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INEQUALITIES BETWEEN PROJECTION FUNCTIONS
OF CONVEX BODIES

By PauL Goopey and GAOYONG ZHANG

O

Abstract. We obtain injectivity results for certain integral transforms on Grassmann manifolds. These
are used to solve the intermediate cases of a problem of Shephard and to give other applications to
projection functions of convex bodies of revolution.

1. Introduction. A convex body in n-dimensional Euclidean space [E" is
a compact convex subset with nonempty interior. It is said to be centrally sym-
metric if it is a translate of its reflection in the origin. The starting point of
these investigations can be found in the work of Shephard [1964] who asked the
following question:

If K and L are centrally symmetric convex bodies in E", is there the implication

volu_ (K | u) > vol,_ (L | ut), Yue S = vol(K)> vol,(L)?

Here, K | u' is the orthogonal projection of K onto the subspace of E" orthog-
onal to the unit vector u € §"~!. The question was answered independently by
Petty [1967] and Schneider [1967]. They both showed that the answer is affir-
mative if it is further assumed that K is a zonoid. Zonoids are limits of vector
sums of line segments. Both authors also showed that this further assumption
cannot be suppressed. In addition, Schneider showed that the implication is not
true if L is any nonzonoid whose boundary is C"*? and has positive curvature.
Schneider’s results are further refined by Ball [1991], and by Goodey and Zhang
[1996]. Interesting variations of the Shephard problem are considered by Chak-
erian and Lutwak [1992 and 1996]. The generalization of the Shephard problem
for lower dimensional projections of convex bodies has been open since Petty
and Schneider’s work, see Question 4.2.1 of Gardner [1995]. It states:

If K and L are centrally symmetric convex bodies in B", andi € {1,...,n—1},
is there the implication

vol(K | E) > vol(L | E) VE € L} = vol,(K) > vol,(L)?
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346 PAUL GOODEY AND GAOYONG ZHANG

Here £ denotes the Grassmann manifold of all i-dimensional subspaces of E".
The counterpart of this problem for cross sections of convex bodies is considered
by Bourgain and Zhang [1996], and by Zhang [1996].

A key idea for the case of hyperplane projections is the use of the spheri-
cal cosine transform. This arises naturally since zonoids (centred at the origin)
are precisely those bodies whose support function is the cosine transform of a
positive measure on S"~!. The injectivity of the spherical cosine transform as
well as Minkowski’s existence theorem for surface area measures play important
roles in the solution of the Shephard problem for hyperplane projections. For the
intermediate cases 1 < i < n— 1, the corresponding cosine transform on a Grass-
mann manifold is not injective and there is no known analogue of Minkowski’s
result. To overcome these problems, we will use techniques from harmonic anal-
ysis to examine the kernel of the cosine transform on a Grassmann manifold. We
will also use techniques from integral geometry. In particular, we use appropriate
Radon transforms on Grassmann manifolds. We will show that, despite the lack
of injectivity of these transforms, by concentrating on bodies of revolution, we
can find results analogous to those of Petty and Schneider. To be more precise,
we will find a class of bodies which yields an affirmative answer to the general-
ized Shephard problem. This class is bigger than the class of zonoids. We will
prove that, corresponding to any centrally symmetric convex body of revolution
outside this class, whose boundary is sufficiently smooth and has positive curva-
ture, there are counterexamples to the generalized Shephard problem. It will be
shown that examples of such bodies of revolution are provided by deformations
of double cones in E". The combination of these results provides a solution to
the generalized Shephard problem.

In Section 2, we carry out the harmonic analysis which provides the necessary
information about the kernels of the cosine and Radon transforms. Our solution
of the generalization of Shephard’s problem is the topic of Section 3. In the
final section, we give some further applications of our techniques to bodies of
revolution. In particular, we obtain information about the space spanned by the
intermediate projection functions of bodies of revolution.

Acknowledgments. We would like to thank Professors Eric Grinberg and Wolf-
gang Weil for their helpful suggestions regarding this work.

2. Cosine and Radon transforms on Grassmann manifolds. For1 <i <
n — 1, the cosine transform T L*(L}) — L*(L}) is defined by

TN = [ X)W forf € L(ED and X € £,

where |(X, Y)| is the absolute value of the determinant of the orthogonal projection
of X onto Y. and v7 is the rotation invariant probability measure on L}. For
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I <i#j<n-—1 the Radon transform R};: Lz([,?) — LZ(E}?) is defined by
RN = [ fnvian,
£re0

where £7(X) is the submanifold of £} which comprises all Y € L] which contain
(respectively, are contained in) X, and ¥ is the invariant probability measure on
L3(X). It is well-known that if f, g € Lz(El’-’) and if h € Lz(ﬁj’f) then

[, @neogavix) = [ Fo0rie ) viax)

and

L, ®anxconyvpan) = [ re0RmEO v,
J i

Combining this with the observations
T!: C™(LYY — C°(LY) and Rl C=(LY) — C=(L),
we see that both transforms can be extended to distributions ¢ on L} by
(TP6X ) =6(T7f)  and  (R}6)(8) = 6(R};8),

for f € C*(L}) and g € C*°(L}). We also note that, with this extension, 17
maps a measure 4 on L7 to a continuous function 77y on L} defined by

T = [ 1067 pa).
If f is a function on L, we denote by f* the function on L£"_; defined by

fHE) = f(EY). Clearly f € L2(£;’) if and only if f+ € Lz(ﬁﬁ_i). It is also easy

to see that, if 1 <i#j<n-—1, then

2.1 (RLf) " =Ri_,ift and  (TPf)" =T0

n—i,n—j
Furthermore, for 1 <i<j<k<n—1, we have

Of course, (2.1) shows that these two statements are equivalent.
We will use the cosine transform 77 to define a special class of convex
bodies, which includes the zonoids. Our interest in the Radon transform Rj;
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stems largely from its occurrence in integral geometry. In particular, the Cauchy-
Kubota formulas (see Schneider and Weil [1992], for example) imply that if
1 <i<j<n-1,then

(2.3) ol (RLVIAK | ))(F)= V(K | F)  forall F € L.
Here, fori=1,2,.--,n, we denote by V;(K) the ith intrinsic volume of a convex
body K, and

ai‘/ _ i!lii].!h}j
ki —

klkellsy

where «; denotes the i-dimensional volume of the unit i-dimensional ball B;. We
recall that intrinsic volumes can be defined by

in—i

Vi(K) = o™? / vol;(K | E)v}(dE),
cr

and that, in case dimK = i, we have V;(K) = vol;(X).
For X € L}, we denote by éx the probability measure on L? which is con-
centrated on X. Clearly
(2.4) Tiéx =|(X,-)]  and  R}éx =v).
In the case i < j, the Cauchy-Kubota formulas (2.3) give

2.5) RE|(X, )] = o 'Vi(Cx | )

and, for E € L’j’

(2.6) (T )E) = (RLNE )X = (Ry_j o[ (ES, ) ) (XH)

a2V, (Cpa | XYY = o T Vi(Cx | E),

where Cy denotes the unit cube in X. It follows from (2.4), (2.5) and (2.6) that

n n _ in—ipnpn
R Ti'éx = o, ;Ti Ri ;6%

for each X € L?. Combining this with (2.1) and using the fact that all measures
can be approximated by sums of atomic measures, we have, for all 1 < i+#j <
n—1,

(2.7) RIT! = oW TTRY,.

Both the cosine and Radon transforms are continuous, linear and intertwine
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the group action of SO(n) and so we will examine them using harmonic analysis
on L. First we will bring together some results concerning the irreducible in-
variant subspaces of L?(L"). These results can be found in the books of Boerner
[1963] and Helgason [1984], for example. In view of the above observations
regarding orthogonality, it is convenient for the purposes of harmonic analysis
to identify the functions f and f*. Thus £ = £"_; and so we may assume that
2i < n. The fundamental result is the fact that Lz(ﬁ?) is an orthogonal sum of
invariant irreducible subspaces, namely

2.8 L2y =PHY for1<i< E],
(2.8) (,)@5 or _,_[2

where the summation is over equivalence classes 6 of irreducible representations
of SO(n); see Helgason [1984, p. 391]. Two representations 7y on Vq and 75 on
V, are said to be equivalent if they admit an intertwining operator A: V| — V3,
that is, if A is linear and A7 = mA.

Equivalence classes of irreducible representations of SO(n) are characterized
by their highest weights; if n = 2p is even, these are the integer p-tuples of the
form (my,...,m,) with my > mp > --- > mp_; > |my|, whereas if n = 2p + 1
is odd, they are again integer p-tuples but now those which satisfy m; > my >

- > m, > 0. So the ¢ appearing in (2.8) may be replaced by the highest
weight (my, ..., mp). The highest weights corresponding to the ¢ for which Hg'i
is nontrivial are precisely those p-tuples (my, . .., my,) where p = [5] which satisfy
the following two conditions:

(a) m;=0 forall j > i,
(b) the integers my,...,m, are even;

see Strichartz [1975], Sugiura [1962] and Takeuchi {1973]. Consequently, (2.8)
can be rewritten as

2 _ n,i
(2.9) LA(L)) = & Gy, 2mi,0,...0)"
2y 2mi,0,...0)

In fact, the Hfs, 2m:0....0 are the only nontrivial invariant irreducible subspaces

,,,,

of L2(£M). In particular, we have

o0
(2.10) LA(Lr_y) = LALY = D Hmo....0r-

m=0

Of course, the spaces H?i:n,o,...,O) are precisely the spaces of spherical harmonics
of degree 2m in dimension n. We also note that the nonzero constant functions
in L*(L}) are members of H, ).
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The intertwining property of 77 and R}; shows that, for each highest weight
2my,...,2m;,0,...,0),
the spaces T} (2”11 2m;0,...0) and R H?zlml 2m;0,...0) are invariant irreducible

subspaces of the appropriate Hilbert space. So we deduce from (2.9) that these
are either trivial or one of the subspaces H(zm

latter two cases, we must have

20,007 H(Zm],...,ij',O,...,O)' In the

(2m1,.. 2m,, . ) (2m1,...,2mj,0,...,0)

since the intertwining property of the transforms shows that these weights corre-

spond to equivalent representations. Furthermore, Schur’s Lemma shows that, in
case

n _ oy
R (2m1 .2m; 0. 0)_H(Zml,..‘,ij,O,...,O)’

we can identify the subspaces (2m| ’’’’’ 2m;0....,0) and H 2m| 2m;0....0) and then the

operators T} and Rj; act as multiples of the identity on H3,, 2m;0,..,0) Ve write

n noe n,ij
Tif = (2m1 ..... 20,00 and Rif =Vim,,.. 0,0

iff € Hp,, . 2m;,0,...,0)- INJectivity questions about 77 and R; can be reduced to
questions as to which of these multipliers are zero.

The spherical cosine transform 77 = T_, mentioned in the introduction is
injective. That is

Aomo..p 70 forallm=0,1,2,....

For the generalized Shephard problem, we will be interested in 77 for 1 <
i < n— 1. These transforms were shown not to be injective by Goodey and
Howard [1990]. If i < j the transform R}; is injective (on C*° functions and on
distributions) if and only if i+j < n, whereas if i > j, it is injective if and only if
i+j > n; see, for example Grinberg [1986] and Gelfand, Graev and Rosu [1984].

In order to describe further injectivity properties of these intertwining trans-
forms we introduce two subspaces of Lz(Cf),

oC
no__ 7,1 _ n,i
R = @H(zm,o,...,m and 7= EB 2my.....2m;,0,...,0)"

m=0) @my,...2m;0,...,0)
ni

@my,...2m0,.. 07

Our first objective is to establish the inclusion R? C J7. An important tool in
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our proof of this inclusion (and in later results) is the branching theorem (see
Boerner [1963], Theorem 2.1). The branching theorem explains how to express
the restriction of an irreducible representation of SO(n) to SO(n — 1) as a sum
of irreducible representations of SO(n — 1). In terms of the expansion in (2.9), it
can be stated as follows

2p,i ~ 2p—1,i
[I(MI,...,mlz)lﬂ?p*1 - @ H(m:,..., 1’7_])
my2m 2 Zmp_ 2my > {mp|
and
2p+1,i ~ 2p,i
H(ml mp)'EZP - @ H(m’ ..... ml)°

my2my > 2mp 2y, 2mp>jmp|

LEMMA 2.1. The inclusion R} C T} holds for all 1 < i < n — 1 and is strict
precisely when 1 < i <n— 1.

Proof. The first step in our proof is to show that, for 1 < i #j < n -1,
we have 1/(2m0 070 for all m =0,1,2,.... In the case i < j, we choose a

.....

o) This gives

n
V(zmo O)f R 178

.....

The proof fori > ] is analogous.
It follows from (2.7) that, for m=0,1,2,...,

ni,l n,i in—i yn,l n,i,1
V(zm,o,..,,O)A(zm,o,...,())—aln 1/\(2m,0 ..... 0Y2mp....0)

and so
l}'l l
(2m0 0 = O 1>‘(2m0 ..... 0)710'

Consequently R? C 37 foreachi=1,...,n— 1. Inthe cases i=1, n— 1, (2.10)
shows that R? = J7 = L2(L}). A
Our next objective is to prove that if X5, ., o ¢ # 0 for some highest

,,,,,

weight (2my,...,2m;,0,...,0) then /\?2+nlfi 2m:0,..,0) 7 0 for some highest weight

.....

(2]’!1,.. znlv O)> (Zmlv"'72mi709--~’0)7

where > refers to the usual lexicographical ordering. To this end, we choose
a nontrivial function g" € H(3,, o, 0 and let " be the measure on £t
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defined by
/_cnﬂf X0 p(dX) = /E Slep(Dg" @)@y for f € CULI.

Here we are thinking of £ as a subset of £*! in the usual way and we note that
4" is a measure on £7*! which is supported by L. Now we define h = T}*' " €
cLrh L>(L7*1). We note that

_n_n _ M n n,i
hlen =T78" = Agm,...2m0..08" € Ham,. ami0....00

[t follows from the branching theorem that 4 has a nontrivial Hilbert space pro-
n+l1,i

jection into some H,, " 5, 0 o) With
2ny,...,2n;,0,...,0) = Qmy,...,2m;,0,...,0).
So there is a function f**! € Hi5," 5 o ) such that

/ﬁ " FHORX) v (dX) #0,
which means

/ 0 / X, Y)| p(dY )1 (dX) # 0.
£7+| . L;Hl

This shows, in particular, that 77*'f"*! # 0 and therefore gnnl 2i.0,...0) 7 05 88
required.
It is proved in Goodey, Howard and Reeder [1996] that

0 1
= @ @ H?Zﬁﬂsz)'

m|=0 MQZO

So /\?iiz,Z) # 0 for all m > 1. Consequently, for each dimension n > 4, there
are infinitely many m; > mp > 1 for which )‘?i%nl,zmz,O,...,O) # 0. Tt follows that
75 # R; for all n > 4. Next, we note that 75 = 75 and so )‘(Sé?nl 2my) 7 0 for
infinitely many m; > my > 1. Again, we can deduce that, for each dimension
n > 5, there are infinitely many m; > mp > 1 for which )\(2”“ 2m20 ,,,,, o 70
Continuing in this fashion, we deduce that J7 # R} for each i = 2,. -2, a8
required. O
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LEMMA 2.2. For 1 <i#j < n— 1, the cosine and Radon transforms

[

T": 7! — 77 and R} R — R}
are injective.

Proof. For the cosine transform, this is an immediate consequence of the
definition of J7. For the Radon transform, the result follows from the fact that

Viomo...o) 7 0 for all m =0,1,2,..., which was established in the proof of the
previous lemma. a

We note that it also follows from Lemma 2.1 that 77": R} — R is injective.
We will now establish a corresponding surjectivity result for 77
It is shown in Strichartz [1981] that

Hm+1ﬂﬂTﬂm=(_lm Kom4j—2
VaL(m +j/2) TKom—1Kj—2

nlyj
V(zmo ..... 0) = =(—-1)"

For | <i<j<n-—1, we use (2.2) to deduce that

n,1j
V(2m0 0T V(2mo ..... O)V(2m0 .0

and so
Vn,i,j _ Ri—2K2m+j-2
(2m,0.....0) ————lﬁj-zﬂzmw—z
It follows immediately that, for 1 <j < i <n— 1, we have

n,ij _ Bn—i—2K2m+n—j-2
Yam.,...00 =

Kn—j—2R2m+n—i—-2 '
Schneider [1967] showed that

)\ — (- l)m_l I'2m — 1)F(n/2)
2m,0.,...,0) 22m—1 ﬁr‘(m)r‘(m +(n+ 1)/2)
= Rom—-2K2min—1
— _ 1 m—1 .
(=D w222 K g _4bin—2

Moreover, he gave the estimate
-1 2)/2
Mmool ™' = 0m™P/%)  asm — oo,
so we can immediately deduce that

2.11) INo.. 0l = 0m™P2) asm — oco.
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The required surjectivity result will be simply a matter of transferring Schneider’s
techniques to the current setting.

LEMMA 2.3. For | <i < n — 1, the cosine transform
T/ R NC™(LY) — RN C=(LY)
is bijective.

Proof. We remark that this result will be sufficient for the sequel but that we
could use the methods of Strichartz [1981] to obtain stronger results in terms of
Sobolev spaces and that similar results could be obtained for the Radon trans-
forms.

As mentioned above, the injectivity follows from Lemma 2.1 and so we will
only prove the surjectivity. We denote by A the Laplace Beltrami operator on
L} and assume f € R? N C®(LY). If f has harmonic expansion f = Yomeofm
where f,, € Hs,, o o) then Af has expansion Af = — 3" (2m)(2m + n — 2)f;y,
see, for example, Strichartz [1981]. We deduce that, if f € RY N C>(L}) then

S mzo M ||f||* converges for all p = 1,2, .. .; here ||f|| denotes the L2-norm of f
It follows from (2.11) that the function g deﬁned by g =320 (/\(Zm0 .... o) Yo
1s in R} N C(LY). Clearly f = T''g and so the proof is complete. O

Our applications will concern convex bodies of revolution, so we will be
interested in the action of the cosine and Radon transforms on functions with
certain symmetry properties. We imagine &"~! as being embedded in E" and
then think of SO(n — 1) as a subgroup of SO(n). If f € HE’,’,fI .... my) 1S nontrivial
and rotationally symmetric, in the sense that pf = f for all p € SO(n— 1), then the
restriction of f to £~ is a nonzero constant and therefore a member of H. L ’0)
The branchlng theorem, therefore, implies that m; > 0 > my > --- > 0 and SO
my = - =my, = 0. It follows that any rotationally symmetric flll’lCthl’l f e L3Ly
is a member of R7; of course, this is true no matter what the axis of rotational

symmetry of f might be.

3. Shephard’s problem and bodies of revolution. As we remarked in the
Introduction, the case i = n—1 of the generalized Shephard problem was solved by
Petty [1967] and Schneider [1967]. The case i = 1 is trivial, since the hypothesis
then implies that K contains some translate of L and so clearly V,(K) > V,(L).
Consequently, we will focus our attention on the cases 2 < i < n — 2.

It is natural to investigate the classes KC(j), (j = 1,...,n — 1) of centrally
symmetric convex bodies (see Schneider and Weil [1983] or Goodey and Weil
[1993]). For 1 < j < n— 1, these are the centrally symmetric bodies K for which
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there is a positive measure p;(K,-) on L7 such that

Vj(K|E):/£n|<E,F>|pj(K,dF) for each E € L]
J

We note that (1) is the class of zonoids and that K(n— 1) comprises all centrally
symmetric convex bodies. In fact, K(j) is the class of centrally symmetric bodies
K such that the jth projection function Vi(K|) is the cosine transform 77 of a
positive measure on £7 Weil [1982] showed that (1) C K(j) C K(n— 1) for
all j=1,..., n — 1. So the classes K(j) form a natural hierarchy ranging from
the zonoids to all centrally symmetric convex bodies.

Our first objective is to prove that the generalized Shephard problem has
a positive answer for K € K(n — i). The proof will involve mixed volumes
V(L[i],K[n — i]) of convex bodies K and L and, in particular, the Minkowski
Inequality

(3.1) VILL, K1 — 1) > V(L)' V(K07

We refer the reader to Schneider [1993] for information on mixed volumes and
other fundamental notions in convexity.

THEOREM 3.1. Let K, L be centrally symmetric convex bodies in £ and assume
1<i<n—1IKeKn-iand

V(K |E)> VAL|E)  forallE € L},
then Vo(K) > Vi(L).

Proof. If 1 is a measure on L}, we denote by p the measure on Ly_; defined
by

|, f®uae= [ Euan  forf e oL
o £

It is explained in Schneider and Weil [1983] that, if K € K(n — i) and if L is
centrally symmetric, then

-1
VLIl K[n — i) = (’f) /L VAL | E) pi- (K. dE).

Consequently, the positivity of the measure p,_;(K,-) gives

-1
VoK) = V(LI K[n — i]) = ('Z) /ﬁ (ViK | E) = VL | E)) pir (K dE) 2 0.

1
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Combining this with Minkowski’s Inequality (3.1) gives V,(K) > V,(L), as re-
quired. O

We note that Theorem 3.1 is true for arbitrary bodies L and not just those that
are centrally symmetric. It is shown in Schneider [1997] that, if K € Kn— 1),
then

-1
V(LI Kln — i) = <’Z> L VL1 B . ag)

for all convex bodies L. This result, which allows us to suppress the central
symmetry condition on L, is based on a result of Klain [1997+]. We are grateful to
Rolf Schneider for pointing out this strengthening of Theorem 3.1 and for agreeing
to its inclusion here. We note also that a related result appears in Chakerian and
Lutwak [1996].

THEOREM 3.2. Let K be a centrally symmetric and rotationally symmetric con-
vex body whose boundary is C* and which has strictly positive curvature at all
points. If 2 <i<n—1land K ¢ K(n — i) then there is a centrally symmetric and
rotationally symmetric convex body L such that

VK |E) < V{L|E) foralE€L! but  Vu(K)> Vo(l)

Proof. We let M7 denote the positive measures on £ ; which are rotation-
ally symmetric and have the same axis of symmetry as K; we choose coordi-
nates so that this axis is orthogonal to E"™! c E". If Q = {f ¢ CLr_): f =
T, _iu for some 11 € M7} then Q is a convex cone in C(Ly_)). First, we will use
the techniques of Weil [1976] to prove that Q is closed in C(Lr_).

To this end, we assume that f,, — f € C(L;_;) uniformly as m — oo and
that, for each m = 1,2..., there is a Hm € M7 with f, = T itm. Now let
g € C*°(L}_;) and denote by g the function obtained by rotating g about the axis
of K. By this, we mean that, for E € £"_,, §(E) is the average of g(pE) for all
p € SO(n — 1). Similarly, we let /i denote the measure obtained by rotating u
about this axis. This is equivalent to defining /i by

[, e = [, EBWEE)  for each g € Ly

=1 n—i

We note that, /i = y for each n € M{. Now g € R"_, N C=(L£"_;) and so we use
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Lemma 2.3 to choose h € R_; N C*°(L;,_,) with g =T;_;h. Then

[, 0@ = [ 0@ = [, 800 i)
o o, o

n—i n—i

- / (T h)(X) fim(dX) = / B0 (T stim)(X) V1 (dX)
o o

n n—i

— / hXOf (X) v,_(dX) as m — 00.
cr_.
Consequently, the mapping
g [ OOV (@)

is a distribution (see Schwartz [1955]). The positivity of the measures (i, shows
that it is a positive distribution and therefore a positive measure y say, with i = p.
So we have, for any h € R},_, N C>®(L;_),

/ B(X) (7 )(X) v (dX) =/ (T W)X (dX)
. Lll. cn_i

h—1 n

- /L RO ().

n—i

It follows that f = T" .u with y € M7, and so Q is closed, as required.
The hypothesis of the theorem implies that V,_;(K|-) ¢ Q. So the Hahn-
Banach theorem implies that there is a measure ¢ on £),_; such that

/‘ f(EYo(dE)> 0 forall f € Q but / Vu_i(K|E) o(dE) < 0.
. n En_i

ne—i

Clearly, we can assume that the measure o has the same axis of rotational sym-
metry as K. Consequently, we have a measure o on £;_; such that

T .0>0  but /E VoK | E)Yo(dE) < 0.

The measure o can be weakly approximated by functions in C*°(L},_;) having

the same rotational axis of symmetry as K. So we can choose such a function
g € C=(Lr_,) with

32) Tl .g>0 but / VoK | E)g(E)v/"_(dE) < 0.
o
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We denote by fi(K, ) the ith curvature function of K. This is the density of
the ith surface area measure, Si(K, ) with respect to spherical Lebesgue measure

Ap— on §*1 (see, for example, Schneider [1993]). Zhang [1994a] shows that if

¢ > 0 is sufficiently small, then fi(K, -) + €R;_; g is the ith curvature function of

a convex body K.. Clearly K, has the same rotational axis of symmetry as K and
18 also centrally symmetric. So

(3.3) Si(Ke,) — SiK, ") =€R),_; 8.

The smoothness of K and K. guarantees that they are generalized zonoids (see
Schneider [1967]). In fact, their generating measures are C™ functions on L] It
follows that there are functions p;(K, -), pi(Ke, ) € RY N C>(LY) such that

VK | ) =T} pi(K, ") and Vi(Ke | -) = T} pi(Ke, -),
see Weil [1982]. It is shown in Goodey and Weil [1991] that we have
-1
n
Si(K, ) = nk,_ (z) Ri_iipi (K, )
and
—1
n
Si(Ke, ") = nkp_; (z) Ry 1pi(Ke.).

Combining this with (3.3) and the injectivity of R,_;, gives

1 1 € n
“(Ke, ) — pi(K, ) = X
pi (Ke,") — pi (K, -) — <l> 8

which is the same as

(3.4) piKe ) = piK, ) = —* (”) gt

RKp—i

Applying the cosine transform 77 to both sides of this equation gives

" € n € n
T pi(Ke.:) = T pi(K, ) = () Trgt = () (Tr_ie)" >0,
NKp—j \ 1 nKp—i \ 1

which gives

Vi(Ke | E) > V(K | E)  forall E € L.
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Combining (3.2) and (3.4) gives

V(K [i], K[n — i}) — Va(K)

il

—1
(’T’) / VoeiK | E)(p7 (K, dE) — pi-(K. dE))
i) e,

- / Vo i(K | E)(E) vn—i(dE) < 0.
Losi

NKp—i

Minkowski’s inequality now shows that V,(K¢) < V,.(K) and so the proof is
completed by putting L = K.. : O

COROLLARY 3.3. If there is a centrally symmetric body, with a rotational axis
of symmetry which is not in K(n — i), then the generalized Shephard problem has
a negative answetr.

Proof. First, we note that the classes K(j), forj=1,...,n—1, are closed. For
example, this is a consequence of Theorem 5.1 of Goodey and Weil [1991] or
see Zhang [1995] for a more general result. If there were a body K satisfying the
hypotheses of the Corollary, it could be approximated, in the Hausdorff metric,
by centrally symmetric bodies all with the same axis of rotational symmetry as
K and whose boundaries are C*> with strictly positive curvature at all points. It
follows that at least one of these bodies is not in K(n — {) and so Theorem 3.2
gives the required result. O

Our next objective is to show that the double cone D defined by
1
x5+ +x2_ )7+ x| <1

is not in any of the classes K(j) for 1 < j < n—1. In order to find the ith surface
area measure of D, we compute the (n — 1)-st surface area measure of D, the
outer parallel body of D at distance ¢ > 0. To this end, we consider the following
partition of the unit sphere

=8, U8 USs,

where
si= {ues ! e > =5},
5 = {uES”“I: |<u,en>|=%},
5y = {ues"—‘- (s e0)] < %}
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The surface area measure of D, is a sum p; + i + 3, where Wi is supported by
Si.

For u € ", let u = (u; cos @, sin ), uy € §"%. If \,_, denotes the surface

measure of $"~!, then

(3.5) 1 =€ s,
It —% < 6 < §, the principle curvature of radii of D, are

1+ecost
r0) =¢€, rf) = 3@ =---=r_1(0)= TSH_

Therefore, the curvature function of D, is

n—2
r1(0>r2<0)---rn_1(9>=e(#u) .
cos @

It follows that, if f € C(5""), we have

/4 1 n—2
3. = 1 I
(3.6) ‘/Sn,,]f(u) 13(du) e/sn_z /_W/4f((u1 cos §,sin 6)) (cos& +e>
cos" 2 0 dOX\,_>(duy)

/4
e/ / f((u; cos 8, sin 9))
=2 J_n/4
(1 +€cos 0)" 2 dO,_o(duy).

To find j12. we will calculate the partial surface area A(e) of D, corresponding
0 S,, that is, A(e) = S, 1(D., S»). Consideration of the line

X1 +x,=1+ev2

helps us see that

€

1+ n—2
A(e) z\/i(n—l)n,,_l(1+e\/§)"‘2/ V2 <1 ~ 1+xﬁ> dx
- €

oo ()]

Therefore, for an SO(n — 1) invariant continuous function g on $"~!, we have

I}

(3.7) /S () pa(du) = Ale)g G) .
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If Ky,...,K,_| are convex bodies in E" and f € C(S"!) we will write

1
V(K], e ,Kngl,f) = E An_lf(u)S(K|, e ,K,,_],du).
If Vi(e) = V(De[n — 11,f) then
Vile) = VID[n — 11,.f)+(n — HV(D[n — 2], B,,f)e+ - - -

+ (’;‘: 1‘) V(DIn — il, Buli — 11,£)é " + -+ V(B,[n — 1], 2).

So the (i — 1)-st derivative of Vy(e) at € = 0 is given by

38 Vi0) = L2y — i, Byfi - 11.)
(n—i)!
_ (=1 |
T onn— i) /S,,_lf(”) Sn—i(D, du).

We can now use (3.5), (3.6) and (3.7) to show that, if g is an even function in
C(8"~") which has the same axis of rotational symmetry as D, then

1
Ve =~ [ g+ i+ e

nJs
n—1i

1
/S A )+ A (%)

— Dip_y [3 -
+2(”—n—)u / b @l +ecos B2 do.
0

Consequently we have, for 1 < i < n,

L 26p1 (n—1)! T
G—1 _ 1 ol
BN Ve 7O = S (4)

26kp—1 (n— 1)! 1 "
il } (n 1.) (i— 1)/4 g(0)cos ™2 0 do
n (n-n! 0

26n—1 (n — 1)! 1
no (n—10! | (V2)- 28

Comparing (3.8) and (3.9), we obtain for 1 < i < n,

( ) + (i — 1)/0I g(0)cosi_26d0] :

(3.10) / gu)S,—i(D, du)
Jgn—1

l(\f)‘ 2g( )+ (i — 1)/ g(0) cos'™ Zade}
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LEmMMA 3.4. Let K be a convex body in B" which is centrally symmetric. If
l<i<n-1, KeKmn—-iwithdmK >n—i+landg € C(LY), then

(3.11) ng>0= / 8() S,-i(K,du) > 0.
N

Moreover, in the case i = n— 1, (3.11) implies that K is a zonoid, that is, K € K(1).
Proof. Tt is shown in Goodey and Weil [1991] that S,_;(K,-) is the Radon
transform R}| of a positive measure x on £7. Consequently

/ () Syi(K. du) = / (R? 1£)(X) u(dX),
Jsd—1 Elr}

which gives (3.11).
For the case i = n — 1, we recall from Goodey and Weil [1992] that, if K is
centrally symmetric with generating distribution Tk (see Weil [1976]) then

S1(K,") =2k, 1R:_| | Tk .

Now let f € C°°(L}) with f > 0. Then we can choose g € C>(LY}) with
f=R:_ gt It follows from (3.11) that

n

Tk(Ry_y 18" = (R}, T)(gh) = (RI_,  T)(g)

[ #wsik.do >0
SnAI

Tx(f)

P

Consequently the distribution Tk is a positive measure and therefore K is a
zonoid, as required. O

THEOREM 3.5. The double cone D is not contained in any of the classes K(j)
Jort <j<n—1.

Proof. We choose g € C(L}) to have the same axis of rotational symmetry
as D. It is shown in Zhang [1994b and 1996] that the inequality R ;g > 0is
equivalent to

-3

& < 2\ T
(3.12) / g(9)<1— S,m29> cosfdf >0, 0<¢<
0 sin” ¢

SIE

Using (3.10), we see that the inequality

/ 2() Sy_i(D, du) > 0
Sn—l
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is equivalent to

1
Vo2

We note that (3.12) and (3.13) are both dependent only on i and not on n. If one
chooses n = i+ 1, then C(n — i) is the class of zonoids. But the double cone is not
a zonoid (see Petty [1967] or Gardner [1995]). So it follows from Lemma 3.4
that there exists g € C(L?) so that (3.12) holds but (3.13) is reversed. Therefore,
the double cone D is not contained in any class K(j), 1 <j <n. O

(3.13) (%) +(i— 1)/Z g(0)cos 20 df > 0.
0

THEOREM 3.6. The generalized Shephard problem has a negative answer.

4. Other results. If K is a convex body in E" and 1 < i < n—1, the
function Vi(K | E), defined for all E € L] is called the ith projection function of
K and the function V(K | F) defined for all F € L},_, is called the ith brightness
function of K. It follows immediately from the Cauchy-Kubota formulas (2.3)
that, if the ith projection function of K is constant, then so is its ith brightness
function. Firey [1970] investigated whether the reverse implication is true and
gave an affirmative answer, in the case of convex bodies K having an axis of
rotational symmetry. We can now use our earlier observations to provide an
extension of Firey’s result.

THEOREM 4.1. Let K and L be convex bodies in E" whose ith projection func-
tions are in R where 1 < i <n—1.If V(K | ub) = V(L | ul) forallu € s
then V(K | E)y= V(L | E) forall E € L.

Proof. We note that the result is an immediate consequence of the Cauchy-
Kubota formulas and Lemma 2.2. O

Of course, the ith projection function of a rotationally symmetric convex body
is itself rotationally symmetric and therefore a member of the space R. Conse-
quently Firey’s result follows from Theorem 4.1 if we let L be an appropriate
multiple of B,.

For our next application, we will use ideas of Weil [1976] to obtain a dis-
tributional representation of the projection functions of a class of bodies that
includes the bodies of revolution. We note, in particular, that this class includes
bodies which are not necessarily centrally symmetric.

THEOREM 4.2. Let K be a convex body in E* whose ith projection function is
in R where 1 < i < n — 1. Then, there is a distribution Tk ; on L7} such that
V(K | =TTk,

Proof. If f € L*(L}) we denote by f; the Hilbert space projection of f onto
R”. We note that if f € C*(L}) then fi € Rf N C(L!) and so we may use
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Lemma 2.3 to see that there is a unique g € RY N C>(L?) with f; = T'g. We will
define the distribution Tk ; by

Tk.f = /£ ViK | EYg(EW/dE)  for f € C™(LD).

The harmonic expansion of f corresponding to (2.9) will be denoted by

> fom,....2m;0,..0)-

(2”” ,.A.,2m,-,0 ..... 0)

We note that g has harmonic expansion
o0

' -1
> omo...0)  Jemo...0-

m=0
It follows from (2.11) that, if p is an integer greater than (n + 2)/4, there are
constants ¢; and ¢ such that
o
el < e 3 m™|lfomg,..0l* < c2|APA1? < c2l|APF)1 -
m=0
Consequently

Tk if| < cllViCK | 1471,

for some constant ¢, and so Tk is, indeed, a distribution.
To see the connection between this distribution and the projection function,
we choose f € C*(L}). Then, since (T'f); = T'f;, we have

(T () = TedTi) = [ ViK | EYA(E) v = [, vk | By i),

as required. O

If K is a convex body in [E", we denote by K* its reflection in the origin.
Then, for i = 1,...,n — 1, we can think of S$;(K,-) + Si(K*,-) as a measure on
Ly (or L) with total measure (’,.‘)‘]n,,_iV,-(K). With this normalization, (2.3)
can be reformulated to give

nK;

R, \ViK|)= 1 (Si(K, ) + Si(K*, ).

2Kn—l
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If the ith projection function of K is in R}, we can combine this with (2.7) and
Theorem 4.2 to get

no1 (SiK, )+ Si(K*, ) =

|
=~
-

]
3
N————
|
=
S
!
3
|
=
=
|
o~

The injectivity of T;_, gives

-1
. n
Si(K,-)+S(K",)= (z) kn—iR 1Tk i-

In particular, if K is also centrally symmetric, then

-1
1 {n
Si(K,-) = 3 (1) Kn—iRi 1 Tk -

It follows that, if K is centrally symmetric and rotationally symmetric and if
Si(K.,-) is the Radon transform R}, ;| of a measure y on Lj_;, then

1 -1
n
n= E (1) I‘én_jTIJ(_’i.

This can be used to deduce, for example, that all the classes Ps(j,k), for k =
1,...,n—j, discussed in Goodey and Weil [1991] contain the same rotationally
symmetric members and that these are just the rotationally symmetric members
of K(j) of dimension at least j + 1.

THEOREM 4.3. Let f be a rotationally symmetric member of C*(L}) for some

1 < i < n— 1. Then there are rotationally symmetric and centrally symmetric
convex bodies K and L withf = V(K | -) — V(L | -).

Proof. We note that f € R} N C*(L}) and so, by Lemma 2.3, there is a
g € RN C(LY) with f = T'g. Now R}, g € C®(L;_y). It follows from
Corollary 6.9 of Zhang [1994a] that there are rotationally symmetric and centrally
symmetric bodies K, L such that

—1
1 {n
R?,n—lg = Si(K5 ) - Si(L’ ') = 5 <l) K’n—i(Rzn—]TK,i - RZn—lTL,i)'
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The injectivity of R}, | on R} shows that

1 -1

. 1 (n 1 (n
f=Tg= 71 ton—iT; (Txi — Tpi) = 2] VK | )= VL] ),
which gives the required result. O

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OK 73019
Electronic mail: PGOODEY@OU.EDU

SCHOOL OF MATHEMATICS, INSTITUTE OF ADVANCED STUDY, and DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PENNSYLVANIA

Current address: DEPARTMENT OF APPLIED MATHEMATICS, POLYTECHNIC UNIVERSITY,
BROOKLYN, NY 11201

Electronic mail: GZHANG@MAGNUS.POLY.EDU

REFERENCES

[1991}] K. Ball, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), 891-901.

[1963]  H. Boerner, Representations of Groups, North Holland, Amsterdam, 1963,

[1996]  J. Bourgain and G. Zhang, On a generalization of the Busemann-Petty problem, preprint.

[1992] D. Chakerian and E. Lutwak, On the Petty-Schneider theorem, Contemp. Math. 140 (1992), 31-37.

[1996] —————, Bodies with similar projections, Trans. Amer. Math. Soc. 349 (1997), 1811-1820.

119707 W. I. Firey, Convex bodies of constant outer p-measure, Mathematika 17 (1970), 21-27.

[1995}  R.J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995.

[1984] 1. M. Gelfand, M. I. Graev, and R. Rogu, The problem of integral geometry and intertwining operators
for a pair of real Grassmannian manifolds, J. Operator Theory 12 (1984), 359-383.

[1990] P. R. Goodey and R. Howard, Processes of flats induced by higher dimensional processes, Adv. Math.
80 (1990), 92-109.

[1996]  P. R. Goodey, R. Howard, and M. Reeder, Processes of flats induced by higher dimensional pro-
cesses IIl, Geom. Dedicata 61 (1996), 257-269.

[1991) P. R. Goodey and W. Weil, Centrally symmetric convex bodies and Radon transforms on higher
order Grassmannians, Mathematika 38 (1991), 117-133.

{1992] ———— Centrally symmetric convex bodies and the spherical Radon transform, J, Differential
Geom. 35 (1992), 675-688.

[1993] ————— Zonoids and generalizations, Handbook of Convex Geometry (P. Gruber and J. M. Wills,

eds.), Elsevier, Amsterdam 1993, pp. 1297-1326.

[1996] P. R. Goodey and G. Zhang, Characterizations and inequalities for zonoids, J. London Math. Soc. 53
(1996), 184-196.

{1986] E. Grinberg, Radon transforms on higher rank Grassmannians, J. Differential Geom. 24 (1986),
53-68.

[1984] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, 1984.

{1997+] D. Klain, Even valuations on convex bodies, Trans. Amer. Math. Soc. (to appear).

11967] C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen 1965), Kgbenhavns Univ.
Mat. Inst., Copenhagen, 1967, pp. 234-241.

[1967]  R. Schneider, Zu einem Problem von Shephard iiber die Projektionen konvexer Kérper, Math. Z.
101 (1967), 71-82.



{1993}
[1997]

| 1983]
[1992]
11955]
[ 1964
[1975]
[1981]
[1962]
[1973]
11976]
{1982}
[1994a]
[1994b}

[1995]
[1996]

PROJECTION FUNCTIONS OF CONVEX BODIES 367

. ConvexBodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.
, Intrinsic volumes in Minkowski spaces, Rend. Circ. Mat. Palermo (2) Suppl. 50 (1997),
355-373.
R. Schneider and W. Weil, Zonoids and related topics, Convexity and its Applications (P. Gruber and
J. M. Wills, eds.), Birkhiuser, Basel, 1983, pp. 296-317.
, Integralgeometrie, Teubner, Stuttgart, 1992.
L. Schwartz, Théorie des distributions, Hermann, Paris, 1955. .
G. C. Shephard, Shadow systems of convex bodies, Israel J. Math. 2 (1964), 229-236.
R. Strichartz, The explicit Fourier decomposition of LZ(SO(n)/SO(n — m)), Canad. J. Math. 27
(1975), 294-310.
, IP estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math.
J. 48 (1981), 699-727.
M. Sugiura, Representations of compact groups realized by spherical functions on symmetric spaces,
Proc. Japan Acad. Ser. A Math. Sci. 38 (1962), 111-113.
M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka
J. Math. 10 (1973), 441-475.
W. Weil, Centrally symmetric convex bodies and distributions, Israel J. Math. 24 (1976), 352-367.
, Zonoide und verwandte Klassen konvexer Korper, Monatsh. Math. 94 (1982), 73-84.
G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), 777-801.
, Intersection bodies and Busemann-Petty inequalities in R*, Ann. of Math. 140 (1994),
331-346.
___ Convex bodies and volume inequalities, Ph.D. Thesis, Temple University, 1995.
, Sections of convex bodies, Amer. J. Marh. 118 (1996), 319-340.






