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Introduction

This paper is the second part of a broader survey of computational convexity, an area
of mathematics that has crystallized around a variety of results, problems and appli-
cations involving interactions among convex geometry, mathematical programming
and computer science. The first part [GrK94a] discussed containment problems.
This second part is concerned with computing volumes and mixed volumes of convex
polytopes and more general convex bodies. In order to keep the paper self-contained
We repeat some aspects that have already been mentioned in [GrK94a]. However,
this overlap is limited to Section 1. For further background material and references,
see [GrK94a), and for other parts of the survey see [GrK94b] and [GrK94c).
Our section headings are as follows.

1. Preliminaries

1.1 What is computational convexity?
1.2 Presentations of polytopes and general convex bodies

2. Foundations

2.1 Background and terminology
2.2 “Elementary” approaches to volume
2.3 Characterizations of the volume
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2.4 Mixed volumes
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1. Preliminaries

1.1. WHAT 1s COMPUTATIONAL CONVEXITY?

i

The subject of Computational Convexity draws its methods from discrete mathe-
matics and convex geometry, and many of its problems from operations research,
computer science, and other applied areas. In essence, it is the study of the com-
putational and algorithmic aspects of high-dimensional convex bodies (especially
polytopes), with a view to applying the knowledge gained to bodies that arise in
other mathematical disciplines or in the mathematical modeling of problems from
outside mathematics. ’

One of the requirements for turning a potential application into a real one is to
have efficient algorithms for computing (or approximating or bounding) the func-
tionals involved. The subject of computational convexity is centered on the search
for such algorithms and on results concerning the intrinsic complexity of the func-
tionals that may help to guide this search. Basic and typical problems deal with the
efficient computation or approximation of geometric functionals such as the volume
or the diameter of a polytope, or with the algorithmic reconstruction of a polytope
from data concerning it, or with algorithmic versions of geometric theorems.

The name Computational Convezity is of recent origin, having first appeared in
print in 1989 (see [GrK89]). However, results that retrospectively belong to this area
go back a long way. In particular, many of the basic ideas of Linear Programming
have an essentially geometric character and fit very well into our conception of Com-
putational Convexity. The same is true of the subject of Polyhedral Combinatorics
and of the Algorithmic Theory of Polytopes and Conver Bodies; see [GrK94a] for a
brief survey of these areas and a list of references to related research papers, survey
articles and books. .

As opposed to the area that has come to be called Computational Geometry
([PrS85], [Ed87], [Ya90), [Ed93a), [Mu94], [Or94a]), the emphasis in Computational
Convexity is on problems whose underlying structure is convexity in normed vector
spaces of finite but generally not restricted dimension, rather than of fixed (low)
dimension. This leads to much closer connections with the optimization problems
that arise in a wide variety of disciplines.

In the study of Computational Convexity, the underlying model of computation
is mainly the binary (Turing machine) model that is common in studies of com-
Putational complexity. This requirement is imposed by prospective applications,
particularly in mathematical programming. For the study of algorithmic aspects
of convex bodies the binary model is often augmented by additional devices called
“oracles”; see Subsection 1.2 and [GrK94a]. Some cases of interest do involve other
underlying models of computation, but the present paper focuses on aspects of com-
Putational convexity for which binary models seem most natural,

1.2, muﬁmmmzq..»q,—OZm OF POLYTOPES AND GENERAL CONVEX BODIES

The setting for everything in this paper is a finite-dimensional real vector space R™,
In the present context, R® may be assumed to carry the usual Euclidean norm, thus

forming the Euclidean n-space E* = (R", 1 12)

As the terms are used here, a bodyin R" is a compact convex set and a polytope is
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a body that has only finitely many extreme points. (These objects are usually called
convez bodies and convez polytopes, but we often omit the adjectives in the interest
of brevity.) We use the symbols X and P" to denote respectively the family of a]
bodies in R™ and the family of all polytopes in R".

A body or a polytope in R” is proper if it is n-dimensional and hence has
nonempty interior. From an algorithmic point of view, polytopes are dealt with
much more easily than general bodies, because polytopes can be presented in a fi-
nite manner. However, even for a polytope P the precise manner of presentation
must be specified, and the difficulty of answering basic questions about P can be
greatly influenced by the manner of presentation.

A V-presentation of a polytope P consists of positive integers n and m, and m
points vy,..., vy, in R™ such that P = conv{vy,...,vm}. An H-presentation of a
polytope P consists of integers n and m with m > n > 1, areal m x n matrix A,
and a vector b € R™ such that P = {z ¢ R" : Az < b}.

A faceof a polytope P is P itself, the empty set, or the intersection of P with some
supporting hyperplane. Faces of dimension i are called i-faces (with the convention
that dim(@) = —1). The 0-faces, 1-faces, and (n — 1)-faces of an n-polytope P are
respectively its vertices, edges, and facets. Fori = —1,0,... n, Fi(P) denotes the
set of all i-faces of P and f;(P) = card(¥;(P)), the number of i-faces.

A V- (H-) presentation of P is irredundant if the omission of any of the points
Y1,...,vm {any of the inequalities in Az < b} changes the polytope, reducing it in
the first case and enlarging it in the second. In geometric terms, a V-presentation
is irredundant if each point v; is a vertex of P, and when P is n-dimensional, an
H-presentation is irredundant if each inequality induces a facet of P.

Each polytope P C R™ admits a V-presentation and also admits an H-presentation,
and we refer to [Dy83], [Sw85], (Se87], [AvF91], and [ChHJ92] for algorithms that
convert one sort of presentation into the other. However, since P may have many
more vertices than facets, and vice-versa [Mc70] (see also [Gr67], [McS71], [Br83)),
it can happen that the minimum size of one sort of presentation is much larger than
the minimum size of the other sort.

Our discussion here is based mainly on the binary or Turing machine model
of computation [GaJ79], in which the size of the input is defined as the length of
the binary encoding needed to present the input data to a Turing machine and
the time-complezity of an algorithm is also defined in terms of the operations of a
Turing machine. For this model, each computation involving polytopes begins with
a rational V- or H-presentation of a rational polytope P. The presentation’s being
rational means that v,,.. ., vm EQrif Pis V-presented, or that the matrix A has
rational entries and b € Q™ if P is H-presented; integer presentations are defined in
a similar way. The (binary) size of a rational V- or H-presentation - usually denoted
by L (for “length”) - is the number of binary digits needed to encode the data of
the presentation; see e.g. [GrLSs8s].

As was mentioned earlier, our main emphasis is on questions involving the di-
mension n as part of the input. However, we will also mention corresponding results
for fixed dimensions. As a notational convention, we restrict the use of L to the case
of varying dimension; further, whenever the dimension is regarded as fixed, we ex-
plicitly say so. Thus when no assumption on the dimension is stated, the dimension
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n is always regarded as part of the input,.

For algorithmic purposes it is usually not the rational polytope P as a geomet.
ric object that is relevant, but rather its algebraic presentation. We will speak
of a V-polytope P or of an H-polytope P when a specific rational V-presentation
(r,m;v1,..., um) or aspecific rational H-presentation (n, m; 4, b) is given. For most
of the problems discussed here the focus is on polynomial-time computability or on
various hardness results, and hence we may assume without loss of generality that
presentations are irredundant. That is because, for a given V- (or H-) polytope P,
linear programming can be used to produce, in polynomial time, an irredundant V-
(or H-) presentation. N .

In order to further illuminate the algorithmic differences between V- and H-
polytopes and the difficulties that may be expected in attempting to transfer an
algorithmic approach from one sort of presentation to the other, we mention that
LINIAL [Li86] has established the #P-completeness (a strong measure of difficulty)
of each of the following two problems:

Given a positive integer n and an n-dimensional V-polytope P, determine
the number of facets of P.

Given a positive integer n and an n-dimensional H-polytope P, determine
the number of vertices of P.

Among important special classes of polytopes, the zonotopes are particularly
interesting because they can be so compactly presented. A zonolope is the vector
sum (Minkowski sum) of a finite number of line segments. When the segments are
S1,-..,8m and their centers are €1,...,¢m, we have

m m

MU%_. = MUP. + Mbw..la..v
i=1

i=1 i=1

where the point MH..HL ¢; is the center of symmetry of the set MU.N_ S; and each
segment S; — ¢; is centered at the origin. Hence it is convenient to define an S-
presentation of a zonotope in R™ as a sequence (c; 21, .. ., 2y,) of points in R", where
¢ is the center and the z; are the ends of segments centered at the origin 0, with one
end listed for each segment. This sequence represents the zonotope

m m
c+ MTH_ 1z = ¢+ MU»..N.. SAf< 1forall i
i=1

i=1

This zonotope is a polytope of dimension at most min{m,n}, and it is a proper
polytope if and only if there are n linearly independent points among the z;. We
speak of integer and rational S-presentations, and define their sizes in the natural
way. Sometimes we will also work with zonotopes whose relationship to the origin
(and whose scaling) is different. Specifically, zonotopes of the form Y, 0,1]z
are used quite frequently. To keep the notation simple, we refrain, however, from
introducing an additional name for such a presentation.

Again, in our algorithmic model it is usually not the rational zonotope Z as a
geometric object that is relevant, but rather its presentation; hence we speak of an
S-zonotope Z when a specific rational S-presentation (n,m;c; zy,. .., Zm) Is given.
Although each zonotope is a polytope, in general neither the vertices nor the facets
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of a zonotope are readily accessible from an S-presentation. In fact, for zonotopes
generated by m segments in general position, both the number of facets and the
number of vertices grow exponentially as m increases. .

A zonotope Z = ¢+ Y70 [~1,1]z is called a parallelotope when the points
21,...,2m are linearly independent. In contrast to the case of general socooovow,.;m
facial structure of a parallelotope is immediately accessible from an .w-vnmmmz_nw.so:”
The passage between a rational S-presentation of a _.v.wwl._o_oaovm P and a rationa]
H-presentation of P can be accomplished in vo_vﬁoB._& time.

A different approach is required to deal with bodies K that are :oa.v&%novmw_
since an enumeration of all the extreme points of K or of K’s vo._m:. is not pos-
sible. Sometimes K can be described explicitly in terms of an mm.m% computable
function. An example of this kind is the Euclidean unit ball _w:. given in the form
B* = {(§1,...,6a)T : €8 + ... + €2 < 1}. However, such mmamn:uson is often not
available. A convenient way to deal with the general situation is to assume that :.5
body in question is given by an algorithm Aow_._& an oracle) 25.” answers certain
sorts of questions about the body. All information about the specific body nEm.ﬂ v.m
obtained from the oracle, which functions as a “black box.” In .o"ro_. words, while it
is assumed that the oracle’s answers are always correct, nothing is assumed about the
manner in which it produces those answers. This o_.wo..:wn approach has g.w: exten-
sively studied and utilized for combinatorial optimization vnov._mam by GROTSCHEL,
LovAsz & SCHRUVER [GrLS81], [GrLS88). In order to describe some oracles that
have figured prominently in their work, let us recall that mnw—. € 2> 0 the .3:3 parallel
body and the inner parallel body of a convex body K are given respectively by

Kl@)=K+eB = |J (K+b) and K(~¢) = K\ U (®"\K) +b).
bEeBn bEeBn

The three most important oracles of [GrLS88] are the ones that solve the following
problems for proper bodies K.

WEAK MEMBERSHIP PROBLEM. Given K € K™, y € Q*, and a rational number
€> 0, conclude with one of the following:

assert that y € K(e);
assert that y ¢ K(—¢).

WEAK SEPARATION PROBLEM. Given K € K*, y € Q", and a rational number
€> 0, conclude with one of the following:

assert that y € K(¢);
find a vector z € Q" such that fl zllo=1 and 2Tz < 2Ty + ¢ for every
z € K(-¢).

. n
WEAK (LINEAR) OPTIMIZATION PROBLEM.  Given K € .\Q_, a vector c € Q%
and a rational number € > 0, conclude with one of the following:

find a vector y € Q" N K(e) such that Tz < cTy+ e for every z € K(-¢);

— ——
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assert that K(-¢)=9.

If a proper body K is given by an algorithm that solves the weak membershi
problem, the weak separation problem, or the weak linear optimization problem
we say that K is described by a weak membership oracle, a weak separation oracl
or a weak (linear) optimization oracle. The oracle is called strong if it solves the
corresponding strong problem that is obtained by setting € = 0. A body K is calle
circumscribed or well-bounded if a positive rational number R or positive rational
numbers r, R are given explicitly such that K c RBr or, in addition, K contains 2
ball of radius r. If, further, we are given a vector b ¢ Q" such that b + rBr C K,
then K is called centered.

To place the weak linear optimization oracle in the perspective of classical con-
vexity theory, recall Minkowski’s useful functional approach to convex bodies by
means of the support function b : kn x §n-1 _, R, which is defined for K e kn and
u€S""! = bd B® by

#ANA. ﬁv = MBMP%MAH_ tv.

Note that presenting a ¢ € Q" as a call to a weak optimization oracle for K provides
us with an approximation of h(K,¢c/||cl|2), and, in addition, with a “weak support
point” in this direction.

The above three problems are very closely related in the sense that when the
classes of proper bodies are appropriately restricted to those that are circumscribed

rand R. Then the input size is defined as the sum of the following numbers:
size(e);
size(K) = n + size(r) + size(R);
an additional term size(b) when the oracle is centered with center b;
an additional term size(y) for the membership problem and the separation
problem, and size(c) for the optimization problem.
The following theorem contains a list of the precise relationships among the three
basic oracles for bodies (see [GrLS88]). The notation “(A; prop) —, B’ indicates
the existence of an (oracle-) polynomial-time algorithm that solves problem B for
every body that is given by the oracle 4 and has all the properties specified in prop.
(Prop= 0 means that the statement holds for general bodies.)

1.2.1 (WEeak MEMBERSHIP; centered, well-bounded) —, WEak SEPARATION;
(WEak EmmemeE centered, well-bounded) —, Wgak OPTIMIZATION;
(WEeak SEPARATION; §)) —, WEaK MEMBERSHIP;

(WEak SEPARATION; circumseribed) —, Weak OpTiMIZATION;
(Weak OPTIMIZATION; 9) = WEAK MEMBERSsHIP;

(WEAk 011353.83 0) -, WEak SEPARATION.

We want to emphasize the following fact, for it implies that the “oracular” ap-
Ptoach to convex bodies is in an important sense the most general sort of presentation
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introduced in this subsection. It also helps to clarify the way in which the formy-
lation in terms of oracles leads to an efficient modular approach to the problems of
computational convexity.

1.2.2 There are polynomial-time algorithms which, accepling as input a proper ).
polytope or a proper H-polytope P, or a proper S-zonotope Z, produce membership,
separation and optimization oracles for P and Z, and also compute lower bounds o
P’s and Z’s inradius, upper bounds on P’s and 2’ circumradius, and “centers” bp
and bz for P and Z respectively.

This implies that if an algorithm performs certain tasks for bodies given by some
of the above (appropriately specified) oracles, then the same algorithm can also
serve as a basis for procedures that perform these tasks for V- or H-polytopes and
for S-zonotopes. (On the other hand, it is possible to derive some lower bounds on
the performance of approximate algorithms for the oracle model that do not carry
over to the case of V- or H-polytopes or S-zonotopes. Examples of this kind can be
found in Subsection 6.3.)

Let us end this section by stating some basic algorithmic problems of volume
computation. Other variants of these problems (including those asking for weak
approximations) will be introduced later. Here are the problems. ,

VoLUME COMPUTATION

Instance: A positive integer n, an H-polytope (or a V-polytope, or an S-
zonotope) P.
Task: Compute the volume V(P) of P.

WEAK VOLUME COMPUTATION

Instance: A positive integer n, a body K in R™ that is given by a weak opti-
mization oracle (or a weak membership oracle or a weak separation
oracle; a rational vector b € R" and posilive rationals r, R such that
b+ rB* C K C RB"); a positive rational ).

Task: Compute a rational p such that |u — V(K)| L A

It should be emphasized that this survey concentrates on providing some idea
of the principal methods that are available for computing or approximating vol-
umes and mixed volumes, and sketches (or, much less frequently, details) of proofs
are given only for the purpose of enhancing the intuitive understanding of these
underlying ideas and concepts. To further research in this fruitful area of computa-
tional convexity we have formulated unsolved problems that seem especially natural
or important, and in some cases of particular interest we have even included some
“speculative” material, speculative in the sense that we show how certain procedures
(which may not be available at present) could in principle be used to solve certain
other problems efficiently. Finally, it should be mentioned that much of this survey
is “qualitative” in the sense that the primary distinction in computational complex-
ity is that between polynomial-time solvability on the one hand and NP-hardness or
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#P-hardness on the other hand. We recognize that this classification is only a firs
step toward finding optimal algorithms, but we believe it to be a useful guide fc
the latter effort.

2. Foundations

In the present section, Subsection 2.1 fixes some terminology and Subsections 2.3
2.5 discuss the aspects of volume and mixed volumes that are most relevant t.
what follows. Subsection 2.2 represents a deviation (but a fascinating one) fron
our main line of discussion. Much of the material in 2.2 has been treated in book:
by BOLTYANSKIl [Bo78] and Wagon [Wa85]. The material in 2.3-2.5 has beer
the subject of various books and survey articles, including the book by HADWIGET
[Ha57], the survey by MCMULLEN & SCHNEIDER [McS83], and a recent handbook
article by MCMULLEN [Mc93). For this reason, and also because the present article
is concerned mainly with algorithmic aspects, we will be rather brief in this section
More details can be found in the cited references.

2.1. BACKGROUND AND TERMINOLOGY

We could begin by simply noting that convex bodies are Lebesgue measurable, and
that our term volume is synonymous to Lebesgue measure. However, when restricted
to bodies and especially when restricted to polytopes, Lebesgue measure exhibits
many properties that are of fundamental geometric significance. Further, these
properties can in some cases be formulated in an “elementary” way - i.e., without
recourse to limiting processes — and it turns out that some of the notation and
terminology needed to describe the properties is also useful for algorithmic studies.

We speak of a dissection of an n-polytope P into n-polytopes P, ... , Pe if

int(PNP)=9 fori,j=1,... ki#j.

With respect to a subgroup G of the group of all affine automorphisms of R", two
polytopes P, @ C R™ are said to be G-equidissectable (or equidissectable under G)if
(for some k) there exist dissections Py, .. Piof Pand Q,... , Q@ of @ and elements
915--., 9 of G such that P, = 9i(@;) for all 4.

A related notion is that of equicomplementability. Two polytopes P,Q C R”»
are called G-equicomplementable if there are polytopes Py, P, and @, Q@2 such that
P is dissected into P and Py, Q is dissected into Q and Qy, P, and Q, are G-
equidissectable, and P, and @, are G-equidissectable. HADWIGER [Ha57, p-47]
showed that two polytopes are G-equidissectable if and only if they are G-equicom-
plementable.

Let S be a family of subsets of R". A functional ¢ : S® — R is called a valuation
on S* if

$(51) + 9(S2) = (S, US2)+¢(S51NS;)  whenever 51,5,,5,US,,5,nS, € ™.
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The families of principal interest to us here are P" and K. A valuation ¢ is called
G-invariant if

©(S) = ¢(9(S)) for all S € S™ and 9€G,
simple if
©(S) = 0 whenever S € " and S is contained in a hyperplane,

and monotone if
©(51) < ¢(Sz) whenever $;,S, € S* with S C 8.

Obviously, if ¢ is a G-invariant simple valuation on P* and P and Q are G-
equidissectable (or G-equicomplementable) then #(P) = ¢(Q). HADWIGER (Ha57]
showed that this leads already to a characterization of G-equidissectability of poly-
topes.

2.1.1 Two polytopes P and Q are G-equidissectable if and only if o(P) = o(Q) for
all G-invariant simple valuations on P".

2.2. “ELEMENTARY” APPROACHES TO VOLUME

The present subsection states some results on isometry-based elementary approaches

to volume and contrasts them later with a result on an affinity-based approach.
The most famous result concerning equidissectability involves the group D of

isometries. It is the following Bolyai- Gerwien theorem (see [Ge1833], [Bo78], [Wa85]).

2.2.1 Two plane polygons are of equal area if and only if they are D-equidissectable.

If one agrees that an a-by-b rectangle should have area ab, and also agrees that
the area function should be a D-invariant simple valuation, it then follows from
2.2.1 that the area of any plane polygon P can be determined (at least in theory)
by finding a rectangle R to which P is equidissectable. This provides a satisfyingly
geometric theory of area that does not require any limiting considerations. Several
refinements of the Bolyai-Gerwien theorem have been established. For example,
rather than using the group of all.isometries, it suffices to use translations and ~._w=..
turns. Also, the pairs (P,Q) of polygons that are equidissectable under translations
alone have been characterized by HADWIGER & GLUR [HaG51]. (See Eoﬂ& for
this and other refinements.) Although the original proof of 2.2.1 was algorithmic in
nature, there remain open questions concerning how rapidly, under various hypothe-
ses, one can find an equidissection of two given polygons of equal area, and 25.3
are also open questions concerning the minimum number of pieces needed in certain
equidissections. See [KoK94] for some of the algorithmic aspects, and see [Mo91,
p-215] for a problem concerning minimum dissections. ) )

The third problem of HiLBERT (Hi00] asked, in effect, whether the Bolyai-Gerwien
result extends to 3-polytopes. A negative answer was supplied by DEHN [De00], who
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showed that a regular tetrahedron and a cube are not equidissectable. His work le
to the notion of a Dekn invariant of a 3-polytope P. Let f:R—Rbean arbitrar;
additive function such that f(m) = 0 but fis not identically zero. (This implies tha
[ is discontinuous.) For each such £, and for each 3-polytope P, let

3
F1(P)=)"oif(a),

i=1
where o1,...,0; are the lengths of the various edges of P and Qay,...;ap are the
radian measures of the corresponding dihedral angles. Then the number f(P) is
known as the Dekn invariant of P associated with the functional f. In the following
result, the necessity was proved by DEHN [De00] and the sufficiency by SypLEr
[Sy65] 65 years later.

2.2.2 For two 3-polytopes P and Q to be equidissectable under the group of all
isometries of R3, it is necessary and sufficient that f(P)=f (Q) for each additive
function f such that f(x) = 0.

Dehn’s necessary conditions (for equidissectability of proper polytopes in 3-space)
were extended to n-space by HADWIGER (see [Bo78] and [Sa79] for references), and
the sufficiency of the extended conditions was proved by JESSEN [Je68], [Je72] when
n = 4. However, the case of n > 5 is still unsettled. See [Bo78] and [Sa79] for
expositions of Jessen’s proof, and see Sax [Sa79] for an account of algebraic studies
that have been inspired by Hilbert’s third problem.

A notion related to G-equidissectability is that of Q-SS%%S@%QEQ_ where a
decomposition of a set X is a way of expressing X as a union X1U...UX; of a finite
number of pairwise disjoint sets X;. In contrast to the notion of a dissection, these
sets X; are not even permitted to have boundary points in common, and there is no
testriction on the nature of the individual sets (they may even be nonmeasurable).
Hence the study of equidecomposability is far from our algorithmic approach. Nev-
ertheless, we feel that its principal results should at least be mentioned here because
they are the most striking of all results related to volume.

Even though equidecomposability does not require measurability of the sets in
the decomposition, in the following result these sets may be taken as open triangles
together with nice portions of their boundaries.

2.2.3 Two plane polygons are of equal area if and only if they are D-equidecom-
posable.

Theorem 2.2.3 is due to TarskI (see [BaT24]), and it led to the question as to
which pairs of nonpolygonal plane bodies are D-equidecomposable. Although the
sets in a decomposition need not be measurable, equidecomposability of two plane
bodies does imply that the bodies are of equal area. That is a consequence of the
following result.

u..N.A Lebesgue measure on the line or in the plane can be extended to a D-invariant
#tmple monotone valuation 4 that is defined and finite for all bounded sets.
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In fact, x can also be required to multiply properly with respect to all similar.
ity transformations of R2. See [Wa85] for references to Proofs of 2.2.4, and for
discussion of further ramifications of the theorem.

Laczkovicn [Lag0] sharpened 2.2.3 as follows.

2.2.5 Any two plane polygons of equal area are equidecomposable under the group of
translations.

He also settled Tarski’s old problem of “squaring the circle” by showing that
square and a circular disk of equal area are equidecomposable. There too, he needed
only translations. (See [Gaw89] for an expositon of the methods and theorems of
[La90].) On the other hand, a theorem of DuBINS, Hirsch & KaRrusH [DuHK63]
implies that a disk and a square cannot be “scissors congruent”; i.e., there is ng
equidissection (with respect to rigid motions) into pieces which, roughly speaking,
could be cut out with a pair of scissors.

The relationship of equidecomposability to volume in R™ changes dramatically
with the passage fromn = 2 to n — 3. That is clear from the following result, which
is known as the Banach-Tarski paradoz [BaT24).

226 If X and Y are bounded subsets of R™ (with n > 3), and each set has nonempty
interior, then X and Y are D-equidecomposable.

The essential difference between the cases n < 2 and n 2> 3 lies in the fact
that for n < 2 the group of all isometries of R” is solvable (a condition of near-
commutativity), while for n > 3 it contains a free nonabelian subgroup and hence is
not solvable. Thus, for example, while it is clear from 2.2.6 that 2.2.4 does not (as
stated) extend to R™, it does extend when the group D of all isometries is replaced
by the group of translations. See WaGon [Wa85] for a survey of the Banach-Tarski
paradox and of several other results and problems related to the results stated in
this subsection; see also [St79).

We see from 2.2.1 that an “elementary” theory of the area of plane polygons (i.e.,
a theory free of limiting Processes) can be based on isometries and equidissectabil-

equidecomposability. When the underlying group is the group D of isometries, both
of these statements fail in R" for eachn > 3. Equidecomposability fails because (by
2.2.6) the associated equivalence class is far too large, having no connection with
equality of volume. mﬁu:m&mmmngv::% fails because, although this condition implies
equality of volume, proper polytopes of equal volume can: fail to be equidissectable
(see 2.2.2), A pleasant contrast to these difficulties is provided by the following
result (see [Mc93, p.966]), which is valid for all n. It is based on volume-preserving
affinities rather than on isometries.

2.2.7 Under the group of all volume-preserving affinites of R™, two n-polytopes are
equidissectable if and only if they are of equal volume,

For this result, as for 2.2.1, it seems that little is known about minimizing the

‘]
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number of pieces in an equidissection or about the computational complexity
finding an equidissection.

2.3. OE>N>OHMW~N>H~OZm OF THE VOLUME

The volume function can be characterized as follows in terms of valuations.

231 1fpisa translation-invariant, nonnegative simple valuation on Pn (K™), the
there ezists a nonnegative real a sych that p = oV,

L

2.3.2 A translation-invariant valuation on P™ which is homogeneous of degree n i
a constant multiple of the volume. :

2.3.3 A continuous rigid-motion-invariant simple valuation on K» is constan
multiple of the volume.

2.3.4 A nonnegative simple valuation on P (K"} which is invariant under all
volume-preserving linear maps of R" is a constant multiple of the volume.

Proofs of 2.3.1, 2.3.2 and 2.3.3 can be found in the book of HabwiGer [Ha57],
in Section 2.1.3 and on pages 79 and 221. Theorem 2.3.4 is also due to HADWIGER
(Ha70]. See, in addition, the surveys [McS83] and [Mc93].

It is unknown whether, in 2.3.3, K" can be replaced by Pn.

2.4. MIXED VOLUMES

The study of mixed volumes, the Brunn-Minkowski theory, forms the backbone of
classical convexity theory and is also useful for applications in various other areas

presented in this sectjon.
The starting point for the Brunn-Minkowski theory is the following famous the-
orem of MINKOWsKI [Mil]] (see [BoF34], [Sa93], [Sc93)):

24.1 Let Ky, ... y K be convez bodies in R", and let ¢, . .. & be nonnegative reals.
Then the function V(X< &K is a homogeneous polynomial of degree n in the
variables £,... €., and can be written in the form

r r r r
Vv MUm..Nﬂ.. = M MU M & &, b V(K Ky, LK),
i=1 f1=1i,=1 fn=1
where the coefficients «\Qﬁrkﬁ.e.ikﬁ ) are order-independent, i.e. tnvariant
under permutations of their argument.

The coefficient V(Ki,, Ki,, ..., K; ) is called the mized volume of K;, | K, . . ., K;
We will also use the term mized volume for the functional
n

—— e
«\NH:X...XH\.:I&HHN

Ky, Koo V(KL K)
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as well as for restrictions of this functional to cértain subsets of K™ x ... x n.
Here are some of the most important properties of mixed volumes.

242 Let Ky,...,K, € K". Then the mized volumes have the following properties.

(i) Mized volumes are nonnegative, monotone, multilinear, and continuouys val-

uations.
n

TC «\ANﬂnv = «\ANﬂn...._Nﬂn .
(iii) If A is an affine transformation, then

V(A(KL), .., A(KR)) = |det(A)|V(Ky, ..., Kp).

Property 2.4.2 (ii) shows that mixed volumes directly generalize the ordinary
volume. This implies that in general, computing mixed volumes of polytopes is no
easier than computing volumes of polytopes. ; .

The multilinearity of the mixed volume is important for certain algorithmic ap-
proaches outlined in Subsection 7.2. It says that mixed volumes can again be ex-
panded into mixed volumes, or, more explicitly, that for Cy,...,C, € LS ST -
HO.OO_”~ K= MUM.HHM_.Q_. and k eENE <n-1,

k

pr——
V(K,... K Kip,...,Kn) =

=33 ...Mm.._?,...?SQ..:..;Q..:NI::.%L.
f1=1i3=1

=1

One of the most famous inequalities in convexity theory is the following, known
as the Aleksandrov-Fenchel inequality, [A137], [A138], [Fe36).

2.4.3 For K1,...,K, €K™, it is true that
V(Ky, K3, Ks, ..., K)? > V(K1 Ky, K, .., K,) V(K3 K2, K3, ..., K,).

The cases for which equality holds in 2.4.3 have not been fully characterized; see
[Sa93], [Sc93)].

A famous consequence of Theorem 2.4.3 is the following Brunn-Minkowski theo-
rem (see [Sa93), [Sc93)):

2.4.4 If Ko, Ky €K™ and A €[0,1), then
V(1= XKoo+ AKy) > (1 - MV = (Ko) + AVA(K)).

Let us close this subsection by introducing the quermassintegrals and the intrinsic
volumes of a body K.
The quermassintegrals Wy, ..., W, are defined on K® by
n—ig i

Wi(K)=V(K,.. K%, . B,
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and the intrinsic volumes Vo, ..., Vi, are given by
n
Kn-iVi = AN.VS\:C...

where &, denotes the k-volume of B*. (See [Ha57), (Mc75], [Mc77], [Mc93], [Sa93]
[Sc93]). In particular, V,, is the volume V, Va1 is half the surface area,and V5 = 1
Note that the intrinsic volumes are dimension-invariant in the sense that V(K
depends only on the body K and not on the dimension of the space in which X i
embedded. This implies, in particular, that for an i-dimensional body K the it}
intrinsic volume V;(K) is just the i-volume of K.

Note that for £ > 0, the body K + ¢B" is the outer parallel body (already
introduced in Subsection 1.2) and the mixed volume expansion becomes the Steiner-
formula [St1840):

n n
V(K +¢B) =Y @ WilK)E = 3 kaoiVi(K)Em.
=0 i=0

2.5. OE>W>OHMW—N>H~OZm OF MIXED VOLUMES

The following characterization is due to FIREY [Fi76] for k = 1 and to MCMULLEN
[Mc90) for k =n —1.

2.5.1 Letk=1ork=n~1. If p is a monotone translation-invariant valuation on
K" and is homogeneous of degree k, then there ezist bodies Kii1,..., K, such that

k

o N
P(K) = «\QA...:N_\A»tT.:N‘L.

The problem of extending 2.5.1 to general k is wide open, and examples of
GOODEY (private communication) show that the general situation is more com-
plicated than that for k =1 and k= n—1. For instance, let X and Y be orthogonal
2-spaces in E* and for each K € K" set o(K) = Vo(Ix(K)) + Va(ly (K)), where
Iix and Iy denote the orthogonal projections onto X and YV respectively. The
valuation ¢ is monotone, translation-invariant and homogeneous of degree 2, but it
cannot be expressed as a mixed volume. Goodey gives similar examples in arbitrary
dimensions.

Let us close this section with the famous characterization theorems of HADWIGER
[Ha57, Section 6.1.10], showing that the quermassiniegrals or intrinsic volumes form
a basis for a certain space of valuations, (Recall that the intrinsic volume Viisa
continuous valuation, invariant under rigid motions and homogeneous of degree i.)

2.5.2 If p is a continuous valuation that is invariant under rigid molions, then there
are constants ay, ..., o, such that

P(K)=Y aVi(K)  for all K € K.
i=0
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2.5.3 If p is @ monotone valuation that is invariant under rigid motions, then ther,
are nonnegative constants ay, ..., a, such that

o(K) = M,.l,p..fi for all K € K.

i=0

The following example indicates the manner in which the characterization results
2.5.2 and 2.5.3 can be used to identify certain functionals as intrinsic volumes. Fop
abody K in R", and for u € S"=1, the breadih of K in the direction u is defined ag
the number

bu(K) = ﬁwﬂ?.s - m_m?. v

this is just the distance between the two supporting hyperplanes of K that are
orthogonal to the line Ru. The width of K is the minimum of the numbers bu(K).
The mean width of K is obtained by integrating the function by(K) over u g §n-1
and then dividing the result by the (n — 1)-measure of S"~1. As a consequence of
2.5.3 we see that up to a positive factor the mean width of K is just V;(K).

3. Deterministic methods for volume computation

The problem of computing polytope volume has been studied by many authors. The
present section will summarize several of the basic ideas for deterministic volume
computation. In addition to the papers that are mentioned below in connection with
the various methods, the reader may be interested in the following papers that are
not mentioned below: [AIS86], [BaS79), [CoHT9], [Ka94], [Ko82], (La83), [LeR82a],
[LeR82b), [ShH54], [Sps6).

3.1. TRIANGULATION
If vo,...,v, are affinely independent points of R", and T = conv{vg, ..., vn}, then

V(T) = NH_._%RS = U0,-.., Un — vp)].

Thus computing the volume of an n-simplex is equivalent to computing the deter-
minant of an n x n matrix and can be handled very efficiently by means of Gaussian
elimination. Other formulas for computing the volume of a simplex are stated in
Subsection 3.6.

Since simplex volumes can be computed so easily, the most natural approach to
the problem of computing the volume of a polytope P is to produce a dissection of
P into simplices. Then compute the volumes of the individual simplices and add
them up to find the volume of P. (This uses the fact that the volume 1s a simple
valuation.)

In fact, we shall tell, for both V-polytopes and H-polytopes, how to produce a
triangulation. As the term is used here, a triangulation is not merely a dissection
into simplices, but it has the additional property that the intersection of any two
simplices in the dissection is a face of each.

We will first outline an “incremental” algorithm that constructs a triangulation
of a V-polytope. The case of H-polytopes is treated later in this subsection.
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The problem of constructing triangulations of V-polytopes is intimately related
to the task of computing the face-lattice of the convex hull of a given finite point
set, and this is a fundamental task in computational geometry, see EDELSBRUNNER
[Ed87), [Ed93] and CHAZELLE [Ch93]. The incremental method, a paradigmatic
procedure in computational geometry, uses the beneath-beyond approach that goes
back to GRONBAUM [Gr67, p.78]. The basic strategy is to add one of the given
points at a time and hence compute the convex hull step by step. This requires the
use of an ordering of the input vectors.

The following algorithm is based on a convex hull algorithm due to SEIDEL [Se91],
and can also be found in [Ed87] and [Ed93].

Let v,...,vm € Q" be given, and suppose that

() aff{vy,...,vp41} =R, and
(i) a rational vector zp € R™ is given such that (v1,20) < {v2,20) < ... <
(vm-1,20) < (vm, 20).

Then the incremental algorithm proceeds as follows:

o Let Poiy = conv{vy,...,vn41}, set Tpyy = {Pat1}, and assume that for
some i > n + 1 a triangulation 7; of the convex hull P; of {vy,...,v;} has
already been constructed.

o Let B; denote the induced triangulation of the boundary bd(P;). (Note that
Py 41 is a simplex, whence Bnt1 = Faci(Payr).)

e Let B; denote the set of all (n —1)-simplices in B; that are visible from Vig1
with respect to P;, i.e. the affine hull of a simplex in B; separates vi+1 from
P

¢ Finally, set P;yy = conv({viz1} U P;) and Tiy1 = Ty U {conv({vi41 JU F) :
F eB;}.

Before mentioning some complexity issues of the main algorithm, let us comment
on the assumptions (i) and (ii). From a theoretical point of view, none of these
assumptions constitutes any restriction of generality. However, since we are here
interested in algorithmic questions, we need efficient computational procedures for
satisfying the assumptions in order to conclude that they are not too restrictive for
our purposes.

Using Gaussian elimination, we can determine a maximal affinely independent
subset of {v1,.-.,vm} in polynomial time, and (possibly after reordering) we may
assume that it consists of the first & vectors. If k < n + 1 we may terminate the
algorithm (in view of the fact that we are here interested in triangulations only as a
tool for volume computation), or we may decide to continue in aff V. In any case,
Assumption (i) is “algorithmically acceptable.”

As to Assumption (ii}, it is possible as follows to obtain such a hyperplane Hy =
{z: (2, 20) = 0} through the origin with the property that no line determined by
two of the vectors of V is parallel to H,. For any pair (v;,v;) of different vectors of
V, let 4; € {-1,1} and ¥ij = 8i;(vi — v;), where the choice of the sign 6;; is such
that the first nonzero coordinate of Yij is positive. Then the positive hull of all such
vectors y;; is a pointed convex cone, and we can use linear programming to find (in
polynomial time) a vector zg such that {¥ij,20) > 1 for all such vectors yij. Clearly,
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Assumption (ii) is then satisfied by zg after a suitable sorting of the inner-produycy
values (v;, 2o}, and hence is “algorithmically acceptable” as well.

(It is also possible to deal with Assumption (ii) by choosing any hyperplane anq
then “simulating” a perturbation of the input points [EAM90], an approach similar
to the lexicographic rule of the simplex algorithm, see [Da63].)

Note that the ordering of {v;, ..., vm} implies that the segment conv{wv;, Yig1)
meets P; only in the point v;, and hence v; belongs to an (n — 1)-simplex of B; that
is visible from v;y;. This allows us in the main algorithm to find an element of B;
by looking at all simplices of B; that contain v;; and then we proceed by looking a
neighboring boundary simplices.

It is not hard ta see that the running time of the above incremental algorithm is of
the order O(x(L)ml"+1)/2}} where 7 denotes a suitable polynomial in L. Observe
that this bound is polynomial only in the case of fired dimension; for general V.
polytopes, the number of simplices in a triangulation is indeed exponential in n
since the number of facets may already be exponential in the dimension.

Let us mention in passing that triangulations with special properties are stud-
ied prominently in computational geometry, see [Ed87), [Ed93]. A particular clag
of triangulations that has received a lot of attention because of its wide range of
applications is the class of Delauney-triangulations that are “dual” to the Voronoi-
diagrams. Properties of triangulations that are important for practical application
(for instance in “surface-design” in the automobile industry) include “good condi-
tioning” in the sense that the ratio of a longest to a shortest edge of the triangulation
is bounded above by a reasonably small constant.

For some structural properties of triangulations and dissections, and a related
bibliography, see BAYER & LEE [BaL93).

For a given H-polytope we could, of course, compute all vertices and then proceed
Jjust as before. However, we will outline an algorithmically different approach that
is based on the fact that linear programming problems can be solved in polynomial
time. It will allow us to derive an additional result in the case when the dimension
is part of the input (and then, of course, rational V-presentations and rational -
presentations are no longer “polynomially equivalent”).

Suppose that P is an H-polytope given by the irredundant presentation (n, m; A, b).

A triangulation T(P) of P can be computed recursively as follows:

®  Determine a vertex v of P. This can be done in polynomial time by an
application of the ellipsoid algorithm or by interior-point methods.

®  Determine the set F of (irredundant H-presentations of) facets of P that
do not contain v. This can again be done by linear progamming. (Note
that from (n,m; A, b) we can easily obtain H-presentations for the facets
in F, and the subsequent redundancy tests require the solution of at most
O(m?) suitable linear brograms; hence this step can be done in time that is
polynomial in the size of the original input.)

The same step is now repeated for the facets in F and so on, and the results are
stored in a layered graph. The Oth node is the pair (9, P) and the nodes of layer
J are pairs S and F, where S is a set of j vertices and F is a face of dimension
n — j. The recursive process stops with the (n + 1)st layer. Then the respective
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faces are all empty, and the sets S contain the vertices of the simplices of the so
constructed triangulation. (A close relative of this method appears in a paper by
VoN HOHENBALKEN [Vo81).)

A first observation confirms the result that for fired n, the volume of an H-
polytope can be computed in polynomial time. (Note that this follows already
from the triangulation routine for V-polytopes that was outlined earlier, in con-
junction with the fact that, when the dimension is fixed, a passage from a rational
y-presentation of a polytope to a rational H-presentation of the same polytope can
be carried out in polynomial time.)

3.1.1 When the dimension n is fized, the volume of V-polytopes and H-polytopes can
be computed in polynomial time.

Clearly, the above algorithm may require time that is exponential in n. However,
for the case of H-polytopes that are simplicial, the algorithm runs in polynomial
time even when the dimension n is part of the input. To see this, observe first that
the problem of deciding whether P has volume 0 can be solved by way of linear
programming. So, suppose that P is n-dimensional. Further, note that the number
of simplices of T(P) is bounded by m, the number of constraints in the given H-
presentation. We can then use linear programming to identify for each facet F
of P the constraint hyperplanes of the given presentation that contain F’s facets
(which are (n — 2)-dimensional faces of P), and then it is easy to derive irredundant
H-presentations for all simplices of 7(P). For simplices, one presentation can be
converted easily into the other, so we obtain, in time that is polynomial in L, rational
V-presentations of all simplices in T(P). As the final step we compute the volumes
of these simplices and add them all up to obtain the volume of P. This result can
be easily extended to “near-simplicial” H-polytopes. To be more precise, let o be a
nonnegative integer and define the class Py (o) by .

Pulc) = C {P €P": P is an H-polytope, and fo(F)<n+1+¢
neN
for each facet F of P}.

Then we obtain the following result:

3.1.2 Let 0 be a nonnegative integer constant. When restricted 1o Px{o), the prob-
lem of volume computation can be solved in time that is bounded by a polynomial in
L.

Let us conclude with a result about the binary size of the volume of V-polytopes.
Clearly, when the dimension is fixed, the volume of a (V- or H-) polytope P can be
computed in polynomial time and its size is therefore polynomial in the size of the
input. It is not clear a priori whether this property of the volume persists when the
dimension is part of the input. It is true that each vertex of P is rational of size that
is bounded above by a polynomial in L, and that each simplex in a triangulation
has volume of size that is again bounded by a polynomial in L. However, it is also
true that there may be exponentially many simplices in any possible triangulation,
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and thus it is conceivable that V(P) (the sum of all the simplex-volumes) may be
of exponential size. (Remember that we are speaking here of the size or length of
the volume as a binary number, and not of its magnitude as a real number!) Aq
we will see in the next subsection, this may actually be the case for H-polytopes.
On the other hand, it is easy to see (by multiplying with the common denominate;
or simply with the product of al} denominators of the rational entries (va,..., Um)),
that the size of the volume of a V-polytope is indeed bounded above by a polynomja|
in L. ,

313 IfP isa V-polytope, then the binary size of V(P) is bounded above by o
polynomial in the size L of P’s V-presentation.

3.2. SWEEPING-PLANE FORMULAS

Another approach that has become a standard tool for many algorithmic questiong
in geometry is the sweeping-plane technique. It goes back (at least) to Habwiger
[Ha55], who used it in the context of the Euler characteristic on the convex ring.
It has been applied to volume computation by BIERI & NEF [BiN83], LAWRENCE
[La91] and KHACHIYAN (Kh88], [Kh89], [Kh93].

The general idea is to “sweep” a hyperplane through a polytope P, keeping
track of the changes that occur when the hyperplane sweeps through a vertex. Let
us illustrate this idea for the problem of computing the volume of a triangle T =
{vo, v1,v2} in the plane. Let ¢ € R? be a rational vector such that

(e, v0) < {c, v1) < (e, vg).
For r € R, let
H(r)=A{z : {c, z) <7} and o(r) = V(T nH(r)).

Clearly, o(r) = 0 for r < {c,v0) and (1) = V(T) for 7 > (c,v;). Now define the
following three cones:

Co=1v + pos{v) — vg, vy — v},
Co=vy 4 pos{va — vy, vy — v}

Ci = v + pos{v; — vg, v, — v, },
Note that C; N H(r) is bounded for each i, whence (as an easy case of the inclusion-
ezclusion principle)
#(1) =V(CoNH(r)) - V(Ci N H(r)) + V(Can H(r)).
Further, for i = ¢, 1,2,

0 for 7 < (e, v;);
(T~ (e, v5))?  forr> (e, vs),

where the v, are suitable (easily computable) constants. Hence for > ?,Svia
obtain

V(Cin H(r)) = A

2

V(T) =) (=157 ~ (e, w))2.

i=0

i
!
!
i
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Clearly, this approach can be generalized to arbitrary polytopes, and it yields
a volume formula that does not explicitly involve triangulations. This formula was
first derived by Bieri & NEF (BiN83] (even for more general bounded polyhedral
sets); other proofs are due to LAWRENCE [La91] and FiLLIMAN [Fi92]. We will give
LAWRENCE’s [La91] statement of the volume formula (under additional restrictions)
since it is formulated in terms of the standard ingredients of the simplex tableau of
linear programming. Later we will comment on some generalizations.

Suppose that (n,m; A, b) is an irredundant H-presentation of a simple polytope P.
Recall that P’s being simple means geometrically that each vertex of P is contained
in precisely n facets. Let b = (B1,...,Bm)T and denote the row-vectors of A by
e ,...,al . Let M ={1,..., m} and for each nonempty subset | of M, let A; denote
the submatrix of A of rows with indices in I and let br denote the corresponding
right-hand side. For each vertex v of P = {z € R™ : Az < b} there is a subset
I =1, C M of cardinality n such that Arv = b; and Ap\rv < bpryr. Since P s
assumed to be simple and its H-presentation to be irredundant, the set I, is unique.
Stated in the terminology of the (dual) simplex algorithm this means that the basic
feasible solutions of Az < b are in one-to-one correspondence with the vertices of P,
and hence the corresponding linear program is nondegenerate.

Let ¢ € R™ such that {e,v1) # {c, vg) for any pair of vertices v1,v2 that form an
edge of P, and set H(r) = {z € R": (c,z) < T}for r€R.

3.2.1 If the polytope P is simple, and (n, m; A, b) is an irredundant M -presentation,
then (with the above notation)

T ”AIC: Aamkﬁogﬂl?..e:va
P O a7

where er,. .., e, denote the standard unit vectors of R™,

Consequently,

(r—{c, o))"
..q..»ﬂ.wi det(Ay,)|

vip=E

1
n: .
vEFo(P) *Mvm

whenever 7 > maxzep(c,v). It follows that as a polynomial in , the right-hand
side of this formula is constant. Evaluation at 7 = 0 yields the following volume
formula.

3.2.2 If the polytope P is simple, and (m,n; A, b) is an irredundant H-presentation,
then (with the above notation)

vie=L v

n!
vEFo(P)

{e, )"
[Tz el Arl el det(Ar)]

As was mentioned earlier, the ingredients of this volume formula are those which
are computed in the (dual) simplex algorithm. More precisely, {c,v) is just the
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value of the objective function at the current basic feasible solution v, det(4,) is
the determinant of the current basis, and .\»m.yn is the vector of reduced costs, j.e.
the (generally infeasible) dual point that belongs to v. Note that the signs tha
were present in our introductory example (which come from the inclusion-exclusion
principle, or from Gram’s relation) are now hidden in \»N_ﬂ each dually infeasible
component contributes a negative sign.

For practical computations, 3.2.2 has to be combined with some vertex enumer-
ation technique. Its closeness to the simplex algorithm suggests the use of a reverse
search method of Avis & Fukupa [AvF91], which is based on the simplex method
with Bland’s pivoting rule.

As it stands, the volume formula 3.2.2 does not involve triangulation. However,
if we interpret it in a polar setting, it becomes clear that we are really dealing with
the faces of the simplicial polytope P°. Accordingly, generalization to nonsimple
polytopes involves polar triangulation. In fact, for general polytopes P, [BiN83] and
[La91] suggest a “lexicographic rule” to move from one basis to another, and this is
Jjust a particular triangulation of P°; see also FILLIMAN [Fi92, Theorem 1].

As an application of formula 3.2.2, LAWRENCE [La91] derives the following neg-
ative result for the binary size of V(P) for H-polytopes P.

3.2.3 The binary size of the volume of H-polytopes is in general not bounded above
by a polynomial in L.

This result is in striking contrast to the case of V-polytopes (3.1.3) and answers
a question of DYER & FRIEZE [DyF88].

The example given in [La91] is a projective image of the standard cube. More
precisely, let

Co=[0,1]"={z=(&,....6a)T €R": 0 &,...,6, < 1},
let )
a= Mlasi_w;-mr:_%vﬁ
and consider the projective transformation #, defined by

x

ﬂaﬁﬂv = 5

Then P = m4(Cy) is a polytope which is defined by the inequalities
&G+{a,z) <1  i=1,....n
& >0 i=1,...,n,
and this is a rational M-presentation of P of size that is polynomial in n. However,

2ntl_y

1 n w(i)— 1
EEHHMA 243)/2 M (-1) (i) Hw,

§=2n

where w(i) is the number of 1’s in i’s binary representation. Now, write this number
as a rational /v in coprime representation (with 8,y > 0), and let p be a prime
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with 2" < p < 2°*1. Note that p divides a denominator i of 2 summand if and only
if p=14. Let 7 =[] ¢*, where the product extends over all primes ¢ and ¢* is the
highest power of ¢ that divides at least one of the integers between 2™ and 27+! —1;
certainly vy divides 7. Then

2ntig ™ty

MU AlvaT.vluw. = M” A|~v€T.vl~q.I\n..
i=2n t i=2n T
and p divides each 7/i with p # i but does not divide 7/p. Thus the numerator
2~y
N
MU AICETVIHM
§=2n

is not divisible by p and p is not factored out when producing the coprime represen-
tation B/~. This implies that

1> z*w”u is a prime with 2" < p < 2°+1},

By the prime number theorem (see e.g. [HaW68]) there are asymptotically 2" /n
such primes and thus v is an integer of order 22". Hence the binary size of the
denominator of V(P} is not bounded by a polynomial in n.

3.3. EXPONENTIAL INTEGRALS

Another possibility to compute the volume of a polytope P - at least if P belongs
to some special classes of polytopes - is to study the ezponential integral

\. ele®) gz,
P

where ¢ is an arbitrary vector of R". (Note that for ¢ = 0, the above integral gives
just the volume of P.) Exponential integrals satisfy certain relations, some of which
are stated later, that make it possible to compute the integrals efficiently in some
important cases.

Let us begin by stating formulas for the cube C, = [0, 1]* and for the regular
(n — 1)-simplex T}, = C, N H, where H = {zeR: &1 +...4+¢, = 1}, that is
embedded in R"; see [Ba93a]. Let ¢ = (71,...,7,)7. Then in the first case we have

n
\ elo?)dz = : o;
Cn

izl

1 ify;, =0;
where q; = A o1 JQ. 0
=L else.

In the second case, let u denote the Lebesgue measure on H induced from R™. Then

n

\ elerrh g n,\mM,,U%. I ——
Tn i

=l j= T
J#i
for all ¢ € R™ with pairwise distinct coordinates. This result is due to PoDpkoRry-
ToV {Po80] and a different proof was given by BARVINOK [Ba93a]. The following
Proposition stems from [Ba93a)].
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3.3.1 Let C be an n-dimensional line-free polyhedral cone in R™. Further, leg
21y-.-,2m be a minimal set of vectors that generate all eztreme rays of C, and
let Hy = {z: (z;,z) = 0}. Then the integral

.wm?v“\. elet)dz
c

ezists for all vectors ¢ that are contained in the interior of C'’s polar C°, and the
function &¢ is rational in . Further, 6¢ can be naturally extended to o rationg|
function oc on C*, with singularities precisely in Hu.. . UH,,.

The following theorem is the central result in this context. It is due to Briox

(Br88] for rational polytopes, and was later extended to the form stated below by
KHovANsKIl & PunLIKov (1989, unpublished) and BaRrviNok [Ba91], [Ba93a.

3.3.2 Let P be an n-polytope, and for each verter v of P let C, denote the cone
v+ pos(P — v). Further, let oc, be the functions defined in 8.9.1 (with C replaced

by C,). Then
eledldy = oc,(c),
\m M ()

vEFo(P)

whenever c € C" is nonsingular for all functions oc,.

Note that in some sense Theorem 3.3.2 can be regarded as a generalization of the
Gram-relation of LAWRENCE’s (La91] approach.

The vector ¢ = 0 that corresponds to volume computation is singular for all
functionals oc,; so we have to resort to computing the exponential integrals for
nonzero vectors ¢ with 0 < [[¢f}; < ¢ for some sufficiently small positive e. Using
such an approximation, BARVINOK [Ba93a) proves a theorem which, when combined
with the fact that the volume of a given V-polytope is polynomial in the size of the
input, yields the following result.

3.3.3 There is an algorithm which, for a given V-polytope P, computes the volume
of P in time O(m(L)B(P)), where 7 is a polynomial and

B(P) = M A\,wm&v with fi(v) = card({e € Fi(P):v € e)).

vEFo(P)

As a corollary to this theorem we see that for “near-simple” V-polytopes P the
volume of P can be computed in polynomial time. To be more precise, let 7 be a
nonnegative integer and define the class Py(r) by

Py(r) = C {PeP":Pisa V-polytope, and fi(v) <n+r
neN
for each vertex v of P.}

Then we obtain the following result, which is the “dual” counterpart of Theorem
3.1.2:

.
¥
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3.3.4 Let 1 be a nonnegative integer constant. Then there is a polynomial-tim
algorithm whick, for a given P ¢ Py(7), computes the volume of P.

Let us point out that 3.3.4 can also be derived from 3.2.2. Note that the validit;
of 3.3.4 is based on the fact that the number of facets of a simple polytope is boundec
above by its number of vertices, Since, on the other hand, the number of vertice
may be exponential in the number of facets, a similar result is not likely to be tru
for near-simple M-polytopes. In fact, as we will see in Subsection 5.1, the problen
of computing the volume of the intersection of a cube with a rational halfspace i
already #P-hard.

3.4. NUMERICAL INTEGRATION

It may be fair to say that the modern study of volume computations began with
KEPLER [Kel615] who derived the first cubature formula for measuring the capac-
ities of wine barrels (see [St69, PP-192-197]), and that it was the task of volume
computation that motivated the general field of integration. Many efforts have been
made in numerical analysis to devise efficient algorithms for computing or approxi-
mating integrals, and it seems very natural to browse through the fund of numerical
analysis to see what kind of approaches to numerical integration may, when suitably
specialized, lead to efficient methods for volume computation.

Of course, we do not attempt to give a full account of the methods of numerical
integration; for general treatments of this subject see any standard monograph, e.g.
STROUD [St71] or Davis & RABINOVITZ [DaR84). Here we want to concentrate on
two main approaches to numerical integration, the (degree @) integration formulas,
and the (quasi-) Monte Carlo methods.

Many of the approximate methods for integration of a functional f overa compact
region B of R™ have the form

[ ez ~ Y acsiun)

i=1

where the points y,, .. -+ ¥ € R™ are the nodes and the numbers ay,...,ar ER are
the coefficients of the formula, Of course, the nodes and coefficients must not depend
on f, and it is numerically desirable (to avoid annihilation) to have nonnegative
coefficients. The integration formula is of degree d if it is exact for all multivariate
polynomials f of degree at most d but inexact for some polynomial of degree d + 1.

The theory of integration formulas for functions of one variable is well devel-
oped; subjects like the Newton-Cotes formulas or the Gaussian quadrature formulas
are standard fare in every undergraduate course on this subject. However, already
in dimension 2 the situation becomes significantly more complicated. One reason
is that up to affine equivalence there is only one compact connected region in R1,
while there are uncountably many such affinity classes in higher dimensions. Fur-
ther, integration formulas for functions in one variable can be easily obtained by
integration of interpolation polynomials, while for arbitrary point sets in higher di-
Mmensions, suitable interpolation-is not always possible. Moreover, in contrast to the
multivariate case, the theory of univariate orthogonal polynomials (which is of great
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use for constructing integration formulas in one variable) is simple and fairly we]
understood.

Suppose now that, given a region B in R™, we want to construct an integration
formula of degree d. For z = (é1,...,&) and ¢ = (k1,-..,60) € (NU{0})" let 29
denote the monomial

{ = g5 g ] Kn
T =g £52 .. €,

Further, let
Sna={g=(k1,...,ma) € (NU{0O})" : 3" ms < d}.

(")

different multivariate monomials of degree at most d in R”. Thus, in order to obtain
an integration formula of degree d we have to solve the system

..
\ zldr = MP..&.
B

i=1

Note that there are

q€ ..m.a.&.

of Aawmv nonlinear equations in r(d + 1) variables.
It is quite easy to see (e.g. [DaR84, p.366]) that the system cannot be solved

with fewer than
A: + _.&\w._v
[d/2]
nodes. The following theorem of TCHAKALOFF [Tc57] shows on the positive side
that the system is always solvable with

po= (P +d
T\ d
nodes even under the additional constraints that all coeflicients be positive.

3.4.1 Let B C R™ be compact with positive volume. Then there exist nodes Yiy- e ¥ro
€ B and positive coefficients ay, .. .y apy such that

[ )z =Y austu,
B i=1

whenever f is a multivariate polynomial in z of degree at most d.

It may be worthwhile in our context to point out that the most elegant proof of
this theorem makes fundamental use of the theory of convex cones.

Note that the equation in the above nonlinear system that corresponds to the
monomial 2% of degree 0 is just

van\w&u\m%%nmpv
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Hence 3.4.1 is just tautological when applied to volume computation for a body 7
in its formulation B = K, f= 1.

There are other ways of formulating (WEAK) VOLUME COMPUTATION as a prob
lem in integration. For instance, it is equally natural to write

—\ANVH.\«WRN?V&B,

where xx denotes the characteristic function of the body K and C is a body witl
K C C whose volume can be computed easily. Then the formula would not be
tautological. However, since the quality of the approximation

\o Xk (z)dz ~ " aixkc(w)

i=1

would depend on the error in approximating the (noncontinuous) function XK by
polynomials of (preferably) small degree, this formula would not be of great practical
use.

If mere continuity were the issue, we could use yet another formulation. Suppose
that 0 € int K, and let 7k denote the gauge functional of K;ie. for z € R",

7x(z) =min{A > 0:z € AK}.

Then
V()= 1 [ ey,
n: Jga

and hence we could get good approximations of V(K) from the numerical value of
the integral \0 e~ 1%(®)dzr where C is, say, a sufficiently large cube centered at the
origin. By the Stone-Weierstrass theorem, any continuous function on C can be
approximated uniformly on C by multivariate polynomials. However, in order to
obtain sufficiently close approximation, the degrees of the polynomials must be very
high.

There are many other ways in which one could try to utilize the rich fund of
integration formulas (and their accompanying, sometimes very deep, theory of error
bounds) for the apparently simpler task of volume computation. However, as we will
see in Sections 5 and 6, there are some serious, apparently unavoidable obstacles to
obtaining efficient deterministic algorithms for (WEAK) VoLUME COMPUTATION.
With this in mind, it is natural to investigate techniques that use (or simulate)
some kind of sampling. The general idea of the classical Monte Carlo method for
Numerical integration is to devise a stochastic process whose expected value is the
integral under consideration, and then to estimate this expected value by sampling.
.ZQ.o precisely, for approximating the integral \m f(z)dz we choose, for a given
integer r, random points y,, ... »Yr independently uniformly distributed in B. Then
the integral is estimated by

[ @~ vy
i=1
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The expression L V(B) Yi=1 f(%) is arandom variable with expected value [ f(x)dr
and standard deviation

mw?s [ r@as-( / %VENV.

Since the standard deviation does not decrease very rapidly in r, and since for most
regions B it does not seem possible to actually perform random sampling, most
practical applications resort to sequences of points that are specifically tailored for
integration. They are in fact quasi-Monte Carlo methods.

(Note that the latter two of the three mentioned methods of formulating volume
computation as a problem of integration do at least avoid the obvious drawback of
the first formulation - that we would have to know in advance the volume of the
body under consideration.)

A natural approach to deterministic sampling uses the points of B that belong
to the point lattice §Z" for some parameter § € 10,1]. The corresponding formula is

then v(B)
Jfene~ 2 S g,

YyEBNSZn

where G5(B) = card(B N 6Z") is the lattice-point enumerator with respect to 6§77
Under assumptions on f that involve its variation it is possible to derive error esti-
mates for such formulas; see [DaR84, p-352]. In the next subsection we will consider
this lattice-point approach more closely in the context of (WEAK) VoLuME Cowm-
PUTATION.

Improved quasi-Monte Carlo methods can be obtained by “optimizing” the set
of sampling points. The error estimates then rely explicitly on measures of equidis-
tribution of the point set; see [St71, Sections 6.2 and 6.3], [DaR84, Section 5.5].

Let us point out in passing that the lattice-point sampling corresponds to a
dissection of space into cubes with centers at the lattice points. Rather than choosing
these centers as sampling points one can choose one or more random points in each
cube; this leads to the method of stratified sampling, see [St71, p.209].

As we will see in Section 7, the general idea of random sampling (when appropri-
ately elaborated, utilizing special properties of convex bodies) does indeed lead to a
randomized polynomial-time algorithm for volume computation (and hence also for
some special integration problems; see Subsection 9.3). In fact, after suitable trans-
formations, DYER, FRIEZE & KANNAN [DyFK89], [DyFK91] construct an ascending
sequence of bodies

@3"\&0“\“» nﬂNﬁw”Nﬂ

such that the corresponding volume ratios are small, and they then use random
walks on the lattice points inside K; to generate random points from the uniform
distribution over K; that lead to an estimate for V(K;-1)/V(K;).

3.5. LATTICE POINT ENUMERATION

As was mentioned in the previous subsection, it is quite natural (though in general
not optimal) to use the points of suitable lattices for sampling in a quasi-Monte
Carlo approach to numerical integration. We want to consider the sampling with
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lattice points more closely now in the context of (WEAK) VOLUME COMP UTATION.
Let R € N, and suppose that the body K is contained in RB". Set for & €]0, 1]

R 1 1
&m = ~xl%l - Ml_ and mm = Akm + .Mvv Hl..m. &:
Note that
KCBs, Gs(Bs)=(2ks+1)" and V(Bs) = (2ks + 1)"6™.

Then, when applied to B = B; and f = xk, the corresponding quasi-Monte Carlo
integral formula of Subsection 3.4 becomes .
V(Bs)
Gs(Bs)

V(K) = \ xx(z)dz ~ Gs(K) = 5"Gy(K),

B;
and this relates (WEAK) VOLUME COMPUTATION to the problem of counting lattice
points. (See [GrW93] for a survey of lattice-point problems.) Now, we have the
trivial upper bound

6"Gs(K) < V(K +6[-1,1]") < 3 @Ew.:;w.?r:::ﬂurwux...
u.Hc

and using the monotonicity of mixéd volumes we obtain

n—i s
e p P

6"Gs(K) < V(K)+6) @ VRI-1L,17,.. R-1, 17 o1, 1. [=1,1)7)

i=1

< V(K) + 5(2(R + 1))

On the other hand, the inequality of BokowsKI, HADWIGER & WiLLs [BoHW72)]
yields
V(K) = 6n(2R)"! S V(K) = 6V, (K) < 6°Gs(K),

whence

[V(K) - 6"Gs(K)| < §(3R)".

Thus if A is a positive rational, and we set § = A/(3R)", the volume of K is approx-
imated by 6"G;(K) up to the additive error A,

By results of DyEr [Dy91] for n < 4 (see also ZAMANSKII & CHERKASSKII
[ZaCs3], [ZaC85]) and of BarviNok (Ba93b] in general (see also [DyK93]), the
:._::_um_. of lattice points of an H- or a V-polytope can be computed in polynomial
time when the dimension is fized. Hence the above approach yields again Theorem
31llasa corollary.

Now, suppose there is an algorithm A which, accepting as input a pair of ratio-
nals ¢,6 ¢ ]o, 1[ and a centered well-bounded body in R™ that is given by a weak
membership oracle, produces a number g such that

Gs(K) - 9] < Gs(K(¢)) - Gs(F (~¢)).
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Suppose further that for fized n the running time of A is polynomial in size(K),
size(¢) and size(§). Then we can use the algorithm A to solve WEAK VOLUME
CoMPUTATION in fixed dimensions. In fact, let b, r, R denote the parameters of a
centered well-bounded body K in R", and suppose (without loss of generality) that
r = 1. Note first that

K C K(—¢) + ¢RB",
and hence

n—i *

A A

«\AMAA|mvv N ,—\Awﬂv - GM A“sv «\AMNHIH, ::_ [RR¥ mﬁlm.ﬂﬁﬁ.ﬂlr ::. Tty le. Zjavmw.

2 V(K) - e(4R)".
With § = 6(3(R 4 1))", this implies that
8"|Gs(K) - g| < 8"Gs(K(e)) — 6"Gs(K(~¢))
S V(K(€)) +16"Gs(K(e)) ~ V(K (e)] - V(K(—¢))
+6"Gs(K(~€)) — V(K(~0))|
S V(K(e) - V(K(—€)) + 6(3(R+ &))" + 6(3(R — €))"
< 26+ 2¢(4R)"

d hence
" [V(K) = 8] < IV(K) - Gy(K)| + 5°IGs(K) — o]
< 364 2¢(4R)".
If A is now the error parameter of the given instance of WEAK VOLUME COMPUTA-
TION, we choose

A § A
—_ d ) <
“<gapp ™

" BRFD T SRR
and run algorithm A. This proves the following result.

3.5.1 When the dimension is fized, there is an algorithm for WEAK <o~c3.m CoMm-
PUTATION that uses a polynomial number of arithmetic operations on S:emnw of
polynomially bounded sizes and a polynomial number of calls to the hypothetical al-
gorithm A.

Note that we can of course check in oracle-polynomial time for each point y of
BsNSZ"™ whether y is weakly contained in K. More precisely, given y € B; DQN‘.& and
a rational number ¢ > 0, the oracle for K asserts that y € K(¢) or that y ¢ K(—¢).
Further, the number g of input points y € Bs N 6Z" for which _U.rm oracle mmmm:w
¥ € K(¢) would satisfy the above requirements. C:mona::wﬁo_«, s@:_m the ::Evm.“. N
lattice points in R[—1,1]" that we have to check is polynomial in R and 1/6, it 1
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not bounded by a polynomial in size( K) and size()) and hence is not polynomial ir
the size of the input. Thus this simple checking procedure does not yield a suitable
algorithm A.

At present, we don’t know whether such a polynomial algorithm A for WEAK
LATTICE POINT ENUMERATION exists, nor do we know the precise status of WEAK
VOLUME COMPUTATION in fixed dimensions, The latter question is of course closely
related to the question of devising suitable algorithms for approximating bodies by
polytopes.

3.6. SPECIAL CONVEX BODIES

Since simplices are the most basic and elementary polytopes, formulas for volumes of
simplices are of special interest. We begin this subsection with some formulas which
supplement the basic determinantal formula given at the beginning of Subsection
3.1 and which are for some purposes more useful than that one. The following result
expresses the volume of a j-dimensional simplex (short J-simplez) in R" in terms of
its edge-lengths.

3.6.1 Suppose that S is a J-simplez in R"™ with vertices V1,..., V41 Let B = (8;)
denote the (j+ 1) x (j + 1) matriz given by fix = |lv; ~ v[|2. Then

E.Q_vﬁ\...wﬁmv = | det(B)],

where B is the (7 +2) x (j + 2) matriz obtained from B by bordering B with a top
row(0,1,...,1) and q left column (0, 1,. L DT,

The determinant appearing in 3.6.1 is often called the Cayley-Menger determi-
nant. See [D665, p.285] and [BIG43] for references to low-dimensional cases of 3.6.1
associated with the names of Euler, Lagrange, Cayley, and Sylvester, and see Som-
MERVILLE [S029, p.125] and BLUMENTHAL [BI53, p.98] for proofs of 3.6.1.

The next formula, a close relative of 3.6.1, expresses the volume of a suitably

located simplex in terms of the Gram matriz of inner products of its vertices; see
[GrKL94] and [BI53] for proofs of 3.6.2 and a variant of it.

3.6.2 Suppose that S is a j-simplez in R™ with 0 € aff S, and A is the (j + 1) xn
matriz whose rows list the coordinates of the vertices of S. Then

(?VA(S) = det(M + AAT),

where M is the (j + 1) x (7 + 1) matriz whose entries are all 1. If the origin is a
verter of S then
GNAVAS) = det(A4 A7),

where Ay is formed from A by discarding A’s zero row.

For an n-simplex § in R™, the following formula expresses the volume of S in
terms of the coefficients that appear in the affine functionals defining the facets of
S. For general n the formula is due to KLEBANER, SUDBURY AND WATTERSON
Eﬁms\mg.
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3.6.3 Suppose that an n-simplez S in R is bounded by the n +1 hyperplanes whose
equations are

Q..c.TMUQ&.Hu.”o T.”o.w.....:v.
i=1
and let A denote the (n+1) x (n+1) matriz with elements aij, 0< 4,7 < n. Then
the volume of S is given by
| det(A)|?
! [Tizo 4io’

V(S) =
where A;g is the cofactor of a;p in A.

The paper [KISW89] also contains two formulas giving the <.oEBo ofa g.-m::v_wx
S in R™ when j < n. One formula is in terms of the coefficients that appear in
the affine functionals defining the affine hull of S and the facets of .m. The other
formula is in terms of the coordinates of the vertices of the mmavﬁmx. rwrm the volume
formulas in [LL90] and [Be92], it may be regarded as a higher-dimensional analogye
of the Pythagorean theorem of plane geometry. . .

There are, of course, other classes of bodies or polytopes for which special volume
formulas or special methods of computing volumes are known. Some &. these can
be found in the references listed at the start of Section 3. We do not discuss these
here, but the case of zonotopes does seems worthy of special mention.

Let (n,r;¢;21,...,2.) be an S-zonotope and set Z = Yi=100,1]z;. Further, for
i=1,...,r let K; = [0,1]z, i.e. the K;’s are all line segments. It follows from 2.4.1

that . )
V@)=V K| =33 S vk, ..., K.,).

i=1 f1=1ip=1 1a=1
If the indices i, ...,i, are not pairwise distinct, the zonotope K;, + ---+ K;_ has
volume 0, whence V(K;,,...,K:) =0 and it follows with

V(Ki+...+Ki)=V(Ki,,... K;) = nlldet(z,,..., 2|

that
V(Z) = > [det(zi,, ..., z.)|;
1<i1<i3< - <ia <

see also [Mo89], [St91] and [Sh74). .

Note that this formula for the volume of a zonotope leads to a w&%:o.a_ﬂ-
time algorithm for fixed dimensions, and also for varying dimensions if the input
is restricted to the class of all “near-parallelotopal” S-zonotopes, where r — n is
bounded by an a priori constant.

3.6.4 When the dimension n is fized or when r—n is fired, VoLUME COMPUTATION
can be solved in polynomial time for S-zonotopes.

. . m

In general the above volume formula involves mxvosmu:wzxagw m:BBmzmmww%vﬁ.

this feature of zonotope volume computation cannot be avoided (unless P = ,
see 5.1.7.

T
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For combining two convex sets J and K to form a third, the three most importan
ways are those of intersection, vector addition, and Jjoining - forming the sets J N
J + K, and conv(J U K) respectively. When the sets J and K are sufficiently
“independent,” there are yseful formulas relating V(J/+K) and V(conv(J U K)) tc
V(J) and V(K). .

For any two subsets X and Y of E*, we define the distance

dist(X,Y) = inf{||z — vl:z€ X, yey).

Now suppose that X and Y are both flats (affine subspaces), that there is a unique
pair of points zg € X and Yo €Y for which Hzo - w2 = dist(X,Y), and that the
linear subspaces X —zoand Y —y; are mutually orthogonal. Then the flats X and Y
are said to be orthogonal when Zo = yo (so that dist(X, Y) =0) and skew-orthogonal
when zo # yy (so that dist(X,Y) > 0).

3.6.5 Suppose that J is g J-dimensiongl body in R™ and K is 4 k-dimensional body
in R". Let

P=J+K and Q = conv(J U K).
If the flats aff J and aff K are orthogonal, then P is o (j +k)-dimensional body with
Visk(P) = V;(J) - Vi(K).

If the flats aff J and aff K are skew-orthogonal, then Qisa(j+k+ 1)-dimensional
body with

ek (@)= - M.WT 7y; dist (af F,aG) - ;() - Vi),

The first formula in 3.6.5 js Just the standard one for the volume of a cartesian
product. Suppose, in particular, that k, R1,..., 0 are fixed positive integers. Then,
for given (#- or V-) polytopes P, ¢ R™, ... ,B, CR"™and p = P x...x P we
have

VP)=v(P)-.... V(P),

and hence by 3.1.1, V(P) can be computed in polynomial time. The computation
of V(P),..., V(Pe) is generally more efficient than direct computation of V(P).

The second formula in 3.6.5 appears in [GrKL94] for the case in which J and
K are both simplices, whence the general formula follows easily for polytopes by
dissection and then for general bodjes by approximation.

4. Deterministic methods for computing mixed volumes

4.1. Using A VOLUME ORACLE

Mixed volumes, a method directly suggested by Theorem 2.4.1, which is based on a
Procedure for volume computation.

Let us consider an arbitrary procedure B (efficient or not) for WEAK VoLumg
OoZvcﬁ»ioz“ S0, suppose that B is an algorithm which, for a body K given by
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a weak optimization oracle and for a given positive rational A, produces a rationa]
number p such that |V(K) — pu| < A. In this subsection we show how such an
algorithm can be used for the (weak) computation of mixed volumes.

Note first that when the number r of bodies K7, ... , Kr and the binary sizes of
the positive rationals £;,...,¢, are bounded by a polynomial in n, then the weak
optimization oracles for Kj,.. ., K, can be used to devise a weak optimization oracle
for Y[, & K;. We will now try to gain information about mixed volumes by calling
B for various such linear combinations of K,..., K,. .

Let us begin with some remarks about the maximum number of different mixed
volumes. By 2.4.1,

|4 Mum..ﬁ.. = MU M Mum...m,.u...m....<Q.«..:N..3.:.F.=v.

i=1 ii=1lip=1 faz=1

Thus we have r" coefficients V(K;,, Ki,,. .., K;,). However, these coefficients are
order-independent and hence only
n+r—1
r—1

of them can actually be distinct, for this is the number of different multivariate
monomials of degree n in R". It follows that if r is fized, their number is poly-
nomial in n, and if n is fired, their number is polynomial in r. However, it also
follows that in general, the task of computing all mixed volumes cannot be accom-
plished in polynomial time since the number of different mixed volumes may grow
exponentially.

Now, for z = (£1,...,&) and ¢ = (k1,..., k) € (NU {0}), let ¢ denote again
the monomial

AR e LAY S

Further, let

i

nuﬁaf..;zsvaZC*o:aNMUZ..Hz ,

i=1

@n

and for ¢ € @, let

A n v
Cyp =

q

Kiy..., Ky
Here, as usual,

A n v L7l AH if K = 0;
=nl |} = where a; =
Ki,...,Kp f -

is a multinomial coefficient. Setting

w(z) =V Mm..mb. ,

i=1

f ————
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the mixed volume expression 2.4.1 of 7 reads

w(z) = M cpzt.

gEQn

Assume that the elements of Q, are ordered (for instance lexicographically),

:+~.le

r—1

@n={a,-.., e}, with k= A

Then, a choice of k nonnegative rational row vectors ¥1,..., ¥ of R" and evaluation
of m(x) at these interpolation points leads to the matrix equation

m(yr) Uil G o q

p= : = : : : =Y.

iSV Sm_sw&. ae.

Note that forr =2 and y1 = (1,m),...,¥n41 = (1,90+1), Y is just a Vandermonde-
matriz and hence is nonsingular whenever 1y, ..., 7,4, are pairwise distinct. In this
case T = a.::xn can be expressed in terms of the standard Lagrange interpolation
polynomials, and there is a considerable literature on how to choose the interpolation
nodes and do the computation in an efficient and numerically stable way; see e.g.
[BeZ65], [Sa’74], [Ri75), [Ri90], or [MiM85}; see also 7.2 for a more explicit description
of the case r = 2 in terms of Lagrange polynomials.

Now suppose we have chosen y; = (n;,1,...,9j,) for j =1,...,k such that Y is
nonsingular. Further, let py,..., i be the rationals produced by B when applied to
the bodies }~;_, n; iK;, respectively, whence

In(y) ~pil <A forj=1,.. k.

Now, let
A=Y} p=(p1,...,m)T, and Z = Ap.

Then

1 — 2lleo = 1A(B ~ P)lleo < NAIHIB - plloo < AlJAL
where || A|| is the matrix norm induced by || ||, i.e. the maximum of the £; norms
of the rows of A.

It can now be shown (see [St71, p.55], [ChY77], [O186); cf. also 3.4.1) that the
interpolation points y;, ...,y can be appropriately specified so as to yield the first
case of the following result; the assertion for fixed n but varying r then follows in a
standard way.

4.1.1 Whenever r is fized or n is fized, there is an algorithm for (weakly) computing
all mized volumes of r bodies in R™ given by weak oplimization oracles that uses
a polynomial number of arithmetic operations on rationals of polynomially bounded
sizes and a polynomial number of calls to the algorithm B.

Note that in order to compute one specific mixed volume by this method, we must
essentially compute all of them. Further, 4.1.1 does not cover the case of varying n
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and r. In particular, it is unclear whether there is an efficient way of computing,
say, V(Ki,...,K,). Theorem 5.2.2 below gives some indication that this might not
be the case.

Finally note that we have used here a quite strong algorithm for volume approx-
imation. We will use a weaker approximation routine in Subsection 7.2, and we will
comment on the difference there. Different measures for approximation errors wil]
be introduced in Subsection 6.1.

4.2. POLYTOPES

Theorems 3.1.1 and 4.1.1 together show that there is a polynomial-time algorithm
for computing all mixed volumes of polytopes in fixed dimensions.

4.2.1 When the dimension n is fived, there is a polynomial-time algorithm which,
given r € N and (V- or H-) polytopes Pi,...,P,, computes all mized volumes
V(Py,...,R.). ’

This algorithm makes use of the fact that the given bodies are actually polytopes
only in the subroutine for VoLUME COMPUTATION. It is, however, possible to
express the mixed volumes of polytopes as the sum of volumes of polytopes formed
as sums of faces, and hence devise an algorithm that makes much stronger use of
the facial structure of the polytopes, is more combinatorial and therefore possibly
numerically more stable.

Forr>2let P, ..., P, be polytopes in R". When applied to the mapping

¢:Pix...xP,>P +...+P. defined by elzr,. o z) =21+ ...+ 2,

the lifting theorem of WALKUP & WETS [WaW69) yields a dissection of P, +. ..+ P,
into polytopes Fy +...+ F., where (F1, ..., F.) varies over suitable r-tuples of faces
Fi of P;; see [McS83], [PeS92], [HuS93]. Using the expansion of V(PL+...+ R)
into mixed volumes and comparing coefficients, this dissection can be used to obtain
a representation for mixed volumes in terms of the volumes V(Fi+ ...+ F). An
explicit formula of this kind was given by BETKE (Be’92] for r = 2 and SCHNEIDER
[Sc94] in the general case.

In order to state Schneider’s result (in Theorem 4.2.2) precisely, we need to
introduce some notation.

For a polytope P and a face F of P, let N (P, F) denote the cone of outer normals
of P at F. Further, let us call the vectors v1,...,v € R" admissible for P;,..., P.
if

(i) thereisan i€ {1,...,r} such that v #0;

(i) ¥i_,vu=0; .

(iii) Nz, (relint N(P;, F;) — v;) = 0 whenever, for i = 1,...,r, F;is aface of P;
and Y I_, dimF; > n.

Note that the third condition is invariant under a common translation of the vectors
Y1,...,vr, whence (iii) is the only relevant condition for admissibility. Now suppose
that v;,..., v, do not satisfy (iii). Then there exist faces Fy,. o F.of P,..., P

BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY II 4

respectively, with Mum.ﬂ dim F; > n, and a vector zg € R™ such that for each i
1,...,r the appropriate hyperplane perpendicular to the vector Zo + v; supports
in the face F;. Hence z = ((zo + v)T, ... (204 v.)T)T e RP" supports the polytoj
P=Pix...x P, of R* in its face F = Fy x...x F,, whence z € relint N(PF
This implies in particular that v + S ¢ lin(N(P, F)), where v = (o7, .. Lol
and S is the n-dimensional subspace of R™ of vectors of the form (z7,..., 2T
with z € R". Now consider the (linear) hyperplane arrangement H in R™" th:
is formed by all hyperplanes that are orthogonal to an edge of P. The conditic
that 377_, dimF; > n implies that dimN(P,F) < (r — 1)n — 1, whence the ;
dimensional affine subspace v+.5 of R™" meets a face of 7 of dimension (r—1)n—
so, admissibility is just a general position condition that is “generically” satisfied.

In practice, to find vectors Y1,..., % that are admissible for Py, ..., P. one woul
essentially choose vy,...,v, at random. In a deterministic approach one mig}
construct the face-lattice of X (using the algorithm of EDELSBRUNNER, O’ROURK
& SEDEL [EdOS86], [EdSS91]), then add S to each cell of dimension (r—=Dn-
(and if necessary add further lines to obtain hyperplanes), and then find an interic
point of a full-dimensional cell of this new arrangement. .

Let, as in the previous subsection,

@n={e=(r,...k) €(NU{O}) : Y mi = m},

i=1

and, for g € Q,, let Fgq denote the set of all r-tuples (F1,..., F,) of faces of P,...,P,
respectively, for which

dim F; = k;, for i = 1,...,r
&:NNAMU“.Mu N«...v =n,
Ni=1 (N(P;, Fy) - v;) # 0.

Then SCHNEIDER [Sc94] proved the following representation theorem.

4.2.2LetPy,... P be polytopes of R™, let v, ... »Vr € R™ be admissible for Py, . .. , F
and let ¢ = (K1,...,5:) €Qp. Then

A " Y\S.:;m:.;w::._m =S V(R +...+F).
Kiyoooy Kp F

q

Let us point out that, when Py, ..., P. are H-polytopes, for a given r-tuple (Fy,.. ., F,
of (V- or H-presented) faces of Py, ..., P,, respectively, it can be checked in polyno-
mial time (using Gaussian elimination and linear programming) whether (F1,...,F.)
Fq. Note, further, that 4.2.2 can be used to prove 4.2.1, that in fixed dimension,
mixed volumes of polytopes can be computed in polynomial time.

We close this section with a tractability result of [DyGH94] that holds even when
the dimension is part of the input.

4.2.3 There is g polynomial time algorithm for checking whether, for given n,r € N,
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(H- or V-) polytpes Py, .. - Pr of R, and ¢ = (k1,..., k) € Qn,

K Kr

v(p,...,P,...,P.,...,P;

This result does not seem to be striking, but it is not trivial. In fact, suppose for
notational simplicity that r = n, and that the origin belongs to the relative interior
of all polytopes. Then select for each i a basis A; of linP;. It is easy to see that
V(Py,...,P,) # 0 if and only if there is a choice of (a1,...,8,) € 4; x ... x A,
such that det(q,, ... ,8n) #£ 0. Let A = Ui=1 4i, let T; be the family of all linearly
independent subsets of A, and let Zp denote the family of all subsets of 4 which
meet each of the A4; in at most one element. Then the pairs My = (A, Z.) and
Mp = (A,ZIp) are matroids, called respectively a linear matroid and a partition
matroid. Now V(P,, ..., P,)} # 0 if and only if M and Mp have a common basis,
and this can be detected in polynomial time by the matroid intersection theorem of
EpMonDs [Ed70]; see also [GrLS88, Section 7.5).

4.3. POLYTOPES AND BODIES

This subsection discusses a specific formula due to MINKOWsKI [Mil1] for the mixed
volume of a convex body and n — 1 copies of a polytope; see also [BoF34] and [Sc93).

With h : K» x§"-1 4 R denoting as before the support function, Minkowski
proved the following result.

4.3.1 Let K be a body and P a polytope in R™, let Fy, ..., F,, denote P’s facets, and
letuy,..., upy be the corresponding outer unit normals. Then

MK, ui)Vao1(F;).
1

Let us mention, as a side remark, that 4.3.1 can be applied to a polytope
P of the form P = Pi+...4 P,_y; it then yields a similar representation for
V(K,Py,...,P,_,) (see [BoF34, p-42]).

Suppose now that P is an H-polytope and that the given presentation is irre-
dundant. This means, in particular, that (not necessarily unit) normal vectors of
all facets are given. Further suppose that the volumes of the facets of P are known,
and that K is given by a weak optimization oracle. Then formula 4.3.1 allows us to
approximate V(K, P, ..., P) with the aid of m calls to the optimization oracle.

For general polytopes, and when the dimension is part of the input, this is not
particularly encouraging since the problem is only polynomially reduced to VoLUME
COMPUTATION for the facets of P. If, however, P belongs to a class of polytopes
for which the facet volumes can be obtained efficiently, or if we just consider all
computations that involve only P as “preprocessing” (since we may want to compute
V(K,P,...,P) for many different bodies X but fixed P), then 4.3.1 may even be
algorithmically useful.

It may be worthwhile to point out that some of the problems disappear when
different data structures are used. This is particularly apparent in connection with
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the algorithmic significance of 4.3.1. Indeed, recall that by a theorem of MINKOWsE
[Mi1897], [Mi03], a polytope is uniquely determined (up to translation) by its face
volumes and its facet normals. Hence, the “tractability statement” related to 4.3.
says essentially that if we choose, as our data structure for polytopes, a Minkows
presentation - i.e., a list of facet volumes and the associated facet normals - the;
V(K,P,...,P) can be approximated in polynomial time for arbitrary bodies give
by a weak optimization oracle. However, the problem of passing from a given V
or M-presentation to a Minkowski-presentation is algorithmically difficult (see 5.2
unless the dimenson is fixed. The same is true for the reverse transformation; se
[GrHY4]. .

4.4. SPECIAL CONVEX BODIES

There are other formulas and integral representations known for mixed volumes ir
general or for certain classes of bodies (see e.g. [BoF34], [Ha57], [BuZz88], [Sc93)
whose algorithmic significance seems, however, restricted to very particular cases.

In the present subsection we will Jjust mention two explicit formulas for the mixed

volumes of a body and a ball or a parallelotope. We begin with the intrinsic volume
of polytopes.

As was noted already in Subsection 2.4, the expansion of V(P +£B") into mixed
volumes leads to quermassintegrals or intrinsic volumes of a polytope P. For a face
F of P let v(F, P) denote the outer angle of F at P (i.e. the fraction of space that is
taken up by the cone of outer normals of P at some point that is relatively interior
to ). Then McMuULLEN [Mc75) gave the following representation of the intrinsic
volumes.

4.4.1 Fori=0,...,n,

ViP)= Y A(F, P)Vi(F).
FeF(P)

Evaluation of this formula involves computing the volumes of all i-dimensional
faces of P, and also of the (n — i - 1)-dimensional (spherical) volumes of spherical
polytopes that are obtained by intersecting the cones N (P, F) of outer normals with
S"=1. While the former is algorithmically easy only for small values of i (see 3.1.1),
the latter is easy only for small values of n—i

We mention in passing that HADWIGER [Ha75) has given the integral formula

MSANAVH.\ mla&undmﬂ,hvn&&x
Rn

=0

which is a useful tool for certain lattice-point problems. The same is true (see
[GrW93]) for a formula that we are going to develop now; see [BuZss, p.141] or
(S<93, p.294].

Let a;,...,a, € R™ such that Z = >i=100,1]a; is a proper parallelotope, let
0<k<n,and let Ky, ..., Ka_; € K™, Further, IIs K denotes again the orthogonal
Projection of a body K onto a linear subspace S. Then the multilinearity of the
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mixed volume implies that

k
vz,..., 2z, Ki,...,Kn i)

= M M:” M «\A_..o. H._n-.:..i_no, H.._a..t\ﬂ?...«hﬁalwv.

f1=liz=1 fx=1

Now let S;, s, =lin{a;,,.. .,ai, }, then

AU V([0 ey, .., [0, Uasy, Ky, ..., Kaog)

y,..0  ifdim ,m...-.:...... =k;
10 otherwise,

®iy,in = Voo CH.?_. . Nﬂu....“ﬂm._. : Nﬁalmv.—\h:..:...r :o. :P.:..._Mo_ SP.L“

iy Slaeenip Slaeenriy

the subscripts .w.“__........_. and §;,, . ;. indicate that the corresponding mixed volumes
are taken with respect to the spaces St iand Sip g respectively. If we spe-
cialize this formula to the case Z = Co=[0,1]" = ¥ [0,1)e; and K, = ... =
Kn_i = K we obtain the following result.
44.2 Fork=0,...,n,

k n—-k

e N
@ V(Ca,....CiK,...,K) = ¥ Va_i(IsK),

where S ranges over all (n — k)-dimensional coordinate subspaces of R™.

Another useful specialization is obtained for Ki=...=Kp_; = B"; it leads to
a simple formula for the intrinsic volumes of a parallelotope.

443 Let Z=737" [0,1]a; be a proper parallelotope. Then, fork =0,...,n,
" N(2) = Y w(F).
FEFu(2)

Hence, in order to compute the intrinsic volumes of Z, we need only compute the
k-volume of its k-skeleton Cm.mﬂiuv F. This can be done inductively. In fact, if for
j=0,....,kand m = 1,...,n

S@j,m) = > V;(F),
FeF;(3°™ [0,1]as)

i=1

then we have (with appropriate conventions in the “boundary cases”)

S(G,m+ )= 2534, m) + S -1, m) - =n3+~ - \»A\w%\»vlpxﬁﬂni.vy:?
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where A is the n x m matrix with column vectors ay,. -+»am. Thus we obtain th
following result as a corollary of 4.4.3.

4.4.4 The mized volumes of an S-parallelotope Z in R™ can be approzimated up ¢
an additive rational error € > 0 in time that is polynomial in n, in the size of Z’
presentation, and in size(e). .

5. Intractability results

5.1. VOLUME COMPUTATIONS

In striking contrast to the “positive” results 3.1.1, 3.1.2,3.3.4, 3.6.4, there are several
strong intractability results for VoLUME CoMPUTATION. Theorem 5.1.1 summarizes
the former, and the latter appear in Theorems 5.1.3-5.1.5 and 5.1.7.

5.1.1 The volume of a polytope P can be computed in polynomial time in the Sollowing
cases:

(i) if the dimension is fized and P is a V- or H-polytope or an S-zonotope;
(i) if the dimension is part of the input and P is a near-simple V- or a near-
simplicial H-polylope or a near-parallelotopal S-zonotope.

By 5.1.1 (i) there is a polynomial-time algorithm for VOLUME COMPUTATION
when the dimension is fixed. However, the methods of volume computation that we
described in Section 3 all require exponential time when n is part of the input. Hence
it is natural to wonder whether there is a more robustly polynomial-time procedure
for volume computation. .

To set the stage, let us begin with a negative result that was mentioned in a
different setting in Theorem 3.2.3.

5.1.2 There does not ezist a polynomial-space algorithm for ezact computation of
the volume of H-polytopes.

Since each polynomial-time algorithm uses only a polynomial amount of space,
Theorem 5.1.2 implies that there is no polynomial-time algorithm which, given a
dimension n and an n-dimensional H-polytope P, computes V(P). Doesn’t this
result already show that volume computation is actually much harder than such
NP-complete problems as the TRAVELING SALESMAN PROBLEM? The answer is
“Not really!” and we take a few sentences to explain why (to a reader who is less
familiar with the relevant concepts of complexity theory).

In the realm of P and NP, complexity theory usually deals with problems whose
answer is “yes” or “no” since this corresponds to the results of a halting Turing
machine computation. (When dealing with the class #P, the Turing machine is
augmented by a device that counts accepting computations.) This means that when
dealing with related complexity results, the proper formulation of VoLUME CoMm-
PUTATION is as follows.
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VOLUME.

Instance: A positive inleger n, en H-polytope (or a V-polytope, or an §.
20notope) P, a nonnegative rational .
Question:  [s the volume of P bounded above by v, ie. is V(P)<v?

In order to distinguish ‘the different classes of input polytopes we will sometimes
speak of the problems H-VOLUME, V-VoLuME and S-VOLUME, respectively.

Note that the above problems could have equally well been phrased in terms of
lower bounding V(P). We use upper-bounding only to associate a “yes” answer with
instances in which P is lower-dimensional, a special and easy case.

Suppose now that we had a polynomial-time routine for solving H-VoLuME,
Then, using binary search (with appropriately specified values of v) we could ap-
proximate V(P) with any polynomial-size accuracy in polynomial time. Hence,
Theorem 5.1.2 does not rule out the possibility that H-VoLuME is in P and that
computing any number of polynomially many digits of V(P) for H-polytopes P s
actually easy.

DYER & FRriezE [DyF88] showed, however, that both #-VoLumME and V-VoLume
are #P-hard, and we are going to describe various hardness proofs that are all ge-
ometric in nature. (See also KHACHIYAN [Kh88], [Kh89), [Kh93]). We begin with
H-VOLUME.

Let us point out that, in the following, we are going to deal with hardness results
which involve classes of H-polytopes for which the volume is of polynomial size.
Hence, a polynomial time method for VoLumg would, in fact, result in a polynomial-
time algorithm for VoLume COMPUTATION.

The first proof stated here for the NP-hardness of the problem of computing the
volume of certain simple H-polytopes utilizes the sweeping-plane formula 3.2.1; it is
due to KHACHIYAN (Kh88], [Kh93).

Asin 3.2.1, let P be a simple H-polytope with corresponding irredundant -
Presentation (n, m; A,b). Further, let ¢ € R™ such that (e, ) is not constant on any
edge of P, and let H(r)={z eR": (c, ) <7} for 7 € R. Then, by 3.2.1,

MU (max{0, 7 — (e, v)

= e
VIPNH(r) == [Ty 7 A7 el det(AL)]

n vEFo(P)
This implies that
o(r) = V(PN H(r))

is a piecewise polynomial of degree at most n, and is (n - 1)-times continuously
differentiable. (This result has also been proved in the theory of splines (cf. DE
Boor & HéLLig [BoH82]), and it is also relevant to some problems in geometric
tomography; see [GaG94].) Further, if ry < ... < Tk are the (ordered) values of r
for which bdH(r) contains a vertex of P, the nth derivative of ¢ is discontinuous at

most at 7,...,7,, and at these points the one-sided derivatives satisfy the equation
(i) _ drp(r—) _ > (=1)’®
drn dre vEFo(P),(e,v)=T _:m.ulL mw.\»m.-wn&og\:e:
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where 6(v) = card{w ¢ Fo(P) : (e, w) < (e, v)}.

Specifically, if C, = [0,1)" and ¢ > 0, then for each vertex v of Cyn we hav
6(v) = |||l Let us assume that ¢ has the following “constant-one” property tha
whenever two vertices v, w of Cn are such that (c,v) = {c:w), then [[v]]; = [|uw])
Then,

there is a vector v € {0, 1} with (c,v) = &

if and only if
de(xt)  dhp(x-)

drn drn #0.

Now suppose that we could compute the volume of the intersection ¢(r) = CanH(T
in polynomial time. Since, unless bd H (7) meets a vertex of Ca, (7) is a polynomia
in 7 of degree at most n, we can check the differentiability condition in polynomial
time. Hence the problem,

Given ¢ € N” with the constant-one property and &k € N, is there a 0-1-vector
v with (c,v) = &?,

is transformed in polynomial time into the problem of computing the volume of
an M-polytope. But except for the additional property of ¢ this is equivalent to
SUBSET-SuMm:

Given positive integers n, Y:--., Y and a positive integer &, is there a
subset I of {1,.. .,n} such that DierYi = K?

SUBSET-SUM is known to be NP-complete, [Sa74] (see also [GaJ79]). On the other
hand, any instance of SUBSET-SUM can easily be transformed to the n instances
of the required restricted version that are obtained by replacing ¢ by the vector
ct{llefli+1,..., llell:+1)T, and successively forf = 1,... n by k+({lc|l; +1)6. This
shows that computing the volume of an H-polytope is NP-hard even for polytopes
that are intersections of Cy with one additional (rational) halfspace.

DYER & FRiezg [DyFs88] actually proved #P-hardness of H-VOLUME; see also
[Kh89], [DyF91), [Kh93].

5.1.3 The problem of computing the volume of the intersection of the unit cube with
e rational halfspace is #P-hard.

To prove 5.1.3, [DyF88] use a reduction of the following counting version of 0-1
KNAPsack, a problem that is known to be #P-hard; see [GaJ79].

#(0-1 KNaPsack).

Instance: A posttive integer n, q positive integer n-vector a, a positive integer
B.
Task: Determine the cardinality of {ve {0,1}": (a, v) < B}

. The polynomial-time reduction of #(0-1 KNAPsacK) to H-VoLUME uses some
ideas that are similar in spirit to the ideas exploited in the above NP-hardness proof.



416 P. GRITZMANN AND V. KLEE

In particular, an inclusion-exclusion formula is used, and the volumes that will be
computed are again values of a certain polynomial. There are, however, impor-
tant differences, and it may be useful to sketch the explicit geometric construction
underlying the reduction of 5.1.3.
Let (n;aq, fo) be an instance of #(0-1 KNAPSACK). We may assume (by consid-
ering the instance (n; 2a,, 2B0+1), if necessary) that {v € {0,1}" : (a0, v) = o} = 0.
Now, let us define for each v € {0,1}" the polytope

Su={z€R":2> v, (a,z) < Bo}.

If S, is full-dimensional, it is the simplex with vertices v and (Bo = (a0, v))e;/a,
where a; is the ith coordinate of ag. Hence, by the standard determinant formula
for the volume of a simplex,

V(S,) = w@ aﬁs,mw.: (a0, v)}
Ti=1

Now,let P = {z € C, : {a0,2) < By}, and let 1 = (1,...,1)T € R™. Then the
inclusion-exclusion principle yields

V(P) = Y (-1liy(s,)
ve{0,1}n
= mw 2 (=D (max{0, fo — (ao,v)})".
" \iz=1 ¢ ve{0,1}n

In the neighborhood 180 — 1, B0 + 1] of By, the function Tao,8, defined by
Taopo(B) = D (~1)(max{0, # ~ (ao, )"
vE{0,1}n

is a polynomial in 8, and a procedure for volume computation would allow us to
compute all coefficients of 7,4, g,. Note that the coefficient of 87 is just

2. (=ne,

v € {01}
{a0,v) < Bo

Let us now compute the leading coefficients for various choices of ag and fg; set
fork=1,...,n

b=(ao,1)+1, ar=ag+pl, and Be = Bo + pk.

We may assume in the following that (ag,1) > By, since otherwise the original
instance of #(0-1 KNAPSACK) is trivial.

Now let v € {0,1}". Then (at,v) < B if and only if v satisfies one of the
following two conditions:

() (v1) <k

|
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(i) (v,1) =k and {ao, v} < Bq.

Hence the leading coefficient of Tay By 18

, wlu.. n
(=Dfeard{v € {0,1}" : a0,0) < o, (v,1) = £} + 3 (-1 C .

i=0
Since "
MUnEd? € {0,1}" : {ag,v) < Ao, (v,1) = k}
k=0

is actually the solution for the given instance (n; o, Bo) of #(0-1-KNAPSACK), we se:
that a polynomial-time algorithm for volume computation would yield a polynomial
time algorithm for %SL-_Az:m»oxv.

Note that this and the previous hardness result involve, as part of the input
integers whose absolute values are not bounded by a polynomialin n. In fact, a resulf

input data to numbers whose absolute values are bounded by a polynomial in n. It
turns out that the problem of computing the volume of H-polytopes is #P-hard even
in this strong sense. This follows from the two facts that the problem of computing
the number of linear extensions of a given partially ordered set @ = (y,...,n},<)
is #P-complete, BRIGHTWELL & WINKLER [BrW91], and that this number is equal
to n!V(Po), where the set

Po={z=(, . ..&)" €l0,1]": & <g; i< j}

is the order polytope of O; STANLEY [St86a). In the following we will indicate the
geometric essence of the latter result.

Let N = {1,.. .n},andlet @ = (N, <) be an arbitrary poset. A linear eztension
of O is a total ordering of N that is compatible with <. A linear extension of @ can
be regarded as a permutation r of N (or, equally, as a vector (x(1),7(2),..., 7(n)))
which has the property

LIEN A< = 1l < 1o l(j).

Let E(O) denote the set of linear extensions of 0. Now consider for a given linear
extension r € E(Q) the polytope

L={ze0,1]" &y <&y <... < x(n)}

Observe that Ty is a simplex, and that all the constraints that define the order
polytope Py are also constraints of Ty ; hence T, C Po. Further,

if 1 and my are different linear extensions of @ then mnt(Ty, ) Nint(Ty,) = 0,

and also

C*mmAQv MJ:. = wo



-
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Hence the simplices Ty, r € E(0) form a dissection of the order polytope Py,
Finally note that all these simplices are congruent, and hence
1
w\AN..u = “_J
But this shows that each linear extension of O contributes 1/(n!) to the volume
of Po, and therefore

card(£(0)) = nlV(Po).
Observe that the number of inequalities defining P is O(n?).

5.1.4 H-VOLUME is #P-hard in the strong sense.

Let us now turn to V-VOLUME, a problem that, in general, is slightly easier since
the volume of V-polytopes is of polynomial size; see 3.1.3. However, as DYER &
FRIEZE [DyF88] show, it is not much easier; see also [Kh89)], [Kh93].

5.1.5 The problem of computing the volume of the convez hull of the regular V-cross.
polytope and an additional infeger vector is #P-hard.

The following proof is due to KHACHIYAN [Kh89). Let Q, = conv{zey,..., te,},
the regular cross-polytope, and for each a € Z" let P, = conv({a} U @n). Then P,
can be dissected into Q, and the set S of all simplices Sr = conv(F U {a}), where
F is a facet of Q, that is visible from a. Now, let Sr € S, and let z € {-1,1}" be
an outer normal to F. Then

V(Sr) = V(F) - dist(a, F) = V(F) .- ?,N\v% - = m._:fv -1).
Therefore 5
nlV(Pa) = nlV(Qa) +n! ) V(S) = 2° + > max{0,(a,z) -1},
Ses 2€{-1,1}»
whence

=_Q\Qun+.:v —2V(P) + «\Q..var:vv =

Yo (max{0,(a,z) - 2} ~ 2max{0, {a, z) — 1} + max{0, (a, z)})

z€{-1,1}n

> o1
z€{-1,1)"
{a,z) =1

]

This implies that if we could compute the volume of a V-polytope in polynomial
time, then we could also solve the following counting problem in polynomial time:

Given n € N and a € Z", determine the number of solutions z € {—1,1}"
of (e,2) = 1.

BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY 11 4

However, this problem is closely related to #(0-1 KNAPSACK) and is in fact #
complete.

It is not known whether the problem of computing the volume of a V-polytoy
is #P-hard in the strong sense.

DYER & FRIEZE [DyF88] also show that the problem of computing the volun
of a V-polytope is #P-easy in the following sense.

5.1.6 Let IT be any #P-complete problem. Then any oracle O for solving Il can
used 1o produce an algorithm that runs in time that is oracle-polynomial in [ an
size(€) for solving the Jollowing problem:

Givenn €N, a V- or an H-polytope P and a positive rational €, compute
rational number u such that V(P)—e<p<V(P)+e.

It follows from 5.1.6 that for V-polytopes, Oy can be used to actually comput
V(P), while (due to Theorem 5.1.2) for H-polytopes, V(P) can only be approximate
(yet in a very strong sense). Note, however, that (as remarked in [DyF88)) th
question remains open as to whether there exist a fized constant A and a polynomial
time algorithm which, givenn € Nand a V- or an H-polytope P, computes a rationa
number u such that

(1= )V(P) < u < (14 NV(P).

See Subsection 6.3 for some related “negative” results in a different model of com-
putation.

The final subject of this subsection is the complexity of volume computations for
zonotopes.

The fact that V- and H-VoLuME is #P-hard does not necessarily mean that the
same is true for S-zonotopes since, typically, zonotopes have a number of vertices and
a number of facets that grow exponentially in the number of generating segments.
Recall from 3.6 that we can express the volume of the zonotope Z = 3i=1[0,1]z as
a sum of determinants :

V(Z)= 3

1€i1<i2<<inkr

_&mnﬂnm. yeeey N..av_ .

Hence $-VOLUME is equivalent to the following problem, SUM-OF-DETERMINANTS:

Given positive integers n, r with r 2 n, and an integer n x r matrix A,
compute 3 | det(B)|, where the sum extends over all n x n submatrices of
A.

Clearly, in fixed dimension, this problem can be solved in polynomial time (see
3.6.4), and, even when the dimension is part of the input, each summand can be
computed in polynomial time. There are, however, exponentially many summands,
and this fact accounts for the hardness of the problem. {See BEN ISRAEL [Be92]
for a related but different notion of “volume” associated with the determinants of
the n x n submatrices of an n x r matrix, and for the relevance of his notion to
Moore-Penrose inverses of rectangular matrices.)
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5.1.7 S-VOLUME is #P-hard and also #P-easy.

Theorem 5.1.7 is due to [DyGH94]. Its hardness result is obtained by a reduction
of #PARTITION, the #P-complete task to

determine for given m € N, and a;,...,am € N, the number of different
subsets I C M = {1,...,m} such that 3",  a; = Yiem\r @i

It is not known whether S-VOLUME is #P-hard in the strong sense.
Let us mention in passing that the problem

given positive integers n, r with r > n, an integer n x r matrix 4, a positive
integer A, determine whether there exists an n x n submatrix of A such that
|det(B)] > A,

is NP-complete. This follows from the NP-completeness of HAMILTONIAN CYCLE
for directed graphs by a construction of PAPADIMITRIOU & YANNAKAKIS [PaY90];
see [GrKL94] for applications of this result to the problem of finding j-simplices of
maximum volume in n-polytopes.

5.2. COMPUTING MIXED VOLUMES

Since volume computation is just a special case of computing mixed volumes, the
hardness results of the previous subsection carry over:

5.2.1 For each fized k € N, and for each fized sequence (gn)nen, where each q, is a
k-tuple (x),..., k) of nonnegative integers with MU.WL ki = n, the following problem
is #P-hard:

Instance: A positive integer n, M- (or V-) polytopes {or S-zonotopes)
Py,...,P of R®

K Kk
————
Task: Determine the mized volume V(Py,...,Py,..., P, ..., P.).

In the remainder of this subsection we will give some additional hardness results
for mixed volumes that do not trivially depend on the hardness of volume computa-
tions. Let us start with the following extreme example of such a result, the hardness
of computing mixed volumes of bozes, by which we mean rectangular parallelotopes
with axis-aligned edges.

5.2.2 The following problem is #P-hard.

Instance: A positive integern; fori,j=1,...,n, positive integers a; ;.
Task: Determine the mized volume V(Z,...,2,), where Z; =
Si=1l0,aijle; fori=1,...,n.

Note that this result, which is due to [DyGH94], is indeed of a different nature

n

than 5.2.1. In fact, each of the Z; is just a rectangular box, and sois Z = Y 1= Zi-
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Hence the volume V(Z) = []}_, (i=1 @i j) can be computed very easily. Never
theless, the mixed volume Ewr ...y Zn) is hard to compute. This is in interestin,
contrast to the hardness result of 5.1.7, where the volume of a sum of segment
is hard to compute even though each of their mixed volumes can be computed ir
polynomial time.

As was shown in [DyGH94), 5.2.2 can be extended to show that the #P-hardnes:
persists even if the integers @;,; have only two different values a and 3.

To sketch the reasoning for this result, let us compute V(Zy,...,2Z,), wher
Zi = 372400, i jle;.

Let &,...,&, > 0. Then

n

vV Mum,.N.. =V M PM@.P&. e nm Mum..n..n. )
i=1 j=1 j=1

i=1 i=1

and a comparison of the coefficients of §1-& ... &, yields

1 .n
V(Zy,...,2,)= n! MU o MU Ojrrefn Ly oo TCnjas

1=l ja=1
where
P A Lif {jy,...,jn}isa permutation of {1,2,... n};
Jirenidn 0 otherwise.
Thus
nlV(2,,...,2,) = per(A)

is the permanent of the matrix A = (2ij)ij=1,..n-

Now, VALIANT [VaT77] has established the #P-hardness of the problem of com-
puting the permanent even for 0-1-matrices. (In fact, this problem is equivalent
to counting the number of perfect matchings in a bipartite graph.) This gives al-
ready the hardness result 5.2.2. The sharpening, however, relies on an extension of
Valiant’s result since it requires o and B to be positive or, equivalently, the paral-
lelotopes to be full-dimensional.

Note that by 4.1.1 (in conjunction with 1.2.2), the mixed volumes of boxes
Zy,...,2Z, can be computed in polynomial time if the number r of boxes is con-
stant. (Recall that in 5.2.2 we had r = n.) However, this result relies in an essential
Way on the fact that each of the rectangular parallelotopes has axis-parallel edges.
When this restriction is lifted, even the case r = 2 becomes hard [DyGH94].
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5.2.3 The following problem is #P-hard.

Instance:  Positive inlegers n and k with k < n, two n-tuples vy,... v, and
W1,...,Wn of integer vectors which each Jorm an orthogonal basis
of R™.

Task: Compute the mized volume

k n-k

V(21,...,2,,2,,...,2,),

where Z) = 37=100,1)v; and 2, = 37100, 1w;.

6. Deterministic approximation of volumes and mixed volumes

6.1. MEASURES FoOR APPROXIMATION ERRORS

Since it is algorithmically difficult to compute the volume of a given body (or poly-
tope) K, it is of interest to approximate V(K) from above or below. The same is
true for mixed volumes.
In general, the approximation of a (nonnegative) functional p defined on a class
of bodies involves, first, an a priori measure for the closeness of approximation.
Typical measures of the closeness of a number p and the function value p(K) for
a given convex body K include the absolute error

lu = p(K)|
and the relative error

b= p(K)

P(K)

Obviously, the results of Section 5 and the fact that the absolute error changes
after scaling K indicate that the absolute error is not an’ adequate measure for our
purposes. The relative error introduced above is adequate for “positive” results that
involve a small positive rational error bound A. However, the relative error is biased
toward underestimation in the sense that # = 0 always produces the error 1. Since
we are interested in a symmetric relative error measure we define for an arbitrary
positive rational A a (rational) A-approzimation of #(K) to be a positive rational
number u such that

,\EM~+> and FM~+>.

7 P(K)
Note that this criterion can also be stated as follows

A LopK)

-l <
I+2 =~ p(K)
In the remainder of the section we will deal mainly with the following problem
for a positive functional A : N — R and with p representing the volume or some
mixed volume.

ll".-,l
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A-APPROXIMATION for p

Instance: A4 positive integer n, a well-bounded body K given by a (strong or
weak) separation oracle. :

Task: Determine a positive rational p such that
A - p(K)
-—Z_< <A
1+A = p(k)y =

For abbreviation we will sometimes use the terms VOLUM3Z APPROXIMATION and
MIXED VOLUME APPROXIMATION for the task of solving A-APPROXIMATION for the
volume or for some mixed volumes, respectively.

6.2. UPPER BOUNDS

A quite general tool for obtaining estimates of functionals, even for arbitrary convex
bodies, is suggested by a theorem of Joun [Jo48]. (A strengthening of this result
for symmetric bodies appeared in [Jo42].)

6.2.1 For a body K in R", let ag € R" and let Ao be a linear transformation such
that Ep = ao + A(B) is the ellipsoid of mazimum volume inscribed in K. Then

a0+ Ao(B*) C K Cag+ nAg(B*).

Any ellipsoid £ = a + A(B") that satisfies the inclusion relation a + A(B") c
K Ca+nA(B*)is called a Lowner-John ellipsoid for K. Observe that the dilatation
factor n in John’s theorem is best possible for the simplex (and only for the simplex
[Pa92]). See the book (Pi89] for additional results on contained and containing
ellipsoids.

In order to obtain approximative algorithms, one needs of course an algorithmic
version of Theorem 6.2.1, or at least a polynomial-time method for approximating
the ellipsoid Ey in 6.2.1 (and in this way obtaining weak Léwner-Jokn ellipsoids).
Such an algorithm was devised by GROTSCHEL, LOVASz & SCHRUVER [GrLSssg],
using the ellipsoid method of linear programming.

6.2.2 There ezists an oracle-polynomial-time algorithm which, for any well-bounded
body K of R™ given by a weak separation oracle, finds a point a and ¢ linear trans-
formation A such that

a+AB)CKCa+(n+ IvVRA(BY).
Further, the dilatation factor (n 4+ 1)\/n can be replaced by um:ﬁ:.*. 1) when K

is symmetric, by (n + 1) when K is an H-polytope, and by \/n £ 1 when K is a
Symmetric (V- or H)-polytope.

Since the volume of the ellipsoid a + A(B") can be easily computed, taking the
geometric mean of the upper and lower bound in 6.2.2 gives a polynomial-time
(n+ 1)3n/4_approximation K to V(K).
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TaRrAsOv, KHACHIYAN & ERLicH [TaKE88] and KHACHIYAN & ToDD [KhT93]
give polynomial-time algorithms for approximating the ellipsoid of maximum volume
that is contained in an H-polytope. In particular, the following appears in (KhT93].

6.2.3 For each rational v € 0, 1] there ezists a polynomial-time algorithm which,
givenn,m € N, and 81,...,8m € Q" produces an ellipsoid £ = q + A(B™) such
that

EC ﬁnﬁumﬁan?ravm H.\ez.ur..:sv and V(E) > v - V(Ey),

where Ey is the ellipsoid of mazimum volume contained in P. The running time of
the algorithm is

O (m**log(mR)/(r log(1/)) log (nR)/(rlog(1/))) ,

where r and R are respectively a lower bound on P’s inradius and an upper boung
on P’s circumradius.

Note that it can be determined in polynomial time whether a given H-polytope
has interior peints, and, if it does, such a point  can be found in polynomial time.
Then, if necessary, a translation about —b and a suitable scaling will transform the
given H-polytope into one of the kind used in 6.2.3. Hence, the condition on the
right-hand side of P’s H-presentation does not impose any severe restrictions. It is
not known whether a result similar to 6.2.3 can also be obtained for V-polytopes:
see [KhT93, p.158].

Now note that, as shown in [TaKES8], an approximation of Eq of the kind given
in Theorem 6.2.3 leads to the following inclusion:

a+ AB) C K Cas 2 +w,\< 1= 4w,

and hence leads, for every a > 1, to an (an)™2-approximation of V(P) for K-
polytopes P.

A similar bound can also be derived for convex bodies that are given by an ap-
propriate oracle. In particular, APPLEGATE & KANNAN [ApK90] give the following
algorithmic Lowner-John-type result for parallelotopes.

6.2.4 There erisis an oracle-polynomial-time algorithm which, for any well-bounded
body K of R™ given by @ weak separation oracle, finds a point a and q linear trans-
formation A such that

a+A(-1L,1]")C K Cca+ 2(n + DA([-1,1]7).
While this result has direct applications in the design of improved randomized al-

gorithms for volume computation (see Subsection 8.1), the following result of BETKE
& HENk [BeH93] gives a slightly better approximation error.

s

11
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6.2.5 There ezists an oracle-polynomial-time algorithm which, for any body K of R"
given by & weak optimization oracle, and for every ¢ > 0, finds rationals u; and Ho
such that

mSVK) S and py < nl(l+€)p,.

In fact, two calls. to a strong optimization oracle for directions ¢; and ~c; give
two supporting halfspaces HY »HT and two optimizers Nu. 12y - This procedure is
now repeated for the directjons *cz, with a ¢; orthogonal to aff{z}, 27}, etc. After
n steps one gets the parallelotope P = Ni<i(H¥ NH7) 5 K and the polytope
Q=conv{z¥ 27 :i= v, 1} C K, with V(P)/V(Q) < n!. The use of a weak
rather than a strong optimization oracle brings in an additional factor (1+¢e)m.

Let us now turn to the case of mixed volumes for some bodies K3,..., K.. There
are two natural general approaches to this problem, namely to approximate the bod-
ies Ky,..., K, by bodies Cy, ... ,Cr, respectively, and then to use the corresponding
mixed volumes of C1,...,C, as approximations, or to approximate «AMH& &K
for appropriately chosen nonnegative parameters §1,-..,&, and then to use the
techniques outlined in Subsection 4.1 to derive estimates for the mixed volumes of
Ky,..., K;. The remainder of this subsection will address both possibilities.

Note, first, that the Minkowski sum of two ellipsoids is in general no longer

computing mixed volumes of ellipsoids. Also the approach of 6.2.4 is bound to
fail for mixed volumes, for we have seen in Theorem 5.2.3 that computing mixed
volumes of parallelotopes is #P-hard. The general problem that we are facing here
is that there don’t seem to be rich enough classes of bodies (which could be used for
approximating the given bodies Ky,..., K;) for which mixed volumes can actually
be computed, and this is closely related to the obvious lack of rich enough classes of
bodies for which the volume of their Minkowski sums can actually be computed.
There is however one case where the mixed volumes can be (weakly) computed,
and this is the case r = 2 where C; = B and Cyis a parallelotope. Recall,
in fact, that by Theorem 4.4.4 the intrinsic volumes of an S-parallelotope can be
approximated (with respect to arbitrarily small additive error) in polynomial time.
Hence we can combine Theorems 6.2.2 and 6.2.4 as follows. First we construct an
ellipsoid £ = q; + A1(B") and a parallelotope Z = az + A2([-1,1]") such that

a1+ A1(B*)C K, Cay + (n+1)y/nA,(B") and
as + \ANQIHM ::v CKyCay+ Mﬁa + :;ANA_..IH_ ::v.

Then, with
{ = ay + A (B), Q%HE+?+C,\M\3A®J,
Ci=ar+ Az([-1,1])m, C{=ay+ 2(n + 1)Ay([~1, 1)r,
we have R
k n—
}\,\/‘J
«\AQMT.;Q? mf.._ﬁ@ <V
k n—k
/ 1 i
<v(cy,..., TQNT.:QNV.
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By 2.4.2 (iii), application of the affine transformation z — ATz = a)) changeg

the mixed volume only by the common factor | det{A;)|~*, and this is irrelevant for

relative approximation. But now we have arrived at an approximation by means of

the intrinsic volumes of the parallelotope Z = A7'(ay + A([~1,1]") — a1) which

can, in fact, be (weakly) computed. Hence we can compute a lower bound u(=
k n—k :

«\AQN..... M. m“..i mvvm—unfﬁuwﬁ

k n—k
o N——
tm —\Q.AT..JNA?NAN.....

Kp) < ((n+ 1)va)* (2(n + 1)) *p.

Taking the geometric mean of the lower and upper bound and, if necessary, inter-
changing the roles of K, and K3, we obtain the following result; see [DyGH94).

6.2.6 There is a polynomial-time algorithm for O(2"/4n5"/8). APPROXIMATION of all
mized volumes of any two well-bounded bodies Ky and K, given by a weak separation
oracle.

The approximation error in 6.2.6 is only an upper bound for the precise value
that we get from 6.2.2 and 6.2.4 with the outlined method; it is in fact

A(n) = (n + 1) 2 min{n 255" n>7"2}).

Note further that for H-polytopes, 6.2.6 can be improved by using 6.2.3 rather than
6.2.2. However, we don’t know of any result that extends 6.2.6 to the general case of
n bodies. It is easy to obtain some approximation results that depend on auxiliary
parameters such as the inradius or the circumradius of the specific bodies, but such
results are much weaker than 6.2.6 which depends only on the dimension.

Another way of attempting to obtain, for some functional A : N — R,
a A-APPROXIMATION of certain mixed volumes, is to try to extend 4.1.1 to A-
APPROXIMATION.

Recall that 4.1.1 utilized the fact that an algorithm for approximating a poly-
nomial with respect to the absolute error can be used to obtain approximations of
the coefficients (again with respect to the absolute error). It turns out, however,
that such a procedure does not exist with respect to the (symmetric) relative error.
In fact, let us consider the following simple univariate example. Suppose that we
want to estimate the middle coefficient « of a quadratic polynomial = with constant
1 and leading coefficient 1. In other words, we know that = = T =22 +az+1
for some @, and we want to find or approximate a. Now let ¢ > 0, and suppose
that ng, ..., ¢ are nodes at which we want to approximately evaluate 7 in order to
estimate a. We may further suppose that 7, ..., 7 > 0 (for this is the only situa-
tion that is relevant in the context of MIXED VOLUME APPROXIMATION, and also,
the construction can be easily adapted to the general case if desired). Now assume
that the approximation oracle uses the exact values of 75 = 1 + 22 at Moy .- Mk tO
produce estimates for 7(ng), ..., 7(m).

BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY I1 42

For j=0,...,k and each o with 0 < a < ¢f(maxi=o, i 7), we have

mo(n;) and (1)
=(1;) <1 and é&b

Sl4an;<1l+e

Hence the approximation oracle produces estimates for the values of the polynomia
with symmetric relative error bounded by €. On the other hand, since o may be (a
least) any coefficient between 0 and ¢/(max;=o, & 1), we cannot use the approxi
mations of the function values to obtain any symmetric relative approximation fo
this coefficient with finite error bound.

The obstruction here is the lack of some kind of correlation between the variou:
coefficients of . However, with mixed volumes we are here in a special situatior
since we can use the Aleksandrov-Fenchel inequality. For two bodies K; and K,
2.4.3 reads as follows:

n—i §
V(K1,..., K, K,,.

n-iti

This implies that the sequence of coefficients To,..., Tn is unimodal. Furthermore,
in the special case of mixed volumes of two bodies an appropriate “scaling” can be
utilized, [DyGH94].

6.2.7 For any pair Ky, K, of well-bounded bodies given by a weak separation oracle
end for any k = 1,...,n one can construct in polynomial time an affine transfor-
mation o and a positive rational scaling factor ) such that the mized volumes
n-{ i
o | e e

n=V(K],...,Ki,K},...,K}) i=k—1,k,

of the transformed bodies K! = a(K1) end K} = Ma(K,) satisfy the inequality

1< 221 ¢ (ng e,

=

Note that the right-hand bound does depend only on n and &, and not on special
properties or measures of the bodies Ky and K.

These special properties of mixed volumes can be used to obtain approximation
results, and they are crucial for the randomized algorithm described in Subsection
7.2. There are, however, still major obstacles to extending Theorem 4.1.1 to relative
volume approximation, and we will deal with these problems in Subsection 7.2.

6.3. Lowgr BOUNDS IN THE ORACLE MODEL

It turns out that the above bounds for VOLUME APPROXIMATION are not too far
away from the best one can achieve. ELEKES (EI86] showed that even if our bodies
K are given by a strong separation oracle, a subexponential number of calls to the
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oracle does not suffice to obtain a polynomial approximation. His argument is based
on the following observation. Suppose that K C B, that for some k € N the inputs
to the oracle are points y;,...,y; € B, and suppose further that all membership
tests are affirmative (and hence we never get a separating hyperplane). Then, with
P = conv{yi,...,yx} we know that P C K C B", but this is all the information
that is available, and based on this information an approximation g of V(K) is
determined by our approximation algorithm. This implies that

H ESV s [ Y(B)

*anwﬂxnaiﬁﬁkv, u =V VP

Now, ELEKES [EI86] shows that

E
1
a T B” )
PcC M.._uH_@ +B")

and this yields

VE) _ k
VP) o

BARANY & FUREDI [BaF86] improve this result by proving the following theorem.

6.3.1 Suppose that

n
logn

n/2
An) < A v -1 for alln € N,
Then there is no deterministic oracle-polynomial-time algorithm for \- APPROXIMATION
of the volume.

Now, it is clear by Theorem 2.4.2 (ii) that Theorem 6.3.1 carries over to MIxED
VOLUME APPROXIMATION simply because it includes the case where all bodies are
the same. It is very likely, though, that in more general situations the bound
of 6.3.1 can be improved. In particular, the worst-case approximation error for
V(K1,..., K,) (where the worst case is taken over all possible choices of K1, ..., K,)
should be much worse than (n/logn)"/2 - 1.

7. Randomized algorithms

7.1. APPROXIMATING THE VOLUME

As we have seen, volume computation and even volume approximation is hard Srm.z
we restrict our algorithms to deterministic ones. The situation changes %mmsnm__« if
we allow randomized algorithms. In fact, DYER, FRIEZE & KANNAN [DyFK89] give
a polynomial-time randomized algorithm for relative approximation of the volume
of convex bodies that are given by appropriate oracles. The algorithm is a d:&i‘z
walk, and its analysis is based on the notion of rapidly mizing Markov chains. We
are going to describe the basic ideas of this approach, skipping however a lot of
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technical details, particularly those related to the stochastic analysis. For furthe
details, background information, a sketch of the corresponding history and mor:
references see the papers by DYER & FRIEZE [DyF91], KHACHIYAN [Kh93], LovAs;
(Lo92], [Lo94] and Lovisz & SiMoNoviTz {LoS93).

EXPECTED VOLUME COMPUTATION.

Instance: A positive integern, a centered wellzbounded body K in RP given by
@ weak membership oracle, positive rationals B and e,
Task: Determine a positive rational random variable p such that

t
Eovﬁﬂalw vawwlm.

Note that in the above problem, the relative error measure is employed; see
Subsection 6.1. This indicates already that we are aiming at “close approximation,”
and in fact, the main theorem of this section due to DYER, FRIEZE & KANNAN
[DyFK89] is as follows.

7.1.1 There is a randomized algorithm for EXPECTED VOLUME COMPUTATION
which runs in time that is oracle-polynomial in n, 1/¢ and log(1/8).

Before giving an (informal) description of the algorithm let us clarify that the
existence of a polynomial-time randomized algorithm for volume computations does
not contradict the negative results of Subsections 5.1 and 6.3. In fact, for a de-
terministic algorithm all that counts is- what it produces as output, while for a
nondeterministic algorithm what can potentially be produced is relevant. In fact,
the results depend on the distribution of these potential outcomes rather than on
the outcomes themselves. As will become clear, the randomized algorithm described
below does have the potential to reach ezponentially many points, and this is crucial
for the polynomial running time.

Let us now describe the original algorithm for 7.1.1; some improvements will be
outlined later in this subsection. The first step is a rounding procedure that utilizes
(in conjunction with 1.2.1) the algorithmic version 6.1.2 [GrLS88] of JouN’s [Jo48]
result. According to this version, there exists an oracle-polynomial-time algorithm
which, for any well-bounded body K of R™ given by a weak separation oracle, finds
a point a and a linear transformation A such that

a+ AB) C K Ca+(n+1)/nAB").
Hence,
B*CA™a- AY(K) C (n+1)/nB".

This rounding procedure is a deterministic algorithm that uses O(n*(size(r)+size(R)))
Operations on numbers of size O(n?(size(r) +size(R))), where r, R are (as usual) the
a priori bounds for K’s inradius and circumradius; see [GrLS88, p-122). Since

V(K) = |det(A)|V (A~ a + ATHK)),
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we may, for the second step of the randomized algorithm, assume that
B* C K C(n+1)/nB".

One could now try to estimate the ratio V((n + 1)\/aB")/V(K) by means of
a randomized procedure. However, this ratio may be exponential, and this leads
to a blowup of the complexity of the randomized approach outlined below. For
this reason, the next step reduces the problem to a series of problems with suitably
bounded volume ratios. Let :

wu_».w.?+c_om?+5._, and N..MNDAH+WV B* fori=0,... &

Then
B*=KoCKiC...C K¢t C K = K C (n+1)v/nB",
and, more importantly, fori = 1,... k,
V(K;) 1\"
< < - .
i< V(Ki-1) = A~+ :v <
Clearly,

k
v = v [l ek,

i=1

whence it suffices to estimate each ratio V(K;)/V(Ki-1) up to a relative error of
order €/(nlogn) with error probability of order 8/(n log n).

Now, the main step of the algorithm of DYER, FRIEZE & KANNAN {DyFK89] is
based on a method for sampling nearly uniformly from within K;. It superimposes
a chess-board grid of small cubes (say of edge length 6) on K; (compare 3.4 and 3.5)
and performs a random walk over the set C; of cubes in this grid that intersect a
suitable parallel body K +aB" where a is small. This walk is performed by moving
through a facet with probability 1/f,-;(C,) = (2r)=! if this move ends up in a
cube of C;, and staying at the current cube if the move would lead outside of C;.
The random walk gives a Markov chain which is irreducible (since the moves are
connected), aperiodic and hence ergodic. But this implies that there is a unique
stationary distribution, the limit distribution of the chain, which is easily seen to be
a uniform distribution. Thus after a sufficiently large number of steps we can use
the current cube in the random walk to sample nearly uniformly from C;. Having
obtained such a uniformly sampled cube, it is determined whether it belongs to C;_,
or to C;\ C;_;.

Now note that if v; is the number of cubes in C;, then the number i = vifvioy
is an estimate for the volume ratio V(K;)/V(K;~1). It is this number y; that can
now be “randomly approximated” using the above constructed approximation of a
uniform sampling over C;. In fact, a cube C that is reached after sufficiently many
steps in the random walk will lie in C;_; with probability approximately 1/p;; hence
by repeated sampling we can approximate this number closely.

This informal description of the randomized algorithm must of course be rigor-
ously analyzed to determine its complexity. A main question is just how quickly the
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random walk approximates a “reascnably uniform” distribution. In their wa«._.%mwm_
DYER, FRIEZE & KANNAN [DyFK89] use a result of SINCLAIR & JERRUM .Hmamo_
that relates the speed of convergence to the conductance of the %.w:... <<:& the
aid of a geometric interpretation of this quantity and an isoperimetric Emnﬁ..._:w of
BERAD, BEssoN & GALLOT [BeBG85) on the volume of subsets of smooth Rieman-
pian manifolds with positive curvature, it is shown in [DyFK89] that the Z._waw.g
chain is, indeed, mixing rapidly enough to yield polynomiality. ,ﬂmm.m&_oi_:m in-
equality (which is stronger than what was needed in [DyFK89)’s original proof) is
taken from [DyF91]; see also [LoS90], [ApK90] and [LoS93]. :

7.1.2 Let K be a conver body in R™, and let f be a real-valued log-concave function
on int(K). Further, let S),S; C K be measurable, S = K \ (51 US2), and suppose
that dist(Sy, S2) > 0. Then g

: Ry(K) s
ai [ fteyas, %vi < 7 [ stoye,

where R\(K) is half of K’s diameter.

A corollary which conveys the flavor of this inequality (and which is sufficient
for the proof of polynomiality of the randomized volume-algorithm) says that if K
is a convex body in R", and S is a minimal surface that partitions K into two sets

S1,S7, then

min{V'(51), V(S2)} < Ri(K)A(S),
where A(S) denotes the surface area of S. This formulation shows that 7.1.2 is an
extension of the result that a body K is contained in any cylinder whose base is the
projection of K on the hyperplane orthogonal to some direction u, and whose height
in direction u is K’s breadth in this direction.

[DyFK89]’s polynomial-time randomized algorithm for EXPECTED VOLUME CoM-
PUTATION was subsequently improved in various papers, including [LoS$90], [ApK90],
[DyF91], [LoS93] and [KaLS9%4].

One key ingredient for improvements is 7.1.2, while another major improvement
can be obtained by replacing the “rounding”

B" C K C (n+1)y/nB"
by the “normalization”
FLI"C K C2(n+1)[-1, 1%

APPLEGATE & KANNAN [ApK90], see 6.2.4. Another idea of [ApK90] that avoids
difficulties caused by inherent “nonsmoothness” is to approximate the characteristic
function of K by a smooth function; cf. 3.4.

LovAsz & SimmoNoviTs [LoS93] improve on these ideas, extend the theory of
conductance and rapid mixing from the finite case to arbitrary Markov chains (so
that now steps can be chosen uniformly from a ball with fixed radius about the
current point), and replace the rounding phase by an “approximate sandwiching:”
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an affine transformation « is produced such that 2/3 of the volume of B" is contained
in a(K) and 2/3 of the volume of a(K) is contained in nB™. In their extensive
study, they achieve the following complexity bound for the second step (after the
normalization) of

o (G tog’rtog*(Hy1og (3))

Very recently, KANNAN, LovAsz & SiMoNoVITs [KaLS94] gave a further sub-
stantial improvement; see [Lo94]. They achieve the currently best known bound
where now n enters only in fifth power.

Let us close this subsection with a few remarks.

Sometimes it is possible to devise random walks not over a superimposed grid
of cubes but over objects that are more closely related to the specific bodies. One
natural example is the class of order polytopes. As we have seen in Subsection 5.1
(the discussion preceding Theorem 5.1.4), an order polytope can be dissected into
simplices of the same volume which correspond to the linear extensions of the given
order O. This approach gives rise to a random walk over the linear extensions of
which, itself, has interesting applications; see KARZANOV & KHACHIYAN [KaK90],
KHacHIYaN [Kh93] and Lov4sz [Lo94].

A second class of bodies that come with a natural dissection are the zonotopes.
Zonotopes can be dissected into parallelotopes, and it is intriguing to try to use
these parallelotopes instead of the cubes. Unfortunately, the volumes of the par-
allelotopes may in general vary exponentially, and hence a direct extension of the
above approach will work only in very special cases. Thus it is unknown whether,
for general zonotopes, there is a randomized algorithm for volume computation that
is more efficient than randomized algorithms that work for arbitrary convex bodies.

The key step of the randomized volume-algorithms is to compute a nearly uniform
distribution on a body K. DYER & FRIEZE [DyF91] show that the converse is also
true: A polynomial number of calls to a volume approximator suffice to generate
with high probability uniformly distributed points in K.

7.2. APPROXIMATING MIXED VOLUMES

Now that we have a randomized polynomial-time algorithm at hand for solving
EXPECTED VOLUME COMPUTATION, it is natural to try to use it for devising a
similar procedure for mixed volumes. This subsection will outline such an approach
of [DyGH94].

Let us begin with the case of two centered well-bounded bodies K; and K> that
are given by weak membership oracles. Let us consider the polynomial 7 given by

7€) = V(K: +€K2) = 3 A

i=1

We will sometimes use the abbreviation

-
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Then, following the approach of Subsection 4.1, our goal is to use the randomizec
volume algorithm to evaluate the polynomial m(€) = 37, ¢:£* at suitable nodes ir
order to obtain estimates for its coefficients ¢;.

As we have already seen in Subsection 6.2, there is no general way to derive
relative estimates for the coefficients of a polynomial from relative estimates of certair
function values of . However, we are here in a special situation in which we can use
both 6.2.7 and the specialization to two bodies of the Aleksandrov-Fenchel inequality
As we have already mentioned at the end of Subsection 6.2, it turns out, though, that
there are still major obstacles to extending Theorem 4.1.1 to randomized relative
volume approximation, and before we state the results of [DyGH94] we want to point
out what the additional problems are.

As we have seen in Subsection 4.1, computing the coefficients of a polynomial
from some of its values can in principle be done by numerical differentiation. Let
7o, - - -, o be pairwise different interpolation points, and let for j =0,...,n

@) =) ;¢
i=0

denote the jth Lagrange interpolation polynomialon the node set Y = {n0,---,7.}.
Recall that for j, k = 0,...,n,

n
] _ s _J1 forj=k
§(&) = MQ:? = k= *o otherwise.
Therefore
(&) =) w€)6©) =Y [ D syl | €,
j=0 i=0 \j=0
whence for each i = 0,...,n,
G=) Biym(§).
ji=0
Now, suppose we have approximations gy, ..., u, of the values (o), ..., 7(€n),
respectively, with relative error bounded by some ¢ > 0, and for i = 0,...,n we use

(= M?.E
j=0

as an estimate for ¢;. Then it is easy to see that

k=0,...,

IGi—Gl<e max w(€x) ) 16,
i=0

and this bound is tight. This means, in order to bound the relative error of the
approximation (; of {; we need to be able to bound the right-hand side in terms
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of (i. Unfortunately, as is pointed out in [DyGH94], maxg=q,...,n 7{({k) .Mwno 18i;1
grows exponentially, and that is why only a certain portion of the nOoﬁo_msﬂm may
become approximable by such an approach. (Recall that the S.:aon:.son volume
algorithm is polynomial in 1/¢ but exponential in log(1/¢).) Hence we Ss.om:o.m a
version of the problem that depends on an additional function ¥ : Ny — Ny with
¥(n) < n for every n € Np.

EXPECTED ¥-MIXED VOLUME COMPUTATION.

Instance: A positive integer n, centered well-bounded bodies Ky and K3 in R"
given by weak membership oracles, positive rationals 8 and €.

Task: =~ Determine for each nonnegative integer ¢ with i < ¥(n) a positive
rational random variable ¥; such that

vnovﬁ L_ mmkulu.

Ti

Then [DyGH94] prove the following theorem.

7.2.1 Let ¢ : Ng — Nq with (n) < n for every n € Ny, and suppose that
$(n) log ¥(n) = o(log n).

Then there is a randomized algorithm for EXPECTED %-MIXED VOLUME COMPU-
TATION which runs in time that is oracle-polynomialin n, 1/¢ and log(1/B).

Observe that y(n) = {log(n)/log?log(n)] is a choice that satisfies the assump-
tions of Theorem 7.2.1. ) . . .

The algorithm underlying 7.2.1 proceeds inductively, beginning with 7y ei:nr.nw:
be approximated by the volume procedure 6.1.1. Suppose that for some k all Ec.nmm
volumes 7g,..., 7x—1 have already been approximated. As was Swnsos& earlier,
the algorithm now uses the scaling described in 6.2.7 as preprocessing mn.z. the next
step. This yields a rough estimate for r.. Then, using the volume algorithm again
and choosing the nodes appropriately, approximations of w(§) are noivcnma. Next,
a binary search procedure is used to improve the initial relative omSBm.nm of 7 to
within a constant error, and finally the last step achieves an approximation of 7 G
within a relative error ¢, as desired. Of course, the interpolation points now depend
on ¢, and they are chosen in such a way that the higher order terms of = can be
bounded appropriately so as to allow the use of only a small part of the coefficient
matrix B = (fi;). This makes it possible to keep the error small.

It may be worth mentioning that as compared to algorithms for Mxmmoamu Vot-
UME COMPUTATION, the complexity of the above algorithm is only marginally worse.

Let us point out explicitly that it is not known whether EXPECTED @-?:\Amc
VorLuME COMPUTATION can be solved in polynomial time under mmm::%:o.sﬂ on ¢
that are less restrictive than those stated in Theorem .N‘m.aw. In particular, it is not

n
T . R n
wzoi:roiao.wm,_omoi_%wvvﬂoiawnm«A\Ar: ._NAT\\M.M..\.J . Nv ».omvoa_mm::w.
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On the positive side, it is possible to extend 7.2.1 to the case of more than
two bodies and to show that there is a randomized polynomial time algorithm for
computing

i iz frmt
N A—— -~ % —
<QAT..._Nrw.?..:.5:....N_,..r..:NTrNJ..
where anp ij = n and MU....“ ij = ¢(n) with a function % as in 7.2.1. In fact,
suppose we have a procedure for r sets. Then, utilizing the multilinearity of the
mixed volume, we consider

i fe-1 frtirgr

m€) = V(Ki,...,Kp,..., Kooty Koo Kr + EKrpry o Ko + €K py),
which can be estimated recursively for fixed £&. On the other hand, = is a poly-
nomial of degree i, + i.4; in £, for which we wish to estimate the coefficient of
£ir+1. The coefficients of 7 are themselves mixed volumes, and consequently satisfy
the Alexandrov-Fenchel inequalities. Thus the approach above for two sets can be
used with very little change. There is, however, one difficulty. We do not have a
polynomial-time procedure for producing a “good” initial scaling of the sets, as we
had with 6.2.7 for two bodies; and we leave as an open question whether such a pro-
cedure exists. Without such a scaling, one has to resort to the “well-boundedness”
parameters r¢, R; that come as bounds for the inradius and the circumradius of the
bodies. Unfortunately, these parameters may be exponentially large, and this feeds
into the recursion. However, [DyGH94] shew that one can approximate the mixed
volumes for any fired r in polynomial time, where each of the first r — 1 sets may
be repeated up to o(log n/loglogn) times. Further, if the ratios Ry /7y are “quasi-
polynomial” in n, i.e. of the form Qﬁwéom?vvy where 7 is a polynomial, we can
approximate mixed volumes for any r = o(log n/ iog log ) in polynomial time. For
larger ratio p = maxy=y, ., Ri/r; we can approximate up to r = o(log n/ log log p)
in similar time.

Let us finally point out that, particularly in view of the applications stated in
Subsections 9.6 - 9.9, it would be desirable to be able to extend the above results to
the general case. Specifically, it would be useful to be able to compute V(Ky,...,K,)
by means of a randomized polynomial-time algorithm. It is not known whether such
a procedure exists.

8. Miscellaneous

In the present section, we will mention some results that are closely related to volume
computation.

8.1. PROJECTIONS AND SECTIONS

The problem of maximizing or minimizing the volumes of orthogonal projections
of polytopes onto hyperplanes has received some attention in geometry because it
is related to various illumination and optimization problems, see e.g. MARTINI
[Ma85]. It has been treated from a computational viewpoint by MCKENNA & SEI-
DEL Hgnmmm__ whose algorithm finds a direction in which the orthogonal projection
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has maximum (or minimum) volume. Their algorithm is asymptotically optimal
when the dimension is fixed. .

The more general case of projections onto subspaces of arbitrary intermediate
dimension is studied (for fixed and for variable dimensions) in [BuGK94a]. Let
7 : N~ N denote a functional with the property that 1 < ¥(n) < n — 1 for each n.
Then we have the following decision problems.

MAXIMUM 7-PROJECTION (MINIMUM 7-PROJECTION)

Instance: A positive integer n, an H-polytope (a V-polytope, or an S-zonotope)
P, a nonnegative rational p. )

Question: Is there a v(n)-dimensional subspace S of R™ such that
«\.«u?vﬂﬁmm.v 2 p A«\«u?vﬁ.—mwv <w?

Here, as before, V,(»)(IIs P) denotes the y(n)-dimensional volume of the orthog-
onal projection lIgP of P on S.

Note that with the special choice ¥y = 1, MAXIMUM 7-PROJECTION is the problem
of lower bounding (the square of) a polytope P’s diameter. This problem is easy
for V-polytopes; however, it is already NP-complete for H- (or S-) parallelotopes,
[BoGKL90], [GrK93a); see also [GrK94a).

In view of the results of Subsection 5.1, it is not surprising that the variants of
MAXIMUM 7-PROJECTION and MINIMUM 7-PROJECTION that ask for the actual
volumes of optimal projections are #P-hard. However, it turns out that MAXIMUM
7-PROJECTION is hard for other reasons as well. In fact, even for ¥(n) = n-1
(the case of projections onto hyperplanes), the problem MaXiMUM v-PROJECTION
is NP-complete even for the class of all (V- or H-) simplices szﬂxmww:_ even
though the (n — 1)-dimensional volume of any projection of a T.wﬂo:m_.v simplex on
a (rationally presented) hyperplane can be computed in polynomial time. On the
other hand, minimizing projections of simplices on hyperplanes is easy, but MiNIMUM
¥-PROJECTION is NP-hard for many classes of »,::onmoa&w. v and polytopes P (see
(BuGK9%4a)).

Recalling from Subsection 4.4 that for any z € §7-1,

n-1

V(0,1 K, ..., K) = V(I . (K)),

these results imply that the problem of maximizing V({0,1]z,K,...,K) is m:.ww&
NP-hard for K being a simplex, while the problem of minimizing V(o,1]:,K,...,K)

is NP-hard for arbitrary H-polytopes (but easy for simplices). Extensions of these
and other results can be found in [BuGK94a]. .

For some interesting theoretical results on projections see FILLIMAN [Fi88], :u_oo_
and [Fi92]. The problem of estimating the intrinsic volume Vi(K) of 3 voa.w K
from the intrinsic volumes V;(Is; K) of K’s projections onto certain j-dimensional
subspaces S1,...,8n (with 1 <'i < j < n — 1) has been studied by BETKE &
McMULLEN [BeM83].
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Problems similar to those for projections can also be investigated for sectior
(with some additional constraints in the case of minimizing sections). In fact, f
¥ = 1, the problem MaxiMum 7-PROJECTION is the same as the (appropriatel
defined) problem MaximMum 7-SECTION, and the latter is hence again NP-har
Additional algorithmic results can be found in [BuGK94b].

The general problem of finding the maximum of the volumes of the j-dimension:
sections of P (i.e., of the j-dimensional convex sets formed by intersecting P with
Jj-flat) is discussed by FiLLIMAN [Fi92], who finds geometric conditions that must b
satisfied by critical sections. For results related to extremal j-sections of simplice
and cubes, see [Wa68], [Fi92].

Finally, we mention the survey article of MARTINI [Ma94), which discusses
variety of questions related to sections and projections.

8.2. EXPECTED VOLUMES

For a proper body K in R™ and an integer m > n, let pm(K) = pm(K)/V(K)
where um (K) is the expected volume of the convex hull of m points chosen indepen
dently and at random from the uniform distribution over K. For each m this is ar
affine invariant of K, because volume ratios are invariant under nonsingular affin
transformations. The literature contains many results concerning the functions ¢,
and a good short survey with many references was given by CROFT, FALCONER &
Guy [CrFG91, pp.54-57). See BARANY & BUcHTa (BaB93] for later results anc
references.

Despite the extensive literature, we are not aware of any general algorithmic
approach to the computation of ®m(P) when P is a given n-polytope. Indeed,
even the numbers s(n) = p,4,(S) for an n-simplex S have proved to be resistant.
(These numbers are of interest for a comparison of the efficiency of two algorithm:s
for the analysis of multicomponent phase diagrams; see [KI65].) Although it is easy
to see that s(1) = 1/3 and has long been known that 5(2) = 1/6, for many years
the best that could be done with 5(3) was to approximate it by means of Monte
Carlo experiments (see [BuR92] and its references). Recently, however, BucHTA &
REITZINGER [BuR92] showed in a tour de force that

13 x2
) = 735 ~ Tso15"

For n > 3, s(n) is still not known precisely. .

It seems reasonable to conjecture that for each fixed n, ¢n41(K) is a maximum
when K is a simplex, but the conjecture is open for all n > 3. GROEMER [Gr73]
showed for all n that ©n41(K) is a minimum when K is an ellipsoid, and the value
in this case had been computed by KINGMAN [Ki69].

8.3. VOLUMES OF UNIONS AND INTERSECTIONS OF SPECIAL BODIES

The special bodies to be discussed in this subsection are boxes, balls, and simplices.

Fora = {ay,...,a,)T,b = (B1,....8:)T € R™ with o < B for all 4, let B(a,b)
denote the box

m?_SHﬁaﬂﬁmr....mav%..Q_.Am.. <B for1<i<n}
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Now suppose that B(ay,b,),..., B(ak,bk) are boxes with aj = (ej1,...,ajn) and
bj =(Bj1,...,Bjn)for 1< j<k,andfor1 <i<nlet
@ = Bmk?:.? .. ._Qw...w.
and
B, =min{Bis,..., B}
Then the intersection Dwﬂ B(a;, b;) is empty if @; > m. for some i, and otherwise

the intersection is the box B(@,}). This representation yields a fast algorithm for-

computing volumes of intersections of boxes.

Note that any algorithm for computing volumes of intersections of bodies of a
special sort yields also an algorithm for computing volumes of unions of the same
sort of bodies. That is true because the volume function is a valuation and hence

174 GNA-. = MUa\ANAmVIMU«\ANA..DNA.‘.V.T
=1 i

i<j

+ M w\QA..DNA...DNAmVI...nTAI:E!mﬁ\ DNA.. .
i<j<k i=1

However, this direct use of the principle of inclusion and exclusion is often not the
best way to compute volumes of unions. For better ways to compute the volume of a
union of k boxes in R”, see FREDMAN & WEIDE [FrW78] for an optimal O(k log k)
algorithm when n = 1; see vAN LEEUWEN & Woob [VaW81] for an O(klogk)
algorithm (due to J. L. Bentley) when n = 2 and for an O(k™~!) algorithm when
n>3.

I>§o=m the papers that contain algorithms for computing volumes of unions and
intersections of balls, we mention [Au86], [AvBI88}, [Sp85], and especially EDELS-
BRUNNER [Ed93] and EDELSBRUNNER & Fu [EdF93]. See Subsection 9.11 for a
suggested use of such algorithms in experimental computation on a famous unsolved
problem.

From the viewpoint of computational complexity, the most interesting problem
to be mentioned in this subsection is that of computing the volume of a union of n
d-simplices in R9. (The change in notation - d rather than n for the dimension -
is necessary in order to conform to the notation in the term n2-kard below that is
standard in the relevant part of the literature.) When d = 2, this problem belongs
to the class of so-called n2-kard problems introduced by GAJENTAAN & O<mw2>w.m
[Ga093] with the aid of quadratic transformations from a “base problem” that is
linearly equivalent to the following:

Given three sets of integers A, B, and C with |A| + |B| + |C| = n, decide
whether there exist a € A, b € B, and ¢ € C such that a + b = ¢?

For the problem of computing the area of a union of triangles, as for other E.ov_w:._m
in the class, there are no known subquadratic algorithms. (In addition to the o:miw_
paper of [Ga093], see [Or94], [EfLS93], [ErS93], and their references for more mo.ﬁﬁ_m.
The present account is taken from [Or94].) From the viewpoint of computational
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convexity, it would be interesting to know what can be said for d > 2 about th
complexity of computing the volume of the union of n simplices in R%, and wha
happens when the dimension d is part of the input.

8.4. MORE ABOUT DISSECTIONS AND TRIANGULATIONS

As we have seen, any sort of deterministic computation of the volume of a polytop
P is apt to be time-consuming, However, since the volume of a simplex is so easy t
compute, and since dissecting P into simplices is easy to understand and not har:
to program (see Subsection 3.1), the use of such a dissection is the most convenien
method in many practical cases. When faced with a polytope P whose volume i
to be computed by means of dissection into simplices, it is natural to wonder wha
is the minimum number of simplices possible. That suggests the following decisior
problems.

8.4.1 Given a positive integer n, a proper H-polytope (or V-polytope) P C R", &
positive integer k.

(A) Can P be dissected into k or fewer n-simplices, each having all of its vertices
among those of P?

(B) Can P be dissected into & or fewer n-simplices, each having all of its vertices
at points of P that have rational coordinates?

(C) Can P be dissected into k or fewer n-simplices?

Note that in 8.4.1 (A), only the vertices of P can be used in forming the n-
simplices of the dissection. It seems plausible that the minimum number of such
simplices cannot be reduced by the use of additional vertices. However, we are not
aware of any proof of this even for the case in which P is an n-cube. In 8.4.1 (B),
additional vertices are permitted but are required to have all rational coordinates
(as do the vertices of P), while in 8.4.1 (C) there is no restriction on the position
of additional vertices. Hence it is conceivable that these three similar-sounding
problems are of different computational complexity. It can be shown that 8.4.1 (A)
belongs to the class NP. However, for 8.4.1 (B) it does not seem obvious even that
there exists a finite decision algorithm. (This is vaguely reminiscent of the fact that
the problem of deciding whether a given polytope is combinatorially equivalent to
one with exclusively rational vertices is algorithmically equivalent to the problem
of deciding whether a diophantine equation is solvable in rationals (see STURMFELS
[St87]) - and it is not known whether there is an algorithm for the latter problem (see
(KIwg1, p.95]).) For 8.4.1 (C), the existence of a finite decision algorithm follows
from the decision theory of TARSKI [Ta61] (see also [ChK73] and RENEGAR [Re92a),
[Re92b], [Re92c]) because the existence of a dissection of the desired sort can be
expressed in terms of the consistency (now over R™ rather than Q") of a system of
Polynomial equalities and inequalities involving the vertex-coordinates.

When the above problems are posed for triangulations (as opposed to dissections),
the above statements about computational complexity still apply to 8.4.1 (A) and
8.4.1 (C). However, in the case of triangulations, the same decision algorithm that
works for 8.4.1 (C) applies also to 8.4.1 (B). That is a consequence of the following
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fact: If P is a polytope whose vertices are all at rational points, and 7 is a trian-
gulation of P, then the nonrational vertices of 7 can be moved, one at a time, to
nearby rational points so as to produce a triangulation 7’ of P whose vertices are
all at rational points.

Though it has nothing to do with computing the volume of a polytope, we want
to mention the following fact, simply for its intrinsic interest: An n-cube can be
dissected into k n-simplices of equal volume if and only if k is a multiple of n!.
This was first proved for n = 2 in [Mo70], then extended to arbitrary n in [MeT9].
The proof depends in an essential way on valuation theory. For further results on
dissecting polygons into triangles of equal area, see [KaS90] and [Mo90].

There is an extensive literature concerning the following questions.

8.4.2 What is the minimum number T(n) (S(n)) of n-simplices into which an n-cube
can be triangulated (dissected)?

The number S(n) has been fully determined only for n < 4, T(n) only for n < 7
(see HUGHES [Hu93] and HUGHES & ANDERSON, [HuA94] and as n — oo the
best asymptotic lower and upper bounds are far apart. The best asymptotic lower
bounds result from volume considerations (see [Ha91] for references), and the best
asymptotic upper bounds come from the construction of specific triangulations in
low dimensions together with a simple but elegant method of HaiMAN [Ha91] for
extending these to higher dimensions. For n < 8, the best lower bounds for both
S(n) and T(n) come from a linear programming approach proposed by SALLEE
[Sa82] and developed further in (Hu93] and [HuA94].

Triangulations of n-cubes are of interest for their role in complementary pivoting
algorithms used to find approximately fixed points of continuous mappings [To76].
In this connection, ToDD [To76] proposes the number (card(T)/n!)*/" as a measure
of the efficiency of a triangulation 7 of the n-cube. The construction of [Ha91] shows
that any value of this measure that is attained for some fixed n is also attainable
asymptotically. However, this measure does not tell the whole story of efficiency, for
it often happens that triangulations into fewer simplices require more complicated
pivoting rules. See [ToT93] and [HuA94] for the details of some recent triangulations
and for references to earlier work.

To end this subsection, we mention that ONG [On89], [On94], has analyzed a
triangulation of the 3-cube that is notable for a number of geometric properties that
make it especially convenient for use in the finite-element method for approximating
solutions to partial differential equations. It would be worthwhile to produce and
study higher-dimensional analogues of her triangulation.

9. Applications

This last section collects some of the more recent and probably less known applica-
tions of volume and mixed volume computation. The applications 9.3-9.5 and part
of 9.9 were explored in more detail in [DyF91], the applications of 9.1, 9.2, 9.6-9.8
and part of 9.9 are dealt with in [DyGH94].
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9.1. CouNTING INTEGER POINTS IN LATTICE POLYTOPES

As we have seen already in Subsection 3.5, there is a close connection betwee
VOLUME COMPUTATION and counting lattice points. Here we show how a “mixed
volume-like” approach to lattice-point enumeration can be used to deduce som:
complexity results.

Let L denote an integer lattice of R" whose vectors span R”, denote by P*(L
the set of all polyopes in R® whose vertex set belongs to L, and let Gy, denote the
lattice-point enumerator, i.e. the functional GL : P*(L) — Ny defined by Gu(P) =
card(P NL). By EHRHART (Eh67], [ER68], [Eh69], [Eh77] there are functionals
GL,i : P*(L) — Ny such that for every P € P*(L) and k € N,

GL(kP) = M:U \an—:mAﬁv.

=0 -

The polynomial on the right-hand side is often referred to as the Ehrhart-polynomial,
see STANLEY [St86b] for basic facts on this polynomial, and see [GrW93] for a survey
on lattice-point problems. For simplicity we restrict the further considerations to
the case where L is the standard integer lattice Z™ and omit the subscript Z",

Note that G,(P) is just the volume of P; see 3.5. Suppose now, we could
determine in polynomial time the number G(P) of lattice points of a polytope
P € P(Z™). We could run this algorithm for the polytopes 1- P,...,n - P, and
obtain V(P) = G.(P) by solving the system

10..0
11 1n QoAmuv QAON.J
“on || Gu(P G(1-P
Mz=|12"..2 H.: = A. ) =5
1t ) \Ga(P)) \Gln-P)

of linear equations. Application of Theorems 5.1.4, 5.1.5 and 5.1.7 shows that the
problem of evaluating G(P) for integer H-polytopes, integer V-polytopes, or integer
S-zonotopes is #P-complete.

Recall from Section 3.5 that a recent result of BARVINOK [Ba93b] shows that in
fixed dimension, G(P) can be computed in polynomial time, see also [DyK93].

9.2. ZONOTOPES AND MIXTURE-MANAGEMENT

The typical approach to standard problems in mixture-management models the prob-
lem as a linear program by assigning costs to each basic mixture. However, GIRARD
& VALENTIN [GiV89] remark that for many applications in the petroleum industry
the cost of these basic mixtures are essentially identical, and this accounts for the
fact that the linear programming model may not always be the best one. They
Propose an approach that involves zonotopes.

.m:vvo% that a seller has m containers, each of which contains a mixture of n
.vwm_o chemicals. For i € {1,. comblet o = (Giy,..., )T represent the mixture
In container #, where Gij is the quantity of chemical J in container i. (The Cij are
assumed to be nonnegative rationals.)
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mcvvo.mo. further, that a customer demands a nm:m.mb mixture b = (4, . .. B.)T
that consists of ar.o quantities §y, ..., 8, of chemical 1,...,n, respectively. o
In order to satisfy this demand the seller takes,fori=1,...,m, a proportion ).
1

of container i’s content such that

B = MU Aiij

i=1

forje{l,...,n}.

Hence, the zonotope
m

Z = M”B. 1]z
i=1
is the set of all vOmmm.Eo demands that the seller can satisfy. In general, there is more
than one way to satisfy the demand; thus the seller will have a choice of vectors

LEAR) = {I=( o M) €0, 1™ S Az =6,

i=1

.&:.* the question is: What is a good strategy for the choice of [ 50 as to be able to
.mm:m@ the widest possible variety of possible future demands. If the seller has no
information on the distribution of these demands it might be reasonable to assume
that they are uniformly distributed.

.E.Su the objective for the seller is to maximize the volume of the zonotope Z(I)
that is the set of all mixtures that are still possible after the current demand &
rm,.w been satisfied by the choice I. This maximization criterion was suggested in
[GiV89]. Of course, the volume of Z(l) = im0, 1)(1 = X))z is a homogenous
polynomial in the (1 — X;)’s, and its nth root is concave by the Brunn-Minkowski
theorem 2.4.4. Hence the maximization problem is algorithmically tractable if the
computation of function values is easy. However, Theorem 5.1.7 shows that the
.vnoEma of computing V' (Z(1)) is #P-hard. Thus the algorithm suggested by [GiV89]
is not efficient unless the number n of basic chemicals is small. Note, however, that
the randomized algorithm of Theorem 7.1.1 could be used. .

9.3. INTEGRATION OVER BODIES

Suppose that K is a convex body of R" and that the function f: K - Ris
nonnegative and concave. Then

z

.\N\?KHH«\QAL. where N\Hﬁm v“amk,oMm‘_tM\?&v.

m=+H

Since Ky is a convex body in R**!, we can use the algorithm of Theorem 7.1.1 to
approximate [ f(z)dz.

In order to bound the running time of the corresponding randomized algorithm,
we need to make some assumptions about the a priori guarantees for K and f. Nat-
urally, we will assume again that X is given by a centered well-bounded membership
oracle with parameters r, R and b. DYER & FRIEZE [DyF91] suggest, as measures
for the size of f, the size L, of an upper bound of f on K and the size L; of a positive
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Jower bound on f’s average [; f(z)dz/V(K) on K. Using 7.7.1, the integral can
then be approximated in time that is polynomial in size(K) and L; and La.

DyYER & FRIEZE [DyF91] further show that this approach can be extended to
quasi-concave functions satisfying a Lipschitz-condition, and they derive a pseu-
dopolynomial randomized algorithm for general integrable functions.

94. STOCHASTIC PROGRAMMING

As is pointed out by DYER & FRIEzE [DyF91}, the randomized algorithm for com-
puting the volume of convex bodies can, in certain cases, be used to approximate the
expected value of certain stochastic programming problems. Examples discussed in
[DyF91] include the problem of computing the expected value of the functional ¢(b)

that is defined by
¢(b) = max f(z)

QNAHVMQ& i=1,...,m,

where f is a concave functional, g1,...,9m are convex, and b = (By,...,8m)T is
chosen uniformly from a convex body K € K™.
Another example of [DyF91] deals with a question that comes up in the sensitivity

analysis for linear programs. When, in the linear program
min(c, z)
Ar=b
z20,

the parameters (b7, ¢T)T € R™ x R" are chosen uniformly from a convex body K
in R™*", sensitivity analysis may ask for the probability that a specific nonsingular
(m x m) submatrix B of A gives an optimal basic solution. This can be expressed
in terms of volumes as follows. Since B is nonsingular, the condition Az = b is
equivalent to B-'Ar = B~1b. Now, let zg = B~1b, let £ denote the correspond-
ing n-vector that is obtained from zp by augmenting components 0 whenever the
corresponding column of A does not belong to B, and let cg denote the m-vector
obtained from ¢ by deleting all components that do not correspond to a column in
B. Then it is well-known from duality theory of linear programming {and quite easy
to derive, see e.g. [GoT89] or [GrK93b}) that £p is an optimal basic feasible solution
if and only if £p is primal feasible and jp = (¢§B~!)T is dual feasible. Since, by
definition, AZp = b, this is equivalent to

zp>0 and cEB-'A< T
Hence the choices (b7, cT)T of K for which B is an optimal basis are those which

belong to the subset

Sm nxaxwv ”m-;wo‘ nmm-im%v

of K, and the probability of B being an optimal basis is given as the volume ratio

V(K3s)/V(K).
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Again, under some reasonable assumptions, the randomized algorithm 7.1.1 for vol-
ume computation can be used.

9.5. LEARNING A HALFSPACE

Another application for volume computation, due to DYER, FRIEZE & KANNAN
(see [DyF91]), is related to certain questions in “learning theory.” Suppose, an
algorithm A wanted to “learn” an unknown inequality {a,z) > a where a € [~1, 1"
and a € [-1,1]. Suppose, further, that there is a sequence (z;);en of points provided,
and at step 7, a guess is made by A as to whether z; satisfies the inequality. It is then
revealed to A whether the guess is correct. The goal for A is to devise a strategy
which minimizes the proportion of errors made.
Now, each query point z; leads to two halfspaces

mwux”v ;Ps..vwav and H; MAAMV ;n.a..vmsw_

and each “verification” if the guessed answer is correct or not rules out one of the
halfspaces. Hence after step i, A knows a polytope P;, and a good strategy for
deciding, whether for point z;4; the guess should be “yes” or “no” may be guided
by the volumes of the two parts

PNHY,, PNHZ,.

An analysis of this approach and a comparison with a method of Maass &
TURAN [MaT89] can be found in DYER & FRIEze [DF91]. See BLUM & KANNAN
[BIK93] for a polynomial time method for learning an intersection of a constant
number of halfspaces over a uniform distribution of query points.

9.6. PERMANENTS

For i,j € {1,...,n} let a;; be a nonnegative integer, and set Z; = Mm_up_”o.ac._mu..
As we have seen in Subsection 5.2,

n!V(Zy,...,2,) = per(4)

is the permanent of the matrix A = (aij)ij=1, ..n-

We have used the #P-hardness of the problem of computing the permanent
of a matrix to show in 5.2.2 that the problem of computing the mixed volume
V(Z1,...,2,) of the rectangular parallelotopes Zy, ..., Z, is #P-hard. However,
the correspondence goes both ways, and any progress for mixed volume compu-
tation leads to new results on the “positive side” for permanent computation. It
follows, for instance, from the results stated in Subsection 7.2 that one can approx-
imate the permanent of matrices with positive integer entries of quasi-polynomial
size, at least if they have the property that all but n — o(log n/ loglog n) of the rows
are identical, see [DyGH94].

Note that the fastest deterministic algorithm known for computing the permanent
of a square 0-1 matrix with n rows runs in time n2"~! (see RYSER [Ry63] and the
improvement by NIJENHUIS & WILF [NiW78]), while the best known randomized
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algorithms for producing a relative approximation p with

ﬁ
vwovA vQ,TCIH mmvalu.

still use time of order 20(vA1o8’(n))e-20g(1/8), JERRUM & VAZIRANI {JeV91], see
also KARMARKAR, KaRP, LiPTON, LovAsz & Lusy [KaKLLL93].

Let us point out that besides the well-known applications in mathematical pro-
gramming and combinatorics, there is need for computing or approximating the
permanents of certain matrices that arise in particle physics (see ZHU [Zh93]). The
lack of efficient procedures for this task leads to difficulties in the study of the Bose-
Einstein correlation between particles.

It seems appropriate to end this subsection by mentioning van der Waerden’s 1926
conjecture that on the (n — 1)2-dimensional polytope formed by all n x n doubly
stochastic matrices, the permanent attains its minimum at the matrix w.\a whose
entries are all equal to 1/n. This was finally proved by EGORYCHEV [Eg81], who
showed that the minimum is in fact attained uniquely at w&:. An essential tool in
his proof was the Aleksandrov-Fenchel inequality 2.4.3 for mixed volumes. KNUTH
[Kn81] later gave a relatively elementary, self-contained proof of Egorychev’s result,
and it turned out that FALIKMAN [Fa81] had independently proved the conjecture
(but not the uniqueness) by different methods. Nevertheless, we believe that mixed
volumes will continue to be a useful tool in dealing with specific problems that may
at first not appear to have any connection with mixed volumes. In the words of
Egorychev [Eg81, p.299]: “The method of mixed volumes is ideally suited to solving
extremal problems and problems of uniqueness, and obtaining deep new inequalities.
It is reasonable to assume that in the future the method of mixed volumes will stand
with that of generating functions as one of the basic analytical tools of combinatorial
analysis.”

9.7. POLYNOMIAL EQUATIONS

Mixed volumes play an important role in algebraic geometry. Let us here discuss
the relation of mixed volumes and the number of solutions of a system of equations
involving Laurent polynomials.

We use a notation similar to that introduced in Subsection 3.4: when z =
(é1,...,€a), and ¢ = (k1,...,K,) € Z", then

= £K Kg 13
2l = €5 E5 .

Now, let 51,5;,...,5, CZ" and let fori=1,...,n,

fo) = Y o,

q€S,
where the coefficients nmc are fixed complex numbers. Hence f; € C [z1, HHL_ vy @,
z;'], and we are interested in determining the number L(F) of distinct common

roots of the system F' = {fi,..., f,}. By a result of BERNSTHEIN [Be75] (see also
(BuZ88, Chapter 27)) this number depends, if the coefficients ow.v (g € S;) are chosen
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generically (i.e. in sufficiently general position), only on the Newton polytopes
P; = conv(S;)
of the polynomials, and, more precisely,
L(F) = n!-V(P, Py,...,P,).

HuUBER & STURMFELS [HuS93] use this result in conjunction with an approach
similar to those of Subsection 4.2 to devise a numerical continuation algorithm for
computing all isolated common roots of a system of polynomial mncwﬁonm.. See
GELFAND, KAPRANOV & ZELEVINSKY [GeKZ90] and also [GrS93] for further infor-
mation about Newton polytopes and related concepts, and VERSCHELDE & CoolL
[VeC92], PETERSEN & STURMFELS [PeS93], CANNY & RoJAS {CaR93], and VER-
SCHELDE, VERLINDEN & CooL [VeVC94] for further results along these lines.

9.8. BASES OF UNIMODULAR MATROIDS

Let M be a unimodular matroid of rank n with representation vy, v, ..., v,, over the
reals. Let Si,..., 5, be a partition of {1,2,...,m} and let iy,...,i, be nonnegative
integers such that anp ij=n. m,_,>2rm<. [St81] shows that the number of bases of
M with i; elementsin S; fori=1,...,ris
1

i)
ﬂn. ~u.u.

v(z,....2,,...,7,,...,2),

where Z; is the zonotope
Zi = )" [0,1]y;.
Jj€S;
Hence the results of Subsection 5.2 can be applied to yield #P-hardness results
for this counting problem. See BJSRNER, Las VERGNAS, mecwzqmmw, WHITE &
ZIEGLER [BjLSWZ93] for a state-of-the-art account of oriented matroids.

9.9. PARTIAL ORDERS AND LINEAR EXTENSIONS

When dealing with the strong #P-hardness of volume computation for \I-vo_v;owmm
in Subsection 5.1, we showed that the number of linear extensions of a given onmmzzm
O is equal to the volume of the order polytope Po. Now we outline an extension of
this result, also due to STANLEY [St81], that involves mixed volumes.

Let N = {p1,...,pr,q1,.-.,qn-r} be a poset, let N, = {p1, ...;F.w. N, =
{g1,...,9n—r}, and suppose that p; < p2 < -~ <pp. Foriy,... i, € {1,...,n}

let e(iy,...,7,) be the number of linear extensions 7 of N such that n(p;) = i; for
J=12,...,r. .
Now, define for j = 0,...,r the order polytopes P; of R®=" as the sets of points
z =(€1,...,6n-,)T that satisfy the following constraints:
0<& <1 fori=1,...,n—r;
& <& fgi<qik=1,...,n—r
&=0 fji>0andgi<pj;i=1,...,n—-r
&=1 fj<rand g >pjs1;i=1,...,n—r.

T
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Note that the polytopes P;j reflect the restriction of N to N, that lies “between” P
and p;4;.
STANLEY [St81] showed that (with g = 0,i,41 = n+ 1),

f1=ig=1 frgp1=ip=-1
mﬁu.fn.w_..._m‘.v”A:Iﬁv:\Aﬁo‘....&U?..JN.W...JNW .

As a side remark, observe that, when r = 1, the Aleksandrov-Fenchel inequalities
2.4.3 imply that fori=1,.. an—-1

e(i)2 > e(i - L)e(i + 1),
and hence the sequence e(1),...,e(n) is unimodal.

9.10. EXPERIMENTAL COMPUTATION: POINTS ON SPHERES

There is a large collection of unsolved mathematical problems involving volumes or
mixed volumes of polytopes or other bodies. In many cases, an important source
of difficulty is a lack of intuition or computational experience that might guide one
to a solution. That is especially true of extremum problems, and especially true in
higher dimensions. We expect that improved methods of volume computation, in
conjunction with heuristic optimization methods, will facilitate computational ex-
periments to provide increased insight concerning these problems. Here we describe
two problems that are not completely solved even in low dimensions and for which
the range of ignorance increases rapidly as the dimension grows.

The sort of development that we have in mind is well illustrated by the history
of the following problem: :

9.10.1 How should k points be arranged on the unit sphere $*~! in R" so as to
maximize the volume of their convex hull?

For n = 2, the solution is the obvious one: place the points at the vertices of a
regular k-gon inscribed in the unit circle S! [Fe53]. As far as we know, the only case
0f 9.10.1 that has been settled for all n is that in which k = n+ 1, where the regular
arrangements (placing the points at the vertices of a regular n-simplex) are the only
ones that maximize the volume (FEJES TéTH [Fe64, p.313], SLEPIAN [S169]). FEJES
TéTH [Fe64] discusses the difficulties in the case n = 4, k = 120, saying that “It
may be taken as certain that of the 4-dimensional polytopes with 120 vertices and
unit circumradius {3, 3,5} (the regular one) has the greatest possible volume ... But
so far we have no methods for proving these conjectures ....” Of course, computer
experimentation cannot provide proofs of such conjectures. However, algorithms
combining volume computation with optimization methods may provide useful clues
in cases where there is no obvious candidate for the optimizing shape or when the
“obvious” candidate turns out not to be the optimum. Consider, for example, the
case n = 3, k = 8, where the 8 vertices of a cube do not yield even a relative
maximum. The volume-maximizing arrangement of 8 points was first discovered (as
a relative maximum) by computer experimentation (GRACE [Gr63)), and was later
Proved by BERMAN & HANES [BeH70] to be the maximum. We expect that, as
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algorithms for volume computation are improved, higher-dimensional analogues of
this sort of compute-conjecture-prove development will occur.

The problem of the preceding paragraph is closely related to the problem of
finding, for a given n and k, the n-polytopes of minimum volume among those that
have k facets and are circumscribed about a given sphere in R™. Again, the regular
solution is known to be optimum for all £ when n = 2 [Fe53] and for all n when
k= n+1. Beyond that, the solution is known when n = 3 for a few valuesof k > 4,
but ignorance is almost total in the higher-dimensional cases. For the case n = 3,
see GOLDBERG [Go35] for the history of this problem and SCHOEN [Sc86) for an
algorithmic approach.

The following problem turns out to involve a specific mixed volume.

9.10.2 How should k points be arranged on the unit sphere S"-! in R" so as to
maximize the mean width of their convex hull?

As pointed out at the end of Section 2, the mean width is just a multiple of the
first intrinsic volume V;. Let us add that for k-polytopes P in R”, there is a formula
of SHEPHARD [Sh68]:

k-1
T+EDIP) =30 3 (- *HK(F).

i=l FeF,(P)

The extent of ignorance concerning 9.10.2 is even greater than that for 9.10.1.
For the important case in which k = n + 1, several authors ([Gi52], [Ba83], [Ba65],
[We68]) have assumed the existence of a proof that the regular arrangement maxi-
mizes the mean width. However, we are not aware of any such proof. (It is known,
ALEXANDER [Al77), that the regular arrangement of n + 1 points maximizes the
width of the inscribed simplex.)

The problem 9.10.2 is of interest because of its connection with a problem in
communication theory. Suppose that Z denotes the Gaussian distribution in R"
that has zero mean and whose covariance matrix is the n x n identity matrix. For
a fixed k£ > n, a fixed A > 0, and a fixed set U consisting of k points of S"~1,
let Y be the vector random variable of the form Y = AU + Z. Upon receiving
Y, we are asked to decide which point of U has been transmitted, all points of
U being equally likely a priori. The problem is to arrange the points of U so as
to maximize the probability of this detection. The simpler code conjecture asserts
that when k& = n + 1, the optimum arrangement is the regular one. A claimed
proof [LaS66] of the conjecture was shown by FARBER [Fa68] and TANNER [Ta70]
to be invalid, but the conjecture itself is still open. See [Fa68], [Ta74] for stronger
forms of this conjecture, BALAKRISHNAN [Ba61], [Ba65)], and TANNER [Ta70] for
the relationship of the conjecture to mean widths of simplices, and CHAKERIAN &
KLAMKIN [ChK173] for other conjectures on mean widths of simplices.

9.11. EXPERIMENTAL COMPUTATION: PUSHING BALLS TOGETHER

For each point ¢ € R", let B(c) = {reR": flz = cfl2 < 1}, the Euclidean ball of

unit radius centered at the point ¢. Now suppose that p,, .. .,pr and qp,...,qk are

~
i
|
;
i
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points of R™ such that for all 44, llgi — gjll2 < (lpi - Pjll2 - in other words, the ¢;
are pairwise at least as close together as the p;. It has been conjectured that under
these circumstances, the greater extent of overlapping of the balls B(g;) insures that

k k
v{NB@)2v (N 8w
i=1

i=1

and

k k
vilUsa) <v U B

i=1 i=1
(see [Th54] and [Kn55] for the latter conjecture). Both conjectures have been proved
for the case in which k < n+1 and for unrestricted k when n = 1, but for unrestricted
k both are open for all n 2 2. Concerning the intersections, it follows from a
theorem of Kirszbraun [Ki34] that if V(- B(p)) > 0 then V(Ni., B(g:)) > 0,
and concerning the unions, it was proved by M. KNESER [Kn55] that

» »
<Cm§mwécm@..v
i=1 i=1

See [KIWO1] for a detailed discussion of the above conjectures and some of their
relatives, including a stronger conjecture of Kneser that implies the above conjec-
tures. Kneser’s interest in these questions arose from his study [Kn55] of a measure
of surface area proposed by Minkowski.

Despite the plausibility of the above conjectures, it would not surprise us if
they fail even when n = 2. It seems that for small n and for £ not too much
larger than n 4+ 1, it should be possible to design a computer experiment that would
greatly improve the multiplier 3° and would at the same time have a good chance
of discovering a counterexample to the original conjecture (if one exists). Such an
experiment would require fast algorithms for computing the volumes of intersections
and unions of balls. See subsection 8.3 for references to such algorithms.
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THE DIAMETER OF POLYTOPES AND
RELATED APPLICATIONS

PETER KLEINSCHMIDT *

Universitit Passau
Wirtschaftswissenschaftliche Fakultdt
Lehrstuhl fir Wirtschaftsinformatik
94080 Passau

Germany

Abstract. Upper bounds for the diameter of the edge-graph of polytopes deliver upper bounds for
the worst possible behavior of best possible edge following algorithms for linear programming. We
review some recent results for such bounds for general and integer polytopes. Results concerning
the diameter of the polyhedra of dual transportation polyhedra are being used for efficient algo-
rithms for assignment and transportation problems. An application to the classification of human
chromosomes is presented.

1. Bounds for the diameter of polytopes

Let P be a (convex) d-dimensional polyhedron and G(P) its edge-graph. Let 8(P)
denote the diameter of G(P), i.e. the number of edges of the longest path among
all shortest paths joining any pair of vertices of P.

Let A(d,n) := max{é(P)|P is a d-polyhedron with n facets }.

The Hirsch-conjecture which was first formulated by W.M. Hirsch in 1957 states that
A(d,n) < n—d. It arose from an attempt to understand the computational com-
plexity of edge-following algorithms for linear programming. The Hirsch-conjecture
was proved to be false for unbounded polyhedra for d > 4 in [KW]. For polytopes
it is still open for all d > 4. However, it is correct for several interesting classes of
polyhedra occuring in combinatorial optimization. This includes the class of 0 —1
polytopes. There is quite a gap between the bound n —d in the conjecture and the
currently best known bounds. It is generally believed that the Hirsch-conjecture
is false for polytopes in general. However, it would be of interest to have results
concerning the behavior of the functional A(d, n). In particular, it is open whether
A(d, n) is bounded by a polynomial in both d and n.

Finding a pivot selection rule for linear programming which guarantees a worst case
behavior bounded by a polynomial in the size of the constraint matrix would yield
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