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Let & be a field, S = k[z, : v € V] be the polynomial ring over the finite set of variables
(s : v € V), and m = (2o : v € V) the ideal defining the origin of Spec 5.

It is theoretically known (see e.g. Alonso et al. 1991) that the algorithmic ideas for the
computation of ideal (and module) intersections, quotients, deciding radical membership
ctc. in S may be adopted not only for computations in the local ring Sm but also for
term orders of mixed type with standard bases replacing Grébner bases. Using the
generalization of Mora’s tangent cone algorithm to arbitrary term orders we give a
detailed description of the necessary modifications and restrictions.

In a second part we discuss a generalization of the deformation argument for standard
bases and independent sets to term orders of mixed type. For local term orders they were
investigated in (Gribe 1991).

The main algorithmic ideas described below are implemented in the author’s RE-
DUCE package CALI (Grabe 1993a).

1. Introduction

Let S := k[z, : v € V] be a (finitely generated) polynomial ring over the field & and
m = (x,,v € V) the defining ideal of the origin in Spec S.

Grobner basis techniques proved to be very useful for the solution of a wide range of
algorithmic problems concerning ideals and modules over the polynomial ring S as e.g.

the ideal membership problem,

the radical membership problem,

the computation of dimension and degree of a (projective) variety,
the computation of Hilbert series,

the computation of elimination ideals,

the computation of ideal intersections,

the computation of quotients and stable quotients,

primality testing,

the computation of primary decompositions,

of. e.g. (Becker et al. 1993), (Buchberger 1988) or (Gianni et al. 1988) for a survey.
If we are interested in local properties of an ideal I C S (or module) at m, the origin of
Spec S, one should prefer direct computations over the localization S,, of S at m, since
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an intermediate application of Grébner basis techniques in S followed by localization at
m may produce many unnecessary components not passing through the origin. Moreover,
the intermediate ideal of leading terms of I, containing terms of highest degree, will reflect
the global behaviour of I rather than the local one.

For local computations in S, one has to equip S with a non-noetherian term order
and to use standard sets instead of Grobner bases. In general, standard sets in S are
standard bases in Loc(S), a certain localization of the polynomial ring, depending on
the special kind of the underlying term order (cf. Mora 1988). For local term orders, e.g.
supported by negative weights, we have Loc(S) = S,,.

There are two approaches to standard sets, Lazard’s approach, using homogenization
techniques (cf. Lazard 1983) and Mora’s tangent cone algorithm (cf. Mora 1982). Both
produce (polynomial) standard bases in Loc(S), such that the ideal of leading terms of
I. in this case containing terms of lowest degree, will reflect the local behaviour of I at
the origin.

More advanced computations in families of singularities need even more complicated
term orders. where some of the parameters occur as global variables whereas other as
local ones. Such term orders are called of mized type.

Lazard’s approach may be applied to arbitrary term orders, but adding a new vari-
able may (and often will) increase the computational amount. Moreover homogenized
standard bases produced this way usually contain many more elements than a minimal
standard basis does.

For Mora’s tangent cone algorithm several improvements were suggested, see (Mora et
al. 1992) for a summary, so that the experts commonly prefer the latter. In the same paper
the authors also give a generalization of the tangent cone algorithm that applies to certain
term orders of mixed type. Such a generalization makes available algorithmic approaches
using elimination techniques that are essential for good algorithms to compute quotients
and intersections. A first short description of a generalization of the basic algorithms
described e.g. in (Gianni et al. 1988) for Grobner bases to Loc(S) appeared in (Alonso
et al. 1991).

In (Gribe 1994) we introduced another version of the tangent cone algorithm (with
encoupled ecart vector), that applies to arbitrary term orders and seems to be a more

practicable generalization as the one given in (Mora et al. 1992),Jr Based on this version
and its implementation in CALI we consider constructive approaches to the following
problems in Loc(S) in more detail :

computation of ideal intersections,

computation of the quotient of an ideal by a polynomial,
computation of the stable quotient of an ideal by a polynomial, and
deciding radical membership.

We discuss both the homogenization and the tangent cone approaches. The former one
leads to direct Grébner basis computations and one has only to give a correct interpre-
tation of the dehomogenized results. For the latter one we describe in more detail how
to modify the algorithms, mainly based on elimination techniques, themselves.

In (Alonso et al. 1989 and 1993) the authors discussed a computational approach to

T This generalization was independently found by the SINGULAR group, see (Grassmann et al. 1994)



Algorithms in Local Algebra 3

algebraic power series rings R C k[[z, : v € V]]a, that are finitely generated extensions
of S,,. Their ideas can be embedded into the concept of computations in factor rings
of local rings (a facility, available e.g. in the computer algebra system MACAULAY for
Grébner bases over polynomial rings) and hence used for a constructive solution over
R of the problems formulated above. This concept, already developped in (Alonso et al.
1991), thus becomes a practical computational tool and will be available in a forthcoming
version of CALL

(Bayer 1982) introduced a flat deformation argument for Grobner bases, that proved
to be very useful many times. It can be exploited in two different manners, namely as a
flat deformation itself and through a homogenization argument, see e.g. (Gridbe 1993b)
for the latter. In the last part of the paper we discuss, how these arguments may be
generalized to arbitrary term orders. This was discussed so far mainly for local term
orders, where Loc(S) admits a completion, see e.g. (Gribe 1991) for a spectral sequence
argument. (Grassmann et al. 1994, prop. 5.3.) generalize the deformation argument to
arbitraty term orders and draw some conclusions about the dimension and, for zero
dimensional ideals and modules, the multiplicity.

Here we generalize the second approach, homogeneous local rings, to term orders of
mixed type. Using homogeneous instead of ordinary localization this leads to a differ-
ent deformation and allows to derive bounds for Betti numbers, depth and CM-type of
Loc(S)/I in terms of the initial ideal.

Further we show that the concept of independent sets, see (Kredel, Weispfenning 1988)
transfers to Loc(S) as well. This implies the validity of the unmixedness results in (Grébe
1993b) also in the general case.

As usual most of the algorithms presented below have an easy extension to finitely
generated modules over the rings considered so far (and are implemented in CALI in this
generality). For simplicity we restrict ourselves to the case of polynomial ideals.

2. Preliminaries

Let S as before be a polynomial ring in finitely many indeterminates over a field k. In
the following we assume the monoid of terms of S to be equipped with a linear semigroup
order, term order for short, that will be denoted T'O(S).

Usually term orders are defined as refinements of linear quasiorders, i.e. linear, reflexive,
transitive, and monotone relations, to true orders. With such a quasiorder < we associate
in a natural way two other relations, the equivalence relation a = biffa <band b < a
and the partial (true) irreflexive order a < b iff a < b and a # b. On the other hand,
given = and < with obvious compatibility conditions, one can recover the quasiorder <
as a < b iff b £ a. We will freely use both notations. For such a linear quasiorder < and
each pair of terms one of the following alternatives holds : 2* < ¥ or 2% < 2% or 2° = z°.

Given two (quasi)orders TO; and TO; on S, T'O; | TO; denotes their lexicographical
product, i.e.

<z e (2% < 2b)or (2% = 2% and 2° <, z%)
Let LEX(x1,...,zx) resp. REVLEX(x1,...,xzt) denote the lexicographic resp. reverse
lex. (quasi)orders with respect to the (ordered) variable set {z1,...,Zx}, i.e.
* <z’ e Jj:VY(i<j)a =b; and a; < b; (lex.) or a; > b; (revlex.)

l‘aEiﬁb = Vzazzb,
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For a given term order and a non zero polynomial f = 3" c,z* € S we define as in
(Griabe 1994)

in(f) := ca,x™ with ap = maz{a: ca # 0},

red(f) := f —in(f) and
in(B) = {in(f) : f € B} for any set B C S.

T'O(S) is called noetherian iff it is well-founded or, equivalently, 1 < z* for all nontrivial
terms in S. For non-noetherian term orders the set

U=U(S):={1+feS :in(f)y<lor f=0}

plays an important role, as explained e.g in (Robbiano 1986) or (Mora 1988). If 1 > z°
for all nontrivial terms in S we refer to TO(S) as a local order. In this case U~!S = S,,.
Term orders that are neither noetherian nor local are called of mized type.

Let I C S be an ideal and B C I a finite set. B is a standard set of I iff in(B)
generates the ideal 4n(I). Although not unique for a fixed term order we will denote such
a standard set by some abuse of notation ST B(I).

Different to noetherian term orders, where standard sets automatically generate I, see
(Becker et al., prop 5.38.), this does not hold for arbitrary term orders. But it turns
out. that standard sets always generate the extension of I to Loc(S) := U~15. Moreover
standard sets are standard bases in Loc(S) in the sense of (Mora 1988). Here B = {b,}
is a standard basis of I in Loc(S) iff

Vfel -Loc(S)3gys € Loc(S) : f= Zbaga and in(f) > maz{in(b,g.)}

Clearing denominators, each ideal I C Loc(S) has a “denominatorfree” basis B(I) C S.
We will assume this in the following without mentioning. Note that B(I) must not
generate I'N S,

Let w € (RY)" be a linear functional on RY. Such w is called a weight vector and
induces a grading on NY. Denote by DO(w) the quasiorder preimage on NV of the
natural order < on R under w. We refer to this quasiorder as the degree order associated
with w. By (Robbiano 1986) we know that every monotone linear order is a refinement
of such a degree order. If < is a refinement of DO(w) we say that < is supported by the
weight vector w.

If w has only positive weights, every refinement of DO(w) is noetherian. If w has only
negative weights, every refinement of DO(w) is a local order. Term orders, supported by
{(=1..... —1) we call tangent cone term orders (since in this case the lowest degree parts
of all f € ST B(I) generate the tangent cone of I at the origin).

3. Lazard’s approach

3.1. HOMOGENIZATION

Let S be as above and ¢ be another variable. Given w € (Z")*, an ecart vector, we define
for f =73 ¢, -2* € S with d = maz{w(a) : ¢, # 0}, F(t) € S[t], and B = {f1,..., fr}

the homogenization " f := 3" ¢, - td—%(a) . go |
the (w-)ecart e, (f) 1= d — w(deg(f)),
the homogenization "B := {#f,,..., * £}
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the dehomogenization “F := F(1).

This yields applications * : § — S[t] and ¢ : S[t] — S as in (Mora, Robbiano 1988).
Extending the definition of w by w(t) = 1 we equip S[t] with the term order T'0,, :=
DO(w) | TO(S), i.e.

"z <t 2P e a+w(a) <b+w(B) or
a+w(a) =b+w(B) and z* < 28

If w has only positive weights this term order is noetherian.

3.2. A “CLASSICAL” SOLUTION FOR LOCAL PROBLEMS

For an ideal 7 C Rin aring R and f € R set
I:f*:={geR|3n : frgel},

the stable quotient of I with respect to f.
The following proposition describes, how one can solve local problems through ho-

mogenization (with respect to a positive ecart vector), Grébner basis computations, and
dehomogenization.

PROPOSITION 3.1. Let S be a polynomial ring equipped with an arbitrary term order
TO(S). * and * as in the preceeding paragraph homogenization and dehomogenization
with respect to a positive ecart vector and the homogenizing variable t, I,J C Loc(S)
ideals, given by denominatorfree polynomial bases B(I), B(J) C S and f € S another
polynomial. Then in Loc(S) we have

1INJ =(("B)N"BW))),

21 f=2("B):"f),

31 f = o(MB(D)) ),

4 f € Rad(I-Loc(S)) iff 1€ “((*B(I)) : "),
i.e. an arbitrary standard basis of ("B(I)) : " contains an element with a pure
t-power as leading term.

Proor. Let’s prove e.g. 1) :

Assume B(I) = {io}, B(J) = {j.}. We have f € I J in Loc(S) iff there exists a unit
e € U such that e - f = Y 71,9, = ¥ 5,7, with certain r,,s, € S. Homogenizing this
relation we get for appropriate powers of ¢

" he~hf — § M hra hia — E the hsa hja~

Dehomogenizing yields e - f € *((*B(I)) N(* B(J))).
The other assertions are proved in a similar way. O

Note that all these problems have well-known solutions for the noetherian term order
TO,, that may be invoked with the homogenized basis » B(I).
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4. Direct methods

4.1. REDUCTION WITH BOUNDED ECART

Recall (a slight modification of) the algorithm RME in (Griibe 1994, thm. 1).
Let w € (NY)* be a positive ecart vector. Then for arbitrary term orders TO(S) the
following normal form algorithm terminates after a finite number of steps :

RBE(f,B) - Reduction with bounded w-ecart

INPUT : A polynomial f € S, a finite set B C S.

OUTPUT : A polynomial h € S and a unit v € U with k = u - f (mod (B))
and either A = 0 or in(h) not divisible by any in(g), g € B.

LocaL : A list L of simplifier-unit/zero pairs, updated during the algorithm.

L :={(g9,ug:=0) : g€ B}, (hun):=(f,1).
- While h # 0 and M := {(g,u,) € L :in(g)|in(h)} # 0 do
(1) My := {(gaug) €EM: ew(g) < ew(h)}
(2) If M7 # 0 then choose (9,uy) € My else
(a) Choose (g,u,) € M.
(b) L := L J{(h,un)}. .
(38R :=h—m-g with m:= %
(4) Set h:= W, up :=up —m - Ug.
- Return (h, uy).
This normal form algorithm yields a finite standard set algorithm for arbitrary term
orders TO(S) in the usual way, see (Gribe 1994) for a discussion of this subject and

also for some improvements. It gives also an immediate algorithm to solve the ideal
membership problem in Loc(S), given a standard set B for the ideal I.

4.2. SUPPORTING WEIGHTS

Above we introduced the notion of the weight vector supporting a term order <. For
Grobner bases Bayer observed in (Bayer 1982) that for a given ideal I C S the term
order < may be changed in such a way to <’, that a (totally interreduced) Grobner basis
of I with respect to < remains a (totally interreduced) Grébner basis also with respect
to <’ but <’ is supported by a positive integer weight vector. For arbitrary term orders
a similar result can be provedJr :

LeMMA 4.1. Given an ideal I C S with a fized (finite) standard set STB(I) there is
even an integer weight vector w € (ZV)* such that in(I) = in< (I) with respect to every
refinement <' of DO(w) to a term order and w(deg f) > w(deg red f) for f € STB(I)
(with nonzero reductum). If < is a local order, w can be chosen to have only negative
weights.

PrOOF. One cannot deduce this result as for the noetherian case, since in general we
have neither uniquely defined (finite polynomial reduced) standard bases nor finite total
normal forms with respect to B = STB(I). But since there is a finite algorithm to verify

T As pointed out to us by the referce, the corresponding fact for standard bases in power series rings
was cstablished already in (Becker 1990) in the same way.



Algorithms in Local Algebra 7

the standard set property, involving only a finite number of (finite) polynomials, we get
a finite number of open conditions on w to guarantee that B is a standard set also with
respect to <' and w(deg f) > w(deg red f) for f € B. O

We say, that under these conditions (I, <) is strongly supported by w (with respect to
STB(I)).

4.3. THE ELIMINATION METHOD

Let S be as above and ¢ be another variable. Consider the following problem :

Given a finite ideal basis of I C Loc(S)][t]
find a finite ideal basis of Iy = I Loc(S).

Based on RBE it may be solved for arbitrary term orders TO(S).

LEMMA 4.2, (cf. Alonso et al. 1991) Let TO(S) be an arbitrary term order on S an
I be an ideal in Loc(S). Equipping S[t] with the term order LEX (t) | TO(S) we get
Loc(S)[t] = Loc(S[t]) and

STB(Ip) = {f € STB(I) : in(f) is free of t}.

REMARK : TO(S[t]) is not inflimited if TO(S) is not noetherian and different from
TO, introduced in the preceeding section.

Proor. By the choice of the term order in(f) being free of ¢t implies f being free of ¢.
O

The elimination lemma allows to compute intersections and quotients (cf. Alonso et
al. 1991) :

PROPOSITION 4.1. With S and S[t] as in the lemma we get for ideals I,J C Loc(S) and
fes

FTIN=(t-T+(1=t)-J)Loc(S),

2T () =N -,

3Lif*e=04+1-f )N LocS)
and especially

4 fe€RadI)iff e I+ (1~ f-t).

The proof is the same as in the noetherian case, given in (Gianni et al. 1988) or (Becker
et al. 1993). Note that the first assertion can be generalized as in (Becker et al. 1993,
prop. 6.19).

In 2) one has to divide out the common factor f from all generators g € I N{f) in
Loc(S). For this purpose the usual division-remainder algorithm must be modified in a
similar way as RBE modifies the usual normal form algorithm :
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divmod(f,g) - (Local) division with remainder

INnpPUT : Polynomials f,g € S.

OtuTPuT :  Polynomials h,g € Sand aunit u € U withu- f=q-g+h
and either h = 0 or in(h) not divisible by in(g).

LOCAL : A list L of triples (k, gy, ur), updated during the algorithm,
such that k = ur f — qrg.

- L:={(9,45 := ~1,uy :=0)}, (h,qn,un) := (f,0,1).
- While & # 0 and M := {(k,qi,ux) € L : in(k)|in(h)} # 0 do
(1) My == {(k,qr,ur) € M : ey (k) < e(h)}
(2) If My # 0 then choose (k, qx,ur) € M else
(a) Choose (k, g, ux) € M.
(b) L .= LU{(h, qh,uh)}.
(3) A :=h —m -k with m := 203
(4) Set h:=h', up = up —m-ug, qn =qp—m-qg.
- Return (h, gn, us).

Correctness and termination (provided w has positive weights) follow immediately as
for RBE.

4.4. AN ALTERNATIVE QUOTIENT ALGORITHM

D. Bayer gave in (Bayer 1982) an alternative algorithm to compute the quotient of an
homogeneous ideal by a homogeneous polynomial. In (Alonso et al. 1991) the authors
sketched its generalization to not necessarily homogeneous input with respect to a local
term order on S.

Below we discuss this approach in more detail and show by means of examples its
natural restrictions.

So let’s assume that TO(S) is a local term order. Let ¢ be another variable. Equip S[t]
with the term order REVLEX (t) | TO(S).

PROPOSITION 4.2. For a local term order on S let I C Loc(S) be an ideal and f € S a
polynomial, such that in(f) < 1. Under these assumptions we have

TT:f=T+(f-1):tl=s and
B =T+ (f 1) t®e=y,

where the ideal quotients are computed in Loc(S) and Loc(S[t]) respectively and |.—;
denotes the map induced by the substitution t — f.

PROOF. Let’s prove the first assertion since the second one follows immediately from the
first one. Since

U:=U(S) C U, :=US[H])) = {e+t-s(t) e € U,s(t) € S[t]}

we have I': f C (I +(f —t)) : t|;=¢. For the other direction assume g(t) € (I + (t — f)) :
tS[t], ie. (e+1t-s(t)-t-g(t) € I+ (t— f) for some unit e + ¢ - s(¢) € U,. By our
assumption e + f - s(f) € U and hence g(f) e I : f. O
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REMARK : For f € U the assertion is false, since in this case I : f = I whereas f—t € U,
and hence I'+(f —t) = (1). In general it does not hold as well for term orders TO(S) that
aren’t local. Indeed, e.g. for S = k[z] with TO(S) = LEX (z) weget (z — 1) : 7 = (z — 1),
but (z - 1,z —t) = (1) in Loc(S[t]) (with TO(S[t]) = REVLEX(t) | TO(S)). In general
we have

Iif=(+(f-t):t[)Loc(S)

only for TO(S[t]) = LEX(t) | TO(S). But for this term order the second step of Bayer’s
approach doesn’t apply.

In the following TO(S) may be arbitrary. Let S[t] be as above equipped with TO(S[t]) =
REVLEX(t) | TO(S). By the definition of this term order for any f € S[t] the t-power
of in(f) divides f. Thus we may define f : ¢ as %f if ¢t divides in(f) and f otherwise and
[t as X f, where t™ is the greatest t-power dividing in(f).

PROPOSITION 4.3. Under these assumptions we get for an ideal I C Loc(S|[t])

1 {f:t| feSTB(I)} is a standard basis of I : t in Loc(S[t]).
2 {f:t>| feSTB(I)} is a standard basis of I : t> in Loc(S[t]).

PROOF. For the first assertion assume g € I : t. Hence there is e € U, and a standard
representation egt = Zf€STB(]) ¢ f. Since t divides in(egt) > in(rsf), t divides in(ry)
or in(f). Hence eg has a standard representation

eg=> Drp:t)f +>_ @rp(f:1),

where the first sum ranges over all f € STB(I) such that ¢ doesn’t divide in(f) and the
second sum ranges over the remaining f € STB(I).
The second assertion follows similarly. O

REMARK : After the substitution ¢ = f in the assertion of the proposition the basis
obtained need not to be a standard set with respect to TO(S) any more.

5. Locally smooth systems

Let J C Loc(S) be an ideal and R := Loc(S)/J. It is possible to do algebraic compu-
tations also over R due to the following elementary observation :
Let I1,I> C R be ideals, f € R and Iy, I, f their preimages in Loc(S). Then

1:1 ﬂ_fz = ([ +J)ﬂ([2+])/],
Lif=(I+J): f/Jand
Licfe=(I+J): f=/J]

Hence the algebraic questions considered above may be solved constructively also over
R. Using a standard basis of J one can moreover solve the zero decision problem (and
hence the equality problem) over R. It is also possible to compute Hilbert series and
syzygies over R.

This technique can be applied to computational problems concerning algebraic power

series in k[[z, : v € V]]ag. In the remaining part of this paragraph we assume T'O(S) to
be a local term order.
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In (Alonso et al. 1989 and 1992) the authors introduced a concept that allows a con-
structive handling of systems of algebraic power series as elements of a finite exten-
sion Loc(S) C R C K[z, : v € Vllatg- For this purpose they consider polynomials

BBy F. € 8 := 8Y1,...Y,], sucht that their Jacobian ||‘—3%|| is a nonsingular

(w.lo.g.) lower triangular matrix at the origin z, = Y; = 0 (veV,i=1,...r). By the
Implicit Function Theorem the system of equations F}, = ... = » = 0 has a unique
solution f...., fr € k[[, : v € V]]ay, in algebraic power series vanishing at the origin.

Such a system they call a locally smooth system (LSS).

The map o : Loc(S') — k[[zy : v € V]ja, via Y; — f; with kernel J := ker ¢ =
(Fi.....F) - Loc(S') defines a surjection on R = im o, the extension of Loc(S) by
fi..... fr. The authors give conditions on the term order TO(S') to be satisfied to re-
formulate and solve problems in R as problems in Loc(S")/J. Such term orders they
call uniform term-orderings. See also (Mora et al. 1992) for a short explanation. As
a natural uniform term-ordering may serve TO(S) | TOy, where TOy is the tan-
gent cone order DO(-1,...,-1) | REVLEX(Y,...,Y;) on Yi,...,Y,. If the alge-
braic power series fi,..., f, are defined recursively, i.e. F; is free of Yi,7 > i, even
TO(S) | REVLEX(Y1,...,Y,) may be used.

PROPOSITION 5.1. (cf. Alonso et al. 1991) Let R be a finite algebraic extension of Loc(S)
in k{[x, v € V]]u, defined by a LSS. Then one can

1 compute ideal intersections,

2 compute ideal quotients,

3 compute stable quotients,

4 decide radical membership problems.

constructively in R.

6. The deformation argument for term orders of mixed type

For Grobner bases there exists a deformation over Al connecting S/I as the general
fiber with S/in(I) as the special fiber, see (Bayer 1982). It proved to be useful many
times.

There is a natural extension of this result, investigated upto now mainly for local term
orders. see e.g. (Gribe 1991). (Grassmann et al. 1994, prop 5.3.) generalize the flatness
argument to arbitrary term orders using a straightforward generalization of the original
ideas and draw some conclusions about the dimension and, for zero dimensional ideals
and modules, the multiplicity of Loc(S)/I in terms of Loc(S)/in(I).

Below we discuss the deformation argument from another point of view, using its
connection to homogenizations of (local) rings. This approach also applies to arbitrary
term orders of mixed type. Different to (Grassmann et al. 1994) it uses homogeneous
localization and connects Loc(S)/I with S/in(I).

6.1. THE DEFORMATION
Given I C S assume that (I, <) has a standard set B = STB(I), that is strongly

supported by w. Consider the homogenization " : S — S[t] with respect to w, i.e.
TO(S[t]) = TO. By definition we get in(I) - S[t] = in(*I) = (in(B)) - S[t].
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In the spirit of (Goto,Watanabe 1978) one can develop a theory of homogeneous local-
izations over S[t] (wrt. w). More precisely, if U is the set of units U(S) for S then
let U(t) := {"u : wu € U} be the set of (w—)homogeneous units for S[t]. Define
S(t) = H-Loc(S[t]) := U(t)"1S[t]. This localization is w-homogeneous, too, assuming
w(t) = 1. Set I(t) :=*I and R(t) := S(t)/I(¢).

PRrROPOSITION 6.1. Under these assumptions
for B := STB(I) the set "B is a standard basis of "I in H-Loc(S[t]),

t and t — 1 (and more general t — ¢ for ¢ € k) are non zero divisors on R(t), and

Loc(S)/I  forc#0
{ S/in(l) forc=0

R(c)=R{t)/(t—¢) =

PRrOOF. By the special choice of w we get for f = >~ c,z® € I that
maz{w(a) : ¢, # 0} = w(deg f) and hence

hf — anma A tw(deg f)~w(a)'

Hef=5rife (e€ U, €8, fr € B)is a standard representation of f in Loc(S) this
implies immediately that

he hf = Z h?"k hfk tw(deg f)—w(deg 75 fr.)

is a standard representation of " f in H-Loc(S[t]).
The other assertions are obvious. O

As in (Grassmann et al. 1994) this generalizes immediately the following well known
fact to arbitrary term orders of possibly mixed type :

ProPOSITION 6.2. R(0) and R(1) have equal dimension, and, in the case of tangent cone
orderings, their Hilbert series also coincide.

For local term orders R(1) is a local ring and w can be chosen to have only negative
weights. In (Grabe 1991) we exploited a spectral sequence argument over the completion
of R(1) to prove even stronger results :

PROPOSITION 6.3. For a local term order we conclude

1 The Betti numbers of R(1) are bounded above by the Betti numbers of R(0).
2 depth R(1) > depth R(0),
3 If R(0) is Cohen-Macaulay, then R(1) is Cohen-Macaulay, and
type R(1) < type R(0).
4 If R(0) is Gorenstein, then R(1) is Gorenstein.
5 If R(0) is a generalized Cohen-Macaulay ring, then R(1) is so.
6 grade I - Loc(S) > grade in(I).

In particular this holds for ideals in k[[z]]a, given by a LSS.
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For term orders of mixed type there is no obvious completion of R(1) with good properties
and R(1) is no more a local ring. As usual, in this situation we can ask for Betti numbers,
depth etc. for localizations of R(1) at maximal ideals instead.

PROPOSITION 6.4. Let < be an arbitrary term order and R a localization of R(1) at
some k-rational point. Then

1 The Betti numbers of R are bounded above by the Betti numbers of R(0).

2 depth R > depth R(0),

3 If R(0) is Cohen-Macaulay, then R is Cohen-Macaulay, and type R < type R(0).
4 If R(0) is Gorenstein, then R is Gorenstein.

Proor. S(t) and R(t) are H-local rings since (¢,z, : v € V') is their unique maximal
homogeneous ideal.

Take a minimal homogeneous resolution F.(t) of R(t) over S(t). Factoring out a
nonzero divisor (£ — c), ¢ € k, we obtain a free resolution F.(c) of R(c) over S (c).
Moreover, factoring out the homogeneous element ¢ the resolution remains a minimal
H-local resolution. Hence R(t) and R(0) have equal Betti numbers. Localizing F,(1) at
a k-rational point we obtain a (not necessarily minimal) free resolution of R over the
localization of S(1). Since the residue field is k this proves 1).

2) - 4) are then easy consequences. [J

6.2. INDEPENDENT SETS

Let I'be an ideal in S. 0 C V is an (locally) independent set mod I iff {z, : v € o}is
an algebraically independent set in R = Loc(S)/I, i.e.

I-Loc(S)ﬂk[xv v ea)=90.

It I C Loc(S) is prime the collection of all independent sets form a matroid and all
maximal independent sets are of equal size dim R.

In general. it is difficult to find all independent sets. (Kredel,Weispfenning 1988) there-
fore introduced the notion of strongly independent sets. As a general definition may serve
the following one, given in (Gribe 1993b) : ¢ C V is a strongly independent set mod I
iff it is an independent set mod in(I).

Strongly independent sets are independent sets also in our more general setting : If was
f€1-Loc(S)Nklz. : v € 5] a nonzero polynomial then in(f) € in(I) Nklz, : v € o]
would be a non zero term. Since R and S/in(I) have equal dimension we obtain as in
the noetherian case

PROPOSITION 6.5. dim Loc(S)/I is the mazimal possible size of a strongly independent
set mod I.

See (Gribe 1993b) for a discussion of algorithms to find all maximal strongly indepen-
dent, sets.

The deformation argument extended in the preceding section to our more general
setting is the main tool for proving connections between I and in(I) in (Gribe 1993b).
Hence these results transfer to arbitrary term orders :
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PRrROPOSITION 6.6. If I-Loc(S) is (radically) unmized (e.g. Cohen-Macaulay) then in(I)
is radically unmized and every mazimal (with respect to inclusion) strongly independent
set has equal size.

In particular, under this assumption dim Loc(S)/I can be determined from in(I) in
linear time (w.r.t the embedding dimension).

The proof is the same as (Grdabe 1993b, thm.1).

ACKNOWLEDGEMENT : The author thanks the anonymous referee for pointing out to
him a misunderstanding of the deformation argument in the final version of (Grassmann
et al. 1994) contained in the almost final version of this paper.
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