form is trivially constructed.

The first key new idea, presented in Section 1, rests on a new characteriza-
tion of the determinantal divisors of an integer matrix A. From A we construct
a perturbation B by pre-multiplying it by a “scaled” Toeplitz matrix of indeter-
minates (see (1.1), (1.2)). The characteristic polynomial f = Y .., fa—iz® of
B has coefficients fy, ... , f, which are themselves multi-variate integer polyno-
mials. In Theorem 1.2 we show that the content (in Z) of fy is exactly the kth
determinantal divisor of A. While an explicit representation of f is impractical
to use computationally (it has exponentially many terms), we can evaluate f
quickly at most instantiations to integers of the indeterminates in 8. Thus we
think of the coefficients of f as a “black box” which we can evaluate but cannot
write down.

The second key idea, presented in Section 2, is to show how to find the
contents a list of multi-variate polynomials (fi,..., f;) given by a black box.
The basic algorithm converges on the contents as a sequence of a logarithmic
number [of integer r-tuples dV),... , d¥) € Z". The jth such r-tuple d¥) =
(d(l]), e ,(ls«j)) € Z" 1s constructed from an evaluation of f1,... , f, at a random
point a: suppose (bgj),... ,ij)) = (fi(@"y,..., f.(a¥))) € Z". We then set
(]E.;) = gcd(dgj—l), bl(-j)) € Z. Convergence is p-adic: for a prime p and 1 <7 <r,

ord,(dM) > ord, (d?) > - > ord,(d") £ ord,(d;)

Y

where equality hopefully holds with high probability after the [th iteration.
Unfortunately, this algorithm cannot be proven to converge in general. Instead,
we choose points randomly in a so-called “rough” extension ring of R D Z, a
direct sum of orders of number fields. R is specially constructed such that
certain primes (those dividing the contents) have relatively high degree in one
of the component orders. The degree of R/Z can be kept surprisingly small
and hence mexpensive to work in. Moreover, the above algorithm with random
choices from R can be proven to work efficiently.

In Section 3 we show how to determine efficiently the characteristic poly-
nomial of a random Toeplitz perturbation B € R"*" of A. This is done for
sparse matrices using the linear recurrence methods of Wiedemann (1986) and
Kaltofen & Saunders (1991) modulo sufficiently many randomly chosen primes.
An algorithm is also presented for dense matrices along the lines of the method
of Keller-Gehrig (1985). Care is taken to avoid “bad” primes, modulo which
the problem changes locally.

Finally, in Section 4 we tie the techniques together into an algorithm for
the Smith form. The cost of the sparse algorithm will be measured in terms of

4 M. Giesbrecht

the number of modular matrix-vector products by A required and the num-
ber of auxiliary bit operations and space needed. The algorithm requires
O (m* log || A]| - log(1/€)) modular matrix-vector products Av mod p where v €
Z*' and p is a (single-word) prime with O(logn + loglog ||Al|) bits. It will
also require an additional O((m?nlog || A|| +m®log® | A|)) - log(1/€)) bit opera-
tions and storage for O"(m?log || A|| + n) bits. This analysis assumes standard
(quadratic) integer arithmetic. The algorithm is probabilistic of the Monte
Carlo type: ¢ is a user specified parameter and the output of the algorithm is
guaranteed correct with probability at least 1 —e. For dense matrices we present
an algorithm which requires O"((n MM(m) log || A]| +m®log? || Al|) -log(1/€)) bit
operations and additional storage for O"(nm + m?log || Al|) bits.

For comparison, consider computing the Smith form of an A € Z™*" with
O(n**%) non-zero entries (for some £ : 0 < ¢ < 1). The currently best-
known (deterministic) algorithm of Storjohann (1996) requires O"(MM(n) -
M(nlog||A]|)) bit operations, where O(M(!)) bit operations are required to
multiply two [-bit integers: M(l) = [* for standard integer arithmetic. The
algorithm also requires O(nm?log||A||) bits of additional memory, and takes
little advantage of the sparsity of A (the difficult to analyse algorithms of Havas
et al. (1993), which work well in practice, optimistically have about the same
asymptotic complexity as Storjohann’s algorithm. Previous algorithms which
have been rigorously analysed require at least an additional factor of n in their
costs). By contrast, our new algorithm for sparse matrices proposed here re-
quires O (n**+¢log ||A|| + n®log® ||A]|) bit operations and only O(n?log ||A]|)
bits of additional memory. The difference is even more pronounced when m is
much smaller than n. Unfortunately, we are not able to compute the transition
matrices to the Smith form within this cost. Because these are generally dense
with fairly large entries, one cannot expect to compute them in the order of
time and space our algorithms require.

Definitions and Notation. For integers n and k£ < n, define
Cy ={lc1,-.. k) € Nl << - <e <n}.

In a principal ideal ring P, with B € P™*" ¢ = (by,... ,b;) € CF* and 7 =

(¢i.....cy) € CP define the submatriz B[]:
Bblcl et Bblck
BI:O':‘ _ c kak’
-
Bbkcl T Bbkck

and the (k x k) minor B(7) = detB[i] e P.

Smith Form of a Sparse Integer Matrix 5

1. A new characterisation of determinantal divisors

Our new algorithms are based on a new characterization of the determinantal
divisors of a matrix. Let A = {vy,... ,v5,w1,... ,Wa,Y15--. ,Y20_1} e a set of
algebraically independent indeterminates. Let

U1

U2 O Wy O
V= . , By = . (11)
0 . 0 o
and ¥ a generic Toeplitz matrix:

Yn Yn1 T 31

T=] (1.2)
Yan—2 T Ynh
Yon-1 Yon-2 - Yn

The following lemma describes a useful property of the minors of Toeplitz
matrices.

LEMMA 1.1. For a generic Toeplitz matrix as in (1.2) and any o, 7 € C} (where
b <n). T(t) € Zlyr, ... ,yan_1] is non-zero with content 1.

PROOF. For fixed n we prove this by induction on k. If k£ = 1 then o = (0y),
T = (71) and T(:) = Yn+to, -7, Which is clearly non-zero of content 1.
Assume the theorem holds for all o/, 7" € C7_,. Then

T : Olyevs 50i-1,0415... , 0
S

T2y 0o Tk
1<i<k 2 s Tk
_ 13Yk+1 Oy 3,0k
_~(__]) “Yntor—m ‘I(
Toy oo \ Tk
: ag 0,1, 0; cee WO
AN | 1y« s Ui—-15U041, s Ok
+ > =DM s, T(. .
1<i<k—1 PAREE N

Tlyee Ok
T24.. Tk

NOW Ygay—r, =% () is non-zero with content 1. Moreover, y,40, -, does

not occur in the remaining terms of the summation. Thus T(:) 1S non-zero
with content 1. O

O M. Giesbrecht

THEOREM 1.2. Let A € Z™*" have rank r and*B = ©,%D, A as above. Let f =
charpoly(B) = 3 cic, fa—ia’ where f,_; € Z[A]. Also let ¢ = minpoly(*B) €
Z[A][v]. Then o

(1) di. = cont(fy) for 1 < k < n:
(it) if r =n then [= g while if r < n then f = 2" " . g and g is squarefree
g

with g(0) = 0.

PRrOOF. To prove (i) recall that

ﬂ:(~l)k;cf‘3<z>: > 2())=()=:(1)4()

o, TECY

-2 ()50 (0)4()
a T T a
oTeC}
e)
T (e
o.TeCY

using the Binet-Cauchy formula. By Lemma 1.1, T(:) is non-zero with content
I. Thus. tor each pair o, 7 there is a term in fp with coefficient A(i) and the
cocfficient of every term is a & x k£ minor of A. Therefore

cont(f) = ged {A(i) Lo, T € Cf} = d.

To prove (11), first recall that cont(f;) = d; =0 for [> r, whence f = 2"""
with ¢(0) #0. If r = n then f =g =g. lf r < n and disc(g) # 0 then g =

;C .
and disc(g) = disc(g). In either case it is sufficient to show that disc(g) #
Note that

o QW

charpoly(®;T9,A4) = charpoly(TD, AD,).

Let o0 = (04,...,0,), T = (11,...,7,) € C be such that A(‘TT) # 0. We next
show that (TD,A4) (71::) #0for1 <k <r.

T1qeen
, Tlaw o Tk T1yeee 5Tk K1y oy Uk
L‘IZJZA)() = E Wy Wy *** Wy, T(’)A(o .
Tioeee o Th Tyyeen T,
1 v Tk Lecy M1, s Mk 1 s Tk

By Lemma 1.1 all minors of ¥ are non-zero of content 1. Moreover, since
A(7) # 0 (and hence columns 7y,..., 7 of A[i] are linearly independent),

Smith Form of a Sparse Integer Matrix 7

there exists a g € Cf such that A(‘g’:::’ﬁ:) # 0. Hence ("CCDQA)(E::) # 0 for
1 <k<r.
To show that discriminant of g is non-zero of the desired degree, set v; := 0

forve {1....,n}\{m,..., 7} to form f)ﬁ’“’ from ©;. Then
Charpoly(fCDQAiA)gk)) = """ - charpoly ((T@gA@EM) [1) .
T

Since (D, A) [:] has all leading minors non-zero, h = charpoly(T@zAi)(lk)) [:]
has a non-zero discriminant by Wiedemann (1986). Since the discriminant
of I is simply the discriminant of g with some of the v;’s set to 0 as above,

dise(g) # 0. O
2. Finding the content of black-box polynomials

[n this section we give an algorithm to identify the contents of a list of multi-
variate integer polynomials given by a black box. The algorithm provably and
quickly finds the contents with controllably small probability of error.

As we saw in the previous section, to find the determinantal divisors of an
integer matrix it is sufficient to be able to find the contents of a sequence of
integer polynomials

(Jilzy, ooy x), oo, folan, .oy ag)) € Zlay, ...,z

[n the terminology of Section 1, f; is the coefficient of 2"~ of the characteristic
polynomial of B, with content d;, the ith determinantal divisor of A, s = 4n—1
and deg f; < v where v = 3m.

We assume this list of polynomials is given by a black box, that is, we do
not have an explicit representation of each polynomial as a linear combination
of monomials, but can evaluate (fi(ay,... ,as),..., fr(a1,...,a,)) at any point
(ay.....,as) with one evaluation of the black box. We aim to find the contents
with as few evaluations of our black box as possible, on the “smallest” points
possible.

Informally, the idea is as follows. We maintain a vector (cy,...,¢,) € Z"
which contains an “approximation” to (cont(fi),...,cont(f,)). Initially we
find a point @ € Z° such that if (cgo),... 7c£°)) = (fi(@),..., f.(@)), then
('50), ol # 0. If fi = dig;, where d; = cont(f;) € Z and ¢; € Z[z,... ,z,]

has content 1, then clearly d; Cgo) for1 <7 <.

S M. Giesbrecht

Convergence is measured in terms of the differences in the orders of primes
dividing ¢; and d;. Entering iteration j > 1, we choose a “random” @ € Z® and
evaluate the black box to obtain (by,...,b,):= f(d). Let

(i, el = (ged(by, &V 7V), L ged(by, i),

>

Certainly (lifcgj) and cgj) |cl(-j—l) for 1 < ¢ < r. Also, for each ¢ and each

prime p|d;, ordp(cgj_l)) > 01'dp(c§])) > ord,(cont(f;)) and (cgj),... ,cgj)) will
(hopefully) “converge” on (dy,... ,d,). Informally this follows since the proba-
bility g:(@) = 0 mod p is usually low, so the probability ord,(d;) = ordp(cl(-])) is
quite high. Iterating this processes allows us to make the probability of error
arbitrarily small.

Unfortunately, this method cannot be proven to work for small primes p —
the order of such a p in ¢; cannot be shown to converge to the order of p in d;
when p is smaller than the degree of f;. The theorem we use to guarantee this
convergence — the “Schwartz-Zippel Lemma” (Schwartz 1980, Zippel 1979)

- only implies that Prob{g;(@) # 0 mod p} > 1 — deg(g;)/p, which is useless
for p < degg;,. A more suitable theorem, which by necessity must use specific
properties of the g;, is not known.

We instead work in a specially constructed “rough” extension ring R of Z.
We find a monic, squarefree polynomial I' € Z[2] of logarithmic degree and set
R = Z[z]/(T'). We construct I' such that I' = ')’y - - - I'x where I'; € Z[z] are

distinct. monic and irreducible, so
R=0180:3--- &0
where O; = Z[z]/(I';) is an order in the number field Q[z]/(I';). For each small p

dividing ¢; we ensure there exists a j such that O; mod p contains a sufficiently
large finite field. Equivalently, T'; mod p has a sufficiently large irreducible
factor in Zy[z]. This ensures that the probability of g;(@) # 0 mod p is high
for @ chosen “randomly” from R®. See Lemmas 2.6 and 2.7 below. That such
an extension can be built efficiently is shown in Theorem 2.3 below.

We perform evaluations at points in R = Z[z]/(T) instead of Z. While
GC'D’s are not necessarily well defined in R we instead take the GCD’s of the
contents of the evaluations, treating them as polynomials in Z[z] of degree less
than degl’. For a € R we define the content cont(a) = cont(a) € Z, where
@ € Z[z], a« = a mod I' and dega < degI'. Equivalently, cont(a) is the largest
rational integer ¢ such that ¢ = 0 mod .

Consider, for example, finding the content of f(z) = 52*+102% — 52% — 10z:
clearly cont(f) = 5. It is easily shown that f(a) = 0 mod 120 for all « € Z,

Smith Form of a Sparse Integer Matrix 9

so we cannot identify the content by computing GCD’s of evaluations of f
at integers. We instead perform our evaluations in R = Z[z]/(T") where T' =
422242243 € Z[z]. Randomly choose a; = (2242 mod I') € R and compute
fla1) = 202% + 202 mod I. Then cont(f(a;1)) = 20. Now choose a; = 22 + 2z
and obtain f(a) = 1052® 4+ 255z + 120 mod I" and cont(f(a;)) = 15. Finally
ged(cont(f(ay)), cont(f(az))) = 5, the correct content of f.

A non-uniform variant of the Schwartz-Zippel Lemma. To prove that
the algorithm sketched above to find the contents of black-box polynomials con-
verges we will require a variant of the Schwartz-Zippel Lemma. This bounds
from above the probability that a random point, with coordinates chosen ran-
domly and uniformly from a finite set V, is a non-zero of a polynomial. We
require a version of this in which coordinates are not chosen uniformly from
V. but where we only have an upper bound on the probability of choosing any
one element of V.

LEMMA 2.1. Assume f € D{xy,... ,xy] is non-zero, D an integral domain, and
V a finite subset of D. Suppose elements a1, ... ,a; are randomly chosen from
V such that each a; is assigned any one element of V with probability at most
0. Then Prob{f(ay,... ,ax) =0:ay,... ,a; € V} < pdeg f.

PROOF. We proceed by induction on k. For k& = 1, f has at most deg f roots,
hence Prob{f(a1) = 0:a; € V} < pdeg f. Assume the inductive hypothesis
that the lemma holds for & — 1. We now show it for k. Write

Flet, oo yag) = glzr, ... apg)l + h(z1,...,x8),

where g € Dlry,... ,25-1] and h € D[zy,...,], with deg, h < d (ie., h
consists of the non-leading terms of f considered as a polynomial in ;). Then
deg g < deg(f) — d and by induction

Prob{g(ay,... ,a-1)=0:ay,... ;a4 €V} < o(deg(f) — d).

In the case g(a,,... ,ax_1) # 0, there are at most d roots for flay, ... a5_1, k).
Therefore
Prob{f(ay.... ,a;) =0:ay,... ,a, € V}

= Prob{f(ai,... ,ax) =0]|g(ay,... .ax_1) =0} - Prob{g(ai,... ,ar_1) = 0}

+ Prob{f(ai.... ,ar) =0]g(ai,... ,ap_1) # 0} - Prob{g(ay,... ,ar_1) # 0}
<Prob{g(ay,... ,ar_1) =0} + Prob{f(ar,... ,ar) = 0] g(ar,... ,ar_1) # 0}
<ol(deg([f) —d) + od = pdeg f.

[

10 M. Giesbrecht

Building a rough extension of Z. Unfortunately Lemma 2.1 above, like

the Schwartz-Zippel Lemma, is of little use when the size of V is less than deg f.
In particular, when D = Z,, #V < p and 7 > 1/p. When deg f > p, Lemma
2.1 is trivial. Our solution will be to construct a rough extension ring R of Z,
one such that R mod p contains a large finite field for each of selected set of
primes p. We show that the degree of R over Z can be kept surprisingly small.

Let n > 1 and py,...,ps be primes with 2 < p,... ,p. < 7 for some 7 > 2.
We next show how to construct a monic, squarefree I' € Z[z] of small height
and degrec ¢ = O(nlog k) such that for each i (1 < ¢ < k), I’ mod p; has a
factor of degree greater than 7 in Z,[z] (i.e., the factorization of I' is “rough”
modulo cach prime p;). Notice that the degree of I' is logarithmic in the number
of primes.

For any fixed prime p and n € N, define
M,(n) ={g € Z,[z]: g monic, squarefree, deg g = n},
7Z,(n) ={g € Z,[z]: g monic, irreducible, degg = n}.
We first give a lower bound on

Ro(n)=#{f € M,(2n):3k >n, g € T,(k) such that g| f},

the number of monic, squarefree polynomials in Z,[z] of degree 2 which have
an irreducible factor in Z,[z] of degree greater than 7.

LEMMA 2.2. For a prime p and integer n > 1 we have R,(n) > p*"/5.

PROOF. Any f € M,(2n) can have at most one irreducible factor with degree
greater than n. Also, the number of squarefree polynomials of degree j in Z,[z]
is p/(1 — 1/p) for any j. We obtain the formula

By = D P (1= 1/p) - V(i)

where N,(1) = #7,(2). Using the lower bound on N,(i) given by Lidl & Nieder-

reiter(1983, Exercise 3.27) and Euler’s summation formula, we get

. ; 1 p 1
Ryln) > p* - (1= 1/p) (2. o W) > p*" - s(p,),

, p—1 &
n<i<2n n<i<2n

where

, 5 | p 1 /P 1
"‘(/’-’/)“(1_1/29)'(logz“fzn_p_l';'\/l—)_l'pn/zﬂ/z :

Smith Form of a Sparse Integer Matrix 11

The function s(p,n) is strictly increasing in both p and n and is greater than
1/5 with the exceptions p = 2,2 <n <4, and p = 3, n = 2. Excepting these
cases, R,(y) > p¥ /5. It is easily checked, using the exact formula N,(i) =
(1/2) - Zdii/z,(d)pi/d for + > 1 (where y is the Mobius function), that indeed
R,(n) > p"/5 in the exceptional cases as well. (I

Let V := {g € Z[z]:¢ monic, degg = 27, and ||g|]| < 2n7}. If we choose f
randomly and uniformly from V, f falls into a particular residue class in M, (27)
with probability at least (|(4nT 4 1)/p]/(4nT +1))*7 > (1/p — 1/(4n7T + 1))?".
Thus by Lemina 2.2 the probability that f mod p has an irreducible factor
modulo p of degree greater than 7 is at least

2n 27 2n 2n
L L .P__:l. 1 — p 21. 1 — T
p Ant+1 5 5 dnt +1) dnt + 1

1 1%
> <1——) > 1/9.
) 4n

The following algorithm constructs a I' € Z[z] as required.

Algorithm: BuildRoughExtension
Input: € Z and primes 2 < py,... .p. <7

Output: a squarefree, monic I' € Z[z] such that for each ¢ (1 < < k), I' mod p;
has an irreducible factor in Z, [z] of degree greater than 7.

(1) Repeat

(2) Let P:={1,...,k}; H:={};

(3) For ¢:=1to {:=6+ 9log x while P # {} do
(1) Choose a random h; € V;

(5) For y € P do

(6) If h; mod p; € Z,, [z] has an irreducible

factor modulo p; of degree greater than n
Then P:=P\{j}; H := HU {h;};
l'nd For;
End For;
Until P = {};
(7) Return I =],y b € Z[2];

12 M. Giesbrecht

THEOREM 2.3. The algorithm BuildRoughExtension always produces the cor-
rect results as described and requires an expected number of O((n® + n*log) -
#log® 7log k) bit operations. The output I' € Z[z] has degree 2n(6 +9log k) =
O(nlog #) and ||T|| = (nr)00eer),

PrOOF. We first examine the probability that the algorithm successfully finds
a I in an iteration of the outer loop, or equivalently, finds an H C V such that
for each ¢, there exists an h € H such that A mod p; has an irreducible factor
in Zy[z] of degree greater than 7. For fixed j, the probability that h; mod p,
has no factor in Z, (r) for some r > n, for all 1 < i < is less than (8/9)" by
Lemma 2.2. The probability this is true for all j is less than & - (8/9)! < 1/2
by our choice of [= 6 + 9log «.

I'or each random choice of h; € V the inner loop of steps (5)-(6) can be
accomplished with an expected number of O((n® + % log 7)log? 7 - k) bit oper-
ations using Berlekamp’s (1970) factoring algorithm, and this loop is executed
6 + 9log # times per iterations of the outer loop.

For any hy, hy € Z[z], ||h1hz|| < min(deg hy,deg hy) - ||h1]|]|h2]|. Since I' is
the product of O(log k) polynomials of degree 2n and height at most 27, it
[ollows that degl' = 2n(6 4+ 9log k) and ||I'|| = (nT)O(log"). O

We define R = Z[z]/(I'), an extension ring of R where I' € Z[z] is monic of
degree p and is constructed using BuildRoughExtension on some n and primes
Pi--.. .ps. Thering R,, = R mod p; contains a copy of GF(pf-") for some &; >
for 1 <1 < k. We represent an element a € R by its least degree residue
@ € Z[x] with ¢ = @ mod I' and dega < p. The notion of height is extended to
R by [l = Jal.

LEMMA 2.4 (Giesbrecht 1993). Let R be as above. Then

i) for b € R flab] < flall -3l - o 2T

(ii) for X € R™*™ and Y € R™" || XY|| < m]||A]| - || B]| - o - ||2T]|°.
LEMMA 2.5. Let f € Z[zy,...,xs] with deg f < v and @ € R®, where R is as
above. Then log || f(d@)]| = O(log | fIl + v log(v + s) 4+ vlog ||d|| + ov log||T||)

PrROOF.

. s =1 =17 j—1 o(s—
v <isl (”].)Hal\e Joreu=1

0<ygw

=O([f1I(v + s)*[l@]l*e”12T]"),

by Lemma 2.4 The lemma follows by taking the logarithm of both sides. [

Smith Form of a Sparse Integer Matrix 13

The probability of correctly finding the content. We return to the
problem of obtaining the content d; € Z of f; € Z[xy,... ,x,] where deg f; < v,
for I <2 < r. As discussed above we choose points randomly from a finite
subset W of a rough extension ring R of Z at which to evaluate fi,..., f,.

Let n = 4logv and let I' € Z[z] be monic and squarefree of degree p > 1 and
R =Z[z]/(T'). Let A > max(6,v?) and

H={-A,... A} CZ, W ={hmodT:h € H[z],degh < n} CR.

We will further specify our choices of T', p, and A in the sequel.

In the next two lemmas we examine the probability that, for g € Z[zy,... ,z,]
with content 1. a prime p, and a randomly and uniformly selected point @ € W?,
that g(d) = 0 mod p.

LEMMA 2.6. Let p > 2\ be prime and g € Z[zy,... ,zs] with degg < v and
cont(g) = L. For randomly chosen @ € W?*, Prob {¢(d@) = 0 mod p} < 1/v.

PROOF. Assume @ = (a1,...,a,) € W* where a; = 3, ai;2’ € Z[z] for
@, € H. Then g(@) =0 mod p <= g¢g(ay,...,as) =0 mod (T, p). Assume for
now that the «;;’s are independent indeterminates over Q. Let A = {a;;:1 <
1 <5,0 < < n}, and define § = g(ai, ... ,as) € Z[A][z]. Consider the division
of ¢ by I' in Q(A)[z] to obtain remainder p = Eo<k<g or(A)zF € Z[A])[2),
where g € Z[A] has degree at most v for 0 < k < p. Now ¢ # 0 mod p and
p > degg. so there exists a b € Z* such that g(g) % 0 mod p. Since g(g) € Z,
00 Z 0 mod p.

Again assume @ is randomly selected from W?. A necessary condition for
g(d) = 0 mod p is that go(@) = 0 mod p, whence

Prob {¢(d@) = 0 mod p} < Prob {po(@) = 0mod p} <v/(2A+1) < 1/v
by Corollary 1 of Schwartz (1980). O

LEMMA 2.7. Let A > 6 and p < 2X prime, and assume I’ mod p has an irre-
ducible factor T € Zy[x] of degree greater than n. Let g € Z[zy,... ,x,] with
degg < v and cont(g) = 1. For a randomly and uniformly chosen @ € W?,
Prob{g(d) =0 mod p} < 1/v.

ProOOF. A randomly chosen ¢ € W lies in a particular residue class of W mod
p with probability at most

T2X + 1 IR 1 IR
: < (- < "
d p w 2A+1> _<p+2/\+1> < (3/5)

14 M. Giesbrecht

for A > 6. Since deg Y > n and each a« € W has dega < 7, the probability
that « is in a particular residue class of W mod (p,) is also at most (3/5)".
Applying Lemma 2.1, Prob{g(@) = 0 mod (p,Y)} < v-(3/5)" < 1/v by our
choice of 1) = 4log v. d

Define the extension ring R = Q@R = Q[z]/(I"), with units R = {a mod I' :
a € Q[z].ged(a,T) = 1}. In the definition of our black box for evaluat-
ing (fi(d).... ,f d)) at a point @ € R® we allow for the existence of a xy €
Zlwq. ..., x,)\{0} of degree O(v?) such that if x(a@) ¢ R” the black box may
report “failure” and is not evaluated. The next lemma shows that the black
box seldom fails.

LEMMA 2.8. Let x € _[: :z:s]\{O} For a randomly and uniformly chosen
€W, Prob{y(d) ¢ R eg(y) - deg(T")/(2X).

PROOF. Assume d = (ay,...,a;) € W* where a; = } ., a;;2° € Z[z] for
| < i < s Then y(@) ¢ R if and only if ged(x(as, ... ,as),T) # 1 in Q[z],
which is true if and only if the resultant Res(x(a1,... ,as),T) is zero.

Now assume the a;;’s above are algebraically independent indeterminates
over @ and let A = {a;;:1 <¢ < 1,0 <j <n}. Then a; = Zo<j<n a;;z0 €
Z[A][z] and Res(x (a1, ... ,a;5),[) € Z[A] has degree at most deg(x) - deg(T").
If the a;;’s are assigned random values from H, then by Schwartz’s (1980)
Corollary 1, the probability that Res(x(a1,...,as),I') = 0, and hence the
probability that y(a,...,a,) € R, is at most deg(x) - deg(l')/(2A +1). O

Algorithm: FindContents
Input: - r>2,¢>0;
- a black box which on input @ € R® evaluates (fi(d),... , f,(d)) €

R, where fi,....fr € Zlzy,... ,zs), deg fi < v, and R an exten-
sion ring of Z; We allow for the existenceof a x € Z[z1, ... ,z,]\{0}
of degree O(v?) such that if x(d@) ¢ R the black box may report
“failure” and is not evaluated. We also allow that on an input d,
any invocation of the black-box may return “failure” with prob-
ability at most 1/2.

Output: - (cont(fy).... ,cont(f,)) € Z7, correct with probability > 1 —¢;
(1) Let A := max(rv + deg x, 100w log(v) - deg(x) log(v deg(x)) + 100000, /%);
(2) Choose a random @ € H = {—=A,... ,A}%;

Lot (., dDY o= (A(@).... . f(@) € Z7;

(
[f any of c(lo), ce ,c£°) = 0, repeat (2);

Smith Form of a Sparse Integer Matrix 15

(3) Find py....,p. € N, all the primes < A which divide lcm(cgo) ,cgo));

(4) Using BuildRoughExtensionon pi,... ,p, and n = 4log v construct I' €
7Zz]. such that for 1 <7 < &, I mod p; has an irreducible factor of degree
greater than n in Z,[z].

Let R = Z[z]/(T) and W = {h mod I': h € H[z],degh <} CR.

(5) For7 := 1 to [:= (log(1/€) + log r + log log max; |c§0)|)/log(21//(1/ + 4))
Do

(6) (“hoose random @ € W*;

(7 Evaluate (by,...,b,) := (fi(d),... , f.(d)) € R" using the black box;

If the black box reports a failure on @, this choice may be ignored,
and execution continued with next ¢ at step (6);

(3) Let (b1, ... ,67,) := (cont(by), ... ,cont(b,)) € Z";
(9) Let (¢\7,... ¥y = (gcd(c(li—l)j)l), e ,gcd(cﬁi"l),?)r)) €L
End For;
(10) Output (c(ll), e ,cgl))'

?

THEOREM 2.9. The algorithm FindContents works correctly as described and
produces the correct answer with probability at least 1 —e. An expected number
of O(log(1/€) +log r +log log s +log log max, || f;||) evaluations of the black box
are needed. These evaluations are in the ring R = Z[z]/(1'), where p = degI' =
O(log(v)log(r)) and log ||| = O((log r + log v)*). The arguments to the black
box from R® have height A = (rv)°®).

FindContents requires O ((s + r(v + log max; || fi||)?) - log(1/¢)) additional
hit operations (using standard arithmetic) and O™(s +r(v +log max; || fi||)) bits
of additional storage.

PROOF. Step (2) finds a non-zero multiple ¢; of d; for 1 < 1 < 7. For a
randomly chosen @ € {—A.... A}

Prob{\ (@) # 0, fi(@) # 0 for all 1 <& <r} =Prob{(x- fi--- fr)(@) # 0}
>1— (rv+degx)/(2V+1) > 1/2

by Corollary 1 of Schwartz (1980). Thus we expect to evaluate the black box
two times on points of height O()\) in step (2). On completion of (2) we have

log |\”| = log | fi(@)] = O(log || f:|| + v log A + v1og(v + s)),

16 M. Giesbrecht

by Lemma 2.5 (setting R =7Z: I'= z and p = 1).

Assume for now we choose @ g randomly in step (6) from W and do not elim-
inate the cases when v(@) ¢ R in step (7), or when false failures are reported.
Fix an 2 between 1 and r. For a prime p dividing d;,

Prob{ord,(b;) # ord,(d;)} = Prob {g;(d) = 0 mod p} < 1/v

by Lemmas 2.6 and 2.7.
The probability that x(&@) ¢ R (which will cause the black box not to work
on a particular input) is at most

deg(y) deg(I")/(2X) = 4 deg(x) - log(v) - (4 4+ 61log(A))/A < 1/v,

tor A = 100w log(v) - deg(x)log(v deg(x)) + 1000000 using Lemma 2.8 and the
fact that » < A. Also, on any input, for any invocation of the black box, it may
1< pmt failure with probability at most 1/2. For a fixed ¢ and prime p d1v1d1ng

' the plobablhty that y(&@) ¢ R or ord o(b:) # ord,(d;) is at most 1/242/v.

Let w(e (

) denote the number of distinct primes dividing c © The prob-
ability That after [iterations of the loop there exists an 7 and a prime P di-
\1(hng c

f " such that for all / randomly chosen @ € R® we have y(a@) ¢ R or
A0
ord,)#01d (d;) is at most

S el (1/2 4 2/v) < rlogy max [€7](1/2 4 2/v) < ¢

1<i<r

by our choice of [. Thus, the probability that the algorithm produces the correct
answer is at least 1 — ¢, as required. The number [of evaluations of the black
box has order O(log(1/¢) + logr + log log s + log log max; || fi|).

Note that o0 = O(nlogs) = O(log(v)log(r)) and log||T'|| = O((logr +
log ¥)*) by Lemma 2.3 (recall deg x = O(¢?)). Arguments (a1,...,as) € W*
to the black box satisfy ||a,]| < A = (rv)°® for 1 <7 < s.

The cost (in addition to the cost of the black-box evaluations) is dominated
by the loop in steps (5)-(9). For 1 <7 <,

log 1b:|l = O(log [{ fill + v1og(v + s) + v log(v)log(r) - (log(r) + log())?)

by Lemma 2.5, The cost of [iterations of (8)-(9) is O°(Ir(v + log || £i|[)?) bit
operations using standard arithmetic. An additional O7(Is) bit operations are
required by step (6). At any time we store O(r) elements of R with O (v

log max; || f;]]) bits each and s elements with O(log r + log v) bits. g

Smith Form of a Sparse Integer Matrix 17

3. Computing the characteristic polynomial

In this section we describe an algorithm to compute the characteristic polyno-
mial of a matrix B € R®™*". As in the previous section, R = Z[z]/(') where
I' € Z[~] is monic and squarefree of degree p. The ring R decomposes as

Zlz] . Z[7] Z[z]
DO CEDE D DE,

(I'1) = (1) (Ty) — 77
where I' = Ty -+ - T'y, and T'y,... Ty € Z[z] are distinct, monic and irreducible
in Z[z] and E, = Q[z]/(I';) is a number field.

We assume throughout that A € Z"*" with rank r and bottom n —m rows

all zero, whence r < m < n. B is specified by elements a1, ... ,au, B1,... , Fns
V1. s Yon—1 € R as

B =DTD,A € R, where
Dy = diag(ay, ... ,a,) € R™",
D2 = dlag(/fl. o ,,B,L) - Ran}

"/n 7’71—}—1 PN ’71 (3-1)
r=| 7 | eRvm
Yon-2 R TS
Yon—-1 VYon-2 " Tn
[n the notation of (1.1) and (1.2), Dy = Dy (a1, ... yan), D2 = Da(B1, .. 5 Bn)s
T =% . -Yom-1),and B =B(a1,... , @, Py« s Loy V5. -+ »Y2n-1), Where

B.D,,D,.F € ZIA" and A = {vy,... ,0n, Wiyev yWay Y1y- .- > Y2n—1) alge-
braically independent indeterminates over Q.
The following lemma shows that for most choices of «;, 8;,7; the character-

istic polvnomial is a power of x times the minimal polynomial.

LEMMA 3.1. Let A € Z™*" have rank r and B = ©1%D,A € Z[A]"*" as in

Theorem {.2. Let

=3 (-1r(7) e ziaho)

meCy
6; = disc(minpoly(B)) € Z[A]\{0},
v =bo- 61 € Z[A]\{0}.

Let oy e, Biyeeo s Bay Mye - s Y2n—1 lie in an extension field E of Q
and B = Dy TDyA € EV" as in (3.1). Let f = charpoly(B) € Elz] and

1% M. Giesbrecht

g = minpoly(B) € E[z]. With an abuse of notation we will write y(B) for
\((t].... .0”.31,... ,ﬂn,%,... ,’)/Qn_l).

(1) v =n and x(B) # 0 then f = g, where g is squarefree, deg g = n and
9(0) # 0.

(i) Itr <n and x(B) # 0 then g = xg and f = 2""*' . g, where § € E[z] is
squarefree with deg g = r and g(0) 0. It is always the case that ¢ = z§
for some (not necessarily squarefree) g with degg < r.

PROOF. Note that 8y is the coefficient on ™" of the characteristic polynomial
of B. Both 69 and é; are non-zero by Theorem 1.2. Assume x(B) # 0.
Therelore the coefficient on #"~" in the characteristic polynomial of 98 is non-
zero. so rank B = r. Also, every root of f in a splitting field, except perhaps
zero. has multiplicity L. If # = n then, since ¢ vanishes at each of these roots,
degg = n and g(0) # 0 since none of these roots is zero. If r < n, then f
has r distinct roots aside from 0 and g must vanish at each of these, as well as
zero. Since degg <741, g = zg. Since all eigenvalues of B have multiplicity
I except for 0. f =" "*1. g O

3.1. Modular reductions of R and B. We actually compute charpoly(B) €
R{x] by computing it modulo small primes and irreducible factors of I’ mod P
in Zy[z]. and then reconstruct the image in R[z] by the Chinese remainder
algorithm. Care must be taken in the choice of these primes, since some may
be “bad” in the sense that the structure of the problem may change locally.
We proceed to bound from above the number of bad primes.

Let Ve R-H={-A..., A} CZand W= {hmodT':h € H[z],degh <
i1t & Ras in FindContents. We also assume o = O(log”m), n < o, log ||T|| =
O(log® m) and log A = O(log m).

LEMMA 3.2. Let o, 3;,7, € Wifor1 <i<n,1<j<2n—1and B as in
(3.1). Then

() IIB| < mA%e? - [12T)1% - || A));

(ii) || charpoly(B)|| < n"m2m X3 g™ . ||2T'||°™¢ . || A||™.

ProoF. Part (i) follows easily from Lemma 2.4.

Smith Form of a Sparse Integer Matrix 19

For part (ii), let f = charpoly(B) = > c;c, @i@*. Then, for 1 <k <r,

SRR B(Z)*

oeCy;

HB()n < B j2r]

ln—i]| <n”r"m’ 37> . |21 @~ Al
U
Since I' € Z[z] is squarefree, disc(I') = Res,(I',0'/0z) € Z\{0}. We say

a prime p is bad for R if I' mod p is not squarefree in Z,[z], i.e., such that
p| dise(T"). The number of primes which are bad for R is at most

log, | disc(I")| <log, | Res.(I',0'/0z)|
<Y :=log, (20 — 17 D7 - (2lITID?) -
Fasily T = O(log® m). When p { disc(I'), I’ = F(lp) e I‘fc’;) for distinct, monic
and irreducible I € Z,[z] and

R)_R/(lap @R/(Qap@ @R/(kap) (32>
a direct sum of finite fields B}’ = R/(I';,p) = GF(pdegFEp)).

l

Next, let ¢, = mmpoly(B mod I';). Assume that either r = n and g; has
degree n and ¢;(0) # 0, or v < n, ¢; = xg;, §; € E;[z] is squarefree of degree r
and ¢;(0) # 0 for all 1 <7 < k. If B is specified as in Lemma 3.1, this lemma
implies w = \(B) € R'. Let p be a prime dividing Res.(\(B)). Such primes p
are called bad for B, and there at most

log, | Res. (w, I)| <logy((20 — 17"+]| - IIT]*7)
=0(glog ¢ + glog ||lw|| + elog |IT'l}) (3.3)
=0(log ||w|| - log? m + log* m).
[t remains only to bound log, ||w||. By Lemma 3.2,
log ||8o(<y i, 7:)|| < Ao = log, (n"m* X g*™ |20 - | A|™) .
Easily, Ag = O(mlog n+mlog* m+mlog||A|). Also, é; isa (2r—1)x (2r—1)
determinant of elements of this same magnitude, whence

loallén(as 3 70)l| < logy (2 — P17 [BIP g2~ - 2r) 2=

g AI = logg ((27')2rn’2r2,r,r7n2m7'/\3m7'gSmr—}—?r . HAHMT . “2F||(3m7‘+27)9>]

20 M. Giesbrecht

(learly, Ay = O(m?logn + m?log" m + m?log || A]|). Thus
log, [[w]| < Ao + Ay +logy (e [|2T|) = O(m* logn + m* log* m + m* log || A]])
'dlld there are at most,

A :=20logy(20) + elog, [T + ¢+ (Ao + Ar + logy(e - [|21))
=0(m*log(n)log® m + m*log® m + m*log? mlog || A||)

bad primes for B using (3.3).

3.2. Characteristic polynomial via modular minimal polynomial. Let
p be a prime which is good (i.e. not bad) for both R and B. For such a
. b’_fp) = B mod (FEP),p) is an n X n matrix over the finite field El(»p) and
g = 11’1inpoly(pr)) =g, mod p, for 1 < < k.

We compute [= charpoly(B) € R[z] modulo sufficiently many good primes
to recover it in R[z]. The product of good primes required is at least 2||f|| <
W= 20 m 2N g3 |1 20|27 - || A||™. By Rosser & Schoenfeld (1962),

0.34z/ log(z) < w(x) = Z 1 < 1.26z/log(z),

p<z
p prime

/3 <V(z)= Z log p.

p<z
p prime

Thus. ¥(3log W) > log ¥ and #(3¥) < 4log(W)/log(log(¥)) is an upper bound
on the number of good primes required. We select primes randomly from a
set of primes P C N consisting of primes p greater than 4m + 3 (for reasons
discussed below) and such that Z, supports a 2n-point Fast Fourier Transform
(FFT). This latter condition is equivalent to Z, having a 2‘th primitive root of
unity where I = |1 + log,(2n)] or that p = 1 mod 2'. It allows us to multiply
two polynomials of degree less than n over an algebraic extension field of Z,
with O(nlog) operations in that field. We call such a prime an n-Fourier
prime. We require

(3.4)

#P > max{2T + 2A,4log(V)/ log(log(¥))}

to ensure good primes are found with high probability. Let m;(z) be the number
of primes p with p < z and p = 1 mod 2'. It was shown by Dirichlet (see, e.g.,
Gelfond & Linnik 1965) that

mi(z) = 2/(27 logx) + o(x /(2" log z)). (3.5)

Smith Form of a Sparse Integer Matrix 21

[hus
mi(nlog(n) - (#P) - log(#P)) — m(dm + 3) = Q(#P)

and we may assume the primes used in P have O(log(n log(n)-(#P)-log(#P)))
or O(logn +loglog ||A|l) bits. A simple sieving algorithm can be used to com-
pute P using the smallest primes possible. At this stage we may also factor
I"mod p for each p € P using Berlekamp’s algorithm, and eliminate from P
those p modulo which T" is not squarefree.

We now give an algorithm which reduces the problem of computing the
characteristic polynomial f € R[z] of B € R**" to computing the characteristic
polynomial of a homomorphic image of B in a finite field.

Algorithm: CharpolyViaModMinpoly

Input: - B = DyTDyA € R*™™ (represented explicitly or as a black box)
as above;
- r = rank A;

Output: - [= charpoly(B) € R[z] or a report that “x(B) = 07;
If f is returned, the output is always correct;
If “x(B) = 0" is reported, it is correct with probability > 1/2;
(1) Construct a set P of n-Fourier primes as above, with #P > 4log(¥)/ log log(¥)
and such that I' mod p is squarefree for all p € P;
Attempts:= 0; BisGood:=false; GoodPrimes:= {};
(2) While #GoodPrimes< 4 log(W¥)/log log(¥) and (Attempts< 3 or BisGood)
Do
(3) Choose a random prime p € P;
Assume I' = ng) e Fg;) mod p for distinct, irreducible ng), e ,Fgf;) € Zylz];
Attempts := Attempts -+1;
(1) For 1 from 1 to k, Do
(H) Compute gfp) = minpoly(B mod (ng),p));
{ may return a proper factor of gz(p) with probability at most 1/2 }
(6) [f r=n =deg g(p) and gfp)(O) # 0 Then f}p) = gl-(p);

Else lf r < n and r =1+ deg gz(p) Then fi(p) = gt -gl(p);
Else Goto (2); { next iteration of While loop }
EndFor;
(7) Construct f® = f mod p from fl(p), e ,f,gf) using the Chinese

remainder algorithm;

8]
8]

M. Giesbrecht

() GoodPrimes := GoodPrimes U{p}; BisGood := true;
I'ndWhile;
(9) If BisGood
Construct f € R[z] from f® for p €GoodPrimes using the Chinese
remainder algorithm;
Return f;
Else Return “failure”;

THEOREM 3.3. The algorithm CharpolyViaModMinpoly works as stated. It re-
quires an expected number of O"(mlog || A||) computations of the minimal poly-

nomial of B mod ('), p) for n-Fourier primes p with O(log n+loglog ||A||) bits
and all irreducible factors ng) € Z,[z] of ' mod p. An additional O"(m®log? ||A||)
bit operations and storage for O"(m?log ||A||) bits are sufficient.

ProoF. The algorithm computes the minimal polynomial (via a subroutine
described below) modulo randomly chosen primes p € P and irreducible factors
of 'modp. I'r=n= degggp) and g}p)(O) #0,orr<nandr=1+ degg}p),
Z(-p)) by Lemma
3.1 It we can do this for all factors of I' mod p we can construct a correct
homomorphic image of f mod p. If we are able to do this for any one prime we
have demonstrated that y(B) # 0 (and note this by setting BisGood to true).

Finally, if x(B) # 0, the probability that BisGood is set true in each itera-
tion of the loop (3) - (8) is at most 1/4, since at most half of the primes in P are
bad for B, and the minimal polynomial computation fails with probability at
most 1/2. With 3 iterations we correctly identify x(B) # 0 with probability at
least 1—(3/4)* > 1/2. Once a good prime is found, we are confident to continue
to choose random primes and compute homomorphic images of f until sufhi-
ciently many are found to recover f € R[z]. This requires an expected number
of iterations at most double the number primes required. The expected num-
ber of primes p examined is then less than 8log(¥)/loglog(V) = O (mlog || A|])

then we can identify a correct homomorphic image of f mod (p, I

and we must compute minpoly(B mod (ng),p)) for 1 <1 <k, for each such p.

The cost in addition to the modular minimal polynomial computations is
that of the modular reductions and Chinese remainder computations. The
latter cost dominates and requires that we recover the r < m non-zero co-
eflicients of | in R, each of which is a polynomial in Z[z] of degree p =
Oflog®m). These coefficients are represented modulo a collection of primes
with Oflogn + loglog ||A|]) bits each, and product at least W. The Chinese
remainder algorithm on such input requires O(log® ¥) or O (m?log? || Al|) bit
operations and there are at most m non-zero coefficients to recover. td

Smith Form of a Sparse Integer Matrix 23

We next describe two methods to compute the minimal polynomial of a
malrix, one for sparse matrices and one for dense matrices.

LEMMA 3.4. Let A € Z™" have bottom n — m rows zero. Let K be a finite
field of characteristic p with at least 4m + 3 elements, where p is an n-Fourier
prime. Define matrices U = DT Dy € K™*", where T € K"*™ a Toeplitz matrix
and Dy, Dy € K" diagonal matrices and A € K**", the embedding of A into
Z>". We can compute the minimal polynomial of B = UA with either

(i) 3m matrix-vector products w — Aw for w € K™*! and an additional
O(nm) operations in K, or

(ii} O({(n/m) - MM(m)log m) operations in K"*!.

In both cases, the computed minimal polynomial is correct with probability at
least 1/2. and a proper factor otherwise.

PROOF. For part (i), Kaltofen & Saunders (1991) show that we can accom-
plish this with 3 matrix-vector products and an additional O(nr) operations in
K (see also Wiedemann 1986). Their algorithm returns the correct minpoly(B)
with probability at least (1 — (r 4+ 1)/(4r 4+ 3))? > 1/2, and a proper factor of
1t otherwise.

For part (ii) for dense matrices we use a method similar to that of Wiede-
mann (1986) for sparse matrices. Choose random u € K'*", v € K®*! and
compute the first 2m terms in the linearly recurring sequence

wv, uBv,uB%, ... uB*™ v € K.

Wiedemann (1986) shows that the minimal polynomial of this sequence is the
minimal polynomial of B with probability at least 1 —((r+1)/(4r+3))* > 1/2.
To accomplish this we compute B'v for 0 < i < 2m — 1. Assume by the
beginning of stage j we have computed U; = (AT)? and B'v for 0 < ¢ < 27.
During stage y compute

(TU, A)o|Bo| - | BY o) = [B¥ 0| B¥ 2| - | B0
240

and {72, Since U/, and U;A have bottom n — m rows zero, these can both
be accomplished with O((n/m)MM(m)) operations in K. The total cost is
then O((n/m)MM(m)logm) operations in K. Using the Berlekamp-Massey
algorithm we can compute the minimal polynomial of this sequence with O(m?)
operations in K. 0l

24 M. Giesbrecht

COROLLARY 3.5 (to Theorem 3.3). Let A € Z"™*" with bottom n — m rows
zero and B € R™™ as in (3.1). The algorithm CharpolyViaModMinpoly either
computes (correctly) the characteristic polynomial of B, or reports that x(B) =
0 (correctly with probability at least 1/2). Depending upon the implementation
of the modular minimal polynomial algorithm chosen, it requires either

(i) O°(m*log||A]|) evaluations of v — Av mod p, where p is a prime with
O(log n+loglog || Al]) bits and v € Z*', and an additional O"(nm?log || A||+
m*log? || A||) bit operations and storage for O"(n 4+ m?log||A||) bits, or

(i) O (n - MM(m) - log || Al| + m®log® || A||) bit operations and storage for
O (nm +m?*log || A]]) bits.

PROOF. Let p be an n-Fourier prime and 1 < ¢ < k,. Let ¢ = RI['; + Rp, a
prime ideal in R and Eﬁp) = R/p as in (3.2).

For case (1) we first look at the cost of computing Bv mod p for v €
(Ef?[)))’l'x}. For v € Egp) we can compute Av mod p with O(deg Fz(-p)) evalua-
tions w +— (Aw mod p) for w € Z2**.

Recall that B = DT D;A. To compute Tv mod p we use the fact that
multiplication of a vector by a Toeplitz matrix is equivalent to two multi-
plications of polynomials of degree n. We can therefore compute Tv mod g
with O(nlogn) operations in Eip) using an FFT. Each operations in EEP) re-
quires O((leg(Ffp))log deg(ng))) operations in Z,. It is easily seen that the
most expensive case is when k, = 1 and I mod p is irreducible in Z,[z]. Since
deg(1') = O(log®m), the cost to evaluate Bv mod p is O"(n) bit operations
plus the O(deg ') evaluations of A mod p. The cost to find the minimal poly-
nomial of B mod @ is therefore O"(nm) bit operations plus the O"(m) black box
evaluations of A mod p using Lemma 3.4(i). By Theorem 3.3, the total cost of
CharpolyViaModMinPoly using Lemma 3.4(i) is O"(nm?log || A|| +m3 log? || A]|)
bit operations.

[For case (i1), we also need to compute the minimal polynomial of B mod .
Again it 1s easily seen that the most expensive case is when k, = 1 and I" mod p
is irreducible in Z,[z]. We can therefore find the minimal polynomial of B mod
¢ with O™((n/m) - MM(m)) bit operations using Lemma 3.4(i1). By Theorem
3.3, the total cost of CharpolyViaModMinPoly using the algorithm described in
Lemma 3.4(i1) is O"(n MM(m) log || A||+m?3log® | A||) bit operations. Additional
storage for O"(nm + m?log || A||) bits is sufficient. a

Smith Form of a Sparse Integer Matrix 25

4. Computing the Smith form

We complete our Smith form algorithm by applying the algorithms of Section
3 for computing the characteristic polynomial of the special matrix B € R**"|
to the algorithm FindContents of Section 2.

[t 1s useful to determine the rank of A in advance. This could accomplished
“on the fly” from the characteristic polynomial of B, but the algorithms of
Wiedemann (1986) and Kaltofen & Saunders (1991) are simpler.

LEMMA 4.1. Let A € Z"*" with bottom n —m rows zero and rank r < m < mn.
We can determine the rank of A with

(1) O(mlog(l/e)) matrix-vector products w + (Aw mod p) for a prime p
with log p = O(logn + loglog ||A]|), w € ZI*', and O"(nmlog(1/e)) ad-

ditional bit operations.

(i) O ((n/m) - MM(m)log(1/€) + nmlog || A|| log(1/€)) bit operations.

PrROOF. We rely on the fact that rank(A mod p) = rank A if and only if p { d,.
Since d, < b := n™| A, it is divisible by at most 4log(b)/loglog(b) distinct
primnes by (3.4). Construct a set of 8log(b)/loglog(b) small primes Q@ C N as
follows. We assume that every of p € Q is at least 3n{n + 1). We also insist
that p = 1 mod 2, for I = |1 4 log(2n)] so that two polynomials of degree n
over Z, can be multiplied with O(nlogn) operations in Z,. Let Q be the set
of the smallest such primes; Q’s entries have size O(log(b) - nlogn) and hence
Of(log n + loglog || A||) bits.

For part (i), choose primes p randomly from Q@ and compute the rank of
Amod p. For each prime chosen from Q, rank(A) = rank(A mod p) with
probability at least 1/2. Using the algorithm of Kaltofen & Saunders (1991) we
obtain the correct rank of A mod p with probability at least 1/2 (and a smaller
rank otherwise), with O (nm) bit operations and O(m) matrix vector products
by (A mod p). Repeating this for 2.5log,(1/¢) primes, we can guarantee that
the maximum rank found is the correct rank of A with probability at least 1 —e.

For part (ii), we again choose a random prime p € Q and reduce A mod p.
We then use the asymptotically fast algorithm of Ibarra et al. (1982) to compute
the rank of 4 mod p (correctly) using O((n/m) - MM(m)) operations in Z,.
With log,(1/€) choices of primes p € Q, the maximum rank obtained is the
rank of A with probability at least 1 — e. g

We are now ready to apply the algorithm FindContents to determine the
determinantal divisors dy,... ,d,, and hence the Smith normal form, of A. For
I <2 < r, let fi be the coefficient on "% of the characteristic polynomial of

26 M. Giesbrecht

B € Z[A]"" as in Theorem 1.2, where it is shown that dy = cont(fx) € Z.
[algorithm CharpolyViaModMinpoly and Corollary 3.5(i) we showed how to
compute the characteristic polynomial of B for a sparse matrix A.

THEOREM 4.2. Let A € Z™*" with bottom n — m rows zero and € > 0. We
cann compute the Smith form S € Z™*" of A with either
(1) O"(m?*log || A]|-log(1/€)) evaluations of Av mod p, where p is a prime with
O(log n+loglog || Al|) bits and v € Z7*'; an additional O"((nm? log || A+
m?log? || A||) - log(1/€)) bit operations and storage for O"(n +m?log ||A|])
bits is also required; or

(i) O"((n MM(m) log || A]| + m®log® || A]|) - log(1/€)) bit operations and addi-
tional storage for O"(nm + m?*log || A||) bits.
The output is correct with probability at least 1 — e.

PRrROOF. First compute the rank of A using the methods described in Lemma
1. Compute it correctly with probability at least 1 — 1/(2¢).

Next use FindContents to determine the contents dy,... ,d, of fi,..., f,
respectively. For part (i) employ the algorithm CharPolyViaModMinpoly with
Wiedemann’s algorithm for the minimal polynomial to compute the neces-
sary modular characteristic polynomials described in Corollary 3.5(i). For part
(ii) use the asymptotically fast minimal polynomial computation for (dense)
matrices with n — m rows of zeros, as described in Corollary 3.5(ii). We ap-
ply Theorem 2.9 with error tolerance 1/(2¢) to obtain the cost. Note that
Ifi]l < n"||A]]", whence O(log(1/€) 4 logm + log logn + log log ||A]|) character-
istic polynomial computations are required. Computations are in the ring R,
where p = deg I' = O(log® m), log ||I'|| = O(log® m) and inputs to the black box
have height r¢(1).

For (i). Corollary 3.5(i) shows this requires O"((nm?log || A||+m>log® ||A]|) -
log(1/e¢)) additional bit operations. Additional storage for O"(n + m?log || A||)
bits 1s sufficient.

IFor (ii), Corollary 3.5(ii) shows this requires O"((n MM(m) log || A||[+m® log® || A||)-
log(1/¢)) additional bit operations. Additional storage for O"(nm+m?log || A||)
bits is sufficient.

We return S = diag(dy, dz/dy, ... ,d,/d,—1,0,...,0). O

Acknowledgements

Research was supported in part by Natural Sciences and Engineering Research
Council of Canada research grant OGP0155376, and University of Manitoba
research grant 431-1725-80.

Smith Form of a Sparse Integer Matrix 27

References

[. R. BeriexkamP, Factoring polynomials over large finite fields. Math. Comp. 24
{1970). ¥13-735.

J. BucuManN, A subexponential algorithm for the determination of class groups and
regulators of algebraic number fields. In Séminaire de théorie des nombres, Paris,
1988,

T. J. Cuov axp G. E. CoLLiNs, Algorithms for the solution of systems of linear
Diophantine equations. SIAM J. of Computing 11 (1982), 687-708.

P. Domicn, R. KANNAN, AND L. TROTTER, Hermite normal form computation
using modulo determinant arithmetic. Math. Operations Research 12 (1987), 50-59.

A. O. GELFOND AND YU. B. LINNIK, Elementary Methods in Analytic Number
Theorey. George Allen & Unwin Ltd., London, 1965.

M. (hESBRECHT, Nearly Optimal Algorithms for Canonical Matrix Forms. PhD
thesis. University of Toronto, 1993. 196 pp.

M. GIESBRECHT, Fast computation of the Smith form of an integer matrix. In
Proceedings of ISSAC’95, Montreal, Quebec, 1995, ACM Press, 110-118.

M. GIESBRECHT, Probabilistic computation of the Smith normal form of a sparse
integer matrix. In Algorithmic Number Theory: Second International Symposium,
ed. H. CONEN, 1996, 175-188. Proceedings to appear in Springer’s Lecture Notes in
Computer Science.

J. L. HarNer anp K. S. McCURLEY, A rigorous subexponential algorithm for
computation of class groups. J. Amer. Math. Soc. 2 (1989), 837-850.

J. L. HAFNER aND K. S. McCuURLEY, Asymptotically fast triangularization of
matrices over rings. SIAM J. of Computing 20(6) (1991), 1068-1083.

(. Havas, D. Horr, AND S. REES, Recognizing badly presented Z-modules. Linear
algebra and its applications 192 (1993), 137-163.

O. 1BARRA, S. MORAN, AND R. HUI, A generalization of the fast LUP matrix
decomposition algorithm and application. .J. of Algorithms 3 (1982), 45-56.

(. IuiopoLous, Worst-case complexity bounds on algorithms for computing the
canonical structure of finite abelian groups and the Hermite and Smith normal forms
of an teger matrix. SIAM J. Computing 18 (1989), 658-669.

28 M. Giesbrecht

E. KarTOrFEN AND B. D. SAUNDERS, On Wiedemann’s method of solving sparse
linear systems. In Proc. AAECC-9, vol. 539 of Springer Lecture Notes in Comp. Sci.,
1991. 29-38.

. Karroren. M. S. KRISHNAMOORTHY, AND B. D. SAUNDERS, Fast parallel
computation of Hermite and Smith forms of polynomial matrices. SIAM J. Algebraic
and Discrete Methods 8 (1987), 683-690.

[Z. KALTOFEN. M. S. KRISHNAMOORTHY, AND B. D. SAUNDERSs, Parallel algo-
rithms for matrix normal forms. Linear Algebra and its Applications 136 (1990),
189-208.

R. KanNaN AND A. BAcHEM, Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comp. 8 (1979), 499-507.

W. KeLLkr-GEHRIG, Fast algorithms for the characteristic polynomial. Theor.
Computer Science 36 (1985), 309-317.

R. Lipn axp H. NIEDERREITER, Finite Fields, vol. 20 of Encyclopedia of Mathe-
matics and its Applications. Addison-Wesley, Reading MA, 1983.

M. NewwMman, Integral Matrices. Academic Press, New York, 1972.

J. B. ROSSER AND L. SCHOENTFELD, Approximate formulas for some functions of
prime numbers. IIl. J. Math. 6 (1962), 64-94.

J.T. Scuwarrz, Fast probabilistic algorithms for verification of polynomial identi-
ties. .J. Assoc. Computing Machinery 27 (1980), 701-717.

H. J. 5. SMmITH, On systems of linear indeterminate equations and congruences.
Philos. Trans. Royal Soc. London 151 (1861), 293-326.

A. STORJOHANN, 1995. Personal Communication.

A. DTORJOHANN, Near optimal algorithms for computing smith normal forms of
imteger matrices. In Proceedings of ISSAC’96, Zurich, Switzerland, 1996, 267-274.

W.D. Warris, A.P. STREET, aAND J. SEBERRY WaLrLIs, Combinatorics: room
squares, sum-free sets, Hadamard matrices, vol. 292 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1972.

D. WiEpEMANN, Solving sparse linear equations over finite fields. IEEFE Transactions -
on Intormation Theory IT-32 (1986), 54-62.

R. ZiprEL. Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM
79. Marseille, 1979, 216-226.

Smith Form of a Sparse Integer Matrix

29

Manuscript received October 20, 1996

MARK (GIESBRECHT

Department of Computer Science
University of Manitoba

Winnipeg, MB, Canada, R3T 2N2

mwg@cs.umanitoba.ca

Fast Computation of the Smith Normal Form of an Integer Matrix

Mark Giesbrecht!
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada, R3T 3T6

mwg@cs.umanitoba.ca

Abstract

We present two new probabilistic algorithms for computing
the Smith normal form of an A € Z™*™. The first requires
an expected number of O(m?n - M(mlog||Al])) bit opera-
tions {ignoring logarithmic factors) and is of the Las Vegas
tvpe: that is, it never produces an incorrect answer. Here
|24l = maxy; [A;;| and M({) bit operations are sufficient to
multipiv two [-bit mtegers (M(l) = {* using standard arith-
metic). This improves on the previously best known (deter-
ministic) a]gonth m of Hafner and McCurley, which requires
about O(m'nlog ||A]l - M(mlog |} A]])) bit operations. We
also present an even faster, more space efficient algorithm
which xequirex an expected number of O((m®nlog ||Al| +
m log” [| A1) - log(1/€)) bit operations using standard inte-
ger arithmetic. This algorithm is of the Monte Carlo type:
it returns the correct result with probability at least 1—¢ for
a user specified tolerance ¢ > 0. This algorithm also requires
only Ofnntlog ||A]]) bits of storage, versus O(nm? log ||A||)
bits required by other known algorithms.

Introduction

It was proven by Smith (1861) that any A € Z™*" is equiv-
alent to a unique diagonal S € Z™*™ under unimodular
transformations. That is, there exist unimodular P € Z™*™

and @ € 77" (1e., det P, det Q = £1) such that

)

5= PAQ= sr

§] ..'0

= diag(si,....: 500,000

where r = rank(Aj and si|sig1 for 1 < ¢ <r—1. Sis
called the Smith normal form of A and the non-zero diagonal
elements of S the mnvariant factors of A.

TResenrch was supported i part by Natural Sciences and Engi-
oesring Research Council of Cfanada research grant OGP0155376

l‘ ppears in Proceedings of the International Symposium
|
L

on Symbolic and Algebraic Computation, ISSAC’95

Computing the Smith normal form of an integer matrix is
useful in many applications, including Diophantine analysis
(see Newman 1972) and determining the canonical structure
of Abelian groups. Recently, algorithms for the Smith nor-
mal form have been used to compute the structure of the
class group of a number field (see Hafner & McCurley 1989,
Buchmann 1988).

In this paper we present two new probabilistic algorithms
to compute the Smith normal form of an integer matrix.
Their costs are substantially smaller than the previously
best known (deterministic) algorithm of Hafner & McCur-
ley (1989,1991; see also Kannan & Bachem 1979, Chou &
Collins 1982, Domich et al. 1987, Iliopolous 1989).

Suppose A € Z™*™ has rank r. Without loss of gen-
erality we assume throughout that m < n — the Smith
normal form is invariant under transpose. In Section 1 we
present a fast new probabilistic algorithm to compute the
Smith normal form of A. It requires an expected num-
ber of O"(m®n - M(mlog ||A]|)) bit operations and is of the
Las Vegas type, that is, it always produces the correct an-
swer. For convenience we use “soft-Oh” notation: for any
f.g:R* =R, f=07(g) if and only if f = O(g -log® g) for
some constant ¢ > 0. The deterministic algorithm of Hafner
& McCurley (1991) requires O (m3nlog ||A]- M(m log A1)
bit operations in the worst case. Like many previous algo-
rithms, ours computes modulo a multiple d of the non-zero
invariant factors of A. It requires an expected number of
O(rmnloglog d) operations in Zg4. Such a d is easily found,
but may contain O(m(log ||A]| +logm)) bits. Hafner & Mc-
Curley’s (1991) algorithm also computes modulo d, but re-
quires O(rmnlog d) operations in Zg. Our algorithm is re-
lated to Hafner & McCurley’s, but with a random, unimod-
ular column operation before each phase of row reduction.
The worst case cost of Hafner & McCurley’s algorithm may
well be encountered only on a small portion of inputs, but
our randomization avoids it on all inputs with high proba-
bility.

In Section 2 we present an even faster probabilistic al-
gorithm for the Smith normal form of A € Z™*™ which is
considerably more space efficient as well. Define 6 such that
we can multlply two 7 X 7 matrices over a ring R with O(r)
operations in R; nsing standard matrix arithmetic 8 = 3,
while the best know algorithm of Coppersmith & Winograd
(1990) allows 8 = 2.38. This new algorithm to compute the
Smith normal form of A € Z™*" then requires an expected
number of

O"((m°nlog |A]| + m® log” [|A]l) - log(1/e))

bit operations using standard integer arithmetic. This al-

gorithim is probabilistic of the Monte Carlo type: € 1s a
user specified parameter, and the output of the algorithm
15 guaranteed correct with probability greater than 1 — .
By compatison Hafner & McCurley’s (1991) algorithm re-
quires O (m”nlog® || A||) bit operations using standard inte-
ger arithmeric (and O (m*nlog?||A||) bit operations using
currently impractical but asymptotically fast arithmetic).
Moreover. this new algorithm requires additional storage for
only r = rank(A) “large” integers, each with O”(rlog ||4]|)
bits. Thesc integers converge on the determinantal divisors
ol A ax the algorithm proceeds. Previous algorithms, which
work with dense m x n matrices in Z g4, require O(nm log d)
or O"(nm? log || All) bits of storage.

Our Monte Carlo algorithm is more akin to the methods
of Kaltofen et al. (1987) for computing Smith normal forms
of matrices of polynomials than to the modulo-determinant
algorithms discussed. Hafner & McCurley (1991) conjec-
tured that these methods might be adapted to work for
integer matrices. Our algorithm demonstrates this, show-
ing that we can find the Smith normal form of an integer
matrix with about the same order of cost as is required to
compute the determinant of that matrix. Additional mem-
ory required is on the order of the size of the input and
output.

In neither the Las Vegas modulo-determinant algorithm
ol Section 1 nor the Monte Carlo algorithm of Section 2
do we compute the transition matrices to the Smith normal
form. Because of the generally large sizes of the entries in
the transition matrices, one cannot expect to compute them
in the order of time our algorithms require. However, many
applications of Smith normal form computations, such as
determining the structure of the class group of a number
field. do not require the transition matrices be computed.

Definitions and Notation.
For integers n and k& < n, define C
A< g o< -

{(c1,...,ck) €

i < < ¢t < n}. In a principal ideal ring P,

with B € P™%" (by,. ... br) € €7 and (c1,...,cx) € CP
define the (k x k) minorof a B:
Bblcl Bblc2 Bblck
B B B
by - - by boc by bocy,
B(), 1A>:d€‘t '1 2 .2;, cP.
Cy - Ok : :
Bl:kcl Bbk(;2 Bbkck

The kth determinantal divisor di, € P of B is defined as
the GCD of all ¥ x k£ minors of B. A well known defini-
tion of the invariant factors of B is as a quotient of de-
terminantal divisors of B. If B has Smith normal form
S = diag(s1,...,sr,0,...,0) € P™*"™ then s; = d; and
s, = d,/d;—1 for 2 <1 < r. Thus if we can find all the deter-
minantal divisors of B, we can easily recover the invariant
factors of B

1 A Las Vegas Algorithm for the Smith normal form

[t this section we present a fast Las Vegas type probabilistic
algorithm for computing the Smith normal form of an A €
Z7%% of rank v and m < n. Like many previous algorithms
{(see Hafner & McCurley 1991), this algorithm computes in
7.4 where d is a multiple of the non-zero invariant factors of
A. Our new algorithm requires an expected O(mnr log log d)
operations in g, and always produces the correct answer.
A suitable d with [log, d] = O{m(log m +log ||A||)) bits can
be found quickly, yielding an algorithm which costs O (m?n-
Mm log | Al})) bit operatious.

111

The basis for modulo-determinant computation of the
Smith normal form of A is as follows (see Hafner & Mec-
Curley 1989, Section 3). Let A € Z™*" have rank r and
Smith form S = diag(si,...,sr,0,...,0) € Z™*". Let
d be a multiple of s;---s, and A = Amodd. If § =
diag(31,...,3:,0,...,0) € Z7*™ is the Smith normal form
of A over Zg, then d; = gcd(31---5i,d) € Z is the ith in-
variant factor of A for 1 <1 < r and s1 = d1, si = d;/di1
for2<i<r.

We initially count operations in Zg4. For a,b € Z4 we can
find @ + b,a — b, ab € Zq, and determine if a|b (i.e., ¢ = bc
for some ¢ € Zg) with O(M(log d) log log d) bit operations.
In this same time we can also find

ged(d,@,b) mod d:a,beZ

= - Z
gedg(a, b) { agamodd,bzbmodd}e @

the “least” principal generator of the ideal (a,b) C Za.

Fact 1.1 (Hafner & McCurley 1991) Let A € Z7™™ be
such that the first column is not all zeros. We can find a Pe
27" withdet P = £1 such that B := PA € ZZ}*" satisfies
Bn = ngd(All, .o -,Aml) and Bi] =0 fOT 2 S Z S m. The
algorithm requires O(nm) operations in Zg.

Lemma 1.2 Assume A € Z7"™ and & = (1,v2,...,vn) €
Z*' is chosen randomly and uniformly from Zq. If w =
(wi,...,wm)" := Av then

Prob{gcd (wi,...,wm)
= gedg{Ai; : 1< <m, 1 < j < n}
> 1/(16loglog d).

Proof Let p be a prime dividing d, e = min{ord,(A4;;) : 1 <
i <m,1 <j<n}and kI such that ord,(Ax) = e (where
ordp(a) = max{s : p'|a} for a € Zg). Let z2,...,z, be
indeterminates and

fr=An + Z T, Ax; € Lz, ...
2<5<n

 Tnl.

Then wr = fr(v2,...,vn) and we can write fr = p°gr, where
gk € Zdza,...,za] \ {0} and gx Z0 mod p. If each z; is
assigned a random v; from Zgq for 2 <1 < n then

Prob{ord,(wx) = e} = Prob{gi(v2,...,vn)Z 0 mod p}

>1-1/p
by Corollary 1 of Schwartz (1980). Thus
Prob{ordp(ged (ws, ..., wm))
= ordp(ged {4;; : 187 D}
>1-1/p.

Since we choose vs,...,v, randomly and uniformly from
Z.q, the above probability is independent for each prime p
dividing d. Thus,

Prob{ gedy(wi, ..., wn) = geda{ A : 1$57 1}

= Prob ordp(geda(ws, - .. ’7w'")) ‘ }
e
> [-1/p) = 8(8)/d,
pld

where ¢(d)1s Euler’s totient function. By Rosser & Schoen-
feld (1962), (3.41) and (3.42), &(d)/d > 1/(1.8loglogd +
25036/ loglog d) > 1/(16loglogd) for all d > 2. O
We now present a Las Vegas algorithm for the Smith

normal form algorithm of an A € Z7'*"
Algorithm: ModSmithForm
Ae T
Output: the non-zero invariant factors (in Zg) of A;

(1} Tf 4 is the zero matrix then quit;

i2)y if m =

quit:

Input:

1 then output gcdd(All,...,Aln) € Zgq and

{3) Choose random vs,...,vn € Zg If A = [R |Cn]

w]wre C, e is the 1th column of A, let] =
(" +_‘)<l<nv,C, tzg”‘ nd
= [CT1C - |Cn): if the first column of A’ is all
zeros, repeat (3);
(1) Find P € Z7*™ with det P = £1 such that B := pPA

has B.; —(,)f012§i§m;
f BBy for 1 <1< m, 1 <j < n then output

By1 and Call ModSmithForm on the submatrix B’ €
mrlm—1)x(n

L ' of B formed by deleting the first row
and first column. otherwise goto (3);

Theorem 1.3 The algorithmModSmithForm works correctly
as specified. It vequires an expected O(mnfloglog d) oper-
ations in 4.4 where ¥ = rank(ﬁ), the number of non-zero
wmvariant foctors of A m Zg.

Proof i step (3) the transformation from A to A’ is uni-
modular so the Smith form of A equals that of A’. Since
Bii o= ged (Al .. AL € Zig, by Lemma 1.2 By | B;;
m Lafor 1 <@ < m, 1 < j < n with probability at least
1/161loglog d. Thus, with this probability Bi; is the first
invariant factor of A. If this is the case then B is column
BU 0
0o B
tors of A are exactly the invariant factors of B’. These are
found by the recursion in step (5).

By Lemma 1.2 we execute steps (3)-(5) an expected num-
ber of 16loglog d times in each recursive call. These steps
require O(nm) operations in Zq4 by Fact 1.1 and there are
at most r recursive calls. 0O

equivalent to , and the remaining invariant fac-

Theorem 1.4 Given an A € Z™*™ with m < n, we can
compute the Smith normal form S of A with an expected
O(m*n - M{m(log || Al| + logm))) bit operations. The algo-
rithm is probabilistic of the Las Vegas type.

Proof Compute 1 = rank{A) and a multiple d of the non-
zero invariant factors of A. This can be done with

O(m*nM(m(log | A|| + log m)))

bit operations by Proposition
{1991,

2.3 of Hafner & McCurley

Next compute the Smith normal form

S = diag(sy, ., §.0,...,0) € Z7*"

of A= A mod d. This requires O(m>n) operations in Zgq by

Theorem 1.3. Note that it may be that ¥ = rank(A) <
r in which case 3, = 0 for some 2, and s; = d. This
only happens if d = 1, in which case ¥+ = 0 and S =
diag(l, .., 1,0...., ,0) € Z7*™ (with r ones on the diago-

nal), orif d > 1. S = diag(1,...,1,d,0,...,0yand F = r—1.
The algorithm works correctly in both these instances.

112

Forlgigr,letdi_gd(l -3i,d) € Z and s,
di, s; = difdi—1 for 2 < i < r. The output is then S =
diag(si,. .., sr,0,. O)EZm T.0

2 A faster, space efficient Smith form algorithm

In this section we present our new, faster and more space
efficient Monte Carlo algorithm for the Smith normal form
of an A € Z™*" of rank r. The algorithm is related to that
of Kaltofen et al. (1987) for computing Smith normal forms
of matrices of polynomials over a field K. They show that
for A € K[z]"**", to compute the kth determinantal divisors
dx you need only consider the GCD of the leading minors of

two random perturbations of A, and not of the (:)2 minors
of A indicated by the definition. Recall the leading k x k
minor of any B € Z™*" is B(;:::). For randomly chosen

R, T U,V € K®"*™ they prove that dix equals the GCD of the
leading k x k minors of RAT and UAV for allk (1 < k < n)
with high probability. They obtain a probabilistic algonthm
in the parallel complexity class RNC? for the Smith normal
form of a polynomial matrix.

Our new algorithm for the Smith normal form is based
on a new characterization in Subsection 2.1 of the deter-
minental divisors of A as the contents of some fi,..., fr €
Z[z1,...,zs), where s = r(n + m) (recall that the content
cont(fi) € Z of fi is the GCD of all the coefficients of f;).
While we cannot write down these fi,..., f» efficiently, we
can evaluate them quickly, i.e., we provide a black box which
computes f1(&),..., fr(@) € R for any @ € R*, where Ris a
small extension ring of Z. In Subsection 2.2 we show how
to find the contents of a list of polynomials given by a black
box, using only a small number of evaluations on “small”
input points. The black box we need foy the Smith normal
form computation finds all the leading minors ofa B € R™*".
In Subsection 2.3 we show how find these very quickly. Fi-
nally, in Subsection 2.4 we tie these results together to ob-
tain a fast, space efficient, Monte Carlo algorithm for the
Smith normal form of an integer matrix.

2.1 A new characterization of the determinental divisors

The following theorem gives a different and very useful char-
acterization of the determinental divisors of a matrix as the
content of the leading minors of a matrix of polynomials.

Theorem 2.1 Let A € Z™*" have rank v. Let X = (Xij)
be an r x m matriz and Y = (Yix) an n x v matriz of alge-
braically independent indeterminates in A = {Xi;,Yix:1 <
ik <r;1<j3<m;l<l<n}. Then the content of the kth
leading minor fx € Z[A] of B = X AY € Z[A]"*" equals the
kth determinental divisor dx € Z of A, for 1 < k <.

Proof Using the Binet-Cauchy formula (Gantmacher 1990,
p. 9) we find

fr

I

>

m
(b1, bR)EC]

1...k by ... bk C1...Ck
A Y .
X(b]bk) <C1...Ck> <1k)

for 1 < k < r. The kth determinental divisor dx of A by
definition divides A(o) for all (b1,...,bk) € CF* and
(c1,...,cx) € CE, so dkl cont(fk)

Now we show cont(fx)|dx. Assume to the contrary that
there exists a prime p and integer e such that p®| cont{fx)
but p { di. Thus, there exists an k x k minor A € Z of A
such that p* { A. Since k < r, there exists a P € Z"™*™ and
Q € 227 such that A is the leading minor of PAQ € Z7*",
so fx(P.@Q) = A. Therefore X is divisible by the content of
fi. whenee p” | A, a contradiction. O

We do not compute the leading minors of X AY € Z[A]™*”

explicitely, but instead compute them by a black-box sub-
routine. That is. we will assign X P ¢ R™™ and
Y = Q € R™ for some randomly chosen P and @ over
an extension ring R of Z. We then find the leading minors
of PAQ € R™". If fi € Z[A]is the leading k x k minor of
X AY. then the leading k x k minor of PAQ is fx(P,Q) € R.

The algorithm FindContent in the next subsection employs

this black box subroutine to find the contents of f1,..., fr.
2.2 Finding the content of black-box polynomials
Our goal in this subsection is to find the contents of f1, ..., fr

€ Zlxyr,....x:)\ {0}, each with degree at most v. This list
of polynomials is given by a black box, that is, we do not
have an explicit representation of each polynomial as a lin-
ear combination of monomials, but for an extension ring R
of Zand a1,...,a. € R can compute

(filar... . as), ..., fr(ar,...,as)) €R"

with one evaluation of the black box. We aim to find the
contents with as few evaluations of our black box as possible,
on the “smallest” points possible.
Informally, the idea is as follows. We maintain a vec-
tor {c1,...,¢,) € Z7 which contains an “approximation”
to {cont{fi)..... cont(fr)). Initially we find a point d €
27 such that iof (c'\lm ,,,,, C(TO)) = (fi(@),..., fr(d)), then

(0

ay o, &£ 00 If f, = digs, where d; = cont(fi) € Z
and g, € Z[r1. ... x,] has content 1, then clearly d; | CEO) for
P <o <r.

Convergence of the algorithm is measured in terms of the
differences in the orders of primes dividing ¢; and d,. Enter-
ing iteration j > 1, we choose a “random” @ € Z* and eval-
uate the black box to obtain (b1,...,b,) := f(@). Now let
() = (ged(br YT, L ged(by, T, Cer-
tainly d, |CEJ) and c(l])§c'E]~l) for 1 < 17 < r. Also, for
cach 1 and each prime p|d;, ordp(cgj-l)) > ord,,(cfj)) >
ord,(cont(f.}) and (cv), R c(rj)) will (hopefully) “converge”
on {dy,.... dr). Informally this follows since the proba-
bility ¢:(d) = 0 mod p is usually low, so the probability

ordp(d;) = ()r(lp(cij)) is quite high. Tterating this processes
allows us to make the probability of error arbitrarily small.

Unfortunately, this method does not necessarily work for
small primes p, and the order of such a p in ¢; may converge
slowly, or even not at all, to the order of p in d;. However, by
working in a specially constructed extension ring R of Z we
are able to prove sufficiently fast convergence. Consider, for
example, finding the content of the f(z) = 22 ~ 2z € Z[z].
It is casily shown that 4] f(a) for all « € Z, so we cannot
identify the content by computing GCD’s of evaluations of
f at integers. However, in R = Z[z]/(I'), where I' = 5 +
r+ 1 & 7r], we can choose ¢ = (z mod '), so f(a)
(4z — 2mod I') € R. GCD’s are not well defined in R, so
we take GCD’s of the contents of the evaluations at points
in R treated as polynomials (reduced modulo T) in Z[z]. In
this rather trivial case, the content of —4z — 2 is 2, as is

113

the content of f. We prove that for any polynomial f, the
corresponding sequence of GCD’s of contents of evaluations
of fin R = Z[z]/(T') converges quickly on the content of f
with high probability, for an appropriately selected T'.

In our applications of this algorithm, the black box we are
given may not work on all inputs. We allow for the existence
of a x € Z[z1,..., 5] of degree O(v?) such that for @ € R®,
the black box is only guaranteed to find (f1(@),..., fr(@))

when x(@) € R’ Here R = Q®R and R” is the set of units

in R. When x(@) €§‘, the black box may report “failure”
but cannot produce an incorrect answer.

A variant of Schwartz’s Lemma

To prove that the algorithm sketched above to find the
contents of black-box polynomials converges we will require
a variant of Corollary 1 of Schwartz (1980), “Schwartz’s
Lemma”. This bounds from above the probability that a
random point, with coordinates chosen randomly and uni-
formly from a finite set V, is a non-zero of a polynomial. We
require a version of this in which coordinates are not chosen
uniformly from V, but where we only have an upper bound
on the probability of choosing any one element of V.

Lemma 2.2 Assume f € D[z1,...,zx] ¢s non-zero, D an
integral domain, and V a finite subset of D. Suppose ele-
ments ai,...,ar are randomly chosen from V such that each
a; ts assigned any one element of V with probability at most
0. Then Prob{f(a1,...,ax) =0:@a1,...,ax € V} < pdeg f.

Proof Follows almost identically to Corollary 1 of Schwartz
(1980). O

Building a rough extension of Z

Unfortunately Lemma 2.2 above, like Schwartz’s (1980)
Corollary 1, is of little use when the size of V is less than
deg f. In particular, when D = Z,, #V < p and 7 > 1/p.
When deg f > p, Lemma 2.2 is trivial. Our solution will
be to constuct a rough extension ring R of Z, one such that
R mod p contains a large finite field for each of selected set
of primes p. We show that the degree of R over Z can be
kept surprisingly small.

Let 7 > 1 and p1,...,px be primes with 2 < p1,...,px <
T for some 7 > 2. We next show how to construct a monic,
squarefree I' € Z[z]of small height and degree v = O(nlog &)
such that for each ¢ (1 < ¢ < «), I' mod p; has a factor
of degree greater than 5 in Zg[z] (i.e., the factorization of
[is “rough” modulo each prime p;). The height ||T|| of
P'=co+ciz+-- 4 cyz” € Z[z]is defined as maxo<i<y |cil.
Notice that the degree of I is logarithmic in the number of
primes. This will be important in our application, where &
may be relatively large.

For any fixed prime p and n € N, define

Myp(n) = {g € Zg[z]: g monic and deg g =n},

Ip(n) = {

We first give a lower bound on

g € Zy[z]: g monic and irreducible
and degg =n)

Rp(n) = #{f € Mp(2n):3k > n, g € T(k) such that g| f},

the number of monic polynomials in Zy[z] of degree 25 which
have an irreducible factor in Zp[z] of degree greater than 7.

Lemma 2.3 For a prime p and integer 5 > 1 we have
Ry(n) > p*"/3.

Proof Since any f € My{(25) can have at most one irre-
ducible factor with degree greater than u, we obtain the

formula
> PN
17<z§27;
where Np{+}) = #ZIp(z). Using the lower bound on Np(:)

given by Lidl & Niederreiter(1983, Exercise 3.27) and Euler’s

swnmation formula, we get

9, 1 P 1 9
Foiny > p77 - —— | >p""s(p,),
pll > (> i) zpl/g) ps(pym)
n<1<2n n<1<2n
where
1 1 1
s(p.) =log2 — — — LN VP : .
' ' 2 p~1 n p—1 pn/241/2

The function s(p, n) is strictly increasing in both p and % and

s greater than 1/’% with the exceptions p = 2, 2 < 5 < 4,
and p =3, 7 = 2. Excepting these cases, Ry(n) > s(p,n) >
pod s easily checked, using the exact formula Ny(7) =

{l/i) . Z(Hz“‘(dh)z/d for + > 1 (where p is the Mobius func-

tion). that indeed R,(n) > p”/3 in the exceptional cases as
well. 0O

Let V .= {g¢ € Z[s]: g monic, degy = 27, and |jg|| <
257} If we choose f randomly and uniformly from V, f falls
Into a particular residue class in M, (2n) with probability at
least ({{4nr + 1)/p]/(4nT + 1))*7 > (1/p — 1/(4nr + 1))*".
Thus by Lemma 2.3 the probability that f mod p has an
irreducible factor modulo p of degree greater than 7 is at
least (1/p — 1/ (497 + 1)V - p®7/3 > 1/6.

The following algorithm constructs a T' € Z[z] as re-
quired.

Algorithm: BuildRoughExtension

Input. n € 2 and primes 2 < py,...,px < T

Output: a squarefree, monic I' € Z[z] such that for each
{1 <2 < k), I'' mod p, has an irreducible factor in
p, [1| of deglee greater than 7.

111 Repeat

2 Let P:={1,.... &}y H:={};

3} For2:=1to 4+ 6log x while P # {} do
1) Choose a random h; € V;

(5} For 3 € P do
I by mod p, € Zp,[2] has an irreducible
factor modulo p; of degree greater than n
Then P:=P\{j}; H := HU{h.};
End For;
End For;
ntil P = {};

Return ' = HneH h € Z[s];

Theorem 2.4 The algorithm BuildRoughExtension always
produces the correct results as described and requires an ca-
pected number of O((n*> + n° log 7) - klog? Tlog &) bit oper-
ations. The output T € Z[z] has degree at most 25(4 +
6log k1= Ofnlog k) and |T|| < (4n°7)°8 ",

(6}

Proof We first examine the probability that the algorithm
successtully finds a I' in an iteration of the outer loop, or
equivalentlv, finds an H C V such that for each 31, there

114

exists an h € H such that 2 mod p; has an irreducible factor
in Zp[z] of degree greater than 5. For fixed j, the probability
that h; mod p; has no factor in Z,,,(r) for some r > n, for all
1 <4< lisless than (5/6)" by Lemma 2.3. The probability
this is true for all j is less than &-(5/6)" < 1/2 by our choice
of I =4+ 6logx > —log(2k)/log(5/6).

For each random choice of k; € V the inner loop of steps
(5)-(6) can be accomplished with an expected number of
O((n* + #° log r) log? r - k) bit operations using Berlekamp’s
(1970) factoring algorithm, and this loop is executed 4 +
6 log times per iterations of the outer loop.

For any hi,ho € Z[z], ||h1h2]| < min(deghi,degh2) -
|[P1]|||lh2||. Since T is the product of O(log &) polynomials
of degree 21 and height at most 257, it follows that ||T|| <
(47727_)10g K o

We define R = Z[z]/(T), an extension ring of R where
I' € Z[z] is monic of degree v and is constructed using
BuildRoughExtensionon some 5 and primes pl, ..., Px. The
ring R,, = R mod p; contains a copy of GF(pf) for some
& >npforl <1<k We represent an a € R by its least
degree residue & € Z[z] with @ = @ mod T and dega < 7.
The notion of height can be extended to R by |la]| = ||a]l.

The probability of correctly finding the content

We return the the problem of obtaining the content d; €
Zoof fi € Zlzy,..., 2] where deg f; < v, for 1 <i < r. As
discussed above we choose points randomly from a subset
W of a rough extenston ring R of Z at which to evaluate

fi...., fr. Let T' € Z[z] be monic of degree ¥ > 1 and
= Z[z]/{T). Let 8 > 5 be an integer with 28 > v, and
let L ={-0,...,8} CZ. Let n < deg be an integer and

W ={hmodT:h€ L[z],deg h < 5} C R. We will further
specify our choices of I, ¥, # and # in the sequel.

To determine the order of a prime p in d;, assume f; =
d g; for some g; € Z[z1,...,z.] of content 1. For @ € R®,

b := fi(@) = d:g:(@) € R. Define cont(b) = cont(b;), where
bi € Z[z], degb; < degT and b; b; mod I'. 'We have
cont(b;) = d; cont(gi(@)) so ordp(d,') < ordy(cont(b;)), with
equality when g;(d) Z 0 mod p.

In the next two lemmas we examine the probability that,
for a g € Z[z1,...,z.] with content 1, a prime p, and a ran-
domly and uniformly selected point @ € W?*, that g(d) =
0 mod p. Two difficulties must be overcome. First, we make
random choices uniformly from W, but these are not gen-
erally uniform choices from W mod p. Second, Corollary 1
of Schwartz (1980) is not useful for small primes (< degg),
and we must employ the properties of a rough extension ring
R constructed with BuildRoughExtension.

Lemma 2.5 Let p > 283 be prime and g € Z[z1,...,z]
with deg g < v and cont(g) = 1 (28 > v as above). Sup-
pose @ is chosen randomly and uniformly from W*. Then
Prob {g(@) = 0 mod p} < v/(28).

Proof Assume @ = (a1,...,a:) € W° where @; = a; mod T’
and a; = Zo<;<n ai;o’ € Z{x] for a;; € L. Then g(&) =
Omodp <= g(al ,--sas) = 0mod (T, p). Assume for
now that the aq;’s are independent indeterminates over Q.
Let A = {a;;:1 < ¢ < 5,0 < j < n}, and define § =
glai,...,as) € Z[A][z]. Consider the division of § by T
in Q(A)[z] to obtain remainder p = Zogk<7 pr(A)zF €
Z[A][z], where px € Z[A]has degree at most v for 0 < k < 7.
Now ¢ Z 0 mod p and p > deg g, so there exists a b € Z° such
that g(b) # 0 mod p. Since g(b) € Z, po Z 0 mod p.

Again assuming @ is randomly selected from W?*, a nec-
essary condition for ¢(@) = 0 mod p is that po(@) = 0 mod p,
whence Prob {g(@) = 0 mod p} < Prob {po(@) = 0 mod p} <
vi(28 + 1) by Corollary 1 of Schwartz (1980). O

Lemma 2.6 Let 3 > 5 and p < 28 prime, and assume
I' mod p has an wreducible factor Y € Zy[z] of degree greater
thany. Let g € Zizy, ..., x,] have degree < v with cont(g) =
1. For a randomly and uniformly chosen @ € W¢,

Prob{g¢(d@) = 0 mod p} < v-(3/5)".

Proof A randomly chosen a € W lies in a particular residue
class of W mod p with probability at most

23 + 1 1\ _ /1 1y .
(|55 i) < (Ao apr) <o)

for 3 > 5 and p < 243. Since deg T > 5 (and each a € W
has dega <), the probability that « is in a particular
residue class of W mod (p,T) is also at most (3/5)". Ap-
plying Lemma 2.2, Prob{g(@) = 0 mod (p,)} < v - (3/5)",
whence Prob{g{(d) = 0 mod p} <v-(3/5)7. DO

Define R = 5 ¢ R = Q[z]/(T) 2 R, with units R =
{t mod I' : a« € QP[z],gcd(a,) = 1}. We allow that our

black box may not work when y(a) Qﬁ‘. The following
lemma demonstrates this seldom happens.

Lemma 2.7 Let v € Z{r1,...,z:]\ {0}. For a randomly
and uniformly chosen @ € W*°, Prob{x(d) ¢ R*} < deg(x) -
deg(T)/(24).

Proof Assume @ = (a,...,@:) € W*® where a; = a; mod
I and o, = ZU<J<7,"‘ZJJ'] € Zlz]for 1 < i < s. Then

v(@) ¢ R" if and only if ged(x(ar,...,as),T) # 1 in Qz],
which 1s true if and only if the resultant res(x(a1,...,as),)
1s Zero.

Now assume the a;;’s above are algebraically indepen-
dent indeterminates over @ and let A = {a;;:1 < 1 <

5,0 < y < 5}. Then a, = Zo<;<n ai;z7 € Z[A][z] and
res(x{a1,...,a:),T) € Z[A] has degree at most deg(x) -

deg(T'). If the a;,’s are assigned uniformly and randomly val-
ues from L, then by Schwartz’s (1980) Corollary 1, the prob-
ability that res(x(a1....,as),I') =0, and hence the proba-

bility that yv(ai...., a.) & R, is at most deg(x)-deg(T)/(28+
1y, 0O
Algorithm: FindContent

[npnt: + > 2. ¢ > 0 and a black box which on input @ € R®
evaluates (f1(d),.... f~(@) € R", where f1,...,fr €
Clza,. .. z4], deg f. = v, and R an extension ring of Z;
We allow for the existence of a ¥ € Z[z1,...,xs]\ {0}
of degree O(r?) such that if (&) € R” the black box
may report “failure” and is not evaluated.

Output: {(cont{f1),...,cont{f,)) € Z", correct with proba-
bility > 1 —¢;
(1) Let 4 := max(rv + deg y. v - deg(x) log(deg(x)), ¥?, 5);
(2} Choose a random @ € {-8,...,8}%;
let ()7, &)= (f1(@),.... f-(@)) € Z7;
if any of ('(10), coy A% =0, repeat (2);
(3) Find pi1,....p< € N, all the primes < 28 which divide
(03 (0)y,
.- :

vy Cp

lem(

(4) Using BuildRoughExtension on pi,...,px and 5 =
4log v construct I' € Z[z], such that for 1 < i < &,
I’ mod p; has an irreducible factor of degree greater

than 7 in Z[z]. Let R = Z[z]/(T) and
W ={hmodT':h € Llz],degh < 5} CR.
(5) For¢:=1tol=log(1l/¢)+logr+loglog max; |c§0)| do
(6) Choose random @ € W7
(7) Let (b1,...,br) := (f1(d),..., f+(@)) € R";
If the black box fails to find (bq,..

x(@) €ﬁ*, this choice of @ may be ignored, and
execution continued with next 7 at step (5);

(8) Let (b1,...,b,) := (cont(b1),...,cont(b,)) € Z";
(9) Let (cf”,...,ct") = _
(gcd(c(ll—”, b1),... ,gcd(c(r’_l), b-)) € Z7;

.,br) on @, so

End For;
10) Output c(l),...,C(rl) ;
() 1Y (1

Theorem 2.8 The algorithm FindContent works correctly
as described and produces the correct answer with probabil-
ity at least 1 — ¢. An expected number of O((log(1/e¢) +
log r 4 log log s +log log max; || fi||)/ log v) evaluations of the
black box are needed. These evaluations are in the ring
R =Z[z]/(T), where deg I' = O(log(v)log(r)) andlog ||T|| =
O({log r +log v)?). The arguments to the black boz from R®
have height (rv)°),

FindContent requires O (v(v +log max; || f:||)* -log(1/€))
additional bit operations (using standard arithmetic) and
O (s + r(v + log max; || fi]|)) bits of additional storage.

Proof Step (2) finds a non-zero multiple ¢; of d; for 1 <2 <
r. For a randomly chosen @ € {—8,...,8}

Prob{ x(@) #0, fi(d) #0 for all 1 < ¢ < r}
= Prob{(x - fi -+ f+)(@) # 0}
21— (rv +degx)/(2(rv +deg x)) 2 1/2

by Corollary 1 of Schwartz (1980). Thus we expect to eval-
uate the black box two times on points of height O(8) in
step (2). On completion of (2) we have

1 = @) < NEI Y (”j.“ 1)[3]

0<y<w

= O(Ifill - B"(v + 9)"),

since there are at most (”j_l) monomials of degree j in f;.
Assume for now we choose @ randomly in step (6) from

W and do not eliminate the cases when x(@) ¢ R" in step
(7). Fix an i between 1 and r. For a prime p > 23 dividing
di,
Prob{ord,(b;) # ordy(d:)} = Prob {g:(@) = 0 mod p}
<v/(28) < v/(2?) < 1w
by Lemma 2.5. For a prime p < 243 dividing d;
Prob{ordp(l;,') # ordp(di)} = Prob{g:(d) = 0 mod p}
<v-(3/5)" <w-(3/5)°FY < 1/v

by Lemma 2.6.
ord,id,)} < 1/w.

The probability that y(&) Qﬁ‘, and hence the probabil-
ity that the black box might not work, is at most

4 deg(x) - log(v) - (4 + 6log(8))/5
&1 log®(v) /v,

fact that « < B for § > 5.
Thus. for a fixed 12 fmd prime p dividing c(), the prob-

ability that /\ (@) ¢ R" or ord,, b:) # ordy(d;) is at most
/v + 81 log> (1/)/1/ < 82log*(v)/v.

L(t.dlr

Thus, for any prime p, Prob{ord,(bi) #

deg(y 1deg(1)/(28)

IN

using Lemma 2.7 and the

") denote the number of distinct primes dividing
"f;;() The probability that after [iterations of the loop there

existe an ¢ and a prime p dividing cgo) such that for all {
randomly chosen @ € R we have x(@) € R or ordp(c(!l)) #

ordp(d,} 18 at most
Ny (s200g® () /v)

< rlog, max |¢!](8210g?(v)/v)' < ¢
by our choice of I. Thus, the probability that the algorithm
produces the correct answer is at least 1—¢, as required. The
nuwmber of evaluations of the black box is { = O((log(1/€) +
log r + log log s + log log max, ||f,||)/log v)

Note that degT O(nlog k) log(l/) log(r)) and
log |1} = O (_log 7 +log v + log deg x)?) by Lemma 2.4. Ar-
guments (u“.. 1) € W* to the black box satisfy ||a:]] <
3= (rvdeg y) fozl <1< s,

The cost (in addition to the cost of the black-box evalua-
tions) is dominated by the loop in steps (5)-(9). For1 <1 <
. log lib.]] = Oflog || fi||+v log(v+s)+vlog B+vvlog ||T]|), so
the cost of [iterations of steps (8)-(9) is O™ (Ir(v+log || £|)?)
bit operations using standard arithmetic. At any time we
store O(r) elements of R with O™ (v+log max, || f;||) bits each
and s elements with O(log r + log v) bits each. 0O

2.3 Finding the leading minors of a matrix over R

We now show how to find all the leading minors of a B €
R™*". Again R = Z[z]/(T) is an extension ring of Z, where
I' € Z[«] Is monic of degree 7, and R = Q[z]/(T). For a
prime p, let R, = Rmod p. We attempt to determine the
leading minors of B by finding matrices L,U € RL*" such
that [is lower triangular with ones on the diagonal, U is up-
per triangular, and B = LU mod p — an LU-decomposition
of B mod p. If such a decomposition exists, the kth leading
minor dp of B satisfies dp = Hl<z<k Ui; mod p. We can
recover cach dy by Chinese remaindering with sufficiently
many primes.
In what follows. let E be any commntative ring.

Lemma 2.9 Let B € B such that all leading minors are
in E*. Then there exists a lower triangular matriz L € E™*7

with ones on the diagonal, and an upper triangular matriz
T BT such that B = LU.

Proof The proof is essentially the same as for the existence
of an LI7-decomposition over R without pivoting (see Golub
& Van Loan 1983, Section 4.2). O

116

Lemma 2.10 Let B € E™*". Then we can either find an
upper triangular U € E™*" and a lower triangular L € E™*7
with ones on its diagonal, such that B = LU, or report
that one of the leading minors is not in E*, using O(r%)
operations in E.

Proof This follows from an application of the asymptoti-
cally fast LU P-decomposition algorithm of Aho et al. (1974,
section 6.4). This returns the factorization B = LU P, for
L,U as above and P an n X n permutation matrix. When
all leading minors of B lie in E*, it is easily proven by in-
duction on the number of rows in B that the returned P
is an identity matrix. Simply run the LU P decomposition
algorithm and if at any stage the returned P # I report that
one of the leading minors is not in E*. Aho et al.’s (1974)
algorithm requires O(r?) operations in E. O

We again assume that B € R"” and define ||B| =
max{||Bi;]|:1 <1, j < r}. We require a simple upper bound
for ||det B)| in terms of ||B]|, ||T||, and v = degT".

Lemma 2.11 Let I' € Z[z] be monic of degree v and R =
Z[z)/(T). For B € R™" we have ||det B|} < 2"7(ry)"
I

Proof Let B € Z[z]"*" be such that deg Bi; < v —1 and
B = Bmod . Then det B is a sum of r! polynomials of
degree at most r(y — 1), each of is a product of r elements
of B and so has height at most ¥"7*||B]|". (see Giesbrecht
1993, Theorem 1.5 for heights of products and division with

remainder of integer polynomials). Doing division with re-
mainder by T we find ||det Bl| < 2™ (rv)" - IB|I"IITI"". ©

Theorem 2.12 Let B € R™*". We can construct an algo-
rithm which either returns all the leading minors of B or
reports that one of them is not a unit in R. The algorithm
requires O™ (rT! . (v log || Bl| + v*log||T||)) bit operations
using standard integer and polynomial arithmetic. The al-
gorithm is probabilistic of the Las Vegas type and requires
space for O"(r?(log || B|| + vlog ||IT||)) bits.

Proof Let h € Z[z] with h = det{B) mod ' with degh < 7.
By Lemma 2.11, ||R}} < ||B|"}{T)|" " (rv)"2™".

Assume for now that all the leading minors of B lie in
R so B = LU, where I € R
ones on the diagonal and U € R is upper triangular.
The kth leading minor of B is then my = H1<'.<k Ui €
R. For a prime p, we can compute m; mod p, ..., m, mod
p when each or these is in R}. This is true if and only
if res(h,T') Z0 mod p. Applying Hadamard’s bound to the
Sylvester matrix of [' and A, we find

i1s lower triangular with

|res(h, I')

T T 2 7 T 2
SAIRIPITNT < €= UBITITITY (ry) 7277

Let = || B|I"||IT||" (rv)"2"" — by Lemma 2.11, p is greater
than the height of any minor of B. Let z be such that the
product of the z smallest primes is greater than 2u€, and let
P be the set containing the smallest z primes. It must be
the case that the primes in P which do not divide res(h,T")
have product greater than twice the height of any leadmg
minor of B. If the kth minor mx € R of Bis not in R~ then
{my mod p) € R}, for any prime p.

We proceed by computing an LU-decomposition of B
modulo each p € P. We either obtain the leading minors
of Bmod p in R mod p or report that one of the leading

miors of B mod p is a non-nnit in R mod p. Let @ C P
be the primes p modulo which each minor of Bmod p is a
unit in R mod p ~ we can compnuted an LU-decomposition of
B mod p. If HpeQ p > i then we can recover all the leading
minors of B by Chinese remaindering, and we return these.
Otherwise. we report that one of the leading minors of B is
not a unit in R.

"To analyse the cost of this algorithm we note

.
T (min{fwy} > ;LE})
v

_ rlog || Bl + 7° log ||T|| + v log(rv)
log log || B|| + log log [IT|| + log r + log v

where ¥(y) is the Chebyshev theta function (the log of the
product of all primes less than y), and n(y) is the prime
number function (the number of primes less than y). It is
well known that 9(y) = O(log y) and w(y) = y/log(y). All
primes in P have | = O(loglog || B|| + loglog ||| 4 logr +
log %) bits. For a prime p € P we can do an operation in
R mod p with O(~?/?) bit operations, and we can find the
leading minors of (B mod p) € (R mod p)™*” with O(re'yzl2)
bit operations. Todo this for all z primes requires O(zr%+?1%)
or O°(+"*" - (v log || B|| + 7" log ||T||)) bit operations. The
Chinese remaindering needed to recover the leading minors
in R can also be done in this time. The space required for the
output is dominant, and this is O(r log i) or O™(r*(log || B|| +
vlog i) D

2.4 Monte Carlo computation of the Smith normal form

In this subsection we present our new Monte Carlo algorithm
for computing the Smith normal form of an integer matrix.
It is based on a reduction to finding the contents of a list of
black box polynomials, as discussed above.

We require an asymptotically fast algorithm for finding
the rank of an A € Z™*™

La

Lemma 2.13 Let A € Z™*" with m < n. We can com-
pute r = rank(A) with O(m°n log |[A]l) bit operations using

standard integer arithmelic.

Proof We use a standard homomorphic imaging scheme.

Compute a number z such that b = Hijrimep > m™2| A"

By Hadamard’s bound every minor of A is less than b&.
Suppose ¢ € Z.1s an r x 7 minor of A. For each prime
p < ¢ = O(m(logm + log ||A|])) find the rank of A mod p.
Ibarra et al (1982) show this can be accomplished with
O(m®~'nlog? p) bit operations. At least one prime p < z
does not divide ¢, and rank(A mod p) is maximal and equal
to r = rank(A). O

Theorem 2.14 Let A € Z™*" with m < n, and ¢ a posi-
trne constant. We can construct a Monte Carlo type proba-
bilistic algorithm to compute the Smith normal form of A
which requires an cxpected number of O ((m°nlog || Al +
m® log” | A|]) - log(1/¢)) bit operations using standard inte-
ger and polynomial arithmetic. It returns the correct answer
with probability at least 1 — €, and requires O"(nmlog || A||)
bits of storage.

Proof By Theorem 2.1 we need only find the content dg
of the kth leading minor fr € Z[A] of X AY € Z[A] > for
1 <k <7, where A, X € Z"™ and Y € Z[A]"*" are as in

Theorem 2.1. By Theorem 2.8, the algorithm FindContent
does just this. The height of fi is O(||A|*s*) for 1 <1 < r.

The algorithm works in an extension ring R = Z[2]/(T")
of Z, for a monic I' € Z[x] of degree O(log? r) with log ||T'|| =
O(log® r). The black-box we use is from Theorem 2.12 and
finds the leading minors of B = PAQ for P € R"™*™ and Q ¢
R™". The arguments to the black box have height || B|| =
nm||Al|- 7). Thus, we can find all the leading minors of B
with O™ (r®“2mnlog || A|| + r*T* log || A]|) bit operations and
space for O7(r*log || A]|) bits.

By Theorem 2.8 we require O((log(1/¢) + loglogn +
log log || Al{)/ log 72) evaluations of the black-box plus an ad-
ditional O™(r®log® || A||) bit operations. The total cost is an
expected number of O"((m®nlog ||A]|+7° log® || A||)-log(1/¢))
bit operations. 0O

References
A. V. Aho, 1. E. Hopcroft, and J. D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-

Wesley (Reading MA), 1974.

E. R. Berlekamp. Factoring polynomials over large finite
fields. Math. Comp. 24, pp. 713-735, 1970.

J. Buchmann. A subexponential algorithm for the deter-
mination of class groups and regulators of algebraic num-
ber fields. In Séminaire de théorie des nombres, Paris,
1988.

T. J. Chou and G. E. Collins. Algorithms for the solution
of systems of linear Diophantine equations. SIAM J. of
Computing 11, pp. 687-708, 1982.

D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. J. Symb. Comp. 9, pp. 251~
280, 1990.

P. Domich, R. Kannan, and L. Trotter. Hermite normal
form computation using modulo determinant arithmetic.
Math. Operations Research 12, pp. 50-59, 1987.

F. R. Gantmacher. The Theory of Matrices,
Chelsea Publishing Co. (New York NY), 1990.

Vol. I

M. Giesbrecht. Nearly Optimal Algorithms for Canonical
Matriz Forms. PhD thesis, University of Toronto, 1993.
196 pp.

G. Golub and C. Van Loan. Matriz Computations. Johns
Hopkins University Press (Baltimore, USA), 1983.

J. L. Hafner and K. S. McCurley. A rigorous subexponen-
tial algorithm for computation of class groups. J. Amer.
Math. Soc. 2, pp. 837-850, 1989.

J. L. Hafner and K. S. McCurley. Asymptotically fast
triangulization of matrices over rings. SIAM J. of Com-
puting 20(6), pp. 1068-1083, 1991.

O. Ibarra, S. Moran, and R. Hui. A generalization of the
fast LUP matrix decomposition algorithm and applica-
tion. J. of Algorithms 3, pp. 45-56, 1982,

C. lliopolous. Worst-case complexity bounds on algo-
rithms for computing the canonical structure of finite
abelian groups and the Hermite and Smith normal forms
of an integer matrix. SIAM J. Computing 18, pp. 658-
669, 1989.

it haltofen, M. S. Krishnamoorthy, and B. D. Saunders.
Fast parallel compusation of Hermite and Smith forms
of polynomial matrices. SIAM J. Algebraic and Discrete
Wethods 8, pp. 683-690, 1987,

R. Kannan and A. Bachem. Polynomial algorithms for
computing the Smith and Hermite normal forms of an
integer matrix. SIAM J. Comp. 8, pp. 499-507, 1979.

R. Lidl and H. Niederreiter. Finste Fields, vol. 20 of En-
cyclopedia of Mathematics and its Applications. Addison-
Wesley { Reading MA), 1983.

M. Newman. Integral Matrices. Academic Press (New
York). 1072,

I. B. Rosser and L. Schoenfeld. Approximate formulas
{or some functions of prime numbers. Ill. J. Math. 6, pp.
54 91, 1962,

I. T Schwartz. [Fast probabilistic algorithms for verifica-
tion of polynomial identities. J. Assoc. Computing Ma-
chancry 27, pp. T01-T17, 198&0.

H. J. 5. Smith. On systems of linear indeterminate equa-
tions and congruences. Philos. Trans. Royal Soc. London
151 pp. 293-326. 1861,

118

Efficient Parallel Solution of Sparse Systems of Linear
Diophantine Equations
M. Giesbrecht!
Technical Report No. 97/02

Department of Computer Science
University of Manitoba
Winnipeg, MB, Canada, R3T 2N2

January 24, 1997

*Department of Computer Science, University of Manitoba, Winnipeg, Manitoba,
Canada, R3T 2N2. Research was supported in part by Natural Sciences and Engineering
Research Council of Canada research grant OGP0155376.

Efficient Parallel Solution of Sparse Systems
of Linear Diophantine Equations*

Mark Giesbrecht!

January 24, 1997

Abstract. An efficient new algorithm is presented for solving large sparse systems of
linear Diophantine equations which is substantially and provably faster than those pre-
viously known in both a sequential and parallel implementation. This is accomplished
by reducing the problem of finding an integer solution to that of finding a very small
number of rational solutions of Toeplitz perturbations of the original system. We then
employ the Block-Wiedemann algorithm to solve these perturbed systems efficiently in
parallel. On an input matrix A € Z"*" of rank r and w € Z™*1, the algorithm finds a
v € Z"1 such that Av = w with about O(r(r log || 4[|, + log ||lw]|,)/N) matrix-vector
products by A modulo single-word primes, on N < r(rlog||A||, +log||w||,) processors.
Here [|A]|, = max;; |4;;| and ||w||, = max; Jw;|. Additionally, about

O (r2 + T2 logllAlls +logllwlly) | n(rlog|lAlly +log fJwll,)
N min(n, N)

bit operations are performed on each processor, ignoring logarithmic factors. With only
one processor (i.e., N = 1) on a sparse input A € Z"*™ with high rank and O(n!*¢)
non-zero entries (for some 0 < £ < 1) our new algorithm improves on the cost of the
best known sequential algorithm by a factor of almost n!=¢.

1 Introduction

Computing integer solutions to systems of linear Diophantine equations is a classical math-
emnatical problem with many interesting applications in number theory (see Cohen 1993),
group theory (see Newman 1972) and combinatorics (see, e.g., Kramer & Mesner 1976).
Given an input matrix A € Z™*" and vector w € Z™1, the problem is to find integer vec-
tors v € Z™*! such that Av = w. It appears to be considerably harder to compute integer
solutions than solutions over Q or more general fields, the main difficulty being controlling
(potentially exponential) intermediate expression swell. Moreover, in practice many of the
matrices encountered are sparse (lots of entries are zero) and it is desirable to exploit this in
onr algorithms (see, e.g., Kramer & Mesner 1976, Hafner & McCurley 1989). For matrices
over fields this has been accomplished admirably by the algorithms of Wiedemann (1986),

“Research was supported in part by Natural Sciences and Engineering Research Council of Canada re-
search grant OGP0155376.

"Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.
Email: mwg@cs.umanitoba.ca

2 Mark Giesbrecht Jan. 24,1997, 10:15am

Coppersmith (1994) and Kaltofen (1995). The latter two algorithms are also extremely well-
sinted to a coarse-grained parallel implementation. In this paper we show how to achieve
this same success with sparse integer matrices, producing integer solutions of small size
while eliminating intermediate expression swell and fill-in. Our algorithm gives a substan-
tial improvement for sparse matrices over the best known algorithms (see below) in both
sequential and coarse-grained parallel implementations. The main result we demonstrate is
(summarized from Corollary 5.4):

Let A € Z"™ with rank r and w € Z™*, and assume a solution v € Z™*! to
Av = w exists. Let p = rlog||A|l, + log||lwl||, and suppose we are computing on
a network of N < rp processors.

o We can find a v € Z™ such that Av = w with an erpected number
of O (ro/N) matriz-vector products by A modulo primes with O(logn +
loglog([{A]ly + llwll,)) bits.

o The output v satisfies log||v||, = O (rlogn + rlog || A, + log ||w]|,).

o An additional O™ (r®*+rngo/N+nM(g)/ min(n, N)) bit operations is ezecuted
simultaneously by each processor.

e Each processor requires additional storage for O™(n+np/ min(n, N)) words
(not wncluding possibly shared images of A modulo single-word primes).

The algorithm is probabilistic of the the Las Vegas type: solutions produced are guaranteed
correct and, if a solution exists for a particular input, any invocation of the algorithm on that
mput produces a solution with probability at least 1/2. O(M(l)) bit operations are required
to multiplying two integers with [bits (M(I) = [? with standard arithmetic and M(l) =
{loglloglog! using FFT-based methods). For convenience we occasionally use “soft-Oh”
notation in our cost analyses: for any f,g: R — R, f = O(g) if and only if f = O(g-log® g)
for some constant ¢ > 0. This considerably simplifies notation when working with modular
algorithms: the primes used typically fit in single (32-bit or 64-bit) machine words and can be
operated on at unit cost, but have (unavoidable) logarithmic and doubly logarithmic factors
in their length when analysed exactly.

Like the algorithms of Wiedemann (1986) and Coppersmith (1994) which motivated this
work. we employ the so-called “black-box” paradigm, in which a matrix is defined by its
action on vectors by matrix-vector product. Individual entries of the input matrix are not
manipulated directly. Clearly a matrix with lots of zero entries will have a fast black box.
As in Giesbrecht (1996) we adapt this technique to integer matrices by working with matrix-
vector products modulo word-sized primes. Our goal then is to demonstrate comparable
results with Diophantine linear systems as have been obtained for systems over a field.

Early attempts at solving systems of linear Diophantine equations go back at least to
Blankinship (1966), Borosh & Fraenkel (1966) and Bradley (1971), while the first polynomial-
time solutions appear in Frumkin (1976) and Kannan & Bachem (1979). Since then, there
have been many improvements; see, e.g., Chou & Collins (1982), Iliopolous (1989), Havas et
al. (1993), Havas & Majewski (1994), Storjohann & Labahn (1996) and Storjohann (1996).
Most of these methods proceed by computing a triangular (Hermite) or diagonal (Smith)
form of A with multiplier matrices, from which the space of solutions to the system is easily
determined. Storjohann (1996) presents the best known solution to date:

Parallel Solution of Sparse Diophantine Equations Jan. 24, 1997, 10:15am 3

On input A € Z™ ™ and w € Z™*Y, with m < n, a vector v € Z™ ! such that
Av = w can be found with O(nm?log? (|| A|l, + ||lw||,) +m* log® (|| A|l, + [lwll,)) bit
operations using standard integer and matriz arithmetic. The output v € Z™*1
satisfies log ||v]|, = O(mlog(m) - (log||A||, + log ||w]|,))-
Here ||A||, = max;; | Ay;|, the A-norm of A. This is close to the best possible asymptotic cost
for dense matrices without resorting to non-standard matrix arithmetic, and is very close to
the cost of finding a rational solution to the same system. By comparison, our new algorithm,
implemented sequentially (N = 1), performs comparably — even marginally better — on
dense input. and substantially better on sparse input:

On input A € Z™ ™ with O(nm¢) non-zero elements (for some 0 < & < 1) and
w € Z™*Y, with m < n, a vector v € Z™! such that Av = w can be found with
an expected number of O (nm?*¢ log(|| Al + ||lw||,) + nm? log® (|| A|l, + ||wll,)) bit
operations using standard integer and matriz arithmetic. The output v € Z™**
satisfies log ||v]|, = O (mlogn + mlog ||All, + log]|lwl]l,).

The basic idea behind our algorithm is to solve the leading r x r system (where r =
rank A) of a small set of Toeplitz perturbations of the original system. Let U, L € Z"*" be
random unimodular upper and lower triangular Toeplitz matrices respectively, and consider
solving the system UALv = Uw. Kaltofen & Saunders (1991) showed that over the rationals
the leading r x r submatrix B, of UAL is strongly non-singular, and by solving this system
we quickly obtain as solution 9 € Q**! to A9 = w. In Section 2 we extend Kaltofen &
Saunders’ result by noting that if dy,... ,d, € Z are the determinantal divisors of A, and p
1s a “large” prime dividing di, then the order of p in the leading k x k& minor of B equals
the order of p in d; with high probability. Moreover, with high probability p does not divide
the denominators of any of the coefficients of the obtained solution #. This is proven by
examining the solution manifold of the perturbed system in the p-adic closure @@, of Q. By
considering a very small number (= loglog(n + ||A||,)) of perturbed systems we hopefully
obtain a series of rational solutions whose denominators are relatively prime, from which we
can construct an integer solution vector. We prove that using the above technique we can
efficiently find a solution whose coefficients have “smooth” denominators, i.e., only divisible
by primes less than 2r(r + 1). This method is realized in the algorithm SmoothSolver in
Section 3.

Unfortunately our analysis fails for small primes dividing d, (even if the algorithm does
not seem to fail often in practice). The problem stems from the failure of the inequality used
to bound away from zero the probability of getting a non-zero of a multi-variate polynomial
(the so called Zippel-Schwartz Lemma) in this case. To overcome this we considerably extend
a technique developed in Giesbrecht (1995) and work in a very small number of algebraic
orders of small degree over Z such that each small prime dividing d, remains inert in at
least one of these orders (the number, degree, and height of these orders is logarithmic in
). While these orders are no longer PID’s (and hence much of the mathematical structure
characterizing Diophantine solutions no long exists), their localizations at these inert primes
are PID’s and we think of our algorithms as working in these p-adic closures (even when they
really just compute in a small number field). We prove that rational solutions obtained by
perturbing with Toeplitz matrices over these orders, and solving over their quotient number
fields, are free of small primes dividing their denominators with high probability.

4 Mark Giesbrecht Jan. 24,1997, 10:15am

The algorithms for generating these orders with specified inert primes, and the theory for
working with their localizations is presented in Section 4. Finally, in Section 5 we present an
algorithm RefineToDiophantine which takes a smooth rational solution and produces a Dio-
phantine solution. The structure of this algorithm is almost identical to that of SmoothSolver
except for the computation in number fields; the cost is within a poly-logarithmic factor.

Definitions and Notation

We denote by F, the finite field with p elements (not to be confused with the p-adic integers
Z,. to be introduced later).

We define a height function on Q as follows. For a, b € Z with ged(a, b) = 1, we define the
hewght of a/b € Q as H(a/b) = max{|a|,]b|}. The A-norm of a matrix B € Q"™ is defined
as || Blj, = max,; H(B;;) and of a polynomial g = 3., biz* € Qlz] as ||g||, = max; H(b;).

For integers n and k < n, define C} = {(c1,. .. ,c_,c)_e N:il1<ep << <n} In
a principal ideal ring R, with B € R™" o = (b,... ,by) € CJ* and 7 = (c1,... ,c) € Cf
define the submatriz B[Z]:

2 Conditions and perturbations for Diophantine solutions

In this section we present the necessary mathematical underpinnings to our algorithm for
solving Diophantine equations. Much of this section is presented abstractly for integral
(entire) principal ideal domains. We will typically then apply these theorems to localizations
of Z and more general algebraic orders of number fields.

Smith dominant matrices over principal ideal domains

Let R be an integral principal ideal domain and K its field of fractions. We write a ~ b if
there exists a u € R* such that a = pb. Let B € R™*" of rank r with non-zero determinantal
divisors dy,... ,d, € R. We say that B is Smith dominant if B(}::::) ~dpforl <i¢<r.
Note that if R is a field, Smith dominant matrices are exactly those which are strongly

non-singular, that is, all leading minors are non-zero.

THEOREM 2.1. Let B € R™™ be Smith dominant of rank r with non-zero determinantal

divisors dy.d, and w € R*1. There exists a solution v € R™*! such that Bv = w if and
only if there exist v1.... ,v, € R such that B(vy,... ,v.,0,...,0)' = w.
REMARK 2.2. Since B(}:::;) ~d. #0, (vy,...,v,)" is the unique solution in K1 of
U1 wh
1...r
B[} E -
1...r
Uy Wy

wliere w = (wy.. .. ,’t‘Un)t»

Parallel Solution of Sparse Diophantine Equations Jan. 24,1997, 10:15am 5

PROOF. Since B is Smith dominant, standard unmodular row and column elimination
on B (without pivoting) yields the factorization B = XSY, where X € R"*" is lower
triangular with ones on the diagonal, Y is upper triangular with ones on the diagonal and
S = diag(sy,... .5,,0,...,0) € R"" is the Smith form of B (that is s; ~ d; and s; ~ d;/d;_;
for 2 <i<r). Then Bv =w <= XSYv=w <= SYv=Xlw <= Si =1, where
v =Ywv and @ = X lw. Suppose there exists a solution v € R**! to Bv = w. Then there

exists a © € R"*! such that S& = @, and we can choose © = (4y,...,%,,0,...,0)t € R**1
(since columns r +1...n of S are all zeros). This yields v = Y '9 as a solution to Av = w
and v = (y1.....4,.0,...,0) € R™! since Y~! is also upper triangular. The converse is
trivial. (I

Toeplitz perturbations into Smith dominant form

Let R be an integral principal ideal domain and K its field of quotients. Define

I zy 23 -+ =, 1
1 oz, . Yo 1
_ . — 1
= 1 x| L= ?/.3 .y2 o
1) : i - 1
1 Yn - Y3 Y2 1
where A = {@g, ..., Zyo1, Y2, ..., Yn_1} 1S a set of algebraically independent indeterminates

over K.

THEOREM 2.3. Let A € R™*™ have rank r and B = UAL € R[A]™*". For 1 < k < r we have
(;ont(‘B(}:::ﬁ)) ~ dy, where d;, is the kth determinantal divisor of A.

PRrROOF. Using a Binet-Cauchy minor expansion (see Gantmacher 1990, p. 9), we have

()= 2t)2, 7)),

O',TECZ:

Under the variable ordering z; < --- < ,, and y2 < --- < y,, Kaltofen & Saunders (1991)
show that the lexicographically smallest term of 5.1(1'(;’“) and E(lf_k) are unique to this choice
of o.7. Thus the polynomials f,, = il(l';k)ﬂ(ljk) € R[A] are linearly independent over K,
and in fact over any quotient field R/pR for any prime p € R. Let p be a prime in R and
I = ord,(dy). Clearly, p'| cont(‘B(i::::)). Suppose p'*t| cont(%(i:::z)). Then

e, A0~ 5 e A o

7 n
a,7EC) o, TEC

This implies the f,,’s are linearly dependent modulo p or that A(:) = 0 mod p'*! for all
o.7 € C;. The latter statement is false by our definition of {, and the former leads to a

contradiction. Thus ord, d; = ord, cont(‘B(}::::)) for all p € R, whence dj, ~ cont(%(i::::)).

6 Mark Giesbrecht Jan. 24, 1997, 10: 15am

We can use the above theorem to perturb a matrix into Smith dominant form with
high probability. We will employ the “Zippel-Schwartz” lemma to bound the probability of
obtaining a zero of a multi-variate polynomial:

FacT 2.4 (Zippel 1979, Schwartz 1980). Assume f € D[z, ... ,zx| is non-zero, D an integral
domain, and V a finite subset of D. Suppose elements ay, ... , a are randomly and uniformly
chosen from V. Then Prob{f(a;.... ,a;) =0:a1,... ,ar € V} < deg(f)/#V.

THEOREM 2.5. Let A € R™™ with rank r and determinantal divisors dy,...d, € R. Let
» € R aprime in R and V a finite subset of R whose elements are in distinct cosets modulo p.

Suppose ug, ... Uy, lo, ... 1, are chosen randomly and uniformly from V and we construct
1 uy ug -+ u, 1
1wy . lo 1
B =UAL. where U = 1 g L= 1.3 L 1 (2.1)
1 U2 o1
1 ln l3 lz 1
Then
1...k r(r+1)
Prob{orde<1.”k> =ord,d, Vk:1<k< r} >1- W
Proor. For any k,
1...k ,
B(lk) - dk 'fk(ku27~-' 7un7l27"' 7ln)
for some f;, € Rlxa. ... ,Zn, ya2,... ,ys] with content 1 and degree 2k by Theorem 2.3. Thus
p has the same order in B(i::::) as in dy if and only if fe(usg, ..., un,l2,... 1) # 0 mod p.
Since all elements of V are in distinct cosets modulo p, by Fact 2.4, fi(us, ..., un, l2,. .. In) =
0 mod p with probability at most 2k/#V. Thus the probability of fi(uz, ..., us, l2,... ;) =
0 mod p for any 1 <k <7 isat most Y ., .(2k)/#V =r(r +1)/#V. O

The following simple lemma allows us to solve a perturbed system to obtain a solution
to the original system.

LEMMA 2.6. Let A € R™" and w € R™!. Let U, L € R"*" with detU,det L € R* and
B = UAL. Then v € R™! is a solution to Bv = Uw if an only if v = Lo is a solution to
Av = w.

PROOF. For the forward direction, assume 7 is a solution to B9 = Uw. Then

Bt =Uw=—= UALt =Uw — ALV = w = Av = w,

since U is invertible in R**". Conversely, if AL? = w then UALY = UALY = Bo = Uw. 0O

Parallel Solution of Sparse Diophantine Equations Jan. 24,1997, 10:15am 7

Localizations of Z and Q

It will be convenient to consider the localizations of Q and algebraic number fields at a prime
p- We identify the p-adic integers Z, and p-adic rationals Q, with the (infinite) Laurent series

Zp:{ Z aip"":a,,;e{o,...,p—l}}, Qp:{ Z a,-pi:aié{O,...,p—l},meZ}

0<i<oo m<i<oo

nnder the usual arithmetic. A useful references for general localizations is Lang (1986), and
for p-adic numbers and analysis is Cassels (1986). Clearly Z, C Q, and Z C Z,. Also, if
¢ € Zis relatively prime with p then 1/v € Z, by Hensel’s Lemma (essentially p-adic Newton
tteration - see Cassels (1986), Lemma 3.1). Since any element in Q can be written as p®u/v,
where ¢ € Z. w,v € Z and ged(v,p) = 1, we see that Q C Q,. Ifa =Y ., _ap' € Q,
for a; € {0.... ,p — 1} and an, # 0, we define the p-adic order of a as ord,(a) = m and the
p-adic norm of « as |al, = p™™. with 0|, = 0. Thus Z, = {a € Q, : |a|, < 1}.

Parallel modular computation over Q

We next summarize for convenience a standard homomorphic scheme for parallel computing
over Q (see Wang et al. 1982, Collins & Encarnacién 1995). Let ¥ : Q° — Q' be a function we
wish to compute and suppose that we know a quickly computable (“upper bound”) function
7 Q" — R such that 7(z) > max{||z|,, ||¥(z)||,}; the cost of computing 7 will assumed
to be dominated by that of other computations. Suppose also that for all primes p € Z,
except for those in a finite set B C Z, we can compute ¥(Z) mod p from input (Z mod p)
with O(%(s)) operations in F,; when p € B we can report this fact in the same amount of
time. For convenience we will assume that #B8 = (log(7(z))°W.

Following standard practice, we first construct a set P C Z of sufficiently many small
primes. We then compute ¥(Z) mod p for randomly chosen p € P, rejecting bad primes as
we encounter them. Finally, when the product of the good primes chosen is at least 27(z)?,
we recover the solution by the Chinese remainder theorem and integer Padé approximation
(this 1s sufficiently many to recover numerator, denominator and sign). See Wang et al.
(1982). We crudely estimate that at least o < log,(27(Z)?) good primes are required, though
much better estimates are easily computed at run-time.

It 1s also convenient to allow for an n-point FFT to be performed efficiently (so we may
practically multiply polynomials of degree up to n with O(nlogn) operations). To facilitate
this, we choose primes p such that 2'|(p — 1), where I > [log,n]. By Dirichlet’s density
theorem on primes in an arithmetic progression, it is easily derived that we can efficiently
construct a set P with #P > 2(#B) + o such that logp = O(logn + log(#B) + loglog 7(Z))
for all p € P (see, e.g., Giesbrecht 1996, Section 3.2). For notational convenience we assume
that n = s“). From a practical point of view, primes of this size should fit into a single
(32-bit or 64-bit) machine word, and operations modulo a prime will have constant cost.

A randomly chosen prime (without replacement) will be bad with probability at most 1/2.
Thus we expect to compute ¥(Z) mod p for 29 = O(log(7(z))) primes p, and the computation
in F, requires O(¢(s) - (logn+log(#B) +1oglog 7(z))?) bit operations. Reduction of Z mod p
tor the used primes p € P requires O(slog||Z||, - log(7(Z))) bit operations and recovery of
the final integer solution require O7(¢ - M(log 7(Z))) bit operations; see Wang et al. (1982).

8 Mark Giesbrecht Jan. 24, 1997, 10:15am

We summarize the sequential cost in the following theorem.

THEOREM 2.7. We can construct a Las Vegas algorithm which on any input € Q° com-
putes W(z) € Q. The algorithm requires an expected number of O (¢(s) - log(7(Z)) +
slog(||z]|,) log(7(Z)) + t - M(log(7(Z)))) bit operations. We may assume in our cost function
o the availability of a practical n-point FFT at cost O(nlogn), where n = s°1).

The computation modulo individual primes is independent and hence can be parallelized
i a straightforward manner. The three stages of the algorithm, (i) reduction modulo the
prime base, (ii) local computation, and (iii) recovery of global solutions, are analysed sepa-
rately.

THEOREM 2.8. We can construct a Las Vegas algorithm which on any inputz € ° computes
U (7) € Q which runs in parallel on N processors:
(1) for N < sp, we can reduce ¥ mod p for the expected number of ¢ primes used from P
with O (splog ||Z||./N) bit operations carried out simultaneously by each processor;
(i) for N < p, we can compute V(Z mod p) for the expected number of p primes p from
P in an expected number of O™ (¢(s) - o/N) bit operations carried out simultaneously
by each processor;

(1ii) for N <t we can recover the solutions in Q° from images modulo ¢ good primes in an
expected number of O™(t - M(log(7(z)))/N) bit operations carried out simultaneously
by each processor;

where o = log(7(%)). We may assume in our cost function v the availability of a practical
n-pomt FFT at cost O(nlogn), where n = s°(1),

3 Finding rational solutions with smooth denominators

We present our algorithm for finding integers solutions to systems of integer equations in two
parts. The first part is the basic algorithm and finds a rational solution whose denominators
are A-smooth, that is, only primes less than or equal to A divide the denominators of the
coefficients. This algorithm appears to work well even with A = 1 (and hence obtains integer
solutions), but unfortunately we can only prove it for A > 2r(r 4+ 1), where r is the rank
of the input matrix. A modification is then presented to deal with the remaining case in a
theoretically sound way at an additional logarithmic factor in the cost.

For a v € Q! we define the denominator of v to be denom(v) = min{d € Z-¢ : dv €
Z11 | the least common multiple of all the denominators of the coefficients (in lowest terms)
of v. For any A > 0. we say that an integer b is A-smooth if all prime factors of b are less
than or equal to A (or b= 1 if A = 1),

Our algorithm also has two additional parameters aside from A and w:

e)\ > 0: the returned solution should have a denominator which is A-smooth. By setting

A = 1 we achieve integer solutions.

e ¢ > 0: an error tolerance. If it is reported that “No Integer Solution Exists” then this
is correct with probability at least 1 — €. If a solution is returned, it is always correct.
The need for such an error tolerance parameter € is also present in the underlying

Wiedemann and Block-Wiedemann algorithms for solving sparse singular systems over
a field.

Parallel Solution of Sparse Diophantine Equations Jan. 24, 1997,10:15am 9

Algorithm: SmoothSolver
Input: - A€ Z™" and w € Z™¥L;
- a smoothness bound A > 0;
- an error tolerance € > 0;
Output: - v € @' where denom(v) is A-smooth, or a report “No Integer Solution Exists”:
(1) Compute 7 := rank(A), correct with probability at least 1 — ¢/2;
(2) pe=2r(r+1); V:i={=0/2,...,8/2} CZ;
q =0
(3) For b:=1to [1+log,(1/€)] Do

)
(4) For i := 0 to s := [1 + log,(log, (n?B%| All,))] Do
(5) Choose random us, ... ,u,,lo,... I, € V;
“Build” a black box for B = UAL where U, L are as in (2.1); Let B, = B[}"7];
w = Uw = (wy,...,o0,)" € Z™;
(6) Solve B, = (w1, ... ,w,) for o = (vy,...,9,) € Q! with black box for B
If B, is singular, goto (5);
(7) v = L(vy,...,7,,0,...,0)" € @*¥L; §; .= denom (v(®);
If Av® £ w then report “No solution to Diophantine system exists”;
(8) g := ged(g, 03);
End For;
End For;
If g is A-smooth Then
(9) Find vg.... .7, € Z such that Y ... vid; = ¢;

(10) Return v = (1/g) - > gcic, Yidi - v9;
Else Report “No solution to Diophantine system exists”.
End If;

THEOREM 3.1. The algorithm SmoothSolver works as specified. Suppose the input matrix
A € 2" has (unknown) rank r.
(i) I a solution v € Q! is returned, it is always correct;
(i) loglvli, = O"(rlogn + rlog || All, + log [Jw|l,);
(iii) if A > 2r(r + 1) and a A-smooth solution exists to the system, a A-smooth solution is
found with probability at least 1 — .

Proor. The rank of A is obtained with probability at least 1 — ¢/2 via the algorithm of

Kaltofen & Saunders (1991) as generalized to integer matrices in Giesbrecht (1996).
For part (i), we note that A(6;v®) = §;w for 0 < i < s. Thus

Av=A (1/g 2%5 -yl) (l/g Z%z>-w:w
1<i<s 1<i<s

and denom(v) = g, which is A-smooth by construction.
For parts (ii) and (iii), first consider an iteration of the inner loop (4)-(8). We have

1Blls <n®|[Ulls - 14ll - 1L1s < n?B%|AlL, = O(m*r*||All,),

[Wwily <nllUl, - lwlly < npllwll, = Olnr?|fwll,).

10 Mark Giesbrecht Jan. 24, 1997, 10:15am

Applying Hadamard’s bound and Cramer’s rule we find

log, |6;| =O(rlogn + rlog||All,),
log ||, =O(rlogr + rlog|| B, ||, +logll@ll,) = O(rlogn + rlog||A| , + log ||w|,),
log [[017]|, =0(rlogn + rlog || Al + log [lwl|,),

for 0 < i < s. Also, log, 6; < log,(n?8?%||Al|,) is a (crude) upper bound on the number of
primes greater than A which can divide §;.

Assume that the rank r is calculated correctly in step (1). Since B(h:) is a non-zero
polynomial in us.y, la. ... 1, of degree 2r, B, is non-singular with probability at least
1 -2r/(2r(r + 1)) = r/(r + 1) by Fact 2.4. Thus we expect to execute steps (5) and (6) a
constant number of times for each iteration of the inner For loop. If a solution to Av = w
exists over Z it certainly exists over Q, and by Lemma 2.6 v will be such a solution (since
Q is a PID). Once the GCD of the denominators is A-smooth, we execute steps (9) and
(10). Step (9) is probably best done in practice by the algorithm of Majewski & Havas
(1995). but for a simpler analysis here we employ the algorithm Iliopolous (1989) which finds
Yo.. .- ,7s € Z such that log |v;| = O(log maxg<;<, |6;|-log s). The constructed v thus satisfies

log l|v]l, =log (max {\91’ > %HM“)HAD
0<i<s

=O((rlogn + rlog ||Al,)(logloglogn + logloglog || All,) + log [|w]|)

o1 O (rlogn +rlogl|lA||, + log ||wl|,), which proves (ii).

To prove (iii) assume that an A-smooth solution does indeed exist. We show that with
cach iteration of the outer For loop, the algorithm finds such a solution with probability at
least 1/2. Let p > X be a prime dividing &. Since #(V mod p) > 2r(r +1), by Theorem 2.5,

Prob{orde<;”Z> =ord,d;, Vk:1<k ST} >1/2.

If indeed orde(}::::) = ord,d for all £ (1 < k < r), the image of B in Z;*" is Smith
dominant. Thus by Theorem 2.1, the image of © in @ *! lies in Z;*! and the image of v() in
Q! lies in Z7*', whence p { denom(v®). Thus, the probability that p| denom(v®) for all
1 < < s =1+ log,(log,(n?82||A|l,)) is at most (1/2) - 1/log, (n*B%||A||,). The probability
this is true for any prime p > A dividing & is thus at most 1/2, since there are at most
log,(n23%||A||,,) such primes. By executing the outer For loop 1+ log,(1/€) times we ensure
that if a solution exists (and we obtained the rank correctly), we will find a solution with
probability at least 1 — ¢/2. Since the rank is correct with probability 1 — €/2, the theorem
follows. O

We will employ the Wiedemann and Block-Wiedemann linear equation solvers over a
finite field, as developed in Wiedemann (1986), Kaltofen & Saunders (1991) and Coppersmith
(1994). and analysed in Kaltofen (1995).

Parallel Solution of Sparse Diophantine Equations Jan. 24,1997, 10:15am 11

FacTt 3.2. Suppose we are given a black box for a non-singular matrix B € K™*" and vector
€ K™ over a field K with at least 1672 elements. On a network of N < r processors we
can solve B = w for v € K™*! with an expected O(r/N) matrix-vector products by B and
O(r*logr) operations in K, executed simultaneously on each processor (assuming an r-point
FFT is available in K). Fach processor requires additional storage for O(r) elements of K
(not including a possibly shared image of B).

This algorithm can be applied to non-singular rational matrices as a direct application
of the techniques of Theorem 2.8. See Kaltofen & Saunders (1991) for a different approach.

THEOREM 3.3. Suppose we are given a black box for a non-singular matrix B € Z"™" and
vector w € Z"' and wish to solve Bv = w for 5 € Q7. Let o = rlog||B||, + log ||w@]|,.
On a network of N < rp processors we can solve for © with an expected O (ro/N) matrix-
vector products by B modulo (single-word) primes with O(logr + loglog(||B||, + |l@]|l,))
bits. An additional O™(r* + r M(g)/ min(r, N)) bit operations is executed simultaneously by
each processor. Each processor requires additional storage for O(rp/ min(r, N)) words (not
including possibly shared images of B modulo single-word primes).

Proor. To apply Theorem 2.8, we need only note that the only bad primes are those which
divide the determinant of B, and there are at most O(r(logr+log||B||,)). It is also generally
convenient to eliminate small primes (say those less than 1672) to allow the Wiedemann and
Block-Wiedemann algorithms to (provably) work without the use of field extensions. O

We are parallelizing the linear solver in two different ways. First, we break the problem
into an expected p independent problems modulo ¢ distinct primes. Second, for each prime
we use up to r processors to solve a non-singular system over a finite field via the Block-
Wiedemann algorithm. A potential bottleneck is the recovery of rational solutions: each of
the 1 entries in the solution vectors is recovered independently from its modular images on
up to r processors. If M(p) = o? then the recovery phase potentially dominates the overall
cost, at least in theory.

THEOREM 3.4. Let A € Z™ " of (unknown) rank r < m, w € Z™', XA > 0 and ¢ > 0 be as
in the input to SmoothSolver. Let ¢ = rlog || A, +log||w]||, and suppose we are computing
on a network of N < rp processors.

(1) If a A-smooth solution v € Q"' to Av = w exists, SmoothSolver finds one with
an expected number of O (ro/N) matrix-vector products by A modulo primes with
O(log n+loglog(|| Al +||wl,)) bits. An additional O™(r*+rno/N+nM(g)/min(n, N))
bit operations is executed simultaneously by each processor.

(1i) If no A-smooth solution v € Q"' to Av = w exists, SmoothSolver requires an ex-
pected number of O"((rp/N)-log(1/¢)) matrix-vector products by A modulo primes with
O(log n+loglog(||Al|,+]|wll,)) bits. An additional O™ ((r®*+rng/N-+nM(g)/ min(n, N))-
log(1/€)) bit operations is executed simultaneously by each processor.

Fach processor requires storage for an additional O(n+ np/ min(n, N)) words (not including
possibly shared images of A modulo single-word primes).

ProOOF. The inner For loop iterates O(loglogn + loglog || A|l,) times. If a solution exists,
we expect the outer loop to iterate twice. If no solution exists, the outer For loop iterates
O(log(1/e)) times.

12 Mark Giesbrecht Jan. 24, 1997, 10:15am

Each evalnation of the black box for y — B,y where y = (y1, ... ,y,)" € Z™! is performed
by evaluating UAL(yy, ... , 4, 0,...,0) = (21,...,2,)% and returning (z1,...,2,)" = B,y.
Pre-multiplication by a unit triangular Toeplitz matrix takes O(nlogn) operations in the
ground field assuming an n-point FFT (see Kailath (1980)). Thus each matrix-vector product
by B, requires one black box evaluation of A modulo primes with O(log + loglog(||B||, +
i) 0) or O(log n+log log(|| All, + ||wll,)) bits, plus O(nlogn) additional operations modulo
prines of this same size. The linear system B,u = @ in step (6) is then solved using the
Block-Wiedemann method described in Theorem 3.3. The algorithm Iliopolous (1989), which
finds vo. .. .7 € Z. requires O((loglogn + loglog ||A4],) - (logr + loglogn + loglog || All,) -
Mirlogn + rlog||A|l,)) or O"(M(rlog||All,)) bit operations, which we will execute on a
single processor. Finally, to recover the solutions in Z™"*! requires O™(n M(g)) to the Chinese
remainder algorithm and integer Padé approximation on each coefficient (see Bach & Shallit
1996). O

4 Constructing algebraic orders with selected inert primes

The main theoretical hurdle to be overcome in finding Diophantine solutions (instead of just
solutions with smooth denominators) is that the Zippel-Schwartz lemma fails us for small
princs dividing the determinantal divisors. Our solution is to work in a collection of small
extension rings over Z. Recall that an algebraic order, or simply an order, is a submodule of
the ring of integers of a number field (see, e.g., Cassels (1986), Chapter 10) and contains Z
as a subring. In this section we describe how to construct orders of number fields such that
certain primes remain inert (i.e., the ideals they generate remain prime) of some prescribed
degree. We also discuss some useful properties of the p-adic integral closures of these orders
which will be important in the next section.
For any 7 € N, and s € Ryq define M(n;s) = {g € Z[z]: g monic,deg g = 1,]|g|l, < s}

Algorithm: BuildOrders

Input: n € Z and primes py,... ,p. € {2,...,7};

Output: ~ a set G C M(n;n7) such that for each ¢ € {1,..., s}, there exists a ['; € G with
I'; mod p; irreducible in Fy, [z].

(1) Repeat
(2) Let P:={1,... ,k}; G:={}
(3) Let | := 8nlog(2k);
(4) For j:= 1 to ! while P # {} do
(5) Choose a random h; € M(n;nT);
(6) For any 7 € P do
(7) If h; mod p; € F,,[2] is irreducible in Fp, [2]
Then P := P\ {i}; G := GU{h;};
End For;
End For;

Until P = {}:
(8) Return (7.

Parallel Solution of Sparse Diophantine Equations Jan. 24, 1997, 10:15am 13

THEOREM 4.1. The algorithm BuildOrders always produces the correct results as described
and requires an expected number of O((n® + n*logT) - knlogk - log® 7) bit operations. The
number of polynomials in G is O(nlog k) and each has A-norm at most nr.

Proor. First, for any prime p and n € N, define
M, (n) = {g € F,[2] : g monic,deg g = n} = M(n;n7) mod p.

For a randomly chosen h € My(n) and > 3, the probability that & is irreducible in F, [2]
1s at least

_l_zu(d)qn/d>?1_w>§p_n
na T onlp-1) T 4n

by Lidl & Niederreiter (1983), Exercise 3.27. If we choose h randomly and uniformly from
M(n;n7), h mod p falls into any particular residue class in M,(n) with probability at least
([(297 +1)/p|/(2nT+1))" > (1/p—1/(2nT+1))". The probability that h mod p is irreducible
in F,[z] is at least

n n n
(R N DY DR DY D)
p 2nTt+1 4n 4n 2nT + 1 4n 2n 8n

For any fixed prime p; € {p1,... ,ps}, the probability that in a single iteration of the outer
loop steps (2)-(7), for all random choices in step (5), we do not choose an h; € M(n;n7)
with A; mod p; irreducible in F,,[z] is at most (1 — 3/(8n))!. The probability that there
exists any prime p; € {py1,...,p.} for which we do not choose such an h; is thus at most
- (1 —3/(8n))" < 1/2 by our choice of [= 8nlog(2x).

For each random choice of h; € M(n;n7) the inner loop of steps (6)—(7) can be ac-
complished with an expected number of O((n® + n?log7) - & - log® 7) bit operations using
Berlekamp’s (1970) factoring algorithm, and this loop is executed I = 8nlog(2k) times per
1teration of the outer loop. O

Heights and localizations of algebraic orders

Let I' = 37 .o, %2 € Z[z] be monic and irreducible of degree n and § = zmod T, so
Z[0] = Z[z]/(T') 1s an algebraic order and a sub-order of the maximal order O (the ring of
algebraic integers) in Q(¢). Computationally we represent Z[0] with respect to the power
basis {1.z,2% ..., 271}, where elements are uniquely represented by an integer polynomial
of degree less than 7 (under standard addition and multiplication of polynomials, reduced
modulo T').

We define a Height function H : Q(f) — N as follows. Let © € Z"*" be the companion

matrix of I'. Fora =37, a;0" € Z[f], define H(a) = || D 0<icn @Ol Tt is easily verified

that
lal ifaeZ,
H(a) <

(max |a;}) - n(1 +||T||,)"" otherwise.
0<i<n

14 Mark Giesbrecht Jan. 24, 1997, 10:15am

and that for a,b € Z[0], H(ab) < H(a) - H(b) and H(a +b) < H(a)+ H(b). Moreover, a can
be represented as an integer polynomial of degree less than 7 with O(log #(a)) bits.

We represent an element o € Q(#) by a = a/b, where a € Z[f] as above and b € Z is
relatively prime to ged(ag, ... ,a,—1). Define H(a) = max{|b|,H(a)}. It is easily verified
that for o € Q, H(1/a) = H(a), while for general a@ € Q(), H(1/a) < n"H(a)?. We
similarly extend the A-norm || - ||, to matrices and polynomials over Q(8): for B € Q(6)™*",
| Bl|, = max,; H(B;;) and for g =3, biz* € Q(0)[z], ||gll, = max; H(b;).

Next suppose p € Z is a prime such that I' mod p is irreducible in F,[z]. The prime p
remains inert in the ring of integers O of Q(6), that is, the ideal pO is prime in O. This
also implies that Z[z]/(p,T") = Fpn, the finite field with p” elements. We can adjoin a root
= (zmod I') of I'(2) to @, to obtain an extension field @, (6) 2 @,, called the localization
of Q(0) at p. Similarly, we have Z,[6], a ring extension of Z, containing Z[0]. Z,[0] is easily
shown to be a principal ideal domain (see Lang (1986), Section 2.1). It is also easily verified
that Z,[0]/(p. ') = Fpn» (the residue class field of Q,(0)). Thus [Z,[0] : Z,] = [Q,(0) : Q,] =7
and {1.6.6%.... "'} forms a Z,-basis for Z,[f] and a Q, basis for Q,(6). We can extend
the p-adic order and p-adic norm to @, () by letting ord,(a) = min{ord,(a;) : 0 <i<n} €Z
and |aj, = max{|a;l, - 0 <i<n} € Ry fora=73 ., a0’ € Q,(0) (where a; € Q,). These
definitions agree with the p-adic norm and order on @, on its embedding in @, (#). We then
identify Z,[0] = {a € Q,(0) : |a|, < 1}.

In the language of p-adic analysis, @, (6) is the unique unramified extension field of degree
i over Q,. Z,[0] is the integral closure of Z, in @, (), that is, the elements of Q,(8) which
are roots of monic polynomials in Z,[z]. All this is in some sense made possible because p
(or rather the principal ideal generated by p) remains prime in the ring of integers of Q(6).
We obtain the following diagram of inclusions:

Q(0) — Q,(9)

- [N

Q Z10) —— Z,[f] Q

N [

7 —— 7L,

The utility in these definitions is in the following observation. Suppose we wish to evaluate
a rattonal function ¥ € Z(zy,...,z,) (a quotient of integer polynomials) at a point a =

(ai.. . L a,) € Z[0]". say b= ¥(a) € Q(F). Computationally b is represented by a polynomial

Y gciey izt € Q2. To show that a prime p does not divide any of the denominators
of the b;’s. we can show that b € Z,[f]. Since ¥ € Z(zy,... ,2,) C Zy(zy,...,T,) and
a < Z" C Z,, we can view the computation as taking place over Z,[f], which, unlike Z[f], is
a PID. Obviously, this does not change the algorithm, only our perception of the space on
which it operates.

5 Refining A-smooth solutions to Diophantine solutions

We can now present our algorithm RefineToDiophantine to refine a A = 2r(r + 1)-smooth
solution into a Diophantine solution. The algorithm is very similar to SmoothSolver, but
works 1 a series of algebraic orders of very small degree over Z.

Parallel Solution of Sparse Diophantine Equations Jan. 24,1997, 10: 15am 15

Algorithm: RefineToDiophantine
Input: - A€ Z™" r =rank A and w € Z"*1;
-0 € @ such that Av(® = w and &, = denom(v(®) is 2r(r 4 1)-smooth;
- an error tolerance ¢ > 0;
Output: - v € Z™*! such that Av = w or a report “No Integer Solution Exists”:
(1) Let py.....ps < 2r(r+ 1) be the distinct primes dividing dy;
(2) Using BuildOrders on inputs n = [logy(2r(r +1))] and pi,...,ps, find a set G =

{l1.... .} € Z[2] of monic polynomials of degree 7 such that for each p; there exists a
I', € G such that I'; mod p; is irreducible in F,[z]; Let 6; = (z mod [';);
(3) Let g = dq:
(4) For c:=1to [1+logy(1/€¢)] While g # 1 Do
(5) Fori:=1to s:= [1+log,(x)] Do
(6) For j:=1to !l Do
(7) Let Vi = {3 gchey arl : ax € {0,1}} C Z[6,];
(8) Choose random ug, ... , Uy, lo,... I, € V;;
“Build” a black box for B = UAL with U, L as in (2.1); Let B, = B[}"7];
Let w = Uw = (@, ... ,w,)" € Z[0;]";
(9) Solve B,7 = (wy, ... ,w,)" for v = (o, ... ,%,)" € Q(6;)"%;
If B, is Smgular goto (8);
(10) Let Zogk<n vy, @ik . — = L(v1,...,9,,0,...,0)", where v,(ci’j) e Qlfor0 <k <m;
Let v .= y{t7) ¢ gt and (51,1- = denom(v(i*j));
If Av®9) # w then report “No solution to Diophantine system exists”;
(11) Let g := ged(g, 6:5);
End For;
End For;
End For:
If ¢ =1 Then
(12) Find vy, vij € Z for 1 <4 < s and 1 < j <[such that vy + > v ;0i; = 1;
(13) Return v := y600® + 3, ;8; ;009 € Z<1.

Else Report “No solution to Diophantine system exists”.
bEnd If:

THEOREM 5.1. The algorithm RefineToDiophantine works as specified.

(i) If a solution v € Z™*! is returned, it is always correct;
(i) log ||v||, = O"(rlogn + rlog || A|l, + log |lw]||,) when log ||[v®||, is of this same size;
(iii) If an integer solution exists to the system, a solution is found with probability at least
1 —-e

16 Mark Giesbrecht Jan. 24, 1997, 10:15am

ProoF. The proof follows in much the same way as Theorem 3.1. For part (i), we note
that A(6;;007) = §,;w for 1 <i < sand 1 <j<l. Thus

E 1, _ § _
Av = A %-J-éi’j . ’U(7) = ’yi,jdi’j W =w
1<i<s 1<:<s
1<l 1<5<d

and v € 2"
For parts (i) and (iii), first consider an iteration of the inner loop (7)-(11). We have
B, <001 - Al - 1Ll = 02 - A1l - (o1 + [T,
|Uwly <nl|Ul, - [Jwlly = Oaflwlly - (1 +[[T))").

Applving Hadamard’s bound and Cramer’s rule we find

log || det(B,)||, =O(rlogn + rlog||All, + rnlog{|Tl],),

log |6, ;1 < log||1/ det(B,)||, =O(rnlogn + rnlog||All, + rn*log [ITl,),
log || det(B,)7||, =O(
log [Jo®7)]|, =O(

rlogn + rlog||A|l, + log|lwl|, + rnlog|[T']),
rnlogn + rnlog || Al + log |[w|l, + rn*log ||Tl.),

for 1 <1 <sand 1< j <l

Since B(i::::) is a non-zero polynomial in wug, ..., Uy, ls,... I, of degree 2r, B, is non-
sigular with probability at least 1—2r/(2r(r+1)) = r/(r+1) by Fact 2.4. Thus we expect to
execute steps (8) and (9) a constant number of times for each iteration of the inner For loop.
If a solution to Av = w exists over Z it certainly exists over Q(6;), and by Lemma 2.6 (&)
will he such a solution (since Q(6;) is a field and PID). Once the GCD of the denominators
is one. we execute steps (12) and (13), as in SmoothSolver. Iliopolous’s(1989) algorithm
fiuds ~;; € Z such that log|v; ;| = O(logmax; ; |9; ;| - log(sl)). The constructed v satisfies

l()g HUHA = lOg Z 'Yi,j“éi’jv(i’j)“A
1<i<s
1<5<d

=0O((rnlogn + rnlog||A|l, + rn*log ||T||,) - log(rl) + log |lwl|,)-

Since n = O(logr), | = O(log?r) and log||T'||, = O(log’r) by Theorem 4.1, log ||v||, =
O (rlogn + rlog [|Al|, + log ||wl||,) which proves (ii).

To prove (iii) assume that a Diophantine solution does indeed exist. We show that with
each iteration of the outer For loop, the algorithm finds such a solution with probability
at least 1/2. Let p € {p1....,px} and suppose that I'; € G is irreducible modulo p and
¢; = (z mod I';). Let B, be the image of B in Z,(6;)"*". Since #(V; mod p) > 2r(r + 1), by
Theorem 2.5,

1...k
Prob {ordp Bp<1 k> =ord,d;, Yk:1<k< r} >1/2.

Parallel Solution of Sparse Diophantine Equations Jan. 24,1997, 10:15am 17

If indeed ord, B,(}"¥) = ord,dy for all k (1 < k < r), B, is Smith dominant. Thus by
Theorem 2.1, the image of ¥ in @, (6;)"*! lies in Z,[6;]"**, and the image of v in Q, (6;)™*!
lies in Z,[0;]"**, whence p { denom(v(4)). Since A € Z™*™ and w € Z"*!, Al = Ay =
w and A?.z,(:’j) = 0 for 1 < k < n. Thus, the probability that p| denom(v) for all 1 <4 < s
is at most 1/(2x) and the probability this is true for any prime p € {pi,... ,p.} is thus at

most 1/2. By executing the outer For loop [1 + log,(1/€)] times we ensure that if a solution
exists. we will find one with probability at least 1 — . O

Like SmoothSolver, RefineToDiophantine can be applied to rational matrices as a direct
application of the techniques of Theorem 2.8. We first examine the cost of solving non-
singular systems over a number field using the Block-Wiedemann algorithm.

THEOREM 5.2. Let I' € Z[z] be irreducible of degree n = O(log) with log H(T') = O(log®r)
and £/ = (z mod T'). Suppose we are given a black box for a non-singular matrix B € Z[6]"*"
and vector w € Z[A]"*! and wish to solve Bt = w for © € Q(0)"*!. Let o = rlog||B|, +
log ||@],. On a network of N < rg processors we can solve for & with an expected O (rg/N)
matrix-vector products by B modulo (single word) primes with O(logr + loglog(||B||, +
llwl[,)) bits. An additional O (r? + r M(p)/ min(r, N)) bit operations is executed simulta-
neously by each processor. Each processor requires additional storage for O™ (rp/ min(r, N))
words (not including possibly shared images of B modulo single-word primes).

PrRooOF. We will apply Theorem 2.8 in a somewhat more complicated way than in Theorem
3.3. The set B of bad primes will consist of those primes p which either (i) divide the
discriminant of I' (so I' mod p is not squarefree; there are O(nlogn+nlog||T||,) such primes),
(ii) are such that (det B mod p) is not a unit in the finite ring Z[z]/(T', p) (so B is not invertible
modulo p; there are O(nlogn + nrlogr + nrlog||B||,) of these), or (iii) are less than 1672
(there are O(r?/log(r)) of these). Thus #B is polynomial in the logarithm of the output
height O(rlogr + rlog || B]|,)-

After constructing a set of small primes P as in Theorem 2.8 (immediately eliminat-
ing those bad primes falling into cases (i) and (iii) above), the computation proceeds by
completely factoring (I' mod p) = I'P ... Fgcp), where T'; € TF,[2]. We then apply the block-
Wiedemann algorithm over the finite fields T'[2]/(T%,p) for 1 < i < k (see Fact 3.2).
The solution is first recovered by the Chinese remainder algorithm to get a solution in
(I, [=]/(I'.p))"*! and finally a solution in Q(#)"*!.

The execution costs can now be estimated as in Theorem 3.3. U

THEOREM 5.3. The algorithm RefineToDiophantine works as stated on input A € Z"*"
with rank v, w € 2™, v® € Q"' with § = denom(v®)) being 2r(r + 1)-smooth, and
¢ > 0. Let p = rlog||A|l, +1log ||w||, and suppose we are computing on a network of N < rp
Processors.

(i) If a Diophantine solution v € Z™*! to Av = w exists, RefineToDiophantine finds one
with an expected number of O™(rg/N) matrix-vector products by A modulo primes with
O(log n-+loglog(||All,+||wll,)) bits. An additional O™ (r*+rng/N+nM(g)/ min(n, N))
bit operations is executed simultaneously by each processor.

18 Mark Giesbrecht Jan. 24, 1997, 10:15am

(1) If no Diophantine solution exists, RefineToDiophantine requires an expected number
of O°({rg/N) - log(1/e€)) matrix-vector products by A modulo primes with O(logn +
loglog(||All, + ||wl|l,)) bits. An additional O™((r* + rng/N + nM(p)/ min(n, N)) -
log(1/€)) bit operations is executed simultaneously by each processor.

Each processor requires additional storage for O"(n + np/ min(n, N)) words (not including
possibly shared images of A modulo single-word primes).

PROOF. The number of elements in G governs the number [of iterations of the innermost
For loop: by Theorem 4.1 I = O(log®r). Thus we execute (7)-(11) an expected number
215 = O(log® 7) times if a solution exists and O(log®(r) - log(1/¢)) times otherwise.

Each evaluation of the black box for y — B,y where y = (y1,... ,¥.)" € Z[0;]"! is per-
tformed by evaluating UAL(y1, ... ,¥r,0,...,0)t = (21,... , 2z,)%, and returning (21, ... ,2.)" =
B,y. Thus each matrix-vector product by B, requires one black box evaluation of A modulo
primes with O(logr -+ loglog(||B|l, + ||@]|,)) or O(logn + loglog(||A||, + |wl||,)) bits, plus
O(nlogn - nlogn) additional operations in Z[z]/(p,T") for primes p of this same size. The
linear system B,o = w in step (6) is then solved using the Block-Wiedemann method de-
scribed in Theorem 5.2. The remaining cost analysis follows in the same manner as Theorem
3.4 O

Given A € Z"*" and w € Z™*!, a complete algorithm for finding a Diophantine solution
v € Z"! such that Av = w is obtained by first applying SmoothSolver with smooth-
ness bound A = 27(r + 1) (to get an solution with A-smooth denominator) followed by
RefineToDiophantine (using the A-smooth solution as additional input v(?)). We immedi-
ately obtain the following corollary.

COROLLARY 5.4. Let A € Z™ " with rank r, w € Z™*! and ¢ > 0. Let o = rlog|lAll, +
log |lwl|, and suppose we are computing on a network of N < rp processors.

(i) If a Diophantine solution v € Z™*! to Av = w exists, we can find one with an ex-
pected number of O™ (rp/N) matrix-vector products by A modulo primes with O(logn+
loglog(]| Al + |lwl|i,)) bits. An additional O (r? +rng/N +nM(p)/ min(n, N)) bit op-
erations is executed simultaneously by each processor. The returned v € Z™*' satisfies
log foll, = O(rlog n.+ r log || A, + log lw]l).

(ii) If no Diophantine solution exists, we can determine this with an expected number
of O™ ((ro/N) - log(1/¢)) matrix-vector products by A modulo primes with O(logn +
loglog(|| Al +|wl|,)) bits; an additional O™ ((r*+rng/N+nM(g)/ min(n, N))-log(1/¢))
hit operations is executed simultaneously by each processor.

An incorrect solution is never returned. If any solution exists, one is found with probability
at least 1 — e. Fach processor requires additional storage for O"(n + np/ min(n, N)) words
(not including possibly shared images of A modulo single-word primes).

6 Open Questions

A number of important questions remain unresolved and extensions remain unexplored.

Random generation of Diophantine solutions. While the solutions we generate are in
sonie sense random, it has not been proven that they in any way sample uniformly

Parallel Solution of Sparse Diophantine Equations Jan. 24, 1997, 10:15am 19

from the solution space. Clearly, it is not possible to write down a complete basis
for the solution space within the amount of time and space allowed. Still, Kaltofen
& Saunders (1991) showed how to randomly sample from the solution manifold for
singular systems of linear equations over a field. Such a result should be obtainable in
the current context.

Proving SmoothSolver yields Diophantine solutions directly. SmoothSolver is cur-
rently only shown to give solutions whose denominators are 2r(r + 1)-smooth. These
are later refined to integer solutions by RefineToDiophantine. It seems quite possi-
ble that SmoothSolver finds Diophantine solutions quickly as well, but this appears
difficult to prove. The problem seems akin to showing Coppersmith’s (1994) algorithm
works over Fy; see Kaltofen (1995).

Finding positive solutions It is desirable in many applications (such as combinatorics)
to obtain solutions whose coefficients are all positive. Ad hoc techniques based on
combining multiple general solutions have been used in some cases for finding certain
combinatorial designs. It would be useful to find a rigorous method based on a small
number of random solutions.

Implementation The algorithms discussed here are currently being implemented using the
LiDIA library for computational number theory.

References

E. Bach and J. Shallit. Algorithmic Number Theory, Volume 1: Efficient Algorithms. MIT Press (Cambridge,
MA). 1996.

E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp. 24, pp. 713-735, 1970.

W. A. Blankinship. Algorithm 288, solution of simultaneous linear diophantine equations. Comm. ACM 9,
pp. 514. 1966.

[. Borosh and A. S. Fraenkel. Exact solutions of linear equations with rational coefficients by congruence
techniques. Mathematics of Computation 20, pp. 107-112, 1966.

G. Bradley. Algorithms for Hermite and Smith normal matrices and linear diophantine equations. Math.
Comp 25(116), pp. 837-907, 1971.

J.W.S. Cassels. Local Fields, vol. 3 of London Mathematical Society Student Texts. Cambridge University
Press, 1986.

T. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear Diophantine equations. STAM
J. of Computing 11, pp. 687-708, 1982.

H. Cohen. A Course in Computational Number Theory. Springer, 1993.

G. Collins and M. Encarnacién. Efficient rational number reconstructions. Journal of Symbolic Computation
20, pp. 287-297, 1995.

D. Coppersmith. Solving homogeneous linear equations over gf(2) via block wiedemann algorithm. Mathe-
matics of Computation 62(205), pp. 333-350, 1994.

M. A. Frumkin. An application of modular arithmetic to the construction of algorithms for solving systems
of linear equations. Dokl. Akad. Nauk SSSR 17(4), pp. 1165-1168, 1976.

F. R. Gantmacher. The Theory of Matrices, Vol. I. Chelsea Publishing Co. (New York NY), 1990.

M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM J. Comp. 24, pp. 948-969,
1995.

M. Giesbrecht. Fast computation of the smith form of a sparse integer matrix. Computational Complezity ,
1996. Submitted.

20 Mark Giesbrecht Jan. 24, 1997, 10:15am

J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of class groups. J.
Amer. Math. Soc. 2. pp. 837-850, 1989.

G. Havas and B.S. Majewski. Hermite normal form computation for integer matrices. Congressus Numer-
anfiumn 105, pp. 184-193, 1994.

G. Havas. D. Holt. and S. Rees. Recognizing badly presented Z-modules. Linear algebra and its applications
192, pp. 137-163, 1993.

C. Iliopolous. Worst-case complexity bounds on algorithms for computing the canonical structure of finite
abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Computing 18, pp.
658 -669, 1989.

T Kailath. Linear systems. Prentice-Hall (Englewood Cliffs, New Jersey), 1980.

E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear
systems. Mathematics of Computation 64(210), pp. 777-806, 1995.

E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear systems. In Proc.
AAECC-9, vol. 539 of Springer Lecture Notes in Comp. Sci., 1991. 29-38.

R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of
at integer matrix. SIAM J. Comp. 8, pp. 499-507, 1979.

E.5 Kramer and D. Mesner. t-designs on hypergraphs. Discrete Math. 15, pp. 262-296, 1976.
S. Lang. Algebraic Number Theory. Springer-Verlag (New York), 1986.

R. Lidl and H. Niederreiter. Finite Fields, vol. 20 of Encyclopedia of Mathematics and its Applications.
Addison-Wesley (Reading MA), 1983.

B. Majewski and G. Havas. A solution to the extended gcd problem. In Proc. ISSAC’95, pp. 248-253,
Montreal, Canada, 1995.

M. Newman. Integral Matrices. Academic Press (New York), 1972.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Computing
Machinery 27, pp. 701-717, 1980.

A. Storjohann. A fast practical deterministic algorithm for triangularizing integer matrices. Unpublished
manuscript. 1996.

A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms of integer matrices.
I Proceedings of ISSAC’96, pp. 259-266, Zurich, Switzerland, 1996.

P. Wang, M. Guy, and J. Davenport. P-adic reconstruction of rational numbers. SIGSAM Bulletin 16(2),
pp. 2--3, 1982

D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory
IT-32. pp. 54-62, 1986.

R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM 79, pp. 216-226, Marseille,
1979.

