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ABSTRACT

An enumeration of all the different combinatorial types of 4-dimensional simplicial
convex polytopes with 8 vertices is given. It corrects an earlier enumeration attempt
by M. Briickner, and leads to a simple example of a diagram which is not a Schlegel
diagrany.

1. INTRODUCTION

Let P denote a d-polytope, that is, a d-dimensional convex polytope.
Each (4 — I)-dimensional face of P will be called a facet of P. The d-po-
lytope P is called simplicial provided all its facets (and hence all its proper
faces) are simplices. P is called simple if its dual P* is simplicial; equiva-
lently, P is simple if each vertex of P belongs to precisely o different
facets. Two d-polytopes P and P’ are of the same combinatorial type
provided there exists a one-to-one inclusion-preserving correspondence
between the set of all faces of P and the set of all faces of P'. .

In 1909, Briickner published a paper {1] the main aim of which was
the enumeration of all the different combinatorial types of simple 4-po-
lytopes with 8 facets (or, by duality, of all simplicial 4-polytopes with 8
vertices). Briickner’s method consists of considering the Schlegel dia-
grams' of representatives of all the combinatorial types of simple 4-poly-

! The terminology used here follows [5]; for the reader’s convenicnce, most de-
finitions and results used will be cited here.
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topes with 7 facets and introducing an eighth 3-polytope into the Schle il

Ain e L e

diagram by “cuiiing oif” parts of the seven 3-polytopes present.

As far as we know, Briickner’s enumeration has not been serious,
questioned so far despite the fact that the objects obtained by Briickner
are, at best, diagrams (and not necessarily Schlegel diagrams). Howeier.
it has been known for some time (see [4]) that not every diagram is »
Schlegel diagram. Hence the validity of Briickner’s enumeration was in
doubt and we decided to check it. (As a matter of fact, there was also 4
suspicion that Briickner’s work is incomplete, since a number of possible
ways of “cutting off”’ the eighth 3-polytope are not discussed in 1

Our first step was to utilize the theory of Gale diagrams developed
recently by M. A. Perles (see [5], Section 5.4), and to obtain representa-
tives of many (hopefully all) combinatorial types of simplicial 4-poly-
topes with 8 vertices by letting the Michigan State University CDC 3600
computer pick (at random, or with some constraints) 8 points on the unj:
sphere in R? which were then interpreted as Gale transforms of the ver-
tices. After about 2000 runs, the computer found (Gale diagrams of re-
presentatives of) 37 combinatorial types, out of the 39 types listed by
Briickner,? and no type which was not in Briickner’s list. The missing
types, in Briickner’s notation, were P3® and P,

A closer check of these two types revealed the following situation:

Regarding P2, a number of errors were compounded by Briickner.
The description of P§" in the table on page 27 of [1] would imply that
the number of incidences of triangles with 3-faces of P3° is odd, which
is impossible. The construction of P§° [1, p. 20] shows that in the table
the two ““I’"’s should be replaced by “0™ and “2,”" the description of P
in terms of its facets then coinciding with that of P2. A closer check
shows that, as described by Briickner, P and P2 are indeed combina-
torially equivalent (there exists a combinatorial automorphism of Pt
carrying the edge CK onto edge the GL). But there exists another edge
(e.g.. MN) which is not equivalent to the edges considered by Briickner:
however, the “cutting off™ of this edge leads also to a type obtained pre-
viously (P?). Hence, one of the types listed by Briickner is superfluous.

Regarding Briickner’s P{?, the situation is much more interesting. The
simplicial 3-complex which we shall denote by ., and which is dual to
the 3-complex associated with Bruckner’s P, is realizable by a diagram

* In Briickner’s table [1, p. 27] there is a typographic error; the first 1> in the
description of P3t and the first 3" in the description of P22 should be interchanged.
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THEOREM 3. There exists a simplicial 3-complex 4 wirh §

vertices gny
20 3-cells, homeomornhic 1o the 3 sphicie, which 1s representable by

3-diagram if certain of its 3-cells are chosen as basis Jor the 3-diagrarm,

but is not representable in such g Jashion with some other of its 3

~cedls
Serving as basis.

This 3-complex may be used to construct a simplicial topological syb.
division of a 3-simplex into 19 topological 3-simplices, which is not re-
presentable by a 3-diagram. More complicated examples to the same
effect have been given by Cairng [2] and van Kampen [6)].

The complete enumeration of simplicial 4-polytopes with 8§ vertices
yields on inspection

THLOREM 4, The “Joyer bound con jectyre®

is true for simplicial 4-poly-
topes with 8 vertices.

The only cases in which the truth of this conjecture was previousls
known are (i) simplicial polytopes of dimension at most 3; and (ii) sim-
plicial d-polytopes with at most -+ 3 vertices [5, Section 10.2)).

Another consequence of the existence of the polytopes P4 and ps,,
elaborated in [S, Section 7.2), is a refutation of Motzkin’s [7] conjecture
(see also [3]) that cyclic 4-polytopes are the only neighborly 4-polytopes,

3. PROOF OF THEOREM |

For the reader’s convenience we begin by Rwo:sc_m::m some of the
definition and results of [5], Section 5.2,

Let Q be a d-polytope in the Euclidean d-space R, let V be a point
of R? not belonging to O, and let H be a (d ~ 1)-dimensiona] hyperplane
such that V¢ H and H A int QO = 0. We shall say that V is beneath o,
or beyond H (with respect to Q) provided ¥ belongs to the open half-
spectively. If Fis g facet, i.e., (d — D)-face, of O, we shall say that Vs
beneath or beyond F provided V is beneath or beyond the hyperplane ¥
determined by F.

Let O be a d-polytope in R?, and let V'€ R be a point not in O and
not belonging to any of the hyperplanes determined by the facets of 0.
Let P — conv(Q U {V'}). The connection between the facial structures
of O and P is given by the following criterion [5, Theorem 5.2.17:

The facets of P which do not contain V are precisely the facets of 0
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FiG. 2. Schlegel diagrams of P,7*,

>
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g . .
Mcﬂw%”_ﬁ_w s obtained, it is convenient to adjust the choices of Q and
First, we note that the valence of the new vertex 8 of P# (i.e., the
%ﬁ%@wq oﬁ.mamom incident 8.3 equals the number of vertices o,m 7
(d ozw,w if one first determines (by appropriate choice of Q and 7~
all the P¥s having a vertex of valence at most k, in order to aow i ,
all :.:.. P¥s which have all vertices of valence at ,_g& k+1o wm_:::
consider only #”’s having at least k - | vertices, and Q may be MM&#.; _M
to those P”’s which either have no vertex of valence << k. or the <om._~o.~m
Mﬁ ,.E_m:no k present will acquire an additional oamlnsiv the <m:mx_nmw
m%oﬂﬂmmM:ﬂ“Nﬂ@Mowm to €. An mm&:o:a,. easily exploitable, reduction
o the number oh._mmm to be oo:m_%_.mg arises from the observation that
a hoices of & (denoted by .4, , #,, &, in Table 2 and in Fi
ure 4) eliminate onc of the edges of the P? _:<w_<mg , e
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arranged (in Table 3, where the generation of the P¥s

Hence we have
4 given 1n detail) e P according tc the minimal valence of their

wctices: first we generate all those which have a 4-valent vertex, then
snos¢ having a vertex of valence 5, etc.

Second, if for a given P7 two complexes & and @' are such that there
~ists a combinatorial automorphism of P? mapping & onto &', the
resulting P®'s will clearly be of the same combinatorial type. The elimi-
-ation of pairs of complexes @, @' equivalent in this sense is easy using
e Gale diagrams of the P”s since [5, Section 6.3] two sets of vertices
ally equivalent if and only if the corresponding

of P7 are combinatori
¢ equivalent (including multiplicities)

wts of points in the Gale diagram ar
snder an orthogonal transformation of the Gale diagram.

In Table 3, only one representative is chosen for each class of &s
equivalent under an automorphism of the P? considered.

Third, it is easy to determine all the complexes & we need to consider.
Indeed, in any P® the vertex figure S of the vertex 8 (i.c., the simplicial
y intersecting P® with a hyperplane strictly separat-

3-polytope obtained b
P#) has a simplicial decomposition which

ing 8 from the other vertices of

ATH £

A

2 1 2

SRRl

F16. 3. Schlegel diagrams of simple 3-polytopes with at most 7 facets.



444

GRUNBAUM AND SREEDHARAN

is combinatorially equi be
ivalent to the 3-com i
: plex &. Since the n o
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P = eguRls tac vaience of 8, oniy simpiiciai 3-polytopes with u

5 . .

m.oﬁ_.q. Momcoam need to be considered?® and, for each of them, thoy

impiicial decompositions which d i . .,
0 not introduce additional i

Aplich t additional vertices,

e oﬁ. for <mH.o=oo 7, only decompositions which contain no inter;:n

ges are interesting (because an interior edge would not be an edge o
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F1G. 4. The complexes .

R .
Schlegel diagrams of the duals of these 3-polytopes are shown in Figure 3
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Taking all the above into account, we can easily check that only 9
acmplexes % have to be considered; they are histed 1n 1able 2, and the
:-responding decompositions of S are indicated in Figure 4. In Table 3
we list all the combinations of P and % needed, together with the re-
i.ting P¥. A detailed description of each of the P¥’s is given in Table 4,
«kile Table 5 contains a more compact listing of the P¥’s.

One observation has to be borne in mind, however, in constructing
.+ P*s from the P7s. Given P® and its vertex 8, the corresponding P?
;c., the convex hull of the other seven vertices of P#, which may, with-
~ut loss of generality, be assumed in general position) and % are de-
.ermined. However, with a given P7 and a complex & on its boundary,

w0

n,.ﬁm_.m,msva:o:__ﬁ:om:mn::oaﬁo:ramimﬁa:ooo?_vo::w ::_:w
sevond precisely those facets of P? which are in &. For a given combina-
wrial type of P?, and a fixed & on its boundary, such a point 8§ may
exist, or may fail to exist, depending on the particular polytope of type P?
chosen. Hence, strictly speaking, what we have constructed so far are
sot 4-polytopes with 8 vertices but certain combinatorial schemes, or 3-
complexes, which may, or may not, be the boundary complexes of 4-poly-
topes.

The greatest part of this question is easy to resolve in the particular
circumstances which interest us here. As a matter of fact, it is very easy
10 see that, if the complex % is the star of some face G of Q in the bound-
ary complex of Q, then, taking as the new vertex V' any point not in Q
but sufficiently near to it and belonging to a line passing through the
relative interiors of G and of Q, V will precisely beyond the facets of Q
which are in %. Among the complexes # which interest us here, &, ,
'#4,, and &, are of this type; hence the P#s obtained by using those
complexes clearly exist. It is also not hard to see (compare [5, Section
7.2)) that, if & consists of a number of facets of P7 (and their faces),
such that the facets have a common edge and form a chain in which
neighboring members have a triangle in common, the existence or Vis
guaranteed, and hence the P¥'s obtained are indeed 4-polytopes. Among
the complexes & that interest us here, &, and &, are of this type.

Hence the only constructions which require a closer inspection are
those involving %, , &, , or. &, . However, as seen from Table 3, except
for the very last case, all the P¥s obtained by the use of any of these
complexes are combinatorially equivalent to some previously obtained
by a construction of the former types, and therefore their existence is
assured. This leaves us with only doubtful case, called “complex . in
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Table 3, and, as we shall now see, 4 is indeed not combin
alant tn tha ke,
representative of Py” has its facets in such a position th
point ¥ beyond precisely the facets of 2,.

Assume that P is a 4-polytope with boundary complex combinatorially
equivalent to 7] let 1, 2, ..., 8 be the vertices of P
ingly to the labeling of the vertices of

position. Let Q denote the convex hull of the seven vertices of P different
from 6. Though we cannot claim at once a complete knowledge of the
facial structure of ¢, we know that it is one of the P7s, and also that the
faces of P which do not involve 6 are faces of Q. Hence Q is a neigh-
borly 4-polytope (each pair of its vertices determines an edge), and thus
Q is P,”. Moreover, each of the edges 14, 24, 34, 54, 74, 84 of P is inci-
dent, in P, to four 2-faces (triangles) of P not involving the vertex 6.
Since all those edges and 2-faces of P are also edges and 2-faces of 0.
it follows that in Q each edge incident to the vertex 4 will be contained in
at least four 2-faces of Q. But this is impossible since in Q, which is P
for each vertex there are two edges incident to it which are contained

in only three 2-faces of Pg7. Hence there exists no 4-polytope P with
boundary complex equivalent to ..

This completes the proof of Theorem |.

4. PROOFS OF THEOREMS 2 AND 3

A d-complex & in R is a set of (convex) polytopes of m

aximal di-
mension d, with the properties:

(i) each face of a member of & is itself in &;

(ii) the intersection of any two members of &

is a common face of
both.

A d-diagram & consists of a d-polytope D (the basis of &) and a
d-complex &, such that D is the union of all the members of iz
for every Ce @,, the intersection of C with bd D is a member of 7, .

We shall say that a d-complex # is representable by a d-diagram .
i’ the basis D of &7 is a member of 7, and if #
equivalent to @ ~ {D},

and,

o 1S combinatorially

Clearly, a Schlegel diagram of a (4 - 1)-polytope P is a d-diagram

atorially equiv-
....... O w8 STURGGTY Compiex of any 4-poiytope. In other words, no

at there exists »

labeled correspond-
. Since P is a simplicial polytope.
there is no loss of generality in assuming that its vertices are in general
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which represents the boundary complex of P. In this case, each facet of P
ay as basis ol the d-diagram. . . .
Q,M:MMMMQ, of Theorem 2 is easy, by indicating the oooa_:mwﬁ}c: mx W

i 7, wi is 4567. A set o
r i he 3-complex ., with basis
of a 3-diagram representing t / a7 Aser o
i i in Table 6, was obtained by actually
«uch coordinates, given in Tab s : , :
;,_”_M aoBOQ& reading off the coordinates of its vertices, and checking
ing a s
on a computer.
Em_”_oann to prove Theorem 3, we take the same 3-complex _u,§ : M:M Mm
i ith 2358 as basis. Next,
55 that it is representable by a 3-diagram w th 2358 a .
.:WFMMNEQ. the points 4 and 6, and construct the m::v:onm. involving oﬂm
,JFw 4.5, 6,and 8 (i.c., 2345, 2458, 2368, and 3568). The .m::v_v\ oo,\_onw:ga
_m..ﬁmw ,om :“mwo simplices define an “inner surface” which has m“ y e
m,a es 23, 35, 58, and 28 in common with the doE.amQ of 2358. :o M :mﬁ
“ommm :ohz determined. In order to locate the point 7, é%mm‘w:om.ﬁ a e
i impli d . Since
i i the simplices 3456, 3467, an
edge 46 is contained in : 4537, Since the
i ” “ ts” at 4 and 6, the poin
“inner surface” has ‘“‘saddle poin the | e )
i iti at the triangle 357 (which is not a fa
cated in such a position that t . . . o
i i int relatively interior to both.
intersects the edge 46 in a pomn . poth Tore e
also the vertices 2 and 8, with 2 being sar
the plane 357 separate also . . i e
de as 6. Hence the conce
side of 357 as 4, and 8 on the same ww . . o
iangle 678 is contained in one o
vertex 5 spanned by the triang . e o e
i he plane 357, while the other
half-spaces determined by t hile e by
i ins the cone C'’ with vertex 3 spd
ace determined by 357 contains : \ i ; -
MMQ triangle 247. Hence the intersection C' N C oon_w”M mom, ﬁwoqm_:ﬁmrw
1 i implices 1567, s R
i i diagram contains the simp : .
point 7. Since the . : e dnaram
i i ’. On the other hand, sinc
int 1 must be contained in C'. c
‘WM:Sm:m 1234, 1237, 1347, the point 1 must belong n.o C''. Hence there
is no position for 1, and the construction is not possible.
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Table 1, Polytopes wm s i=1,2,3,4,5, _M Table 2., Compléexes @ .
) — 8 app1i-
Polytope | Number List of facets Facets of the dual polytose . ical arrangement of Nerve of |Is m@m T
wwmw.ww and their txe hazer eﬁm of | W facets in @ mww%mowwm ?
1 %
Y121.tes
¥{ 11 A: 12 : : ° tes
: 1256 H: 1367 | 1: ABCDEFGH °y : 1234
B: 12h5 J: 2%69 | 2: ABCDGIKL ¢l A
C: 123% K: 2345 | 3: CDEFHJKL o1 —n Yes
D: 1237 IL: 2356 4: BCEK a . @ 1234 1235
E: 1345 5: ABEFKL b 7 A
r: 1 : APGHJ s
G: mew m" Doty w 1274 1235 1245 Yes
@ A<Mwmhom of 1, 2 reduced D
Vi (] by one)
CEESET BT AT S
: s 2347 : H c ]
C: 1256 K: 2367 %: DEFGLJKM e 4 1245 1256 T Ye
7 1 . 123 5
D: 1345 L: 2869 | ki ABDEGIIM o1 £ )
Fi Wwwm fs 3467 g wwmwﬁoﬁz _ow 1234 1245 1256 1236 Yes
G: 2545 7: JKIN a ¥ A<mwmznw of 1, 2 reduced
2 by one
ww 12 A: 1246 H: 1347 | 1: ABCDFCH ¢,
B: 1256 J: 2546 | 2: ABCDJKIM cs 1034 1245 1235 1346
C: 1259 K: 2356 3: EFGHJKIM c5 @ (Valence of 1, 2 reduced
D: 1249 L: 2557 | &: ADERJM b 3 by one)
E: 1346 M: 2347 | s5: BCFGKL b v
T: 1356 &: ABERJK b .
G: 1357 7: CDGHIM b ) o@ 1234 1245 1256 1267 \ / Yes
1 ——
7 13 A: 2467  H: 1456 | 1: CDGHJIKIN ¢ 46 134 Y
4 B: 2367 J: 1247 | 2: ABEFJKMN o} D, 123k 1235 12 il
: : : ] c 1
E: 2456 M: 2345 | 5: EFGHIM bl D 1234 1245 1256 1567
Fr 2356 N: 1234 | &: ABCDEFGH %y 3
G: 1356 7: ABCDJK b
P7 1 A: 1234  H: 1567 | 1: ABCDEFGH o)
5 B: 1237 J: 2545 | 2: ABCDEJKL o7
C: 1267 K: 2%356 | 3: ABPJKINMN o7
D: 1256 Lt 2367 4: AEFGJMNO cy
E: 12h5 M: 3467 | 5: DEGHJKNO o1
F: 1349 W: 3456 | &: CDHKIMNO oy
G: 1457  0: 4567 7+ BCFGHILMO ¢y
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Table 3, Generation of polytopes mvm

Type of Polytope Facets included in Resulting 8 )
complex 7 L
g H ®
: S ¥/ A: 1256 %
B: 1245 2
c: 1234 8
, 3
; 7 . 8
# 244 B: 1246 0
W L: 2467 ¥
; . 8
| C: 1256 3
7 . 8
P7 G: 1357 ¥
7 . 8
¥ B: 2367 ¥
K: 1239 mm
. 8
| N: 1234 =R
7 . 8
i 1 L: 2369 =
, . g
A: 1234 7,
; 7 . . 8
; awﬂ 24 C: 1234 D: 1237 =
) 7 . . 8
1 44 K: 2367 L: 2467 P,
I: 2867 M: 3467 mmm
H: 2356 K: 2367 .
o
7 " : 8
¥] L: 2357 M: 2347 ¥,
G: 1357  IL: 2357 Huwm (326849::;

(*) If the resulting 2 has been obtained earlicr, the

vertices which establishes the equivaler::
of the two polytopes is indicated in parentheses.

permutation of the
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Pable 3 (continued)
ry=g of Polytope Facets included in Resulting HUM
m,.“mng HM .®
i) .
ﬁw wm B: 2367 C: 1367 mwm
! C: 1367 D: 1467 20
8
C: 1367 K: 1237 P
8
K: 1237 J: 1247 H_MH
8
C: 1267 G: 1356 P
8
M: 2345 N: 1234 Pig (16342785)
8
ww L: 2367 M: 3467 F3s
8
H: 1567  O: 4567 Poy
8
C: 1267 L: 2367 s
P? A: 1246 E: 1346 mmw (12386574)
&w 3 J:2346
: 8
?/ W: 1234 K: 1237 P, (45326178)
4 J: 12h7
L: 1345 G: 1356 P, (54327618)
H: 1456
P? A: 1234 B: 1237 P8,  (56714238)
5 F: 1347 :
8
% 04 K: 2356 L: 2357 P
1 3 M: 2347
8
P7 N: 1234 K: 1237 12
& L: 1345
M: 2345 F: 2456 1228
A: 2467
H: 1456 D: 1467 mmo
A: 2467
C: 1367 D: 1467 qu (25438167)
H: 1456
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Table 3 {continued)
T
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452 GRUNBAUM AND SREEDHARAN
Table 3 (continued)
MWMMHMUW. wo»wwovm Facets included in Resulting HVM
19 1 3
4 PZ J: 2 .
1 1 234 X: 8
2 Li 2367 23%6 P20
A: 1234 B: 12 8
L: 2367 77 23]
A: 1234 B: 12 8
C: 1267 7 P32
G: 1457 H: 156 8
D: 1224 567 5
E: 124 : 8
Gi Yaep LM P, (67341825
A: 1234 : 8
G: ;wq Fr 1347 Py (67143825)
m 7 J: 2346 K: 2 8
: . 6
: ’ Lt 2357 Ii o5k e
A c: 1 ,
4 1 136 D: 1 3
G: Gmm H: Hnwm Poe  (48326571)
®7 A: 1234 E: 124 8
° F: 1347 G: H#MW Pop  (72453816)
b A4 J: 1247 K: 1 8
3 “ I Hupw W Hmwm Py (76324158)
4 A: 1234 B: 8
7 E: 1245 F: wwmtw Pog  (76542318)
A: 1234  B: 1 8
c: 1267 T: pwww P, (61835427
A: 1234 B: 8
F: 1347 G wmw Pog  (14823367)

Zype of Polytope Facets included 1n Resuliiug &y
Conplex MQ
@ i Aw
D 7 B: 1237 F: 1347 8
! 5 G: Hamw H: 1567 35
C: 1267 B: 1237 mwm
Fr 1347  G: 1457
B: 1237 C: 1267 mmq
F: 1347 H: 1567
N P? E: 1245 D: 125 qu (54328761)
2 5 G+ 1459 J: 23b5
D 74 A: 1234  E: 1245 mmm (82345671)
3 5 D: 1256 H: 1567
A: 1234 B: 1237 ww (25781436
E: 1245 L: 2367 7
D: 1256 E: 1245 Non-existent
G: 1457 K: 23% ﬁoosv“_.oun.:v
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Table 4. Polytopes PS
Polytope| Number List of facets Facets of the duz)
of Polytope and thei:
facets type

2 in B: 1245 K: 2345 1: BCDEFGHMNO ¢
C: 123h I: 25584 2: BCDGJKIMNP @b

D: 1237 M: 1288 3: CDEFHJKL o}

E: 1345 N: 1288 4: BCEK a

F: 1355 0: 1568 5: BEFKIMOP ¢

G: 1267 P: 2568 &: FGHILNOP o

H: 1367 7: DGHJ a

J: 2367 8: MNOP a

¥ 1 A: 1256 K: 2345 1: ACDEFGHMNO a,
C: 1234 IL: 2356 2: ACDGIJKLINP

D: 1237 M: 12 3: CDEFHJKL ot

E: 1345 N: 1058 k: CEXMOP b

F: 1555 O: 1458 5: AEFKINOP ¢

G: 1267 P: 2ui8 é: AFGHIL b

H: 1367 7: DGHJ a

J: 2367 8: MNOP a

25 1 | A: 12 K: 2345 1: ABDEFGHMNO 4,
5 B: 1245 L: 2358 2: ABDGJKLMNP g
D: 1237 M: 1238 3: DEFHJKINOP o}

E: 1345 N: 1248 L: BEKNOP b

F: 1356 0: 1348 5: ABEFKL b

G: 1267 P: 2348 &: AFGHJL b

H: 1367 7: DGHT a

J: 2369 8: MNOP a

3 15 | A: 1285 x: 2367 1: ACDEFNOP o,
C: 1256 L: 2i69 2: ACGHIXINOQ d}

D: 13h5 M: 3469 3: DEFGHIKM o]

E: 1345 N: 1248 4: ADEGJIMNPQ 4

F: 1356 0: 1268 5: ACDFGH b’

G: 2345 P: 1468 &: CEFHKIMOPG 4

H: 2556 Q: 2468 7: JKIM a’

J: 2349 8: NOPQ a

b3 15 A: 1285 J: 2347 1: ABODEF b
5 B: 1248 K: 2367 2: ABCGHJKNOP ¢
C: 1256 M: 3467 3: DEFGHJKM ¢y

D: 1345 N: 2468 4: ABDEGJMNOQ  al

E: 1346 0: ouns 5: ACDFGH b

F: 1356 P: 2678 6: BCEFHKINPQ  d,

G: 2545 Q: 4878 7: JKMOPQ b

H: 2356 8: NOPQ a

SIMPLICIAL 4 POLYTOPES WITH 8 VERTICES

Table 4 (continued)
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: 1: ABDEFNOP ¢y
7 5 b 15 ¥ wwmw 2: ABGHJEKINOQ dj
D: 1345 M: 3467 3: DEFGHJIKM oy
E: 1346 N: 1258 b »wuwwﬁm oy
F: 1356 0: 1268 5: ADFGHNEQ o1
G: 2345 P: 1568 wm WWWE\_ P dy
1 Kk cE
B 1 A: 1286 K: 2356 1: ABCDERINOP  d
7 ? B: 1256 L: 2357 2: AB L 93
C: 1287 M: 2347 3 mﬁmwwzz Q@ og
D: 127 N: 1358 iti >wa§3 b
E: 1346 O ¥878 1378 5: DOTKLN )
Y mm.pmwm wm CDHIMOPQ ¢y
5 mem @35 &: NOPQ a
H c
b 16 A: 2467 K& 1237 L: .mwww%%wwp o
° S wwmu %: CTGKLMNOPR  df
= wnwm N: 123 i ADEHILEN o
F: 2356 0: 2268 5: o >
G: 1366 P: 2378 &: »mwww%mﬁﬂ ® 4.
H: 1456 Qi 2678 7: ACDD o3
J: 1287  R: 3678 &:
: d
. : 120 1: CDGHJINOPQ  d,
mw 16 5 wwmw i H%W 2: ABEFJMNORR  d,
C: 1367 M: 2345 %: BOFGLMNOQR  dy
D: 1467 N: 123k ; ADEHILIN o
E: 2456 0: 1238 52 E,om.dm b
Fi 2386 P: 1278 &: ABCDER 2
G: 13%6 Qi 1378 7: ABCDIEQR f
H: 1456 R: 2578 8: OPQR
: JKIO a
8 16 A: 2467 J: 1247 1: COGHTAOPQ 4y
o B: 2367 K: 1237 >: AR Kdy
C: 1367 L: 1345 5: BOEGKLNOGR  d)
D: 16w M: 2345 i w@omuwswpw a}
E: 2456  0: 1228 5: i b
B & T5us 5% ABODIX 52
G: 1356 Q: 1% :
H: wam R: 2548 §: OPQR a

e g T
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Table 4 (continued)
~ T

wmu. 17 4: 1234 J: 2345 S: 3698 | 1: ABCDERGH c.
B: 1257 K: 2558 2: ABCDEJKPQR :-
C: 1267 H: 34é9 3: ABFJKMNPQS -
D: 1256  N: 3456 4: AETFGJMNO [34
E: 12h5  0: hegp 5: DEGHJKNO e
F: 1349 P: 2368 &: CDHKMNOPRS ¢:
G: 1457  Q: 2378 7: BCFGHMOQRS &’
H: 1567 R: 2678 8: PQRS &
¥, 17 B: 1237 K: 2356  S: 1348 | 1: BODEFGHPQS ¢,
C: 1267 1: 2349 2: BCDEJKIPQR &
D: 1256 M: 3467 3: BFJKIMNERS ¢-
E: 12h5 N: 3456 h: EFGIMNOQRS -
F: 1347  0: hséy 5: DEGHJKNO e
G: 1hsy  P: 1338 &: CDHKIMNO or

H: 1567 Q: 1248 7: BCFGHLMO e

J: 2545 R: o343 8: PORS a-

wmw 15 A: 1256  I: 2356 1: ABEFGHMNPQ ¢,
B: 12k5 M: 12h8 2: ABGJKINOPR o2

E: 1345 N: 1348 3: EFHJKINOQR o2

F: 13286  0: 2348 4: BEKMNO 13

G: 1267 P: 127 5: ABEFKL ¥

H: 1367 Q: 1378 &: APGHJL b

J: 2367 R: 2378 7: GHIPQR ,c

K: 2345 8: MNOPQR b

B, 16 At 1245 J: 2347 1: ABODER »
B: 1285 M: 3467 2: ABCGHJNOGR 4,

C: 1256 N: 2368 3: DEFGHJMNOP

D: 1345 0: 2398 4: ABDEGJMQRS cp

E: 1345 P: 3678 5: ACDFGH b

F: 1356 Q: 2ab8 &: BCEFIMNPGS g,

G: 2345 R: 2478 7: JHMOPRS b

H: 2556 S: 4678 8: NOPQRS b

4 16 A: 1245 .J: 2349 1: ABCDEF b
5 B: 1246 K: 2367 2: ABCGHIKNOP &,
C: 1256 N: ohes 3: DEFGHJKQRS  al

D: 1345 0: 2478 h: ABDEGINOQR g}

E: 1346 P: 2678 5: ACDFGH b

F: 1356 Q: 3468 6: BCEFHKNPQS d,

G: 23h5 R: 3478 2: JKOPRS b

H: 2356 5: 3678 8: NOPQRS b

SIMPLICIAL 4-POLYTOPES WITH 8 VERTICES

Table &4+ (continued)

457

: 1: ABCDEF b
gt 16 B mem i wmm.w 2: ABCGIINOGR  dg
- o 1256 N: 2358 3 ummmmﬁ%% 5 a2

. 13hc 0: 2568 i: ATDEGILI of
2 1042 i 5%e 5: ACDIGN o1
B Wwwm Q: 2578 g: wmwmwmzowwm a
: 23hs  R: 2678 7: b
5 wwgw S: 3678 §: NOPGRS
: EFGH e
& 1 2346 1: ABCD S
2 16 A 1206 I3 2346 1t AT 52
i & Www ¥ mwwm 3: mwmmwww%pm 5 o
: 1242 S wwwm m BoreKNOP mw
S : &: ABEFJK
: P 32l
M“ wwww m" wwﬂm 7: owwmmmwm MN
H: 1357 S 3478 8: N
-2 17 A: 2ney It 13bs ™ 1368 | 1 wmmwﬁmwwm mW
e B Wmmm X pmum 3 FOLUIMNOPST a3
F: mwwm 0: 2768 i me% ol
o Wwwm m mwwm g Emmwwmmwm a
J: 1247 R: 1678 7 wWMm PQRS <
X: 1237 S: 1378 :
8 1 A: 2867 Lt 1345  T: 4678 W mwmwmm%mm mw
w0 S A re 5: PFGKLINOPQ  dj
¥ wwwm o Wwww Bt wmwmw\@wme ay
i wmwm MM wwwm & ABEFGHOGRT a5
J: 12hp  R: 1468 7 %mowmm 3
K: 1237 S: 1478 :
: : 1: DGHJLNOGRS &
7 17 aio? w Wwww T 2578 | 5 ABEFJUNHST mw
“ D 2er W 1s%h 5: TRCLIPQRT 4,
| 2 wpwm 0: 1678 i %mmmm_é o
nR o 3558 g ABDEIGHOR 45
B Wwwm R: 1238 7: .ww%mm_m o
J: 12ky  8: 1278 :
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A ! Mable & (continued)
21 A 2467 : _
N L: 134 o, J
w". mwmw w" wwpw 2378 m mmmwwzommm 2 , 17 A: 1246 J: 2346 Ui 3478 W »w%wmmMm . %
2 mnmm 0: 15ia 7 BCROINNNSS . < ° wmww o mwmm 5 EFGHINPLSD a2
: o : ADEH & : I: ADER c
m." mem R: 1378 6: ABCDEFGH : F: 1356 R: 3598 &: ABEFJNOP e
i 1456 5: 1238 .w.u ABCDPQRT ol G: 1357 S: 2348 7: oummowaw c5
Hm : OPQRST Vi H: 1347 T: 2478 8: NOPQRST cy
2

Ar 2087 1. 7
: 1315
B: 2367 N mu#w T: 3568 | 1: DHJKINOPRS g 18 A: ouey  J: 1247 U: 1458 | 1: CDGHJOPRTY a5

D: 1467 W: 3 2: ADEPIKN : 2 : o4t Vi 34 >: ABEFJMOQRS
I 25 o: Hm.ww 3: wEEEo;mS i 7 & wmw\ o WWQW e 5: BCFGHPQSTU aw
I 2356 P: 1578 4: ADEHJINN t: D: 1467 P: 1378 i: ADEHJURSUV 47
H: 1456 o: 3678 5: EFHLNRST .- E: onEb Qi 2578 5: EFGHMIUV ¢
gi 1287 R: 1363 &: ABDEFHFQSD 4! T: 2356 R: 1248 %: ABCDEFGH c3
(: 1237 5: 1%68 7: ABDJKOPQ = o2 G: 1386 S: 2548 7: ABCDJOPQ  cf
2 8: OPQRST N H: 1456 T: 1358 8: OPQRSTUV ey
3 A: 1238 7. 5 J—
B: 1257 k: mu 45 I: 3498 | 1: ABCDEFGH & : . 135 U: 2358 | 1: CDFHJKIN c
5 %67 N n2e Ui 4678 | 2: ARCDEJKPGn & ‘zs S N Ik v wwmm 2: DEICNCERIY 4
: lage %: ABPJKNPQST o* D: gy O: 2478 3. BCFGKLNTUV 4y
4: AEFGJNOSTY ¢+ F: 2356 P: 2678 4: DHJLNOQSTV  d5
5t DEGHJKNO d G: 1356 Q: 4678 5: FGHLRSUV ey
A 6: CDHKNOPRSU g3 H: 1456 R: 2968 £: BCDFGHPQRS 43
! .w.” BCFGHOQRTY ¢S J: 12Bp  S: 4568 7: BCDJKOFPQ cg
i wm¢ 8: PQRSTU bo : K: 1237 T: 2548 8: OPQRSTUV ey
i A: 1234 K. p !
: B: 1237 I mwmm T: 4598 | 1: ABCDERG : . ozns  U: 1568 | 1t CGIKLNRSTU  d
: C: 1267 H: wmm,w U: 4878 | 2: ABcDEsRLYT 4 By 18 B ooy MR v slee | 2: BLFRNIOPQ  OF
: o 1286 R®: 34c4 3: ABFJIKIMN ol . E: ohs6  O: 2468 %: BCFGKLITN cq
B 1245 p 1568 4: AEFGJMNSTU ¢l F: 2356 P: 2478 4: EJLMNOPRTV @w
Qn 13479 Q: 1578 5: Uﬁﬂmﬂ%@me mc G: 1%56 Q: 2678 5: EFGIMTUV c3
A 5 1457 R: 189 6: CDKIMNPRSU g% J: 1287 R: 1478 §: BCEFGOQSUV Qm
2345 7: BORGLMGRTY g2 K: 1237 S: 1678 7: BCJKFGRS  ©f
mw : PQRSTU ph I: 13hs  T: 1458 8: OPQRSTUV cy
5 .
B: 1257 M. 350 oF 2578 | 1: ABDEFGHP 8 . M: 3867 U: 2378 | 1: ABCDEFGH c
3067 U 3678 | 2: ampEsirgss Fzo A Wwww REFeTA 2205 | 2: aBCDEPQSUV  d3
5: ABFJKMNSTU QH C: 1267 O BE6? W: 3678 3t ABFMNPRTOW QF
W 4: AEFGJMNO c3 p: 1286 P: 2348 I: AEPGMNOPQR  dy
j 5: DEGHJKNO a B 1ohs Qi 2858 5: DEGHNOQRST  dj
o 6: DHKMNOPRSU g1 F: 1349 R: 34 §: CDHMNOSTWW  dy
s 7¢ BFGHMOQRTU QN G: 1bgy St mmww 7: BCFGHMOUVW QF
1 8: PQRSTU b H: 1567 T: 3568 8: PQRSTUWW ¢

_. R




. iRTICES 461
460 GRUNBAUM AND SREEDHARAN SIMPLICIAL 4-POLYTOPES WITH § VERT

mable 4 (conbinued)

Table 4 (continued)

: SUVX 4
. N: 34 V: 3478 1: ADEHPQ (I8
2, 19 | C: 1267 M: 3467 U: 2368 | 1: CDEFGHPQST %e 20 | & wwwm 0: mmmw v: 1u58 | 2: ADBJKLERST Gy
wm Wmmw x: 3456 V: 2678 | 2: CDEJKPRSUV E: 1245 P: 1268 m wmqm w ARJHNOUWWY  dt
0 DhR RSE D beed 3 R B N
G: waw Q: 1348 5 DEGHIKNG S i 23 ke 2: DHKIMNOPQR  d
H: 1587 R: 2348 &: CDHKMNOUVW : wwww 2 2398 7: HIMOQRIVXL ¢
K 5352 B 1308 5 Saperoni H: 3h67 U 1548 8: PQRSTD
23 t 1378 8: STUVW
. . 1: ADEGPQSUWX d
» 19 D: 1256 M: 3467 U: 1268 | 1: DEFGHPQRSUV 4 20 A: 1234 X w:mw v mwmm 2: ADEJKISTUV  dj
32 E: 1245 N: 3456 V: 1678 | 2: DEJKLPRTUM 77 0B O 26 x: 148 | 3 ATKIMNUVXY
F: 1347 O0: AeE7  W: 2678 | 3: FIKINNQRST : 1 1578 Y: 3478 | 4: AEGIMN
G: 1459 P: 1248 i: EFGJMNOPQR G: 1457 8 Lo72 5: DEGJKNOPQR  d
H: 1567  Q: 1348 : DEGHJKNO J: 23n5 & 0% ¢: DKTMNOPRST  d
J: 2345 R: 2348 & DHRLMNOOVY K: 2356 > Wmﬂm 7: GLMOQRIVXY  dy
K: 2356  S: 1378 7: FGHLMOSTVY w wwmw U: 1258 8: PQRSTUVWXY 4y
L: 2367 T: 2378 8: PQRSTUVW :
8 - . STUWX 4
P 1 A: 1234 M: U: : ABCEF ' . . 1 24 1: ABCFH, 4
33 ? B: wan N: w:ﬁwm v wmwm 2 »wowumwwmw Complex 20 i wwww o: wwmw i Z.ww 2: wwmwwwmw% G
E: 1245 pi 19es MO | 2 AmRTe O: 1267 i 2358 Fi i205 | 4 AvamNoUWY d
F: pwﬁw qQ: 152 w” ETENOTRIY f\S\ F: 1347 & - 77 5: HINOPRIVXY  d
J: 2345 R: 2568 &: CKIMNOQRST i o wwmm s 1% 6: CHLMNOGRST g
K: 2356 S: 1678 : 7: BCFIMOSTVW ' 1: 5369 T: 1568 7 B
L: 2367 T: 56%8 8: PQRSTUVW M: Zhew U: 1248 8: PQR
wwp 16 A: 1286 N: 2468 1: ABCDEFGH [
B: 1256 0: 3468 2: ABCDNPRT :
C: 1287 Pi 268 %: EFGHOQSU :
D: 1287 Q: 3868 %: ADEHNOTU
E: 1346 R: 2578 5: BCPGPQRS
F: 1356 S: 3578 &: ABEFNOPQ
G: 1357 m: 2h9g 7: CDGHRSTU
H: 1349  U: 3478 8: NOPQRSTU
wW 20 At 1234 N: 3456 V: 4578 | 1: ACDEPQSUWX
5 C: 1267 0: hoéy W: 1568 | 2: ACDEJKLPQR
D: 1256 P: 1238 X: 1678 | 3: AJKIMNPRST
E: 12h5 Q: 1278  Y: 5678 | h: AEJMNOSTUV
Ji 2345 R: 2378 5: DEJKNOUVWY
K: 2558  S: 1348 &: CDKIMNOWYY
L: 2567 T: 3478 7: CIMOQRTVXY
M: 3467 U: 1458 8: PQRSTUVWXY
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Table 5. Th 8
; 5 e polytopes Py (Summary),
famber | T,
5 b ype and number of facets of the dual polytope
facets a b ¢y 5 mu. am a, mz — bone
> - s
1 14 3 T
- W - - -
2 E0 R B B e e A e
3 CO I e T e e R
4 15 2 1 o
2 - 1 -
5 13 |1 -171}- 213 |
102 T s 1 - 2 | -
2 Tlal2l 1| 221 Z2121;
. o N N I e I N N I
8 16 1|1 L
W - - -
ww W 1 2 1 1 i W !
14 Sl A e I (R Bl A -
i SHEHEBHEHEE
12 ol B - N I O e B
17 I
11 17 1 -
: S
18 SRR O I
1 - 2 1 1 1 1 - 2 -
WW ~ 2 - P " - z ¢ -
22 - 1 y | - - 1| - - >
i I I R A e B B
23 18 - 1
2 - 1 -
2 S R e I il Z
-~ 2 - ) 1
2 : 2]z
N.@N “ H M 1 - - W W W
5 i A e Al BN I BN
- - 2
Wm 19 - - 2 - 3 1] - 2| -
2 - - m - 1 - 1 3 1
35 i e - A e A B I
wm 20 - - - - 8
8 - - -
37 SN AR
- - - - 2 - 2 n -
oosvpmx\“\m 20 - _
- - - - G 2
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am representing the ¢

mahle 6. Vertices of & 3-diagr
in R?

Vertex Coordinates

vy
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Q:.uom_:m the notation so as to obtain
Struction starts by taking three ceoments 15 27

TSR SPSTICH, 15, 27, 38 (see Fig. 5), which
suitable disjoint edge:

are mutually skew (such as those obtained from

3

8
FiG. 5.

of a cube).
vy NOM#MM: HMOmn Segments, tetrahedra 1237, 1578, 2358 ar
commey (oo m -). Each of the three tetrahedra :m.m two f: i oo?
¢ (skew) octahedron © which is the conve Mow_m g
X hull of

4
as above, Wegner’s cop.

SIMPLICIAL 4-POLYTOPES WITH 8 VERTICES 465

ha
ppely

three segments, while the other two faces of each tetrahedron are

+.sible from each poini of the intcrior of the cmall cuhe Hence if 6 is such

s point, a simplicial decomposition of Q is determined by the tetrahedra
1337, 1578, 2358; 1276, 1576, 1586, 2376, 2386, 3586; 1286, 3576.

Taking a projective transform Q' of @ such that all the faces of Q'

swept the triangle (corresponding to) 128 are visible from a point 4
cutside Q', deleting the tetrahedron 3576, and introducing the tetra-
-odra 3564, 3764, 5764; 1234, 1374, 1784, 2354, 2584, 5784, we obtain
1 simplicial decomposition of the tetrahedron 1284. An easy comparison

.hows that it is indeed a 3-diagram representing .

Note added in proof (May 24,1967). The result of Theorem 4 was recently strengthen-
ol by David W. Barnette (private communication). Barnette proved the validity of
e “lower bound conjecture” for simplicial 4-polytopes with at most 10 vertices, as
«ell as in the following additional cases: 5-polytopes and 6-polytopes with at most
10 vertices, 7-polytopes with at most 11 vertices, and 8-polytopes with at most 12

vertices.
Regarding the cell-complex .# * dual to 4 the following results were obtained,

which show that Briickner’s tacit assumption about the existence of a 3-diagram real-
izing.# * was unjustified. G. Wegner has shown that the 2.skeleton of # * is not
realizable by a geometric cell complex in any Euclidean space. Using this result,
D. W. Barnette has established that the 1-skeleton of # * is not a 4-polyhedral graph.




