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For instance, when
1
F(H) = exp{ —S H— ]% tr H4}

we should obviously substitute the following into (7.16):

1) =ewpl =3 3. 4= § 411,

i=1

Unfortunately, this method alone does not allow us to compute the integral
(7.5).
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The Birkhoff—von Neumann theorem
for polystochastic matrices*

M. B. Gromova

Introduction

The well-known Birkhoff-von Neumann theor‘ern asserts that ‘the extrgmal
points of the space of (square) bistochastic matrices are permutation matlrllctei
The interest in this fact is explained to a significant extent by‘the fact that 1
allows the reduction of the so-called assignment pbll'oblem to a linear program-
i mely, to the transportation problem. .
Hn;ltgwl:‘socl))llazg’v:g by I{/Iotzkin [3] that not all of the extremal points of the space
of k-dimensional k-stochastic matrices are integra.l and, hence, the §01ut1011
of the k-index transportation problem for k >2 is, generally speaking, no
mtng.rla\l/}'. Vershik pointed this fact out to the author and su‘ggesteq the prol;lem
of classifying the extremal points of spaces of poly;tochastlc matrices. \;Ve .a:le
not succeeded in constructing a complete classification of these extremal points,
but in the present paper we find a Version. of the .Blrkhoff—von Nzumglll)n
theorem for k-dimensional k-stochastic matrices, which allows us to describe

the arithmetic structure of the extremal points.

Plan of the paper. In §1 we state the main result of the paper, Theorem l.IS,
and in addition we give the notations that are needed 1at§r on in the pape}rl. I't
§2 we introduce the concept of a homomorphism of ma.tnces, used th;gl.lg ouf
the paper, and using which we prove (in §2) t}-le‘ necessity of the conditions c;
Theorem 1.5. In fact, the necessity of the conditions of Theorem 1.5 repreliler;) $
a direct generalization of the Birkhoff—-von Neumann theorem. It wou e

* QOriginally published in Operations Research and Statistical Simulation, No. 2, 3-15, Izdat.
Leningrad. Univ., Leningrad, 1974. Translated by J. S. Joel.



146 M. B. GROMOVA

possible to give a more direct and simpler proof of this part of the theorem, but
we have chosen a presentation that is compatible with what we do later, using

it simultaneously for the introduction of definitions and lemmas that are needed

for the second part. The proof of sufficiency, which is trivial in the two-dimen-
sional case, presents the fundamental difficulty in the k-dimensional case for
k>2.

In §3 the sufficiency of the conditions of Theorem 1.5 is reduced to a lemma
in combinatorial algebra, Lemma 3.3. In §§4 and 5 we give some preliminary
facts, using which we prove Lemma 3.3 in §6. In §7 we carry out the proofs of
the facts from matrix algebra that are used in the paper. The proof of these facts
is very simple, but it is rather complicated to give it in matrix language, so we
translate the statements into an invariant language, after which they become
tautologies. The invariant presentation has yet another advantage as it explains
the algebraic meaning of the concept of a homomorphism of a matrix into a
matrix, introduced in §1. In the appendix we discuss (without a detailed proof)
the restrictiveness of conditions (1) and (2) of Theorem 1.5.

The author thanks A. M. Vershik, who initiated the study of multidimensional
extremal points, as well as L. A. Oganesyan and O. G. Fayans for a detailed
critical reading of the paper.

§1. Notation and statement of results

1.1. Following I. V. Romanovskii [4], a vector with component set S will be
denoted x[S] and interpreted as a function on S. We denote by x[s], s € S, and
x[S’], S” = S, the value of the function at the point s and its restriction to S,
respectively. A matrix is interpreted as a function on the Cartesian product of the
sets .S of rows and T of columns, and is denoted A[S, T]. The symbol “x”
denotes both the scalar product of vectors and the action of matrices on a row.
We denote by 1[S] the vector consisting only of ones.

Vectors, matrices, etc. are said to be positive, rational, etc., if all of their entries
are such. The empty vector is the vector with an empty set of components.

We denote by m :n (m < n) the set of numbers m,m+1,...,n The vector
x[m :n] is said to be decreasing if x[i] < x[}] for i > J» L, j € m:n. The symbol |P[
denotes the number of elements in the set P.

1.2. Extremal k-matrix; its spectrum. A k-dimensional matrix will be a
function on a set J, which is represented as the Cartesian product of & copies of
the set 7. Fixing the index i in the I-th copy distinguishes the set
J, (Liyad, lel:ik, iel
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We say that a k-dimensional nonnegative matrix M[J] is k-stochastic if

Y M[jl=1, lel:k, iel @)
jeJi)
In the n*-dimensional space (with n=|I|) of all k-dimensional matrices
the k-stochastic matrices form a bounded convex polyhedror} (of dimension
nk — nk + k — 1). Its extremal points are called extrema] k-matrices. ' N
The spectrum’ spec M of the matrix M[J] is the (strictly!) degregsmg positive
vector ¢, among whose components each of the numbers M([jl, j € {, ‘occu.rtsﬁ
except for zero (in other words, spec ignores zero and also the multiplicity wi
i ers occur in the matrix).
Wtiﬁht;}:emtl::gs the Birkhoff—von Neumann theorc?m asserts that the SIieC-
trum of any extremal 2-matrix is the vector with a single component equal to

one.

1.3. Matrix of relations. A relation for a vector of1: 1?] is a nonnegative 1n1tleg§r
vector #[1:p] such that o[1:p] x r[1:p] = 1. The matmx whose. rows are a (;[ e
(pairwise distinct) relations for ¢ is called the mat‘rzx of relatonL? for o and is
denoted by R(0). It is clear that the matrix of relations of a positive vector 1s a

finite (possibly empty) matrix.

1.4. Cancellation; k-series; k-height. Consider a matrix A[S, T], and in it the
row Als, T], s€ S, with ¥, 4[5, ] <k and remove from A[S, 7] all the
columns that pass through the nonzero elements of the row Als, T1. ‘ .
We call a k-series a finite sequence of matricesf, whe:rflz1 ;221111 successive one 1s
i receding by the procedure of cance . .
Obzfltenzjllﬁ:[cl)lr: I;d-l;eipjght hk(Ag) o}; the IIzlatrix A the smallest number 4 for’ which
there exists a k-series beginning with A, ending with the empty matrix, and

containing (together with 4) 4 + 1 terms. o '
The condition /,(4) <, is equivalent to the possibility of exhausting the

" matrix 4 by A, cancellations, and the condition £,(4) = co means the appear-

ance in the process of cancellation of a nonempty matrix for which each

nonzero row has the sum of entries not less t.han k.
We remark also that for k; < k, the inequality &, (4) = hkz(’A) hol'ds, and the
equality A, (4) = oo for all k=1,2,... is equivalent to A’s having a zero

column.

1 The term wac nronosed bv A. M. Vershik.



148 M. B. GROMOVA

1.5. Statement of the main theorem. Let ¢ be a positive decreasing vector and
let k =2 be a natural number. For there to exist an extremal k-matrix with
spectrum ¢ it is necessary and sufficient that two conditions hold:

(1) A (R(0)) < 0.

(2)  the columns of the matrix R(c) are linearly independent.

We shall indicate three corollaries, whose derivation from 1.5 is obvious.

1.6. If the vector o[1:p] realizes the spectrum of an extremal k-matrix, then it
is rational, o[1]1 = (k —1)~", and if we represent the components of oli] as
fractions of natural numbers, a[i]/bli], then the inequalities

oti+112 (=1 ] b[j]>_l

jel:i
hold. In particular, for k =2 we obtain the assertion of the Birkhoff —von Neu-
mann theorem.

1.7. For any positive decreasing vector o[1:p] whose matrix of relations is not
empty and whose columns are independent, and for any k > max,. ., (a[i[) ',
there is an extremal k-matrix with spectrum o[1: p].

1.8. For any positive rational decreasing vector o[1: p] with components less than
one, there is a natural number b such that the vector o’[0:p + 1] with
¢'[0] =(b —1)/b, ¢'[p + 1] =1/b, a'[il =0li], i €1:p, is the spectrum of some
extremal 3-matrix.

§2. k-partitions; homomorphism of a matrix into a matrix;
proof of necessity for Theorem 1.5

2.1. The notation sp(4). We associate with a matrix 4 = A[S, T a system of
linear equations A[S, T] x x[T] =1[S]. If the columns of the matrix 4 are
linearly independent and the system has a (unique!) solution, then we denote by
sp(4) the vector with strictly decreasing components, among which all the
components of the solution of x[T] occur. If the system does not have a
solution, then the vector sp(4) is empty by definition. We remark that, for a
positive decreasing vector ¢ whose matrix of relations has linearly dependent
columns, we have: sp(R(c)) = o(R(0)), just as in 1.3.

2.2. k-partitions. A k-partition of a matrix A[S, T] is a decomposition of its
set of rows into k disjoint subsets S|, . .., S,. A matrix with a fixed k-partition
is called a k-partitioned matrix, and the submatrices (k of them) into which the

et b gttt 1 o nllad the Alaslo AfF the nartifinn
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We say that a k-partitioned matrix is admissible if each of its entries is
either 0 or 1, and if there is not more than one 1 in the intersection of each
block.

A column in an admissible k-partitioned matrix is said to be complete if it
contains exactly k 1’s; incomplete if the number of 1’s is less than k; elementary
if it contains exactly one 1. We say that an admissible k-partitioned matrix is
complete if each column is complete.

We shall show how to pass from k-dimensional matrices to two-dimensional
k-partitioned matrices.

2.3. With each extremal k-matrix M we can associate a complete k-partitioned
matrix A with independent columns and with sp(4) = spec M. Conversely, to each
matrix A with independent columns, which consists of 0’s and 1’s, possesses a
complete k-partition and for which the vector sp(A) is nonempty and positive, we
can associate a k-matrix M with spec(M) = sp(4).

Proof. The left-hand side of the system of linear equations (1) from 1.2 is
defined by some (two-dimensional) matrix A’, consisting of 0’s and 1’s, whose
rows are partitioned in k sets corresponding to the k possible values of the index
I. The vector whose components are elements of the k-matrix M gives a solution
of the system (1). The matrix obtained from 4’ by removing the columns
corresponding to the zero components of this vector is nondegenerate (this
follows from the extremality of the k-matrix M; see [1]) and, together with the
k-partition inherited from A’, gives the desired k-partitioned matrix A.

The obvious inversion of this argument proves the second assertion in 2.3.

The following simple fact is decisive for the proof of the necessity in 1.5.

2.4. If a matrix (consisting of O’s and 1’s) with independent columns possesses a
complete k-partition, then its k-height is finite.

Proof. Since the matrix has a complete k-partition it follows that its nonzero

" rows are linearly dependent and, since the columns are linearly independent, the

number of nonzero rows is greater than the number of columns. It follows from
the completeness of the partition that there is a nonzero row containing fewer
than k 1’s, so that we can perform the removal (see 1.4). Iterating this argument
(and the removal), we are led in a finite number of steps to the empty matrix,
as required.

2.5. Homomorphisms. A mapping f: A —~ A’ of a matrix 4 = A[S, T] into a
matrix A’ = A[S’, T’] is a pair of mappings Fs: S —S" and f7: T - T".
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A homomorphism is a mapping f: A — A’ such that for any se€Sand s’ € S,
connected by the relation f(s) =s’, and any ¢’ € T” we have

, Z Als, ] =A'[s’, t']. (2)
tefm ()

We note simple properties of homomorphisms that follow immediately from
the definition.

(a) Ifs"=f5(s), then Y, r Als, ] =Y, . A’[s', t].

(b) The mapping g of: 4 —> A", which is the composition of homomor-
phisms /24 >4’ and g: 4’ > 4", is a homomorphism.

(c) Consider a mapping f: A[S, T] —A[S’, T, a submatrix A"=
A'[S", T", S"<=S8’, T"<T’, of the matrix A’, and a submatrix
Ao=A[f5'(S"), f71(T")] of the matrix 4. If the mapping f'is a homo-
morphism, then its restriction 4,— 4" is also a homomorphism.

(d) Letf:A4—A’beahomomorphism such that Jfris a surjective mapping
(l.e., maps T onto all of T). If the matrix A is nonnegative, then
he(A") < h(A4), and if the columns of the matrix 4 are linearly indepen-
dent, then the columns of A4’ are also linearly independent.

(e) Letf:4—A’ be a homomorphism. If the columns of the matrices A
and A4’ are linearly independent and the vector sp(4”) is nonempty, then

sp(4) = sp(4”).

2.6. Let g =o[l:p] be a vector with positive strictly decreasing components,
A = A[S, T] a matrix with linearly independent columns, consisting of nonnegative
integer elements, and sp(A) = o. Then there exists a homomorphism f: A — R(o)
JSor which the mapping f; is surjective.

Proof. We denote by x=x[T] the solution of the system
A[S, T] x x[T] = 1[S]. First we construct the mapping f7, defining it uniquely
by the condition: £, (1) =i, te T, iel: p, if x[f] = o[i]. We now construct f.
We choose a row of A[s, T] and define the row r,[1:p] by the formula:
rgli] = Z,Efr_.(,) Als, 7]. It is clear that such a row r, is a relation for g, 1.e.,is a
row of the matrix R(c¢). Thus, we have constructed a mapping fs which together

with f7 gives a mapping f: 4 — R(¢). From the construction it is easy to see that
/fis a homomorphism.

2.7. Proof of the necessity of the conditions of Theorem 1.5. Let g — spec M.
By 2.3 there exists a complete k-partitioned matrix A with linearly independent
columns and with sp(4) =¢. By Lemma 2.4 h(A) < 0. By 2.6 there exists
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a homomorphism 4 — R(c) with a surjective mapping f7. By 'property (d). of 2.5
we have A, (R(c)) < h(4) < oo and the columns of the matrix R(c) are linearly

independent.

§3. Faithful homomorphism. Statement of the main
lemma

3.1. We associate with a homomorphism f: A[S, T ] — A’[S’, T'] two subspaces
in the space of the vectors x =x[T]. For a pair ¢,,5, €T, fr(f;) ffT(tz),
we consider a vector with x[f;] =1, x[t,] = —1 and x[t] =0 for ¢ different
from ¢, and t,. We denote by L the space generated by all such vectors. For a
pair s;, s, €S with fs(s;) =fs(s,) we consider the vector Als,, T] — Als,, T
and denote by K the space generated by all these vector‘s. F‘rom _the
definition of homomorphism it follows that there is an obvious inclusion
Kc L. .

We say that the homomorphism f is faithful if, first, K = L and, second, fj is
a surjective mapping.

3.2. We begin with an important property, for our purposes, of faithful
homomorphisms. '

If a homomorphism f: A — B is faithful and the columns of the matrix B are
linearly independent, then the columns of the matrix A are also independent.

See §7 for information about the proof.

3.3. Statement of the main lemma. Let R be a matrix consisting of nonnegativ.e
integers and having finite k-height. If k > 2, then there exist a complete k-par:tz-
tioned (see 2.2) matrix A (consisting of 0’s and 1’s) and a faithful homomorphism
A—R.

The proof of this lemma is carried out in §6 by induction on the height, and
§§4 and 5 prepare the induction.

3.4. We derive the sufficiency of the conditions of the main theorem fron? 3.3.
Using 3.3, we construct a complete k-partitioned matrix 4 and a falthful
homomorphism f: A — R(s). By 3.2 the matrix 4 is composed of linearly
independent columns. Since f is a homomorphism, then by property (e) .Of 2.5
we have sp(4) = sp(R(c¢)) = o, and it remains to apply the second assertion of
2.3.
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§4. Properties of faithful homomorphisms and their construction

4.1. Only (a) of the properties of faithful homomorphisms given below is
somewhat nontrivial; see §7 for the proof. ’

(a)  The composition of faithful homomorphisms is faithful.

(b)  In the situation of 2.5(c) if we assume that S — S’, and if the homomor-
phism f'is faithful, then its restriction to Ay is also faithful. In other words,
a compatible with the homomorphism f: A — A’ removal of columns in A
and A’ does not affect faithfulness.

(c) Let
B C i B C’
A=<O D), 4 _(O D/)

and suppose that a homomorphism f: A — A’ maps B into B’, C into C’
and D into D’. If the corresponding  homomorphisms B — B’ and
D — D’ are faithful, then f is also a Jaithful homomorphism.

4.2. Condensation. Consider a homomorphism f: A[S, T] — A’[S’, T'] and its
decomposition into a composition of homomorphisms g: A[S, T] — A[S, T] and
fA[S, T] > A'[S’, T"]. If the mapping gs is the identity and g, is surjective,
then the homomorphism 7 is uniquely determined by the mapping g,. In this
case we call the matrix 4 a condensation of the matrix A, and the homomor~/
phism f a condensation of the homomorphism f. We can imagine 4 as being
obtained by a “gluing” of the columns of 4 that are mapped by g, into a single
element of 7, in such a way that the column of 1 obtained as a result of the
“gluing” is the sum of the corresponding columns of A. It is clear that every
condensation can be obtained as a result of several simpler condensations,
which “glue” at most two columns of A.
We state an obvious property of condensation.

4.3. A condensation of a faithful homomorphism is a faithful homomorphism.

4.4.  Splitting of a column. We decompose the first column of the matrix
A[l:m,1:n] into a sum A[l:m, =ATl:m 11+ A4"[1:m,1]. We set
A" = A[1:m,2:n] and construct the matrix

A/ A/ O Am
0 A_ll A/ A/n
40 a4 ar| (3)
A” Al 0 A///

4, =
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1 i i 1 way, and this homomor-
homomorphism 4, — A4 is defined in a natura , :

?hism is easily seen to be faithful. Moreover, if all the elements of 4, 4" and

A" are assumed to be nonnegative, then the relation 4, (4,) < 4h;(4) holds.

4.5. Let A be a matrix with nonnegative integer elements and finite k-height.
Then there exist a matrix B consisting of 0’s and 1’s and a faithful homomorphism

B—A.

Proof. Using a permutation of the columns we can apply the splitting to an
arbitrary column, so that after a finite number of splittings we can cqnstr_uct a
matrix B consisting of 0’s and 1’s and a homomorphism B — A4, which is faithful

in view of 4.1(a).

§5. k-homomorphisms

5.1. We consider a k-partitioned matrix A[S, T] (i.e., S is decomposed into the

union of the sets S, ..., S). ‘ ‘
A (faithful) homomorphism f: A[S, T]— A’[S’, T'] is called a (faithful)
k-homomorphism if, for any s” € S”, the equality

S, A f51 ()] =[N f51 6D hhhelik, @

holds. _
We mention two properties of k-homomorphisms, the first of which follows

immediately from the definition, and the second of which follows from the first.

(a) Consider a k-homomorphism f: A[S, T]—A'[S’, T ], an arbitrary
t'eT’, [,,,Lel:k and set X =f7'(¢"). In these notations we have

S odls,d= Y Al

teX,xESll teX,ssS,z

(b) In the situation of part (a) we assume that' the partitiop is admissible
(see 2.2) and we form sets X; = X, [ € 1:k, in the following way: teX,
if and only if there exists an s € S, such that A[s, f] = 1. With these
notations we have

lexllelzia ll,lzelik.

5.2. Condensation lemma. Let A be an admissible k-partitioned matrix of the

Jorm B 0), suppose that the matrix A’ has the form (

0 D’
f A= A’ be a k-homomorphism that maps B into B’. C into C’ and D into D’.

¢ C)andlet
0 0 D
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Suppose that the induced partition on B is complete, all the columns of the matrix
C are incomplete, and for every column C in A’ the number N,(C) of elementary

columns in the pull-back of C which (being columns in A) pass through D is related A

to the number N,(C) of the remaining incomplete columns in this pull-back (i.e. the
columns passing through C and incomplete nonelementary columns passing through
D) by N,(C) = kN,(C). Then there exists a condensation of the homomorphism f

_ B C _
such that the condensed matrix A has the form < 0 D.>, where D is a condensation

of D and the partition of A arising from the k-partition of A is complete.

Proof. We isolate an incomplete column in 4. Using our assumption about the
excess of elementary columns and applying (b) of 5.1, we conclude that we can
“paste” some elementary columns passing through D to it, so that the isolated
column remains complete. Iterating this procedure we will obtain the desired
condensation.

5.3. In the situation of 5.2 if the restrictions B— B’ and D — D’ of the homo-
morphism f are faithful, then the homomorphism A — A’ obtained as a result of
condensation is also faithful.

The proof follows immediately from 4.3 and part (c) of 4.1.

5.4. Basic construction. For the one-rowed matrix 1[1, 1 :q] with ¢ < k and an
arbitrary number N there exist: a matrix E = Ey consisting of 0’s and 1’s, an
admissible k-partition of the matrix E containing 2k incomplete nonelementary
columns, a faithful k-homomorphism f: E — 1[1, 1: q] such that the inverse image
of each column of the matrix 1[1, 1: q] contains not less than N elementary columns.

Proof. We start with the case ¢ = k — 1. We construct E in the form (1(; g)

We set m, = (k — 2)km, my=km, n=(k —2)(km +1) and F=F[1:m;, 1:n],
G =G[l:m,, 1:n], H=H[1:my, 1:m], where H is a diagonal matrix (with 1’s
on the principal diagonal and zeros at all the remaining places). The 1’s in F are
determined by the condition F[i,j]=1 if and only if i <j<i+k—2. The
matrix G has the form

G, 0 -+ 0 0
0 G, -~ 0 0
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where G, =G,[1:k, 1:k(k —2)], vel:N. The I's in each matrix G, are
determined by the condition G,[i, j] =1 if and only if j =i (mod k).

We partition the set 1:m, + m, of rows of the matrix E into subsets S,
Zecllzk, relating i € 1:m, +m, to the subset S, if one of two conditions
holds:

(a) i<m, and i=1 (modk);
(b) i>m, and i=/—1 (modk).

We now construct a homomorphism f; giving f7 in the following way: if
j <mn, fr(j)is defined by the condition f7(j) =J (mod(k — 1)), and if j > n,
then it is defined by the condition fr(j)=j+ 1— kentier((j+ 2)/k)
(mod(k — 1)), where entier(«) denotes the greatest integer less than .

The verification that this matrix, partition and homomorphism are the
desired ones is automatic.

The case g <k — 1 reduces to the one just proved by removing the
redundant columns in E and using property (b) of 4.1.

§6. Proof of the main lemma (from 3.3)

6.1. We begin with an obvious fact. Let 4’ be a matrix of the form (B C”)
and f: B— B’ a homomorphism. Then there is a matrix 4 of the form
(B C) and a homomorphism 4 — A’, whose restriction to B coincides with
£ In case the matrix C’ consists of 0’s and 1’s, C can also be chosen in
this form, and in such a way that each of its columns would contain at most
one 1.

6.2. By 4.5 and part (a) of 4.1, the main lemma reduces to the following
assertion.

For any matrix A’, consisting of 0’s and 1’s, with finite k-height there are
a complete k-partitioned matrix A and a faithful k-homomorphism A — A’

We shall prove this by induction on the height. We limit ourselves to the
induction step from ¢ — 1 to ¢, since the basis of the assertion, corresponding
to the case h,(4") =1, is proved analogously and even more simply.

By a permutation of the rows and columns, a matrix 4" with 4,(4") = can

B
be reduced to the form (0 D’)’ where 1, (B") <t,and D' =1[1,1:4q], g <k.

Applving the induction hypothesis to B’, we construct a complete k-partitioned
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matrix B and a faithful k-homomorphism B — B’. In view of 6.1 we may assume
that this homomorphism extends to a homomorphism f;: (B C)— (B’ C")
(which, in general, is not faithful, but is a k-homomorphism). We now choose
a sufficiently large natural number N and we construct E = E, and a homomor-
phism E —D’ as in 5.4. The last homomorphism together with f, defines a

homomorphism
B C 0 B C’
- .
0 0 E 0 D’
In view of 5.2 and 5.3 this homomorphism can be condensed to the desired one

(the condensation of a k-homomorphism is, obviously, again a k-homomor-
phism). Thus, our assertion, and with it, Lemma 3.3, are proved.

§7. Diagrammatic formulation of faithfulness

7.1. For a set P we denote by L, the space of vectors x = x[P].

A mapping f: P — Q defines a linear mapping f*: L, — L, by the formula
(S*¥)pl = x[f(p)l, x € Lo, p € P.

With a matrix A[S, 7] we associate a linear mapping u,: L — Lg, taking x[7T']
to A[S, T] x x[T]. Thus the mapping f: 4[S, T] — A'[S’, T’] is associated with a
diagram of linear mappings:

T
Ly —L, .
vl ol ()

Ly — Lg

7.2. The proofs of the following assertions follow from an unraveling of the
definitions.

(a) For a mapping f to be a homomorphism it is necessary and sufficient that
the diagram (%) be commutative (i.e., uy °f 3 =fu o i,).

(b) For a homomorphism f to be faithful it is necessary and sufficient that
Kerf% =0 and Im £ = (u,) ~'(Im f%).

(Recall that Ker denotes the kernel and Im the image of a mapping.)

7.3. This interpretation of faithfulness allows us to reduce all our assertions
about faithful homomorphisms to facts in linear algebra, whose proofs can be
obtained by a trivial “diagram chase” type argument (see [2]).

In fact, we have not proved only 3.2 and part (a) of 4.1, so that it is only for
them that we give the diagrammatic formulation.
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(a) Rephrasing of assertion 3.2. If the conditions of part (b) of 7.2 hold for
a diagram of the form (x), then the equality Keru, =0 implies the
equality Ker u, =0.

(b) Rephasing of assertion (a) of 4.1. Suppose that in the commutative diagram

X - X~ X,

Ll

Y - Y,» Y,
L1

(consisting of linear spaces and linear mappings) the left and right sub-
diagrams are faithful (i.e., satisfy the requirements of (b) of 7.2). Then the
same is also true for the ambient diagram:

X, - X;

l

Y- Y,

§8. Appendix

8.1. Definition of density. We denote by Q the set consisting of finite strictly
decreasing sequences of positive rational numbers not exceeding one, and by
Q, = Q the set of those subsequences whose terms are all representable by
fractions (with natural numbers in the numerator and denominator) with
denominator #. : y

The upper density of a set A = Q is the limit lim sup, _, , 27"]4 N Q, |, and the
lower density is the limit lim inf,_, ,, 2774 NQ,|. (Note that |Q,|=2", ie., Q,
consists of 2" sequences.)

If the upper and lower densities of the set 4 coincide, then we say that 4 has
a density. :

8.2. The constant y. For two subsets 4 and B of the set of natural numbers
we shall write 4 > B if each number b € B is representable as a sum of natural
numbers (among which some can be the same), each of which lies in 4.

In the usual way a subset of the set of natural numbers is identified with the
points of the interval [0, 1]: a set 4 corresponds to the number in whose binary
expression there are 1’s in the places corresponding to numbers from 4 and
zeros elsewhere.

In this way the pairs (4, B) are identified with the points of the unit square,
and it is easy to see that the pairs (4, B) with 4 > B correspond to a measurable
set in the square. We denote the measure of this set by u. In other words, u is
the nrobability of the event 4 > B.
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This deﬁnition allows us to compute p with arbitrary accuracy. A rough
computation gives the estimate 0.58 < u < 0.64.

8.3. We denote by £ =Q the set of sequences ¢ for which the matrix of
relations R(o) has independent columns, and by X, < X the set of those ¢ for
which R(o) has finite k-height (see 1.3 and 1.4). It is clear that X, =X, for [ < k
and ()P, X, =2

84. Thesets X, %,,...,%,,...have a density. The sets =, and X, have density
zero. The sets T, 25, %,, . . . have the same density, equal to p. In other words, the
probability of the occurrence of a sequence o € Q in X or in one of the T, with
k =3 is equal to L.

Sketch of the proof. For X, and X, everything is obvious. We shall now relaté
the occurrence of a sequence ¢ € Q in X with the event 4 > B. For ¢ = o[ 1:p]
we denote by g, the set of those o[i], i € 1 :p, that do not exceed 1, and by o,
the set of numbers 1 — oi], i € 1 : p, with o[i] > 1. Reducing the numbers from
0,4 and o to a common denominator and replacing them by the numerators of
the corresponding fractions, we obtain two finite sets 4 and B of natural
numbers. It is clear that for ¢ € X it is necessary that the condition 4 > B hold.
On the other hand, simple calculations show that with probability 1 the
condition 4 > B is sufficient for ¢ € X;.

8.5. Combining 8.4 with Theorem 1.5, we conclude: for any k = 3 the probabil-
ity that a rational positive decreasing vector o with components that do not exceed
1 is representable by the spectrum of some extremal k-matrix is well defined. This
grzobability does not depend on k and is equal to the number u, 0.58 < u < 0.64, of
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Asymptotic Aspects of the Representation
Theory of Symmetric Groups'

A. M. Vershik

Perhaps the simplest combinatorial entity is the group of the n! permutations of n objects. This
group has a different constitution for each individual number n. The question is whether there
are nevertheless some asymptotic uniformities prevailing for large n or for some distinctive class
of large n. Mathematics has still little to tell about such problems.

H. Weyl, “Philosophy of Mathematics and Natural Science”

In this article we collect some facts that have a direct relation to representations
of symmetric groups and their applications that were not touched on by James
in his book. These facts are concerned mainly with articles of recent years, and
their selection reflects the interests of the author of this supplement. We
concentrate on the following questions: 1. Young’s lattice and combinatorial
foundations. 2. The RSK (Robinson—Schensted -Knuth) correspondence and its
applications. 3. The limiting form of Young diagrams and asymptotic questions.
4. Symmetric functions and the K-functor. Our account does not contain proofs
and is necessarily brief; each of these themes deserves several sections in a book
on representations of symmetric groups and their applications. We give a list of
references on the themes that we touch on that is far from exhaustive (see also
the list at the end of the editor’s preface to the translation).

S.1. Young’s lattice and combinatorial foundations

In reading the literature on the representation theory of symmetric groups, the
first appearance of Young diagrams and tableaux may leave the reader with an
impression of purely technical innovation. This sensation is only reinforced
when we learn that the correspondence between Young diagrams with » cells
and irreducible representations of &, has a very complicated form, and there is
still no transparent account of the construction of the irreducible representation
corresponding to a given diagram (see Section 42 and later).

! Originally published as an editor’s supplement to the Russian translation (“Mir”, Moscow, 1982) of
the book “The representation theory of symmetric groups” by G. D. James, Lecture Notes in Math. 682,

Springer, Berlin, 1978. Translated by E. Primrose.
2 References to Sections and §, unless preceded by an S., pertain to James’ book (see footnote 1).



