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ABSTRACT

Let G be an undirected graph with vertices {vr,vs, ..
See}. Let M be the v « € matrix whose ijth entry is
with v,, 2 if ¢j is aloop at v, and ¢ otherwise. The matrix obtained by orienting
the edges of a loopless graph & (ie., changing one of the U's to a ~1 in each
column of M) has heen studied extensively in the literature. The purpose of this
paper is to explore the substructures of G and the vector

the matrix M without Imposing such an orientation. We d
for the kernel and range of the linear tr

M. Our main results are determinantal

U} and edges {e1, e,
Lif e; is a link incident

escribe explicitly bases
ansformation from R¢ to R" defined by

formulas, using the unoriented Laplacian
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290 JERROLD W. GROSSMAN ET AL.

matrix MM!, to count certain spanning substructures of G. These formulas
may be viewed as generalizations of the matrix tree theorem. The point of view
adopted in this paper also gives rise to a matroid structure on tne edges of G
analogous to the cycle matroid and its dual. In this setting, the analogue of a
spanning forest can have components with one odd cycle, and the analogue of an
edge cut has the property that its removal creates a new bipartite component.

1. INTRODUCTION

It is common knowledge that useful information about graphs can be ob-
tained from certain matrices and vector spaces associated with the graphs.
In particular, the adjacency matrix and the incidence matrix of a graph, as
well as the collections of cycles and edge cuts of the graph, can be studied
from the viewpoint—and with the powerful machinery—of lirear algebra.

In most treatments of these topics (such as [1] or [2]), an incidence
matrix for a graph is obtained by first choosing (arbitrarily) a1 orientation
for each edge of the graph, so that the boundary of an edge cen be defined
as the difference of its endpoints. This trick seems to make the linear
algebra work out well, and one shows that the results obtained about the
graph are independent of the particular orientation chosen. Typical of such
results is the matrix tree theorem, which allows one to compute the number
of spanning trees of a graph as the determinant of a matrix obtained from
its oriented incidence matrix.

Arbitrarily orienting the edges of an undirected graph seems artificial,
however. Cannot the same—or analogous—results be obtained more nat-
urally by looking simply at the unoriented incidence matrix? W. T. Tutte
took this approach in what he described as “an expository paper on chain-
groups” [10], but no one seems to have pursued it further. (See: Note added
in proof, page 307.) We were originally motivated to study the unoriented
incidence matrix because of its use in integer linear programmiag [4], where
the computation of its minors was an important issue. Since the determi-
nant of the incidence matrix of an odd cycle is +2, powers of 2 and the
presence of odd cycles in a graph took on crucial roles. As we will see here,
adopting the unoriented point of view provides a rich and iluminating the-
ory, in which spanning trees and edge cuts are supplanted by spanning
substructures and disconnecting sets of slightly different natu:es.
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The purpose of this paper is to explore some algebraic graph theory
that arises from analyzing the unoriented incidence matrix M of a graph
G. In terms of the structure of G, we compute the rank and nullity of M,
as well as exhibit explicit bases for its range and its kernel. We do the same
for its transpose M!. In contrast to the oriented situation, these depend
not only on the number of vertices, edges, and connected components of G,
but also on how many components of G are bipartite (i.e., do not contain
an odd cycle). As in the oriented approach, we then look at the unoriented
Laplacian matrix C = MM, obtaining essentially the adjacency matrix
of G (augmented by vertex degree information along the diagonal). The
determinant of C and the trace of its compounds give useful combinatorial
information about the analogues of the spanning trees of G, in the spirit
of the matrix tree theorem. (See (8] for a survey of interesting properties
of the Laplacian matrix in the oriented setting.)

Not surprisingly, one way to look at what we have here is as a ma-
troid associated with a graph, analogous to the usual cycle matroid. This
point of view will shed more light on these structures, as well as put the
power of matroid theory at our disposal. (For example, we immediately
get a greedy algorithm to find a minimum-cost instance of our analogue
of spauning tree.) The dual matroid, not unexpectedly, also has graph-
theoretic significance.

The paper is organized as follows. In Section 2 we set the notation
and define the generalizations of spanning tree and edge cut that we need.
We prove in Section 3 that we have constructed a matroid. In Section 4
we develop-—in our context-—the classical algebraic theory relating the cy-
cle space to the bond space, namely a theory relating the “even-circuit
space” to the “star space” (or “quasibond space”). Section 5 contains our
main results on the matrices M and C; in particular, we get an unoriented
generalized analogue of the matrix tree theorem.

2. DEFINITIONS

Graphs in this paper are undirected and may contain parallel edges and
loops; we generally follow the terminology of [2]. Throughout, G is a graph
with vertex set V = {v, v, ... ;v b and edge set E = {ej, eq,.. ., ec}. We
will not. distinguish between a subset of the edges of G and the subgraph
of &7 induced by those edges. We also need to consider substructures of a
graph in which we may have deleted some vertices but retained the edges
incident with those vertices. In all cases, however, we will retain at least
one endpoint of every edge, so that while one end may “dangle” freely, the
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other end will be pinned down to the vertex set. (R. Merris (7] colorfully
calls an edge with one endpoint deleted a “marimba stick.”) In particular.
if we take a spanning tree of a connected graph G on v vertices and delote
one vertex (but not the edges incident to that vertex), then the resulting
rootless spanning trec has v —1 vertices and v —1 edges. Note that a rootless
spanning tree will be nonconnected if the deleted vertex had degree greater
than 1.

As usual, we let p = (G), e = &(G). and w — w(G) denote the numbers
of vertices, edges, and components of GG, respectively. This notation applies
Just as well to substructures. We also et w, = wo () e the number of
bipartite components (i.e.. those that do uot contain an odd cycle), and
we let wi = w(G) be the number of nonbipartite components (i.c., those
that do contain at least one odd cycle). For example, a ccnnected bipartite
graph has w = wy = 1 and w; = 0. In Cvery case, w = wy + wy. Note
that a rootless tree (including the special case of the ety substructure)
is considered to be bipartite.

The incidence matrir of G is the v x = matrix M = M(G) = [im,,] whose
entries are given by My = Lif vertex ¢, is incident with link ejomy; =2 if
edge ¢ is a loop at vertex vicand 1y = 0 otherwise. Thus, every column
of M consists of either exactly two 1's or exactly one 2 (w th the remaining
entries being 0°s). This is in contrast to the traditional approach of first
orienting the edges of 7 so that each column of M contains one 1 and one

I (and forbidding loops altogether). Let C = MM’ It 15 casy to see that
the off-diagonal entries of C = [car] are the same as those of the adjacency
matrix for G that is, ¢, is the number of edges joining v, with v, if £ 1.
It is equally casy to sce that the diagonal entries of C are (almost) the
degrees of the vertices: that is, ¢y, is the number of edges incident to o,
with. however, cach loop contributing 1 to this count. Any submatrix of
M in which every colinn has at least one nonzero entry corresponds to
a substructure of the graph, as defined above. Furtherinore, we note that
the incidence matrix for a nonconnected graph (or substructure) can, with
A rearrangement of rows and columns, he put into block form

[_I\/{] ]

0

M,

0

L M., |

in which the (not necessarily square) blocks My are the incidence matrices
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of the components.

The detinitions in this paragraph and the next are central in what
follows: the objects thev define play roles analogous to that of Spaitning
torest in acgraph. (Additional motivation is provided in the penultimate
paragraph of this section. ) For convenience, let us call a connected graph
vontaining exactly one eyele, with that cycle having odd length, an odd
wnrcyclie araphs (The graph tay contain other edges and vertices as woll.
s long as they do not ereate another cycle or another component.) Thus,
anodd unievelic graph consists of an odd cycle (possibly a loop) together
with “possibly trivial) trees growing out of each vertex in the cycle. We
call aosubaraph S of a connected graph G an essential spanning subgraph
of Ghit either Gis bipartite and S is a spanning trec of G| or else G is not
bipartite, V(s8) - V(G and every component of S is odd unicyclic. Note
i partienfar that an essential spanuing subgraph of a connected nonbipar-
te sraph nay he nonconnected, but each of its components H satisfios
s (1) An essential spanning subgraph S in a nonconnected graph
i> defined to be the union of one essential spanning subgraph from cach
cotponent. s casy to see that S must contain v - w, cdges. Clearly,
every eraph ¢ contains an essential spanning subgraph S; in fact, it con-
talus ane satistving w(S) - w(G). One of the goals of this paper is to count
the essential spanning subgraphs of a graph; Corollaries 5.7 and 5.8 will
cssentially accomplish this goal.

Che crncial property that we desire of an essential spanning subgraph
Soofwaraph Gis that it have an equal number of vertices and cdges, so
Pt NS will be s maximal square- -and, as we will see, nonsingular
subriatrix of MG, Unfortimately, if G has a bipartite component, then
wecanot achieve this voal. and every v(G) x (@) submatrix of M()
Wil be smgular (This will follow from Theorem 5.1.) We must, therefore,
delete vertices inorder 1o correct the imbalance. This leads us to the
tollowing definition. A\ A- reduced spanning substiucture of a graph G on v
vertices s 1 substracture of (6 containing v — k vertices, cach component
Ewhin b contains an cqual number of edges and vertices and has no even
velos: 1015 casy (o see that any k-reduced spanning substructure R of a
sraph GOhas rootless trees and odd unicyclic graphs as its components, and
~atisfies 0 79y (B (G ke Bvery graph with at most & bipartite
cotponents has o h-reduced spanning substructure: we ean simply take a
Spanniiey tree ik conponents {including all the bipartite ones) with onc
vertexshut not s ucident edges) deleted, together with o spanning odd
tievelic saberaph m the remaining components. Ou the othoer hand, if
ataph e more than & bipartite components, then it has no k-reduced
~panming substructures. Theorem 5.6 will allow us to count the reduced
Shaninye substructures of g eraph.

i
!
‘.

Eal
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Note that for graphs without bipartite components, a O-reduced span-
ning substructure is the same thing as an essential spanning subgraph.

More generally. we have:
o .

THEOREM 2.1 Let G obe a graph with wy bipartite components. Then
the wy-reduced spanning substructures of G are in one-‘o-one correspon-
denee awith the essential spanning subgraphs of G with cne verter deleted

frone cach bipartite component.

Proof. This is clear from the definitions. once we realize that in order
to obtain an wo-reduced spanning substructure of G we must delete exactly
one vertex from cach bipartite component of ¢ and hence can delete no
vertices from the other components. =

‘The philosophy behind these definitions can be viewed in another light.
Spanning trees are not quite the “right™ maximal substructures of a con-
nected graph, because thev have one more vertex than they have edges
(and hence are singular - sce Theoremn 5.1). Lo correct this, we must cither
replace an offending vertex by an odd (i.e.. nonsingular) =vele (the net ef-
feet being the addition of one extra edge). or else remove it. Since we want
the result to he maximal, we resort to the latter action only if we cannot
perform the former, ie., if there are no odd cyeles.

We need two more concepts to complete the analogy with classical con-
cepts. First. the star at a vertex will be the sot of edges incident to that
vertex. including loops (counted double). Less familiarly. we define a guasz
cdge cut to he a set of edges whose removal increases the number of bi-
partite components of a graph, and a quasibond 1o be a minimal quasi
edge cut. Necessarily, removing a quasibond will create exactly one new
bipartite component., cither hy removing cnough edges to kill off all the
odd cveles ina previously nonbipartite compounent. or by splitting off a
hipartite componeut from the rest of the graph. Not surprisingly, quasi
edge cuts and quasibonds will play roles analogous to edge cuts and bonds
m the traditional theorv, The surprising fact is that the stars and the
quasi edge cuts turn out to generate the same vector space. We note that
the concepts of qiasibond and bond are independent: an 2dge joining two
disjoint copies of Ky for example. is a bond bhut not a quesibond, whereas

one edge of a Ay Is aquasiboud but not a bond.
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. THE MATROID STRUCTURE

I this section we look briefly at what we are doing from the point, of
view of matroids on the edge set of o sraph G (This approach is somewhat

nonplicit in HOJL especially Theorems 8 6 aud 8.7) First we define the epen
corcwtomatrond of GO The bases for this matroid are the essential spanning
subgraphs of G The cirenits i this matroid are the even eveles, as well as
the eraplis consisting of the vertex-disjoint unions of two odd cyeles joined
by a paths We call the Latter bow ties, (We allow the path Jjoining the two
odd cveles of @ bow tie 10 have fength 00 in which case the cycles share
onevertexa ) It follows from the discussion above that the rank of the even
ot marrord s v o Diallys we define the quasthond matroid, whose
bises are the complements of 1he essential spanning subgraphs, and whose
et are the quasibouds. Trs rank is necessarilv = 1 oewy The following
theorem justifies these definitions: see it

IMtomen 301 Fhe cven circuit matroud af a graph G and its dual
the quasibond miatrond. are ndecd mationds

Prooto First we need 1o verify that if S and 7 are essential spatining
subaraphs of Goand s an edue of S - 7 then there s an edge yof 77— 8
sucle that removing o+ trom S and adjoining y creates another ossential
spanning subgraph of G If 7 is in a bipartite component. then this follows
from the fact that spannig trees are the hases in the usiaal cvele matroid
of woconnecred graph. [F s is 1o oa nonbipartite component. then regardless
b whether o ix part of an odd evele of 5 or nor. removing o from S
creates o new tree Worooother with possiblv some remaining odd unicyclic
comtponents. any edge g of 1 joins a vertes of 117 with a vertex not in 117, |
then iy is necessartlv o 1 S, and (S = b o {yhis an essential spanning !
siheraph of ¢ Otherwise, 7 contains anodd cvele ¢ using only vertices
i W Imagine the vertices in W 1o he 2-colored. <o that edges in Wojoin
vertices of opposite color. Then ¢ necessarilyv has two adjacent. vertices
of the same color Adjoining 1o W oan edge iy of connecting two such
vertices creates acnnique odd evele. so again 19 {rb Ay} is an essential
spanng subgraph of ¢

Frods clear that the minmal dependent sers in the evon cirenit matroid
are the even eyveles and how ties. The ouly other starements needing proof
are that every essentinl spanning subgraphmects every Guasi edge cut, and
thiat i 1305 aoset of edges thet oot s every essential spanuig subgraph, then
B o quasi edge et For the firse statement. it edees outside an essential

spruining suboraph are removed from G then e bipartite component of ¢
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can become nonconnected, and every other component of what remains has
an odd cycle; therefore, these edges do not contain a quasi edge cut. For
the second statement, if B is not a quasi edge cut, then let S be an essential
spanning subgraph of the graph obtained from G by removing the edges of
B. Because the removal of B created no new bipartite components, it is
clear that S is also an essential spanning subgraph of G. Thus, B fails to
meet some essential spanning subgraph of G. -

COROLLARY 3.2. Let G be a graph in which the edyes have been as-
signed nonnegative weights. Then there is an efficient algorithm for finding
o minimum-weight essential spanning subgraph S of G.

Proof. Because the essential spanning subgraphs are the bases in a
matroid, the following Kruskal-like greedy algorithm [11] will do the job.
Order the edges by weight, from smallest to largest. Start with S consisting
of all the vertices of G and no edges, with a trivial 2-coloring of each
component of S (each vertex colored red, say). For each edge, in order,
add that edge to S if either (case 1) it joins two vertices previously in
different components of S, as long as at least one of :hose components
was 2-colored, or (case 2) it connects two identically colcred vertices in the
came 2-colored component of S (this includes the possikility that the edge
is a loop). In case 1, if both of the components of S being joined were
previously 92-colored, then 2-color the combined component of the new S
(If the new edge joined vertices of opposite colors, then the new component
is already 2-colored; otherwise, reverse all the colors in one of the previou:
components.) If one of the components of S joined by the new edge wa:
not 2-colored, then mark the new component as not 2-colored. In case 2
mark the component of S in which the edge is added as rot 2-colored. Witl
appropriate “merge/find” data structures (enhanced to keep track of th

coloring and update it efficiently), this algorithm has time complexity 11

O((v + €)logv). '

4. VECTOR SPACES ASSOCIATED WITH UNOR'ENTED GRAPH:

n 12.1 of [2] to ot

In this section we adapt the development in Sectic
lts can be found ;

unoriented context. Analogues of some of these resu
[10], with different terminology and in a slightly differsnt setting.

A real-valued function f on E'is called a circulation if for each vertex
the sum of f(e) taken over all edges e incident to v is zero. It is understoc
that a loop contributes twice to this sum for its single andpoint. If f and
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are any two circulations and r is any real number, then it is easy to verify
that both f+g and 7 f are also circulations. Thus, the set of all circulations
in G is a vector space (a subspace of the set R¢ of all real-valued functions
on E), which we denote by Cy. (In the conventional, oriented setting, the
contribution of f(e) to the tail of e is multiplied by —1. We could replace
the ground field of real numbers here by any field whose characteristic is
not 2. The reason for this restriction will become apparent shortly. In [10],
; the coefficients are required to lie in the ring of integers rather than in a
h field, the functions on the edge set are called 1-chains, and circulations are
called cycles.)

There are certain circulations of special interest. These are associated
with closed walks in G having even length. For simplicity, we use the
word circuit in place of closed walk. Let C be an even circuit, and let
€411 Cas-- €5, be alisting of the edges of C' in cyclic order. Note that a
given edge can appear more than once in this list. We associate with C the
function fo defined by setting fo(e) equal to the number of appearances
of e as ¢, with k odd, minus the number of appearances of e as e;, with
Lk even. In particular, fo(e) = 0 if e is not in C. If C is an even cycle or
a bow tie, then fo(e) = +1 for edges e in the cycle(s) and fo(e) = %2 for
edges e (if any) in the path of the bow tie. Clearly, fc is a circulation,
since as we traverse the circuit, a contribution of 1 + (—1) occurs at each

| vertex. (Strictly speaking, fc is defined only up to sign; whether we get fc
or — fco depends on where we start listing the edges of the circuit. This fact
is irrelevant to our use of fc, however.) We will see shortly (Theorem 4.4)
that each circulation is a linear combination of the circulations associated
i with even circuits. For this reason we refer to Co as the even-circuit space
of G.

We next turn our attention to a related class of functions. Given a
real-valued function p on the vertex set V of GG, we define the unoriented
coboundary 6p of p on the edge set E by the rule that, if e is an edge
with endpoints = and y, then ép(e) = p(z) + p(y). {In particular, if e is
aloop at z. then p(e) = 2p(x).] We call any function g on E such that
4 = dp for some function p on V a potential sum in G. As with circulations,
the set By of all potential sums in G is closed under addition and scalar
multiplication, and hence is a vector space, a subspace of the vector space
R? of all real-valued functions on E. (Tutte calls his version of By the
coboundary-group of G, and he calls integer-valued functions on the vertex
set 0-chains.)

As with circulations, there are potential sums of special interest. Ana-
logous to the function f¢ associated with each even circuit C, there is a
function g, associated with the star at each vertex v, as well as a function
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gp associated with each quasibond B. The former is given by 7,(e) = 1 for
e incident with v (2 if e is a loop at v), and g,(e) = O for e not incident with
v. It is easy to see that g, = 6p, where p is the characteristiz function of
{v} on V. For the latter, suppose that H is the new bipartite component of
G created by the removal of the quasibond B, and assume thet its vertices
are properly 2-colored red and white. Let p be the function that has the
value 1 on the red vertices of H, the value —1 on the white vertices of H,
and the value 0 outside of H. Then gg = 6p. It is not hard to see that
ge(e) =0 for e & B, but gg(e) = £1 or £2 for e € B. As with fc above,
the definition of gg is ambiguous as to sign (depending on which of the two
2-colorings of H we pick), but again this is of no consequence.

We will see below that each potential sum is a linear combination of
potential sums associated with stars (Theorem 4.1), as well as a linear
combination of potential sums associated with quasibonds (Theorem 4.5).
For this reason, we refer to By as the star space of G; alternatively we could
just as well call it the quasibond space.

In studying the two vector spaces By and Co we will find it convenient
to regard a function on E as a row or column vector (as appro oriate) whose
coordinates are labeled with the elements of E; in other words, the function
f is identified with the vectors

fler)

f
Flen flen - fed] and |1

Fex)

Thus, we may regard the rows of the incidence matrix M of a graph G
as the functions g, defined above. We will also regard func:ions on V as
vectors.

We can now state the unoriented analogue of the theorem that the cycle
space and the star space are orthogonal complements. This theorem also
shows that the functions associated with the stars span the star space.

THEOREM 4.1. If M is the v x ¢ incidence matriz of a graph G, then
By is the row space of M, and Cy is its orthogonal complement in RE.

Proof. Let g = 6p be a potential sum in G. Then clearly gle) =
ngvp(v)gv(e) for each edge e. Thus, g is a linear combination of the
rows of M. Conversely, since each row of M is a potential sum (namely,
gy), any linear combination of the rows of M is a potentia. sum. Hence,
By is the row space of M.
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Now let f be a function on E. The condition for f to be a circulation
can be rewritten as .. p go(e)f(e) = 0 for all v € V. This implies that f
is a circulation if and only if it is orthogonal to each row of M. Hence, Co
is the orthogonal complement of By. |

This duality between By and Cq is further amplified in the next two
lemmas. Recall that the support ||f|| of a function f on E is the set of
elements of £ at which the value of f is nonzero.

LeMMA 42 If [ is a nonzero circulation, then || f|| contains an even
circuit. Furthermore, this even circuit can be taken to be an even cycle or
a bow tie.

Proof. By focusing on just one component of || ||, we can assume that
I £l is connected. Since || f|| cannot contain a vertex of degree one, it must
contain a cyele €. By adjoining one new edge of || fi| at a time, we can
extend this cyele to a connected unicyclic subgraph H spanning || f||. If C
has even length, then we are finished, so assume that C is odd. If || f|| = H,
then again. since it has no vertex of degree one, it is precisely an odd cycle.
But this is impossible: clearly the cycle cannot have length 1, and if the
length is greater than 1, then the sign of f must be the same on some
pair of adjacent edges, making the sum of the values of f at their common
vertex nonzero. Therefore, || f|l contains at least one edge e in addition to
H. If ¢ joins vertices in different components of H with the edges of C
removed, then an even cycle is formed with the appropriate “half” of C.
On the other hand. if ¢ joins two vertices in the same component of H with
the edges of ' removed, then a cycle C' is formed in this component. If c’
is even. then we are finished. If C’ is odd, then we obtain an even circuit
(a bow tic) by starting at the endpoint of e closest to C, traversing C’,
following the (possibly empty) path to C, traversing C, and returning to
the starting point along the same path. The length of this circuit is even,
because it consists of two odd cycles and a path traversed twice (once in
cach direction). The second statement follows from this construction. H

LenMA 1.3, If g is a nonzero potential sum, then ||g| contains a
quastbond.

Proof. Suppose g = ép. Since g is nonzero, there is a vertex v and an
edge e incident to v such that g(e) # 0 and p(v) # 0. Consider the subgraph
of (¢ that reinains when the edges of ||g|| are removed. In some components
of this subgraph, p may be identically 0. In every other component, p must
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necessarily take on only two values, one positive and the othzr its negative,
and every edge must join a positive-valued vertex with a negative-valued
vertex. Thus, each such component of the subgraph is bipartite. On the
other hand, when the removed edge e is restored, either it will make a
bipartite component nonbipartite (if both v and the other end of e are in the
same component of the subgraph), or it will connect a bipariite component
to another component. In either case, the removal of ||g|| necessarily created
at least one new bipartite component, and so {g|| is a quasi edge cut and
therefore contains a quasibond. |

Finally, we justify our name for Cy, and our alternative name for By, by
showing that the functions associated with the even circuits span C¢ and,
dually, that the functions associated with the quasibonds span By.

THEOREM 4.4. Let f be a circulation of a graph G. Then f is a linear
combination of the circulations fo associated with the even circuits of G.

Proof. If not, let f be a circulation that is not a linear combination of
the fe's, with support as small as possible. Then f # 0, and by Lemma 4.2
and the remarks made when defining f-, || f|l contains an even circuit C
such that fc{(e) = £1 for some edge e of C. Let a be the coefficient of e in
f- Then f+afe (with the sign chosen so as to make this function vanish on
e) has support smaller than that of f. By the choice of f, :his circulation
is a linear combination of circulations associated with even circuits, and
thus so is f, a contradiction. |

THEOREM 4.5. Let g be a potential sum of a graph G. Then g is a

linear combination of the potential sums gp assoctated with the quasibonds
of G.

Proof. 1f not, let g be a potential sum that is not a linear combina-
tion of the gg’s, with support as small as possible. Then g # 0, and by
Lemma 4.3 and the remarks made when defining gg, |lg|| contains a qua-
sibond B such that gg(e) = 1 or 42 for some edge e of C'. Let a be the
coefficient of € in g. Then g + tafc (with ¢ chosen to be =1 or d:% SO as
to make this function vanish on e) has support smaller thaa that of g. By
the choice of g, this potential sum is a linear combination of potential sums
associated with quasibonds, and thus so is g, a contradiction. | |

Note that the proof of Theorem 4.5 requires that tte ground field
have characteristic different from 2. The proof of Theoreri 4.4, however,
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does not.

5. PROPERTIES OF THE UNORIENTED INCIDENCE AND LAPLA-
CIAN MATRICES

We begin with an analysis of the incidence matrix M of a graph G.
When convenient to do so, we will think of M as a linear transformation
from R*, the vector space of all real-valued functions on E(G), to R¥, the
vector space of all real-valued functions on V(G). Thus, the row space and
the kernel of M, as well as the range (column space) of M¢, are subspaces
of R*, while the kernel of M* and the range of M are subspaces of R”.

We saw in Theorem 4.1 above that the row space of M is By, whereas
the kernel of M is Cy. We will compute the dimensions of these two spaces
and find explicit bases for them. We begin by calculating the determinants
of submatrices of the incidence matrix [4, Theorem 2.2].

THEOREM 5.1.  Let N be the incidence matriz of a substructure R,
containing an equal number of vertices and edges. If R does not satisfy the
condition that every component has an equal number of edges and vertices,
then det N = 0. If this condition is satisfied, then every component of R
is a unicyclic graph or a rootless tree. If any of the cycles in the unicyclic
components are even, then det N = 0; otherwise, det N = 12«1 (&),

Proof. The first claim follows from the expansion of det N using
Laplace development [6]. Thus, we assume that the stated condition holds,
so that N can be put in block-diagonal form with square blocks, corre-
sponding to the component of R. It is easy to see that each components
of R cither is a rootless tree or consists of a cycle with (possibly trivial)
rooted trees growing out of the vertices on the cycle. We compute the
determinant of the incidence matrix of each component by first repeatedly
expanding along the rows corresponding to vertices of degree 1, until either
nothing remains or all that remains is the incidence matrix for a cycle. In
the former case, the determinant is +1. The determinant in the latter case
is easily seen to be *2 if the cycle is odd and 0 if it is even. Since the
determinant of N is equal to the product of the determinants of the sub-
matrices corresponding to the components of R, the final sentence of the
theorem follows. n

Applving this result, we obtain [3, p. 114]:
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THEOREM 5.2.  The rank of the incidence matriz M of a ¢raph G equals
vV —wy.

Proof. Because of the block structure of M induced by the components
of G, it suffices to prove this result for connected graphs. That is, we need
to show that the rank of M is v — 1 when G is bipartite and is v otherwise.
In the former case, let the vertices of G be 2-colored red and white, and
consider the sum of the rows of M corresponding to the red vertices, minus
the sum of the rows of M corresponding to the white vertices. Since each
column of M has two 1’s, one in a row corresponding to a red vertex and
one in a row corresponding to a white vertex, this linear combination of
the rows is the zero row vector. Hence, the rank of M is less than v. On
the other hand, the (v — 1) x (v — 1) square submatrix of M corresponding
to a rootless spanning tree of G (obtained by taking a rooted spanning tree
of G and removing its root) is nonsingular by Theorem 5.1. ‘Therefore, the
rank of M is at least v — 1, completing the proof in the bipaurtite case.

If G is a connected nonbipartite graph, consider the v 3 v submatrix
of M corresponding to a connected essential spanning subgraph S of G,
which is necessarily odd unicyclic. By Theorem 5.1, the determinant of
this submatrix is £2. Therefore, M has rank v. |

COROLLARY 5.3. The dimension of the range of M is v — wy, and the
dimension of the kernel of M is € — v + wy.

COROLLARY 5.4. The dimension of the star space By s v — wo, and
the dimension of the even-circuit space Cy 15 € — V + wp.

Next we compute explicit bases for the kernel and range of M. To this
end, let S be a fixed essential spanning subgraph of G. For each edge e
of G not in S (recall that there are € — v + wp such edges), the graph
obtained by adjoining e to S contains an even cycle or a bow tie containing
e (Theorem 3.1); denote this even circuit by C(e). Then fc(e) is an element
of Cy. Furthermore, since € € ||fo)ll but e ¢ || fo(en |l for any other €’ in
S, the € — v + wp circulations fe(e), for e in S, are linearly independent.
Since the cardinality of this set of circulations equals the nullity of M, it
must form a basis for the kernel of M. (The analogous basis in the oriented
setting is the usual fundamental cycle basis.)

As for the range, for each edge e in S, let x. € R® be the characteristic
function for e, i.e., the column vector whose coordinates are all 0 except
for a 1 in the row corresponding to e. We claim that the set {Mx. | e € S}
forms a basis for the range of M. By Corollary 5.3, its cardinality is correct,
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so it suffices to show that its elements are linearly independent. Suppose
to the contrary that there is some nontrivial relation Z:Och)(e‘.,c = 0,
with cach e;, € S and each ay # 0. Then the edges of S involved in this
sum form a disjoint union of cycles, because any vertex of degree 1 in the
subgraph induced by these edges would have a nonzero coefficient in the
sum. Pick one such cycle, which is necessarily odd. If it is a loop, then there
will be a nonzero coefficient on its endpoint. Otherwise, the coeflicients oy
corresponding to some pair of adjacent edges of the cycle have the same
sign, giving a nonzero coefficient to their common vertex. In either case,
we have a contradiction.

Summarizing, we have proved:

THEOREM 5.5. Let S be any essential spanning subgraph of a graph
G. Then the edges of G - S induce a basis for the kernel of M(G), t.e.,
a basis for Ca, consisting of certain even cycles and bow ties. The edges
of S induce a basis for the range of M(G), consisting of certain pairs of
adjacent vertices.

Before moving on, let us find explicit bases for the star space Bp.
Theorems 4.1 and 4.5 guarantee that the stars and the quasibonds gen-
erate By, We need to choose a linearly independent set of stars and a
linearly independent set of quasibonds that do the same. Assume for the
moment that G is connected, and let S be an essential spanning subgraph
of ¢;. If (7 is not bipartite, then the dimension of the star space is v, so
the set of all v stars (i.e., the rows of M) forms a basis. Alternatively, the
removal from S of any edge e € S creates a new bipartite component of
S: theretore. the removal from G of e and all edges not in S creates a new
bipartite component of G. This set of edges contains a quasibond (neces-
sarily including e). The set of these v quasibonds is linearly independent
and therefore forms a basis for By. The situation is similar in the bipartite
case. Here. the set of any v — 1 stars forms a basis for By. (The set of all
v stars has the nontrivial relation induced by a 2-coloring of the vertices
of (7, in which the coefficient of each star is +1.) Again, each of the v — 1
edges in S induces a quasibond, and the set of these quasibonds forms a
hasis for Bg. 1f G is not connected, then we just take the union of the basis
vectors corresponding to cach component of G.

Further information about M, such as the possible values for its minors,
can be found in [4]. Let us look briefly at M’. Its rank, of course, is the
sanie as that of M, namely v — wg. Its range, i.e., its column space, is the
row space of M, namely the star space By, having dimension v — wg. Its
kernel therefore has dimension v — (v — wy) = wo. To see what a basis
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for the kernel is, fix a red-white 2-coloring of the vertices in each bipartite
component. For each such component, form the 2-coloring vector t in R”
whose entries for vertices in that component are 1 or —1 according as the
vertex is colored red or white, and whose entries for vertices outside that
component are 0. It is not hard to see that the set of these vectors forms
a basis for the kernel of M®.

Next we turn to the unoriented Laplacian matrix, C = MM?®. Recall
from Section 2 that its off-diagonal entries are the same as the off-diagonal
entries of the adjacency matrix of G, namely, ¢;; equals the number of
edges joining vertex v; and vertex vy; and the diagonal eniry c¢;; is the
number of edges incident to v;, with, however, each loop contributing 4
to this count. We first note that the rank of C is the same as the rank
of M, namely v — wy. This follows immediately from Theorem 2.3.4 in
[9]. Similarly, the rank of M*M is also v — wo. Note that M!M is closely
related to the adjacency matrix of the line graph of G (see {7] for more on
this in the classical case).

To gain a better understanding of C, let us see what its kernel looks
like. Assume for the moment that G is connected. If G is not bipartite,
then the rank of C is v, so the kernel is trivial. If G is bipartite, then the
rank of C is v — 1, so its kernel is 1-dimensional; and the 2-coloring vector
t defined above spans the kernel of C, since Ct = MM*t = (. For general
G, the kernel of C has dimension wy, and the set of 2-coloring vectors (one
for each bipartite component of G) forms a basis for it.

Before stating our main theorem, we must review briefly 'see [5] or {9])
the concept of compounds of a matrix. If A is an m x n matrix, then the
rth compound of A, denoted C,.(A), is the (T) X (:_’) matr x whose ijth
entry is the determinant of the matrix obtained from A by using the rows
in the ith 7-subset of the set of all rows of A and the colummns in the jth
r-subset of the set of all columns of A. In particular, if m := n, then the
nth compound is just det A, and the (n — 1)th compound is, except for
the sign of some of the off-diagonal entries, the same as the adjoint of A.
It is convenient to think of the determinant of the empty () x 0) matrix
as 1. The multiplicative property of compounds is known as the Cauchy-
Binet theorem: if A is an m x n matrix and B is an n X p matrix, then

In its generality, our main theorem shows how the trace o’ the (v —k)th
compound of C counts the k-reduced spanning substructures of G. Special
cases will enable us to count the essential spanning subgraphs of G. We also
remark that the quantities calculated in this theorem are the coefficients of
the characteristic polynomial of C, and therefore can provice information
on its eigenvalues.
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THEOREM 5.6. Let G be a graph and k a nonnegative integer not ex-
ceeding v(G). Then

tr Cy_k(C) =>4,
R

where the sum is taken over all k-reduced spanning substructures R of G.

Proof. By definition of compound, the left-hand side of this equation
is the sum, over all choices of v — k vertices of G, of the determinant of the
matrix obtained from C by selecting the rows (and columns) corresponding
to these vertices. By the Cauchy-Binet theorem, since C = MM¢, each
such determinant is the sum of the squares of the determinants of the square
submatrices of M obtained by selecting v — k edges of G. By Theorem 5.1,
the only nonzero contributions to this sum come from substructures each
component of which is a rootless tree or an odd unicyclic graph, and the
contribution is clearly a factor 2% for each odd cycle in the substructure. &

If we take k = wo(G) in this theorem, then by Theorem 2.1, the k-
reduced spanning substructures are really just the essential spanning sub-
graphs, with a distinguished vertex chosen for deletion in each bipartite
component. Therefore, the sum on the right-hand side of the equation in
Theorem 5.6 is the same as the sum of 491(5) taken over all rooted essential
spanning subgraphs S of G, where the rooting consists of selecting one ver-
tex in each tree of S. (Intuitively, there is no need to “select a root” in the
nonbipartite components, because the unique odd cycle in each such com-
ponent serves as the root.) Thus, we have a counting formula for essential
spanning subgraphs:

COROLLARY 5.7.  For any graph G,

tr Couy(C) = Y _r(S)a ),
S

where the sum is taken over all essential spanning subgraphs S of G, and
r(S) is the product of the numbers of vertices in the bipartite (tree) compo-
nents of S.

Another way to look at counting the essential spanning subgraphs of
( is to treat the bipartite and nonbipartite components separately, since
the number of essential spanning subgraphs is just the product of the num-
bers of essential spanning subgraphs for the components. The traditional
matrix tree theorem for the case of bipartite graphs (which we obtain in
this unoriented setting as Corollary 5.9 below) tells us about the number
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of essential spanning subgraphs in the bipartite components. Specializing
Corollary 5.7 to the case of wp = 0 allows us to count the essen:ial spanning
subgraphs in the nonbipartite components:

COROLLARY 5.8. If G has no bipartite components, then

det C = ZMS),
S

where the sum 1s taken over all essential spanning subgraphs of G.

Proof. Under the hypothesis, the essential spanning subgraphs of G
are the same as the O-reduced spanning substructures, so we take k = 0
in Theorem 5.6. The vth compound of C is then just its determinant.
Furthermore, all the components of any essential spanning su>graph S are
nonbipartite, so w1 (S) = w(S). [ |

As an example of Corollary 5.8, let G = Kg. Then

— b= e O
e oAl e
[ & LI =T =
el T B
— T s e e e
(& I T e

and det C = 10,240. [In fact, one can easily compute that det C = 2(n
~1)(n — 2)""! when G = K,.] It is not hard to count thet G has 360
essential spanning subgraphs containing a pentagon, 2160 ccntaining one
triangle, and 10 containing two triangles. Hence, the desired sum is (360 +
2160) x 4 + 10 x 42 = 10,240.

COROLLARY 5.9. If G is a connected bipartite graph, thea each diago-
nal entry of adj C equals the number of spanning trees of G.

Proof. We claim that adj C is constant up to sign. Indeed, since
C adj C = (det C)I, is the zero matrix, each column of acj C must be
in the kernel of C. Therefore, each column is a multiple of the 2-coloring
vector t, all of whose entries are +1. But since adj C is symmetric, we
must always have the same multiple, up to sign. Furthermore, using the
Cauchy—-Binet theorem to compute the determinant of C wit1 the ¢th row
and ith column deleted, we see that each diagonal entry of adj C must
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be positive. Therefore, all the diagonal entries of adj C have the same
value. Thus, the trace of adj C, which is the same as tr C,,_{(C), is just
v times this common value. The result now follows from Corollary 5.7,
since 7(S) = v and wy(S) = 0 for the essential spanning subgraphs—i.e.,
spanning trees--of the graphs under consideration. |

Note added in proof. Two additional references should be noted: S.
Chaiken, A combinatorial proof of the all minors matrix tree theorem,
SIAM J. Algebraic Discrete Methods 3:319-329 (1982); and T. Zaslavsky,
Signed graphs, Discrete Appl. Math. 4:47-74 (1982).
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