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he favorite topics and results of a researcher chinge over

time, of course. One area that I have always ket an eye on is

that of perfect graphs. These graphs, introduced in the late

‘50s and early ‘60s by Claude Berge, link varions mathemati-
cal disciplines in a truly unexpected way: graph theory, combinatorial
optimization, semidefinite programming, polyhedral and convexity theo-
ty, and even information theory.

This is not a survey of perfect graphs. It’s just an appetizzr. To learn
about the origins of perfect graphs, I recommend reading the historical
papers [1] and [2]. The book [3] is a collection of important articles on
perfect graphs. Algorithmic aspects of perfect graphs are treated in [13].
A comprehensive survey of graph classes, including perfect graphs, can be
found in {5]. Hundreds of classes of perfect graphs are known; 96 impor-
tant classes and the inclusion relations among them are described in [16].

So, what is a perfect graph? Complete graphs are perfect; bipartite,
interval, comparability, triangulated, parity, and unimodular graphs are
perfect as well. The following beautiful perfect graph is the line graph of
the complete bipartite graph K., .

Due to the evolution of the theory, definitions of perfeciion (and ver-
sions thereof) have changed over time. To keep this article short, I do
not follow the historical development of the notation. I use definitions

that streamline the presentation. Berge defined
G is a perfect graph,
ifand only if
(1) o(G") = x(G") for all node-induced subgraphs G’ = G,

where o (G) denotes the clique number of G (= largest cardinality of a
clique of G, 1.c., a set of mutually adjacent nodes) and %(G is the chro-
matic number of G (= smallest number of colors needed tc color the
nodes of G). Berge discovered that all classes of perfect graphs he found
also have the property that
) o (G") = x(G) for all node-induced subgraphs G' c G,
where o (G) is the stability number of G (= largest cardinality of a steble
set of G, i.e., a set of mutually nonadjacent nodes) and x{(C") denotes the
clique covering number of G (= smallest number of cliques needed to
cover all nodes of G exactly once).
Note that complementation (two nodes are adjacent in the complement G
of a graph G iff they are nonadjacent in G) transforms a cl.que into a sta-
ble set and a coloring into a clique covering, and vice versa. Hence, the
complement of a perfect graph satisfies (2). This observaticn and his dis-
covery mentioned above led Berge to conjecture that G is ¢ perfect graph
if and only if
(3) G is a perfect graph.

Developing the antiblocking theory of polyhedra, Fulke :son launched
a massive attack on this conjecture (see [10], [11], and [12]). The conjec-
ture was solved in 1972 by Lovdsz [17], who gave two sho :t and elegant
proofs. Lovdsz [18], in addition, characterized perfect graphs as those
graphs G = (V, E) for which the following holds:
4) o(G") - (G 2|V (G| for all node-induced subgraphs G' < G.

A link to geometry can be established as follows. Given a graph G =
(V, E), we associate with G the vector space R” where eact component
of a vector of R” is indexed by a node of G. With every susset S ¢ V, we
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can associate its incidence vector x” = () ., € R’ defined by




)(: =lifve S,x‘l:infvE S.
The convex hull of all the incidence vectors of stable sets in G is denot-
ed by STAB(G), ie.,
STAB(G) = conv {)(‘V € RV{ S ¢ Vstable}

and is called the stable set polyrope of G. Cleatly, a clique and a stable set of
(7 can have at most one node in common. This observation yields that,
for every clique Q ¢ V] the so-called clique inequalivy
x(Q: = E x,. <1
)
is satished by every incidence vector of a stable set. Thus, all clique
incqualities are valid for STAB(G). The polytope
QSTAB(() := {xe R"|0<x Y ve V,x(Q) <1 ¥ cliques Qc V}

called fractional stable ser polyrope of G, is therefore a polyhedron contain-
ing STAB(G), and trivially,

STAB(G) = conv {x € {0,1}" |x e QSTAB(G)}.

Knowing that computing a(G) (and its weighted version) is A%-hard, one

is tempted to look at the LP relaxation
max c'x, x € QSTAB(G),

where ¢ = R is a vector of node weights. However, solving LPs of this
type is also AP-hard for general graphs G (see [14}).

For the cluss of perfect graphs G, though, these LPs can be solved in
polynomial time — albeit via an involved detour (see below).

Let us now look at the following chain of inequalities and equations,
typical for IP/LP approches to combinatorial problems. Let G = (VE) be
some graph and ¢ 2 0 a vector of node weights:

x| 2 ¢, | S Vstable set of G} =

e
max {2 | x e STAB(G)} =
max (¢ x | x20, x(Q) L WWdiquesQc V, xe {O,I}V} <
T A %20, x(Q) < 1¥cliquesQC V) =
Z ve | Z vo2e Vve V, yp 2 0VciquesQc V} <

Ocligne Q3+
min | 2 v \2 yoze,Yve Vv, e LV cliquesQc V)

3]
[SEN

i

{
{
max {
{

min

Oclipe

The inequalities come from dropping or adding integrality constraints,
the last ecquation is implied by LP duality. The last program can be inter -
preted as an IP formulation of the weighted clique covering problem. It
follows from (2) that equality holds throughout the whole chain for all
0/1 vectors ¢ iff G is a perfect graph. This, in turn, is equivalent to
(3) The value max {¢/x | x ¢ QSTAB(G)}

is integral forall c e {0,11".
Resules of Fulkerson [10] and Lovdsz [17] imply that (5) is in fact equiva-

lent to

(6) The value max {c'x [ x e QSTAB(G)} is integral for all c € le.

and chat, for perfect graphs, equality holds throughout the above chain for
alce Z‘_'. This, as a side remark, proves that the constraint system defin-

ing QSTAB(G) in totally dual integral for perfect graphs G. Chvital [6]
observed that (6) holds iff

STAB(G) = QSTAB(G)

These three characterizations of perfect graphs provide thz link to poly-
hedral theory (a graph is perfect iff certain polyhedra are idcntical) and
integer programming (a graph is perfect iff certain LPs have integral solu-
tion values).

Another quite surprising road towards understanding properties of per-
fect graphs was paved by Lovdsz [19]. He introduced a new geometric
representation of graphs linking perfectness to convexity and semidefinite
programming.

An orthonormal representation of a graph G = (VE) is a sequence (%, | /
€ V) of |V] vectors #, & R” such that |ju||=1 forall ie Vard s u =0 for
all pairs 4,7 of nonadjacent nodes. For any orthonormal repr:sentation
(#,| i € V) of G and any additional vector ¢ of unit length, “he so-called
orthonormal representation constraint
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is valid for STAB(G). Taking an orthonormal basis B = {e,, ...,eM} of RY
and a clique Q of G, setting c:= u;=¢, forall i € Q, and assizning different
vectors of B\{e,} to the remaining nodes 7 € VAQ, one obser ves that every
clique constraint is a special case of this class of infinitely many inequali-
ties. The set

TH(G) = {x e R‘: | x satisfies all

orthonormal representation constraints}
is thus a convex set with
STAB(G) ¢ TH(G) c QSTAB(G).
[t turns out (see [14]) that a graph G is perfect if and only if any of the

following conditions is satisfied:

®) TH(G) = STAB(G).
)] TH(G) = QSTAB(G).
(10) TH(G) is a polytope.

The last result is particularly remarkable. It states that a grash is perfect if
and only if a certain convex set is a polytope.
Ifc e R is a vector of node weights, the optimization problem (with

infinitely many linear constraints)
»
max ¢ x, x € TH(G)

can be solved in polynomial time for any graph G. This implies, by (8),
that the weighted stable set problem for perfect graphs can be solved in
polynomial time, and by LP duality, that the weighted clique covering
problem, and by complementation, that the weighted cliqu: and coloring
problem can be solved in polynomial time. These results re:t on the fact
that the value
9 (G, 9 = max {c'x|xe TH(G)}

can be characterized in many equivalent ways, e.g., as the ootimum value
of a semidefinite program, the largest eigenvalue of a certain set of sym-
metric matrices, or the maximum value of some function irvolving
orthornormal representations.

Details of this theory can be found, e.g., in Chapter 9 of [14]. The
algorithmic results involve the ellipsoid method. It would be nice to have
“mote combinatorial” algorithms that solve the four optimization prob-

lems for perfect graphs in polynomial time.




Let us now move into information theory. Given a graph G = (V,E), we
call a vector p € R a probability distribution on Vif its components sum

~n)

w1 let & (V' E") denote the so-called n-th conormal power of G,

i.c.. V' is the set of all n-vectors x = (x,,..., x,) with components x, & V,

and

E s {xy |x ye V' and 3/ with x 3, € E}
Each probability distribution p on Vinduces a probability distribution p”
on V' as follows: p" (x} : = p (x) - plx,) « ...« p(x). Por any node set U <
V', let G1U) denote the subgraph of G induced by Uand X (G ()
its chromatic number. Then one can show that, for every

0<¢ <1, thelimit

) 1
H{G p):=lim =  min

1oy [} ,,"(H),\\ £

log X(GY (U]
exists and 1s independent of ¢ (the logs are taken to base 2). H(Gp) is
called the graph entropy of the graph G with respect to the probability
distribution p. If G = (V,E) is the complete graph, we get the well-known
Shannon entropy

H(p) = -3, p,log p,.

eV

Let us call a graph G = (VE) strongly splitting if for every probability dis-
tribution p on V'

Hip)= H(Gp)+ HG, p)

holds. Csiszdr et. al [9] have shown that a graph is perfect if and only if
G is strongly splitting.

le., G is perfect iff, for every probabiltity distribution, the entropies of
G and of its complement & add up to the entropy of the complete graph
(the Shannon entropy). I reccommend [9] for the study of graph entropy
and related topics.

Given all these beautiful characterizations of perfect graphs and polyno-
mial time algorithms for many otherwise hard combinatorial optimization
problems, it is really astonishing that npbody knows to Wr—
fectness of a g,mph can be recognized in polynomlal time. There are many
wn’s_{;_;r;\z that, deudmg whether a'graph is not pcrfect is in AP. But
that’s all we know!

Many researchers hope that a proof of the most famous open problem
in perfect graph theory, the :traugperﬂ’ctgmpla conjecture:

A graph G is perfect if and only if G neither contains an odd hole

nor an odd antihole as an induced subgraph.

results in structural insights that lead to a polynomial time algorithm for
recognizing perfect graphs. [t is wrivial that every odd hole (= chordless
cycle of length at least five) and every odd antihole (= complement of an

odd hole) are not perfect. Whenever Claude Berge encountered an imper-

and, thus. came to the strong perfect graph conjecture. In his honor, it is
i customary to call graphs without odd holes and odd antiholes Berge

i graphs. Hence. the strong perfect graph conjecture essentially reads: every
: Berge graph is perfect.

This conjecture suimulated a lot of research resulting in fascinating
insights into the structure of graphs that are in some sense nearly perfect
or imperfect. Eg., Padberg [20], [21] (introducing perfect matrices and
using proof techniques from linear algebra) showed that, for an imperfect
graph G = (V.£) with the property that the deletion of any node results in

a perfect graph, satisfies the following:

fect graph G he discovered that G contains an odd hole or an odd antihole

c M=a(@-0© L,

* ( has exactly | V| maximum cliques, and every node is contained in

exactly w (G) such cliques.

* G has exactly | V] maximum stable sets, and every node is contained

in exactly « (G) such stable sets.

* QSTAB(G) has exactly one fractional vertex, namely tte point

x, = o (G) ¥ v € V, which is contained in exactly |V facets and
adjacent to exactly | V] vertices, the incidence vectors of the maximum
stable sets.

Similar investigations (but not resulting in such strong structural
results) have recently been made by Annegret Wagler [24] 01 graphs
which are perfect and have the property that deletion (or addition) of any
edge results in an imperfect graph. The graph of Figure 1 is from Wagler’s
Ph.D. thesis. It is the smallest perfect graph G such that whenever any
edge is added to G or any edge is deleted from G the resulting graph is
imperfect.

Particular efforts have been made to characterize perfect graphs “con-
structively” in the following sense. One first establishes that a certain class
C, of graphs is perfect and considers, in addition, a finite lis: C, of special
perfect graphs. Then one defines a sct of “operations” (e.g., ‘eplacing a
node by a stable set or a perfect graph) and “compositions” ‘e.g., take two
graphs G and H and two nodes v € V(G) and v e V(H), define V(G - H)
1= (VIG) v VIE)) w0} and E(Ge H) : = E(G - fxy |
xu € E(G), yv € E(H)} and shows that every perfect graph can be con-

wWuE(S-vu

structed from the basic classes C_ and C, by a sequence of operations and
compositions. Despite ingenious constructions (that were very helpful in
proving some of the results mentioned above) and lots of efiorts, this route
of research has not led to success yet. A paper describing many composi-
tions that construct perfect graphs from perfect graphs is, .z, [8].
Chvdtal [7] initiated research into another “secondary structure” related
to perfect graphs in order to come up with a (polynomial tiime recogniza-
ble) certificate of perfection. For a given graph G = (V,E), its P,-structure is
the 4-uniform hypergraph on V'whose hyperedges are all thz 4-element
node sets of V that induce a P, (path on four nodes) of G. Chvétal
observed that any graph whose P;-structute is that of an odd hole is an
odd hole or its complement and, thus, conjectured that perfection of a
graph depends solely on its P;-structure. Reed [23] solved Chvdtal’s semi-
Strong pCrfCCt graph COnjCCturC by Showlng [ha[ a graph G i; pCl‘fCCI iff

(12) G has the P -structure of a perfect graph.

There are other such concepts, e.g., the parter-siructure, that have
resulted in further characterizations of perfect graphs through secondary
structures. We recommend [15] for a thorough investigation of this topic.
But the polynomial-time-recognition problem for perfect graphs is still
open.

A relatively recent line of research in the area of structural perfect graph
theory is the use of the probability theory. I would like to m ention just
one nice result of Prémel und Steger {22]. Let us denote the number of
perfect graphs on » nodes by Perfect (n) and the number of Berge graphs
on » nodes by Berge (n), then

. Perfect (n)
lim —————
n—e Berge n

In other words, almost all Berge graphs are pcrfcct, which means that if
there are counterexamples to the strong perfect graph conjecture, they are

“ "
very rare.




The theory of random graphs provides deep insights into the proba-
bilistic behavior of graph parameters (see [4], for instance). To take a sim-
ple example, consider a random graph G = (V,£) on 7 nodes where each
edge is chosen with probality %2. It is well known that the expected values
of () and ®(G) are of order log » while X(G) and X(G) both have
expected values of order a/ log 7. This implies that such random graphs
are almost surcly not perfect. An interesting question is to see whether the
“LP-relaxation of a(G),” the so-called fractional stability number o* (G) =
max {17 x | x € QSTAB(G)}, is a good appr oximation of a(G). Observing
that the point x = (x) _, with x : = 1 /o(G), v € V] satisfies all clique
constraints and is thus in QSTAB(G) and knowing that @ (G) is of order
log » one can deduce that the expected value of a*(G) is of order # /log »,
Le., itis much closer to X(G) than to o(G). Hence, somewhat surprising-
ly, «*(G) is a pretty bad approximation of a(G) in general - not so for
perfect graphs, though.

To summarize this quick tour through perfect graph theory (omitting
quite a number of the other intcresting developments and important

results), here is my favorite theorem:
Theotem Ler G be a graph. The following twelve conditions are equivalent

{IH(A] C/7(lf{lL'l£’7‘/‘Zt’ G as [Z/)(’}fﬂ'l't gmp/a:

H w(G)=X(G) for all node-induced subgraphs G' ¢ G.

(21w =X (G Jor all node-induced subgraphs G' C G.

3 G is a perfect graph.

) w(G) . a{G) 2| V(GY]
for all node-induced subgraphs G' < G.

(5)  The value max {¢'x | x € QSTAB(G)} is integral for all c € {O,I}V.
6) The value max {c'x | x € QSTAB(G)} is integral for all ¢ € Z‘f.

(7) STAB(G) = QSTAB(G).
(8) TH (G) = STABG).
©) TH () = QSTAB(G).

TH(G) is a polyrope.
G is strongly splitting.

- D o )
C has the P -structure of a perfect graph.
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