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Abstract. By means of sign-patterns any finite family. of polynomials induces a de-
composition of R” into basic semialgebraic sets. In case of integer coefficients the latter
decomposition roughly appears to be a partition into realization spaces of 4-polytopes. The
latter is stated by the Universal Partition Theorem for 4-polytopes by Richter-Gebert. The
present paper presents a different proof. As its main tool, the von Staudt polytope is intro-
duced. The von Staudt polytope constitutes the polytopal equivalent of the well-known von
Staudt constructions for point configurations. With the aid of the von Staudt polytope the
original ideas of universality theory can be directly applied to the polytopal case. Moreover,
a new method for representing real values (on a computation line) by polytopal means is
presented. This method implies a bundling strategy in order to duplicate the encoded infor-
mation. Based on this approach, the following complexity result is obtained. The incidence
code of a polytope, exhibiting a realization space equivalent to a given semialgebraic set, can
be computed in the same time that it requires to generate the defining polynomial system.

1. Introduction

As a consequence of Mnév’s Universality Theorem for oriented matroids realization
spaces of polytopes can be as “complex” as arbitrary basic semialgebraic sets (see [7],
[2], [8], [11], and [4]). This stands in contrast to the well-known Steinitz Theorem
(see [12] and [14]), which implies that realization spaces of 3-polytopes are always
topologically trivial. The result for polytopes is obtained from the oriented matroid case
via Gale diagrams (see [3]); however, it leaves open whether we would need an infinite
number of polytope dimensions to represent all basic semialgebraic sets by realization
spaces. The latter problem has been settled by Richter-Gebert [9], {10], who in fact has
restricted the dimension to 4. Due to a fundamental new idea, the latter proof can adapt
the scheme of argumentation known from the case of oriented matroids.

The aforementioned scheme reflects the history of universality theory for geometrical
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objecté, and has the following main ingredients. First, there is a projective scale providing
a geometrical equivalent of the reals. Second, von Staudt constructions (see [6] and [13])

provide a computation of polynomials in a geometrical framework. The possible use of

the latter tools in the area of universality theorems—for point configurations—has been
independently discovered by Mnév [7], and Bokowski and Sturmfels [2]. The work of
Mnév even includes the main ideas of how to settle the orientation problem arising by
complex computations in the plane. Third, geometrical means of transmission of data
decompose the computation into small units, which are easier to treat. Such techniques
have been used by Shor [11] (Desargues configuration—for the binary case), and by
Giinzel et al. [4], [5] (perspectivities—for real-valued computation, which appears in

the context of universality theorems). Fourth, the (Shor) normal form [11] provides a

computation with estimates of the linear order of the intermediate results.

All these tools are intrinsically used in Richter-Gebert’s proof. However, an appli-
cation to the 4-polytope case only became possible through a new fundamental idea:
define an auxiliary projective scale by polytopal tools! In [9] the slopes of a 2k-gon with
parallel edges were used as an appropriate equivalent of the reals. Moreover, the possible
application of perspectivities in a polytopal setting requires a specific locus, where the
corresponding construction becomes “invisible” for the rest of the polytope. This leads
to the connected sum operation introduced by Richter-Gebert. The latter operation glues
two polytopes at a common facet. The 2-skeleton of the common facet has to imply its
flatness in all realizations of the combined polytope. The reason for that restriction is to
ensure the invertability of the connected sum operation.

Richter-Gebert then considers his encoding polygon and duplicates the encoded in-
formation by means of perspectivities on the boundary complex of a 4-polytope. The
presence of the perspectivities is ensured by Lawrence extensions; see also the textbook
by Ziegler [14]. Finally, the arithmetical operations ensuring the defining polynomials
have to be fixed by polytopal tools. In [9] this is done by means of a specific (small)
4-polytope forcing a certain harmonic relation on the computation line. With a consid-
erable effort of connected sum operations the harmonic polytope is then employed to fix
the desired arithmetical operations, where four structurally different cases appear.

In this paper a different proof is presented. The basis thereof is formed by a new
type of a normal form (similar to Shor’s [11]), which represents the computation of
the defining polynomials by affine isomorphisms between triples of points. Through
this approach all the different arithmetical operations can be expressed in a unified
way, implying the first considerable simplification of their polytopal representation. The
computation line is then encoded by a polygon. Although this idea forms the main
ingredient adapted from the original proof by Richter-Gebert, the encoding used differs
substantially from the original. Here, the computation line is the affine hull of an edge of
the encoding polygon, a fact providing duplication of the information without the use of
perspectivities (at this step). In fact, the encoding polygons are bundled at the (common)
computation line. This second simplification allows the computation of the incidence
code of a 4-polytope, with a realization space equivalent to a given basic semialgebraic

set, as fast as the system of polynomial functions defining the given set. Finally, the

affine isomorphisms on the computation line are represented by pairs of perspectivities.
This is in fact the fundamental idea behind von Staudt’s constructions. The new aspect,
here, is the direct application of the perspectivities to the encoding polygons, and not
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only to lines. In such a way the von Staudt polytope arises. The von Staudt polytope
may be considered the main contribution of this paper. It directly converts the von Staudt
constructions from an instrument for point configurations to a polytopal tool. In other
words, the original ideas of universality theory—to consider a computation line and von
Staudt constructions—have found their polytopal analog. Beside this, the use of only
one polytopal building block forms a third simplification of the proof. No additional

connected sum operations are required, except two Lawrence extensions, which fix the
perspectivities used.

Remark 1. The method of a bundled product—see Section 3.4—was developed by the
author before he knew about Richter-Gebert’s work [9]. It originated with the intention
to lift planar point configurations to 5-polytopes with equivalent realization spaces. In
view of Mnév’s Universality Theorem for oriented matroids [7], this would provide
a Universality Theorem for 5-polytopes. However, the author’s investigations ran into
some problems, which arose from the required calculation of the face lattice. Richter-
Gebert’s fundamental idea, to consider a polygonal equivalent to the reals instead of
more complex configurations, also brought the breakthrough for the author’s approach.
The author then worked on a combination of both ideas, which resulted in this paper.
Besides the aforementioned influence—in autumn 1994—both works on the universality
theory for polytopes ran independently.

The paper is organized so that the reader comes step by step from the defining polyno-
mials to more and more geometrical and polytopal representations thereof. In Section 2
the basic definitions are cited (and partially strengthened), and the Universal Partition
Theorem is formulated. The entire proof is presented in Section 3. In Section 4 the reader
finds a structural analysis of the face lattice of the von Staudt polytope, which is not nec-
essary to follow the proof. The first step of the proof (Sections 3.1 and 3.2) represents
the defining system of polynomials by a set of affine transformations between triples of
points on the real line. In Section 3.3 the first polytopal tool is presented: the encoding
polygon. Sufficiently many copies of the encoding polygon are bundled in Section 3.4
to form the starting polytope. The assertion on the computation of the incidence code
in linear time, however, requires a smaller number of copies of the encoding polygon;
compare the end of Section 3.9. A preview to the remaining (polytopal) steps of the
proof is given in Section 3.5. In Section 3.6 one can see how the face lattice of the poly-
tope formed from bundled polygons’ determines the order of the encoded numbers. The
problems arising for the concept of stable equivalence, in connection with the connected
sum operation, are discussed in Section 3.7. The construction of the von Staudt polytope
is only presented in Section 3.8. For the first reading it is therefore suggested looking at
Lemma 8 and Section 3.3 first, and then jump directly to Section 3.8. Finally, Section 3.9
assembles all the material.

2. The Universal Partition Theorem

The list of all faces of a polytope P, partially ordered by inclusion, forms a graded atomic
and co-atomic lattice £(P). The minimal element of L(P) is & and the maximal set is
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P. The vertices and facets are the atoms and co-atoms of the lattice, respectively. For a
graded lattice we can define its dimension by means of maximal ascending sequences.
Let LAT (d, k) denote the set of graded co-atomic lattices with dimension d and k
vertices. Note that the lattice is already determined by the set of incidences between the
atoms and the co-atoms, which is referred to as the incidence code.

Intuitively, any polytope P with £L(P) = L could be regarded as a realization of the
lattice £. However, in order to obtain a realization space with a simpler topology, we
use a factorization up to affine isomorphisms. To this end, we consider vertices (of our
lattice) such that the corresponding vertices of a realization (a polytope) are necessarily
affinely independent: For £ € LAT(d, k) a set of vertices Pis .-, Pd+1 is called a
basis if forany i = 1, ..., d there exists a face F € £ containing py, ..., p;, but not
Pi+1, - - - » Pd+1. (Note that any graded lattice has a basis.) Now let LAT *(d, k) be the set
of those lattices from LAT (d, k) for which py, ..., ps.; forms abasis. In the following,
we identify a polytope P C R? with the vector of its vertices (py, ..., px) € Ré.

Definition 2. Let£ € LAT*(d, k). Thenapolytope P in R is called a realization of £
if L(P) = L and, moreover, the first vertices py, ..., ps4) coincide with the affine basis
p=0,p=(,0,...,0),...,and pg1; = (0,...,0, 1). The set of all realizations
of £ forms a subspace of R, It is called the realization space of L, and is denoted by
R(L).

The realization spaces of 4-polytopes are compared with basic semialgebraic sets
defined over Z. Such sets are defined to be the finite intersection of sets of the form
{x e R" | g(x) = 0}, and {x € R" | g(x) > 0}, where g stands for a polynomial with
integer coefficients. For more details on (basic) semialgebraic sets we refer to [1]. The
polynomials g € Z[X] can be computed by straight line programs, which manipulate
the coefficients of already computed polynomials in order to compute new polynomials.

Definition 3. A straight line program on n variables is a sequence of polynomials-
F ={fo,..., fa} together with mappings ‘

or {n+1,...,a}> {+,—, x}, B> op (operations),
iLj: {n4+1,...,0}—>{0,...,—1} (predecessors)

satisfying the following conditions:

(1) f0=17f1 =X17~--vfn=Xn’
(i) i(B), j(B) < B,
(i) fg = fip) op fiep)-

The number « is called the length of the straight line program (f, o, i, j).

Now we describe the type of mappings that is going to be used to compare the structure
of realization spaces with basic semialgebraic sets. Here, we follow the concept of stable
equivalence introduced by Mnév [7], [8], we especially refer to the refined concept
introduced by Richter-Gebert [9], which is slightly strengthened here again. Compared
with [9] our setting immediately implies that a stable projection mapping is a trivial
fibration.
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Definition 4 (Stable Projection). Let T denote a (finite) index set such that V =
{(Volo e Z}and W = {W, | 0 € X} are families of pairwise disjoint subsets of
R" and R™*4, respectively. Put V := | J_ V, and W := U, W,. Let TT: R™*4 — Rn
denote the canonical projection deleting the last d coordinates. We say that V is a stable
projection of W if the following conditions are satisfied:

) M(W,)=V,,0€Z,
(i1) the n-parametric family M (v) ¢ R?, v € R", defined by setting

M) = {weR?| (v, w) € W},

consists of interiors of polyhedra,
(iii)) M (v) can be described by means of a finite set of linear inequality constraints

M@)={weR|g;(v)*w > ¥;(v),i € I},

such that the coordinate functions ¢; ;, ¥;: R* — R are polynomial functions
with integer coefficients. The symbol “«” denotes the scalar product.

The mapping I1 is referred to as a stable projection (mapping).

Definition 5 (Stable Equivalence). Two families V and W as in Definition 4 are called
rationally equivalent if there exists a homeomorphism ¢: V — W such that ¢(V,) =
W, and both functions ¢ and ¢! are rational functions (with integer coefficients).

Two families V and W are stably equivalent (abbreviated by V ~ W) if they belong
to the same equivalence class generated by stable projections and rational equivalence.
A finite composition of stable projections and rational equivalences is called a stable
composition.

Main Theorem (Universal Partition Theorem for (1, 00)"-Partitions). Let (F, o, i, j)
be a straight line program, andlet g,, .. ., g,, € F. The polynomials g,, ..., gm € Z[X]
induce a partition S := {S; |0 € {—1,0, 1}"} of (1, 00)" into basic semialgebraic sets,
where S; = {x € (1,00)" | signgi(x) =o0;, i =1,...,m}.

(i) Then there exist lattices L, € LAT*(4, k) such that
S~R,

where R denotes the family of realization spaces R := {R(L,) | o € T}, which
are defined by {L, }, . (Actually, a stable composition exists.)

(i1) The face lattice L, can be computed in quadratic time (the incidence code even
in linear time), both with respect to the length of the straight line program.

Corollary 6 (Universal Partition Theorem). The assertion of the Main Theorem also
holds for partitions of R" instead of (1, 00)". Both assertions are in fact equivalent,
including the complexity result.

Proof. In order to see that the original assertion implies the assertion for partitions of
the entire space, we substitute the variable x; € R by a pair (x,.'" ,x;) € (1, 00) such that
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X = x,-+ — x; . A moment’s reflection shows that (x*, x™) > (x*, x7, x) > x forms
a stable composition; see also [4] and [9]. The other direction is obvious. I}

3. Proof of the Theorem

3.1. Nonnegative Coefficients

The functions Jo, ..., fo of ourstraight line program are replaced by pairs of polynomials
( fﬁ+ fg ) with nonnegative coefficients, such that we have f; = fﬁ fﬂ‘ To this end let

1=1-0@e,1"=1,1"=0),and X; = X; - 0. Ifoﬂ _+weusefﬁ = ,(ﬂ) ](ﬂ)
and fg" = fig + fip Forop = — weput £ = g, + fip and fy = fip + f;(ﬂr
and for op = x we put 5 = fi{y) fiis) + fiip) fip a4 f = filg Fiim + f:(ﬂ)fj(p)
In such a way we obtain a straight line program F' of length y < 3« which ex-
cludes the operation og # —, and which computes the defining pairs of polynomials
(g?L, 8 )s---.(gr, gn). For simplicity delete all additions and multiplications with the
zero function and multiplications with 1 from the new straight line program (F, o, i, j).
Put fu41 := 2,ie.,0(n+1) = +,i, j(n+1) = 1. Finally, we can easily ensure (by some
extra addition on both sides) that none of the defining polynomials g7, g7, ..., g5, gn
vanishes; this might increase the length of the straight line program to some y < 6a.

3.2. Computation on a Line

In this section the operations of the straight line program are encoded by affine transfor-
mations between triples of points on the real line. This method is novel and enables us
to treat the computational procedure.in a unified way. It extends the concept of a Shor
normal form [9], [11] in such a way that only one type of an encoding relation is required.
In the work of Richter-Gebert [9], four different cases (caused by different operations of
the computational procedure) had to be distinguished. The construction of the normal
form roughly works as follows. In Section 3.1 the original straight line program has
been replaced by a new one only using the operations of addition and multiplication,
thus all the intermediate results stay within the interval (1, 0o). The appearing values of
polynomial evaluation are not required to be completely ordered; in particular the input
variables can have arbitrary order. The idea of a normal form consists of the fact that
the order of some particular results of polynomial evaluation is predetermined by the
straight line program, thus the polynomials themselves and their domain. For example,
the value of f; + f; must be greater than f;, f;, 1 provided that f;, f; > 1. What we do
is to chose small sets of polynomials with predefined order, suchas 0 < 1 < f; < fj.
The precise value of f; is unknown; nevertheless it must be finite. We have the freedom
to chose any ascenting affine isomorphism (say ¢: R — R) to encode the values of
fi, fi on the image line; they are given by the position of the images of 0, 1, f; and
0, 1, fj, respectively. Having encoded the first set of polynomials into what we call a
block there still remains the interval (¢(f;), 0o) for an encoding of the next ordered
set of polynomials. This inductive procedure yields an encoding of all the intermediate
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function values in a linearly ordered way; in fact the fixed order type does not imply any
further partitioning of the given basic semialgebraic sets. The next step consists in the
encoding of the functional dependence between the different intermediate results, which
is given by the straight line program. To this end our blocks must have been chosen
appropriately. By means of some new function evaluations which have not been present
so far in the straight line program it is possible to ensure all the functional dependences
(and order properties) by means of affine isomorphisms between triples of points from
different blocks. After this introduction we start with the formal part.

Consider a k-tuple ¢ = (q,...,qx) on the real line R. It is called ordered if 0 <
q1 < --- < g¢. We compare ordered triples, where we always assume them to belong
to an ordered k-tuple g with k > 6. Two triples (g;,, ¢;,, g;,) and (4j,» 9j,» gj,) are called
comparable if they are ordered and their convex hulls [g;,, g;,] and lg),. g;,] are disjoint. -
Let A denote the affine isomorphism sending ¢;, to gj, and g, to g;,. We define the sign
of a pair of triples as follows:

. —1) A(ql3) < qj;;
S‘gn((‘Iil , qizv qig)v (q], , qur qjg)) = 0! A(qlg) = qu
+1, A(qis) > Gjs-

The sign-function compares triples belonging to clusters. Here, a cluster is a subset of
the k-tuple that is equipped with its own affine scale, measuring the relative position of
the points involved. The points of the cluster stand for specific function values, which are
actually encoded that way. To define the scale there are points representing the numbers 0
and 1. Having this in mind, the sign-function can be used in a twofold way. The function
values represented by g;, and g;, are compared if both g;, and gj, stand for 0, and both ¢,
and g, for 1. Otherwise, some computation is encoded. To be sure of the precise result,
only the sign-value 0 is allowed in such a case. The latter situation calls for its own
name: the k-tuple g is said to satisfy the condition C: (qi,, q1,, qi,) ~ 4., 9.9, if
sign((gi,» 9iy» Gi3)» (@), » Gj2» G5,)) = 0. To define the realization space of ordered k-tuples
an affine basis is fixed. The basis is given by the position of 0 and of another point, say
g1 = 1. The realization space of ordered k-tuples defined that way is denoted by R¥
In the next step R¥ . ., is partitioned into smaller realization spaces which are associated
with conditions and sign-mappings.

Definition 7. LetC = {C,, ..., C,} be a set of conditions on {g1,.-..qx}). Then the
space

Re :={q e Rf | g satisfies Cy, ..., C,}
ordered

is called the realization space of C. We need a decomposition into smaller realization
spaces. To this end consider a vector of sign-functions sign: R, . — {—1,0,+1}"
on comparable pairs of triples. Let a sign-vector ¢ € {—1, 0, +1}™ be given. Then the

space
Re(o) :={q € Re | sign(g) = o}

is called the common realization space of C and o. Let R(C, sign) denote the partition
of R¢ into common realization spaces defined by setting R(C, sign) := {Re(0) | o €
{—1,0, +1}"}. :

ordered®
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Fig. 1. Functions X4, ..., Xn.

Lemma 8 (Normal Form). Let S denote the partition of (1, co)" into basic semialge-
braic sets, as in the Main Theorem. There exist a set of conditions C = {Cy, ..., C,}
(on ordered k-tuples) and a vector of sign-functions sign: Rt ;. — {—1,0, +1}" such
that S ~ R(C, sign). The set of conditions C and the vector of sign-functions sign can be
computed in linear time with respect to the length « of the straight line program F. In par-
ticular, the number k of points forming the k-tuple can be estimated by k < 11y < 66a
and the number r of conditions byr < 7y < 42¢.

Proof. We prove the lemma by induction over the length y of the straight line program
(F', 0,1, j) constructed in Section 3.1; note that ¥ > n + 1. The appropriate shorter
program is obtained by deleting the last operations of the original. We show the exis-
tence of a set of conditions C such that the following conditions hold (with appropriate -
mappings ¢ > x(g) and g = fE°"(q)):

(i) g — x(g) is a stable composition R¢ — (1, 00)”",

(i) fitx(@) = @ i=1,...,r;

geom

the mappings x(q) and f (g) are defined below.

The first step deals with the smallest case, namely y = n+1, F = {1, X, ..., X,}.
Put k := 3n and r := 0. Consider an arbitrary ordered 3n-tuple ¢ = (q1,...,43) €
R ceq- To symbolize their meaning, the points g1, . . ., g3, are endowed with new labels
07,1/, ff for f = X,,..., X,, asshown in Fig. 1. For f = X, ..., X,, we define an
affine scale o’: R — R to be the affine isomorphism sending 0/, 1/ to 0 and 1, respec-
tively. Then f8°™(q) := w/(f/) is the geometrical function evaluation of f for the
given k-tuple. In particular, this defines x2°™(g) := (X feom, .o ., XE°™)(g). Property (ii)
says that the geometrical function evaluation g > f¥*°"(g) coincides with the arithmeti-
cal evaluation given by g > x(gq) +> fi(x(g)). In the first step property (ii) holds by set-
ting x(g) := x8°°™(g). It remains to verify (i). Itis clear thatqg +— (g, X,(q), ..., X,(q))
is a rational equivalence. Moreover, each mapping of forgetting the last point
of g, namely (qi,...,91, Xi(q), ..., Xx(@)) — (q1,-...q—1, X1(q), ..., Xa(q))
is a rational equivalence (if ¢, is some f/ or I = 1) or a stable projection
(otherwise). The composition of the latter mappings coincides with ¢ +> x(q), Rg —
(1, c0)".

In the second step (¥ = n + 2) we represent the equation f,.» =2 =141 by
means of affine isomorphisms on R. Consider an ordered (k 4+ 9)-tuple, which is an
extension of the k-tuple used in the previous step. Recall that the k-tuple is a common
realization of (C, ¥). The additional points are labeled as shown in Fig. 2. New affine
scales w*, w*: R — R are defined analogously to step 1, i.e., *(0*) = 0, 0*(1*) = 1,
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0 a1 .G

R Y
R ~ v 4

w* w+

" Fig.2. Functions 2, 3.

etc. We use the following conditions:

Ci: (0,1,2)" =~ (0,1,2)*,
Cy: (0,1,3)" = (0, 1,3)*,
Cs: (0,1,2)" =~ (1,2,3)%,

Cs: (0,1,3)" = (1,2,4)%,
Cs: (0,1,2)* ~(0,2,4)*.

where the upper indices behind the brackets represent upper indices of the coefficients
inside, i.e., (0, 1, 2)* in C; abbreviates (0*, 1*, 2*). Condition C; does not guarantee the
desired equation w*(2*) = 2. In fact, C; stands for an affine isomorphism, i.e., it just
means w*(2*) = w*(2*) =: a. Satisfying all the conditions Cy, ..., Cs, however, is
equivalent to a = 2, b = 3, and ¢ = 4. This can be seen as follows:

G & w3 =0t@h) =5,

a—-0 b-1
c =21
S ey
b-0 -1 \
Ci & —=F , where ¢ :=wt@4"),
1-0 a-1
a—-0 ¢-0
c a-r_c="
S 1207220

Finally, the numbers k and r are increased by 9 and 5, respectively. For function
2 € F' we use the affine scale ? := w*, i.e., 0% := 0*, 12 := 1*, 22 := 2*. This implies
property (ii). In view of property (i) it suffices to show that the mapping of forgetting
the new points is a stable composition from the new realization space to the realization
space of step 1. The arguments must be chosen with some care. Indeed, deleting one
single point destroys the encoded structure, therefore we have to delete all the new points
nearly simultaneously. The position of the 7-tuple of new points is an affine mapping
of the positions of the quadruple (0*, 3*, 0%, 1%). Deleting all the other points (at once)
yields a rational equivalence. The remaining points can be deleted step by step starting
with the point exhibiting the largest g-index, yielding stable projections.

In the third step of our proof we assume that the lemma already applies to straight
line programs of length y — 1 > n + 2 (just delete the last operation of the original one).
We add new points and new conditions in order to encode the computation of Sy-

Case 1. Multiplication to be encoded: o, = x. We add four points according to Fig. 3
and two conditions, i.e., k is increased by 4 and r by 2:

O, 1, f)% =~ ©,1, )" meaning of(f") = fi(x),
O, fi, ) = 0,1, [T - saying w0 (f") = f, ().
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0} v 1'11 f.fv :{‘7

wh
Fig. 3. Operation x.

Case 2. Addition to be encoded: o, = +. We can assume that f; # 1; recall step 1.
New points are added according to Fig. 4 (in case f; = 1 not all of them). Here are the
corresponding conditions:

0,1, fi)* = (0,1, fHF,
(L fi, 2fi = 1) = (0, 1,2)%,
©, fi,2f)* = (0,1,2)%,
Qfi = 1,2f,2fi+2)* = (0, 1,3)?,
0,1, f)* = (©,1, fH,
O, fi, i+ D" =~ (0,2f,2fi + 2%,
fi i+ 1, f,)f = (0,1, f)).

Provided the earlier conditions are satisfied the above conditions are equivalent to the
following assertions: w*(f*) = fi(x), o*(2fi — 1)*) = 2fi(x) - |, ©*(2f)*) =
2£i(x), (@2 fi +2)%) = 2£i(x) + 2, 07 (") = filx), 0T (fi + D) = fi(x) + 1,
and w*(f;5) = £, (x).

In case f, = 1 the last point f; *+ and the last condition are not added (instead, we take
5 t = (fi + D). One easily checks that the involved points are always ordered in the
descnbed way. Finally, k and r are updated and w/» := w™ is chosen as the affine scale
associated with f,.

QR

Cases 1 and 2. For any operation we add at most 11 points and 7 conditions. The mapping
of forgetting the new points forms a stable composition. This can be seen analogously
to step 2.

In the fourth (and final) step of the proof we consider a realization space R¢ having
the propemes (i) and (ii). In view of these properties it suffices to compare the values
of w (g+) and & (g;) by means of additional sign-functions; neither new points nor
new conditions are required. We add the sign-functions

sign; (q) :=sign((0, 1, )% , (0,1, g7)%), i=1,...,m.

o 5-“'§ .
- - .. = » - + + L+ +
° - = & ~ © Hw - 9
I + +
- - T
< Sy =
o o
N v ., — ~ _
w* w“"

Fig.4. Operation +.
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Then, in view of property (ii), it follows that
sign;(q) = sign(g;" (x(9)) — &7 (x(9)))-
Therefore the following holds for any sign-vector o € {~1, 0, +1 }"" and any g € Re:
x(@) €S(@) & qe&Re().

This completes the proof in view of property (i), showing the stable equivalence of the
partitions of R" and R that are compared. a

3.3. The Encoding Polygon

We define a (reduced) realization space of the (k + 3)-gons. The (k + 3)-gon P C R?
is identified with the vector P = (po, Po, P1,-- ., Pr+t) Of its vertices, which are
supposed to appear in the described order. The realization space P**3 of the (k +.3)-
gons is defined in the same way as the realization space of a polytope: by fixing an affine
basis. We choose the affine basis po, = (0, 0), po = (1, 0), pry1 = (0, 1). The reduced
space of (k + 3)-gons is then defined by setting

P =40,0), po=(1,0), pry1 = (0, 1),
= (10, 0), b = (0, 10), where
pki3 I p o gy | a=(10, .
reduced & a := proj(px, p+1) N proj(Poss Po),
b := proj(po, p1) N proj(pec, Pr+1)

Here, proj(p;, p;) stands for the projective line—in the projective closure P> of R2—
which connects the points p; and p;. A moment’s reflection shows that ’P,':,’Sced represents
the space of projective equivalence classes of (k + 3)-gons. (For a verification choose
the points pe, a, b, proj(a, pr+1) N proj(b, po) as a projective basis of P2. Note that
the constant 10 in the definition of Pf;gfced is arbitrary. In fact we only have to fix some
constant in order to define a projective basis.) The fact that Pr"ejsced represents the space
of projective equivalence classes is used in the proof of Lemma 9 in order to show that
the decoding mapping & is a stable composition:

$3 Pk+3 - IR’cgrdered’
E&: P gq.

Before defining mapping £ recall that ]Rf,rdmd is related to a specific affine basis of
R. In fact we have used the points 0 and ¢; = 1. The choice of this basis supported
the proof of Lemma 8. In the present situation the affine basis 0 and g; = 10 is more
appropriate. The transformation between both kinds of realizations of ordered k-tuples
is obtained by affine isomorphisms. Since this yields a rational equivalence we do not
distinguish between both representations of R¥ ;. .,, however, in what follows we refer
to the affine basis given by 0 and g; = 10. '

The coefficient g; of g is defined as the (nonstandard) coordinate of ; := proj(peo, Po)
N proj(p;, pi+1) with respect to the projective basis {ps, po, Gx}. The latter projec-
tive coordinate is defined to be the image of §; under the projective isomorphism
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Fig. 5. The encoding polygon.

Proj(Poc, po) — P = R sending peo, Po, gk to 00, 0, 10, respectively. For an illus-
tration of this important definition see Fig. 5. Roughly speaking, the mapping & enables
us to convert sign-conditions on ordered k-tuples into shape-conditions of polygons. In
view of (the proof of) Lemma 8, these shape-conditions even encode the given straight
line program. For convenience we identify the encoded point g; := &;(P) with the in-
tersection point g;. However, here, in view of stable composition, it is important to treat
the images on the real line.

Lemma9. The decoding mapping &: P*+3 — R¥

ordered 15 @ Stable composition.

Proof. - The proof consists of two steps. In Step 2 we show that &: PX¥3 . — R,
s a stable composition. Step 1 is a reduction step. Here, we use the projective isomor-
phisms ¥ sending any (k + 3)-gon to its projective equivalent in Pkﬁced. Applying ¢

re

to all vertices simultaneously, we obtain a mapping W: P*+3 — PXt3 . Note that the

isomorphism ¥ depends on the polygon P € P**+3. The mapping ¥ will be proved to
be a stable composition. Steps 1 and 2 together imply the lemma. This is due to the
fact that the projective isomorphism ¥ transfers the points §; defined by P € P*+3
to the corresponding points defined by W(P). Hence the composition (of both steps)
£oWw: PH3 P — RE .4 in fact coincides with the direct application of &.

Step 1. Note that the mapping W is well defined and onto. Let Lo, C P? denote the line
at infinity. We parametrize the space P¥*3 by means of the equivalence class (in ‘Pr':gfced)
and the corresponding isomorphism . The polygons in P*+3 are then given by ¥ ~1(P),
where (P, ¥) is an admissible pair formed by an equivalence class P € PX}3  and a
projective isomorphism ¥. Such a pair is called admissible if the following conditions

are satisfied:

e (0,0), (1,0), and (0, 1) are fixed points of ¥.
o Y(L)NP =0

A moment’s reflection shows that the space P¥*3 is rationally equivalent to the set of the
admissible pairs (P, ). The space of the projective isomorphisms with the desired fixed
points can be parametrized by means of the points ¢ and d, which arise by intersection
of ¥ (Leo) With proj(peo, po) and proj(peo, pi+1), respectively. The admissible isomor-
phisms among them are then characterized by the property [(c, 0), (0, d)] N P = @; see
Fig. 6. Notethatc, d ¢ [0, 1]. Inorder to avoid values of c and d at infinity we use another
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Fig. 6. An admissible image ¥ (L).

rational equivalence, induced by a special prOJectlve transformatlon ¥.The 1som0rphlsm
¥ is defined by sending (0, 0) — (0, 0), (2,0) > (—3,0), (O, 2) — (0, 2) and both
points po and pi+; to the line at infinity. Now the space of admissible v is reparametrized
by those pairs («, B) of positive reals such that [(e, 0), (0, B)] N Y (P) = 9; see Fig. 7.
(Note that ¥ o ¥ (Ls) = proj((«, 0), (0, B)). The image ¥ (P) is shaded.) For given
P and « the space of admissible 8 is therefore determined by the inequality system
(B,a)* p; >af,i =1,...,k, where “x” stands for the scalar product.

Step 2. The space PLt3 | is parametrized by the variables giand ri, fori =0,... k.
The values of g; and r,_; are defined by the intersection points of aff(p;, p,+,) wlth
the coordinate lines. Note that the vector (g, ..., gx) coincides with the image of the
decoding mapping &(P). Therefore it suffices to show that the mapping g0, ..., qu),
(o, ri, rict,s oo r ) V> ((qos - -+, q), (ro, Figt, ..., 1x)) of forgetting the entry r; con-
stitutes a stable projection for any indexi = 1,2, ..., k — 1. See Fig. 8 for an interpreta-
tion of the latter projection mapping as a mapping ’P"“gfcef,' b 'P"jfc';:, The following
manipulation of the polygon is used. Starting from p; := p; andi = 1 we consider the
polygon (poo, Po, Pis - -, Pkmiy Pkmi+1> Pk1)- Forgettmg the entry r; finds its equiva-
lent in removing the edge (px—;, Pr—i+1). Then Pr_; is defined to be the intersection
point of the prolonged neighboring edges. We show that the set of possible entries r;
can be recovered from the result of the projection mapping by means of two polynomial
constraints. First, we have r; > ry = 1. Second, the point p;_; must lie “above” the line .

Fig.7. Theimage ¥ o ¢ (Loo).
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Fig.8. Forgetting r;.

aff((gx—:, 0), (0, r;)). This is equivalent to (r;, Gk-i) * Px—i > rigy—;. By Cramer’s rule
the coordinates of p;_; are rational functions of the vectors q and r. The denominator
function provided by Cramer’s rule does not vanish for geometrical reasons: in fact the
point p;_; does not belong to the line at infinity. Multiplication of the above inequality
with the square of the denominator provides the second polynomial constraint. Note that
the application of Cramer’s rule can be substituted by appropriate rational equivalences,

as performed in Step 1. However, here such a technique would considerably complicate
the exposition. O

3.4. The Starting Polytope

In the previous section we have seen that a (k + 3)-gon encodes an ordered k-tuple in
view of the mapping &. This section is devoted to duplicating the encoding polygon
in order to make it accessible to further manipulations. Generally speaking, we use a
“bundled” product of an encoding (k + 3)-gon P € P*+3 with an “admissible” l-gon.
Then I — 2 copies of the encoding polygon are obtained. Suppose that | > 4. In the
present framework it is more convenient to consider realizations of a polygon not as
subsets of R?, but as subsets of an affine 2-subspace of R®. For the realizations of
the encoding polygon we use the affine space given by the base py := (0,0, 0, 0),
po :=(1,0,0,0), and pry; := (0, 1,0, 0). Realizations of the l-gon R = (ry,..., 1)
are considered as subsets of the affine space A given by the base r, := (0,0, 1, 0),
r2:=(0,0,0,1), and r3 := (0, 1, 0, 0). For any pair (P, R) the following construction
can be performed. First, we fix a projective isomorphism ¢ on R? such that the four points
0,0,0,0),(1,0,0,0), (0,0, 1,0), and (0, 0, 0, 1) are sent to the 3-space at infinity and
the common point pyy; = r; = (0,1,0,0) of P and R to the origin. For an easier
formulation of the construction we suppose that the images of (0, 0, 0, 0) and (1, 0, 0, 0)
are in the projective closure of R? x (0, 0) and the images of (0,0, 1, 0) and (0,0, 0, 1)
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are in the projective closure of (0, 0) x R2. (In fact, the construction is independent of the
special choice of ¢.) Second, let L, denote the original space at infinity. Note that ¢(L o)
intersects neither ¢ (P) nor ¢(R). Third, we consider the images ¢(P) C R? x (0, 0) and
@(R) C (0,0) x R2. Both images are unbounded 2-polyhedra each with two vertices
fewer that the original. What we want is to treat the sum of the latter 2-polyhedra, but
only if the I-gon R satisfies a special condition, namely that all vertices rs, ..., r, are
admissible points. A point r € A is called admissible if ry, r, r3, r are the vertices of a
quadrilateral set appearing in the given order and the sum ¢(P) + ¢(r) does not intersect
the image (L) of the space at infinity. Using similar arguments to those in the proof
of Lemma 9, we see that the set of admissible points is the relative interior of a polygon
which can be described by linear inequalities whose coefficients depend polynomially
on P only. Assuming the vertices r3, ..., r; to be admissible points, the bundled product
of P and R is defined to be the inverse image (under o) of the sum ¢(P) + ¢(R). The
canonical projection from the space of bundled products (of some encoding (k + 3)-
gon with an I-gon) to the space P**3 of encoding (k + 3)-gons constitutes a stable
composition.

Now let ! := 3 4+ r + m; recall that r denotes the number of conditions and m the
number of sign-functions used in Lemma 8. The space of bundled products coincides
with the realization space of a 4-polytope called the starting polytope (provided that
is the right number, namely ! = 3 + r + m). In fact, the face lattice of every bundled
product is the same. This is directly implied by its definition as the inverse image of
a sum. The face lattice is obtained from the face lattice of the Cartesian product by a
contraction of {poc} X R, {po} X R, P x {r;} and P x {r,}.

On the other hand, any polytope with the described face lattice is a bundled prod-
uct, i.e., it can be obtained by the above construction. This property appears to be
the decisive property; it says that an entire realization space (of 4-polytopes) is cov-
ered by the construction. In fact, if we start with an arbitrary polytope combinatori-
ally equivalent to a bundled product, then the transformation ¢ can be recovered. (It
is given by the position of the (well-defined) vertices corresponding to the images of
0,0,0,0),(1,0,0,0), (0,0, 1,0), and (0, 0, 0, 1).) The images of the 2-faces bundled
at[(0, 0,0, 0), (1, 0, 0, 0)] (the encoding polygons) are parallel. The same is true for the
images of the 2-faces bundled at {(0, 0, 1, 0), (0, 0, 0, 1)]. Now it is a property of the face
lattice—of the polyhedron which is obtained as the image of the given 4-polytope—that
it is a sum in the sense of the construction. This implies that the considered polytope is a
bundled product. Here (and in the following), the notation [A, B] stands for the convex
hull of two given convex sets A and B.

How should we refer to vertices and faces of the starting polytope in a convenient
way? We can make use of the (bundled) product structure. A vertex corresponding to
the pair (p;, r;) (after the application of ¢) is denoted by p;. We can regard it as a copy
of the vertex p; in a copy of the encoding polygon, namely in the copy with the number
Jj- The points p, and p} coincide for all copies (this is the sense of bundling), therefore
we delete the upper index j for these vertices. The encoding polygon with upper index
J is abbreviated by P/. Figure 9 shows what a Schlegel diagram of a starting polytope -
in principle looks like. (For details on Schlegel diagrams we refer to [14].)
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Fig. 9. The starting polytope.

3.5.  Outline of the Polytopal Part of the Construction

We consider a specific two-dimensional projection of the starting polytope to explain the
ideas of the following constructions. The projection we use is ¢ oMoy, where I stands
for the orthogonal projection IT: R* — {(0, 0) xR?}, and ¢ is the projective isomorphism
on P* used in the definition of the bundled product in Section 3.4. The projection of
an encoding polygon P/ is just one point, namely the vertex rj of the I-gon R. The
projection of the starting polytope is the entire I-gon. Using this projection the encoding
polygons are ordered in a geometrical (not only abstract) setting. Of special interest are
the edges [rj,rj41], j = 3,...,2 4+ r + m, of the projection, each corresponding to a
facet [P/, PJ*1] of the starting polytope. Note that there are as many of these edges
as there are conditions and sign-functions. Let a fixed one-to-one correspondence be
given. Between the encoding (k 4+ 3)-gons P/ and P/+! we attach hexagons; where
the term “between” is understood in connection with the geometrical order given by
the projection. The hexagons are not supposed to encode the entire k-tuple of ordered
points on the real line we have in mind. Their job is just to encode the pair of ordered
triples that are compared by the condition or sign-function we are treating. (In the case
of a sign-function the interpretation is slightly different.) The attaching can be made
“invisible” for the rest of the polytope by means of the connected sum operation as
explained by Richter-Gebert [9]. This is important in order to determine the face lattice
of the extended polytope. The convex hull of the two attached hexagons forms a facet
of the extended polytope. The major advantage of the use of hexagons consists of the
fact that the face lattice of this new facet will be the same in all cases. The last step of
the construction is the attachment of a von Staudt polytope to the latter facet. The von
Staudt polytope is the part of the construction converting a condition or sign-function
into a property of the face lattice of the polytope.

To describe the following steps of the proof we need two polytopal tools, called
“attaching an encoding hexagon” and “attaching a von Staudt polytope.” Besides this we
have to keep control of the face lattice of 3-polytopes (facets) which arise as the convex
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Fig. 10. Two bundled polygons.

hull of polygons encoding ordered k’-tuples of possibly different size. The latter is what
we begin with. :

3.6. Bundled Polygons and Order Types

Lemma10. Let P! = (pw, po, P}, ..., pi,y) and P? = (pos, po, pi, cevs Playy) be
polygons inR* with distinct affine hulls, which are bundled at the common edge[pec, Pol;
see Fig. 10. Then the convex hull P := [P, P?] of both polygons has dimension 3.
The encoded sets of ordered points on the real line are denoted by q' = £(P') and
q? := §(P?), respectively. The mapping ©: {1, .., k'} x{1, ...,k%} - {~, 0, +} defined
by

- if q <4}
®(iv j) = 0 l:f qil =q},
+  if ¢/ >q}.

is called the order type of (q", q%). (Here, the image of & in R is used for convenience.)
Then the face lattice L(P) is a well-defined injective function of the order type ©(g*, ¢2).

Proof. 'We consider the linear objective function f,(x) := cxx, wherec £ P!, ¢ L P2,
A vertex p}, j = 1,...,k, is optimal for some f, if and only if g/ (c) belongs to the
interval [g;_,, q;]. Here, put 7} (¢) := proj(peo, po) Nix | fo(x) = fo(p})} (seeFig. 11),
and let qjl (c) be the image of c}'j‘(c) under the projective transformation that defines g

as an image of g; compare Section 3.3. On the other hand, the vertices pj and p} are
incident with a common facet if and only if both vertices are maximal points for the same
fe. The latter is equivalent to the intersection [g]_,, ¢/ 1N g%, g?] being nonempty. We
conclude that the order type determines the face lattice of [P!, P2}, and vice versa. [

Corollary 11.  Let P', P2, and P? be polygons in R* bundled at the common edge
[Peo, pol. Assume that the convex hull P = [P, P2, P3] is of dimension 4. Then the



538 H. Giinzel

Fig. 11. Definition of g (c).

* combinatorial type L(P) is a well-defined injective function of the corresponding triple
of order types.

3.7. Invisible Regions

Definition 12. Let P and P denote the vertex vectors of a 4- polytope in R* and one
of its facets. Then the invisible region I(P, P) of P generated by P is defined to be the
set of those points in R* which lie beyond P and beneath all the other facets of P.

InFig. 12 we have two typical examples of an invisible region; note that 7 is always the
interior of a polyhedral set. For a precise definition of the beneath-beyond terminology
we refer to [3].

Lemma 13. Consider a subset M C R* such that iany P = (p1,...,px) € M is
the vertex vector of a-4-polytope and the projection P is the vertex vector of one of its

facets. (The combinatorial types of P and P are not required to be constant on M.) Then
the space

= ((P, pr+1) € M x R* | ppy1 € I(P, P))

I

7

Fig. 12. Typical invisible regions.
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is stably equivalent to M, and the projection mapping (of forgetting the new point)
M — M given by (P, pxs1) v P is a stable projection.

Idea of Proof. The proof uses the fact that the admissible positions of py,; are de-
scribed by strict linear inequalities whose coefficients are rational functions of P. The
definition of the latter inequalities (applying Cramer’s rule), and the arguments lead-
ing to polynomial coefficients, follow the same lines as in the proof of Lemma 9
(Step 2). O

Now instead of a singleton only, we want to place an I-tuple of points within the
invisible region. To this end we use the additional assumption that the “construction”
of the I-tuple is projectively unique with respect to the facet P. There are important
examples for such a situation. Think of the Lawrence extension (see [14]). Also the von

Staudt polytope to be defined below turns out to be projectively unique with respect to
its basic facet.

Corollary 14. Let the assumptions of Lemma 13 hold. Let Tj: R* — R*' denote
the canonical projection P — P.(The vertex vector of P is supposed to start with the
vertices of P.) Considera 2 polynomial mapping R* — ]R“" +4 (with integer coefficients)
associating to any facet Pa polytope P (P) containing Pasa Jacet. (The image stands

for the equivalence class of possible constructions.) Define the space M of invisible
attachings of P to P as follows:

- (Pry--., ) €M, .
M = {(Pl,~--ka+I) €R4k+41 (Plv---,Pk’y Pk+1s---,l~’k+1)%P(P), »
Pk+1s---, Pr+t € Z(P, P)

where the symbol ~ abbreviates projective equivalence. Then the space M _is stably
equivalent to M and the projection mapping (of forgetting the new points) M- M,
(P15 .., pxyt) > P is a stable projection.

Idea of Proof. The proof uses two vertices of P(P) that form a projective basis of R*
together with an affine basis of P. Then all the vertices of the attached polytope are
rational functions of P and the position of the latter pair of vertices. The rest of the proof
follows the same lines as in Lemma 13. _ g

In view of the program of the proof and Lemma 13 one can already imagine what is
meant by “attaching an encoding hexagon.” Details are given in Section 3.9.
3.8. The von Staudt Polytope

Step I: The Basic Facet. Consider a pair of encoding hexagons P! and P2 in R* bundled
at the common edge [poo, po]. The 3-polytope [P, P?] is called a basic facet (of the
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Fig. 13. Projective equivalence using two perspectivities.

construction) if the following conditions hold:

() (41-93.493. 9}, g3, g3) forms an ordered 6-tuple, where q; == &(P").
(ii) The pair of ordered triples defined by the hexagons satisfies the condition C:
@, 93,93 ~ (¢}, 43. 42).

Step 2: The Perspectivities: Definition on the Bundling Line. The condition C in (ii) (stated
on the real line image of &) reads as follows if we treat the geometrical image of £ (the
points of intersection of the affine hulls of the edges with the bundling line): there exists
a projective isomorphism on the bundling line sending goo > goo, g} —> ¢2, g} > q3,
andg; g2. Similar to von Staudt constructions, the latter projective isomorphism can
be obtained by a composition of two perspectivities (in R?), namely g, = goo > Goos
91~ 41 > gf. 95 = g5~ 3,9} > g} > g; see Fig. 13,

Both perspectivities must preserve the order of the points in a certain sense. The pair
of perspectivities is called admissible if g; € R* (not at infinity) and 95 € (9o, q1)- The
condition g; ¢ (g0, g;) implies that the projective lines defining C! as their intersection
point (namely those connecting g with g and g} with g) do not intersect on the open
line segment (g, g1); this is due to the fact that (¢!, ¢}) is an ordered pair. An analogous
assertion holds true for C2. This property is referred to as the orientation property. Note
that the construction is projectively unique. (This follows from the fact that that ¢!, 43,
41, 9, form the projective basis of a 2-space.)

Step 3: The Perspectivities: Application to the Encoding Hexagons. This is the crucial
step of the construction. The aim s to fix the perspectivities defined in Step 2 by polytopal
means. The idea is to apply them to the encoding hexagons, in fact they are applied to
the “pentagons” P’ := (pe, q!, 28 pg, P, i = 1,2 (at least after suitable projective
transformations they are convex sets). What we want is to use the first perspectivity for
defining a projective equivalent of P! somewhere in R*, and to copy the latter equivalent
to P2 by means of the second perspectivity. The presence of the perspectivities can then
- be fixed by Lawrence extensions. (The point q; must be chosen outside the affine hull
of the basic facet.)

However, the construction cannot be done that (two step) way, not even under the
(possible) assumption that the pentagons P! and P? are projectively equivalent. The
impossibility is implied by the fact that the projective hull of P!, C!, and C2 is only a
3-space, hence P2 would not be covered. - .

Therefore we use three steps, i.e., a copy P? of P! and a different copy P* of P2



On the Universal Partition Theorem for 4-Polytopes 541

Fig. 14. A perspectivity between polygons.

being induced by the perspectivities with the centers C! and C?2, respectively. Details

(on the choice of their affine hulls) follow below. The copies P? and P* can even be"
supposed to be bundled at the line aff(p., q;). Then, in view of Lemma 10, we do not

need a perspectivity between them to compare the encoded triples, i.e., no additional

assumption is required concerning the shape of P! and P2.

The pentagon P3 is defined as follows (P* analogously). First, we define its affine
hull by setting A* := aff(pe, g}, p}). Note that C! belongs to the projective hull of P!
and g;. Let p}, p} then be the images of pl, p! under the perspectivity between aff P!
and A* induced by C'; see Fig. 14. Now the vertex vector of P? is defined by setting
P = (px. 41, P3, P}, P)-

If both P and P* are the vertex vector of pentagons (convexity), then the resulting
4-polytope P := [P!, P2, P3, P*]is called a von Staudt polytope.

Is the von Staudt polytope well defined? To see this, recall that the entire construction
is projectively unique for given basic facet [P!, P2]. Thus it suffices to show the existence
of a pair of convex images P and P*. In fact, both centers of perspectivity C* and C?
are arbitrarily close to the line aff(pe, ¢1) provided that g} is sufficiently close to q:-
The orientation property forces the convexity of P3, P#, for such choices of C!, C2,
indeed.

Step 4: The Perspectivities: Stabilization by Lawrence Extensions. In order to make
the construction recoverable from the face lattice (of its result) the perspectivities are
stabilized by Lawrence extensions. In case of C! the Lawrence extension is defined as
follows; see also [14]. The construction starts with P!, P3, and the center of perspectivity
C'. Then two points pyy 3, pj; 5, € R*\aff(P', P?) are added such that

e Cle proj(pu.3p, Piy 3
o C' ¢ pu.3y, Pusyl)

e the vertices of the quadrilateral set (py; 3;, Pusp 91 g}) appear in the described
order.

The latter construction is known as a Lawrence extension (see, e.g., [14]). It is not
hard to see that the face lattice of [P!, P3, pi1.3;, Pl1.3] is the same for all possible
constructions, and that the point C! can be recovered for all realizations of the latter
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face lattice as the intersection point of proj(p}, p3) and proj(pl, p3), see [14] and [9).
We prove that C' € proj(g}, g;) is also implied by the face lattice. In fact, C! is the
intersection point of proj(py; 3), P(1.3)) With the 3-space proj(P!, P?) defined to be the
projective hull of P! and P3. The face lattice of the Lawrence extension exhibits a
facet with the vertices poo, po, g, py1.3), P{1.3)- Therefore proj(p, 3), P 3)) intersects
the 2-space proj(peo, po, ;) C proj(P', P?). The intersection point must be C!. The
point C! thus belongs to the 2-space Proj(peo, Po, q1)- It also belongs to the 2-space
proj(p;, p3. p3. ;). The intersection of the latter 2-spaces is proj(q/, g;), which implies
the assertion.

A von Staudt polytope P endowed with Lawrence extensions of the perspectivities
(of C' and C?) is called an extended von Staudt polytope if the new points are in the
corresponding invisible regions, i.e., p1.3}, pj; 3, € Z(P, [P', P*)) and ppp 4, Py €
I(P, {pusy, o)l [P2, PY.

Lemma 15.  From any basic facet (in the sense of Step 1) there can be constructed
an extended von Staudt polytope, where the construction of the von Staudt polytope is
projectively unique. The face lattices of all (extended) von Staudt polytopes are the same.
Conversely, any realization (of the face lattice) of an extended von Staudt polytope is the
result of the latter construction process starting with its basic Jacet. (The construction
can be inverted.) In particular, any basic facet of a (realization of a) von Staudt polytope
is a basic facet of the construction in the sense of Step 1.

Idea of Proof. A moment’s reflection shows that the space of basic facets (in the sense
of Step 1) has trivial topology. In order to see the coincidence of the face lattices it
therefore suffices to prove the matroids (defined by affine dependence) of the vertices
to coincide for all the constructible von Staudt polytopes. This is not a hard task for
the given construction. However, the computability of the face lattice—as stated in the
Main Theorem—requires knowledge of the lattice. This could be established by means
of an example with rational coefficients. In fact, the Universal Partition Theorem does
not need more care of the von Staudt polytope’s face lattice. For the reader to use the
computation of a (numerical) example in connection with a structural theorem might be
unsatisfactory. The reader might also want to see the result of a geometrical construction
as a real geometrical object (with all its combinatorial properties) actually presented. To
meet these wishes a structural analysis of the face lattice of the von Staudt polytope is
presented in Section 4.

Why is the construction invertible? First, the (combinatorial equivalent of) the basic
facet is present in all realizations of the (extended) von Staudt polytope. In view of
Lemma 10 this implies condition (i) of Step 1. Second, the perspectivities C! and C2
are present, as already seen in Step 5. Third, it remains to prove condition (ii) of Step 1
holds. The application of the perspectivities do not require the latter condition. Assuming
condition (ii) is not satisfied, the images of ¢§ and g2 on proj(pe, ¢/ (under the perspec-
tivities C' and C?, respectively) could not coincide. This in view of Lemma 10 implied
the face lattice of the facet [ P?, P*] to be distinct from the corresponding facet’s lattice
of a constructible von Staudt polytope. Hence such a polytope cannot be a realization of
the (combinatorial) von Staudt polytope. (]
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3.9. Putting Everything Together

The basis of the construction is the starting polytope P. As in Section 3.4, we fix a
one-to-one correspondence between the set of conditions and sign-functions on the one
hand, and the set of facets P/, P/*!, j = 3,...,2 4 r + m, of the starting polytope
on the other. By induction over j the polytope P is modified in order to encode the
condition or sign-function corresponding to j as a property of the face lattice. Suppose
that the condition or sign-function corresponding to the index j compares the ordered
triples (¢}, 43, ¢3) and (47, 43, 43)-

First, a hexagon P! = (4w, 90, P1, P}, P}, p3) encoding the triple (q], 43, q3) is
chosen in such a way that the new points p}, pl, p}, pl belong to the invisible region
I(P,[P/, Pi*']) defined by the facet [P/, P/*1],

The operation is called attaching an encoding polygon. The inverse operation of
forgetting the new points is a mapping from the space of possible constructions to the
space of polytopes the attaching has started with. It constitutes a stable composition. In
fact, we can choose any projective equivalence class for the hexagon to be attached. This
choice corresponds to a stable composition as seen in Lemma 9. Given the equivalence
class, it remains to determine the space of embeddings such that all the new points belong
to the invisible region. This corresponds to a stable projection in view of Corollary 14.

The second step depends on whether a condition or a sign-function is involved. If
we deal with a condition, then a hexagon P2 encoding the triple (g7, g3, g2) is attached
to [P, P/*1). If a sign-function is treated, then the same hexagon is attached, but it
is labeled by PZ. After this, a hexagon P? is attached to [P!, P?], which encodes the
triple (g2, 42, ¢(g3)), where ¢ denotes the projective isomorphism on the line sending
i~ 47,9, > g3, and oo P> e

In any case after two or three attachings we obtain a modified polytope exhibiting
a facet [P!, P?], which satisfies all the conditions for the basic facet of a von Staudt
polytope. The next step is to attach a von Staudt polytope such that the new points
belong to the invisible region corresponding to [ P!, P2]. Again, the inverse operation
of forgetting the new points is a stable composition in view of Corollary 14. Finally,
the Lawrence extensions are attached to the corresponding invisible regions such that an
extended von Staudt polytope arises.

Having performed all the attachings (for all j), we are almost done. The space of pos-
sible construction is designated to be the union of realization spaces the Main Theorem
concerns. We already know that the mapping of forgetting the attachings forms a stable
composition. However, it still remains to answer the following questions:

(i) Does the face lattice of the constructed polytope only depend on the sign-vector
(signy, ..., sign,,)?
(ii) Is the face lattice an injective function of the sign-vector?

(iii) Is the construction invertible? More precisely, this question reads as follows. Given
a polytope in the union of the realization spaces of the possible constructions,
which is now given by its lattice. Is such a realization necessarily the product of a
construction as explained above?

If the latter questions can be answered affirmatively, then the Main Theorem is implied
(except the assertion concerning computability). ‘
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The base of the construction was the space of starting polytopes, which is a subspace
of a realization space. This subspace is determined by means of a stable composition of
the realization space to the space of ordered k-tuples. The latter stable composition is
defined geometrically (mapping £). In fact, the space of starting polytopes constitutes
the inverse images of R¢. It is partitioned by the inverse images of the spaces R¢ (o).
(This partition is stably equivalent to the partition of (1, 00)" into basic semialgebraic
sets treated in the Main Theorem.)

By an inductive process, polytopes have been attached to specific facets. In all steps
the face lattice of the resulting polytope collected all the faces of the original polytope and
the attached polytope with one exception, namely the facet of attaching. This procedure
is called the connected sum operation; see [9]. The face lattices of the attached polytopes
are the same in the following cases (for fixed j):

P!,

P? in the cases where a condition has been treated,
2

Py,

von Staudt polytopes,

Lawrence extensions.

The face lattices of the attached polytopes [P!, P2, P?] are the same for all cases where
the image of the corresponding sign-function coincides. Different values of the sign-
function produced different face lattices. This is implied by Corollary 11. Hence ques-
tions (i) and (ii) are answered affirmatively.

For question (iii) we recall that the construction process never deletes a face of
dimension 2 or less. This implies that the 2-skeleton of any facet disappearing from the
face lattice (by the attaching process) remains present. However, the removed facet was
the convex hull of a pair of bundled polygons. The bundling is a property of the 2-skeleton,
therefore the convex hull of the 2-skeleton belonging to a removed facet will be three-
dimensional in all realizations of the resulting family of polytopes (see Lemma 10).
This property has also been used in the work of Richter-Gebert [9], called necessary
flatness. The latter argumentation implies that the construction can be inverted step by
step. We show that the realization of the starting polytope obtained by deconstruction is
a starting polytope. In fact, the property of the von Staudt polytope to encode a projective
isomorphism, in connection with the property of bundled encoding polygons to express
- the order type by means of the face lattice of their convex hull, also shows this.

It remains to verify the complexity result. Indeed, both numbers & and [ are O(c).
From the (bundled) product structure of the starting polytope it then follows that its face
lattice (including the order structure) is O (?). (There are faces with O(«) sublattice,
however, there are only O(e) of them:) Moreover, there are O () many attachings. The
face lattice of each attached polytope can be estimated by O («). Altogether, each lattice
Ly is O(a?), and it can also be computed within this time (including all the intermediate
steps). . :

A modified construction provides an incidence code of complexity O(«). The differ-
ence to the described construction is a restriction of the number of copies of the original
(k +3)-gon to O(1). In fact, one starts with a bundled triple of encoding (k + 3)-gons,
say [P, P?, P9]. Put P¢ := P9, Then the hexagons P!, P2, P2, and the (extended)
von Staudt polytope are attached as described, but to the facet [ P¢, P¢]. After each step
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of fixing one condition or sign-function the face P2 (or P2) is denoted by P¢, and the
inductive process proceeds. - O

Remark 16. The number of vertices of the lattices £, can be bounded by 2'%.

4. The Face Lattice of the von Staudt Polytope

Since (¢', ¢%) is an ordered 6-tuple, Lemma 10 determines the lattice of {P', P2]. By
the construction, we have

Proj(pe, p4) N proj(py, p3) = proj(peo. p3) N proj(p3, p3),
Proj(Poo, P3) N proj(p, p3) = proj(pe, p) N proj(q,, p3).

This, in analogy to Lemma 10, determines the face lattice of [ P!, P3]. Analogously, we
know the face lattice of [ P2, P*]. In a similar way, the face lattice of [P?, P4} is given:
by construction we have

Proj(Peo» 41) N proj(p3, p3) = proj(pee. 4;) N proj(p3, p3) = g5
Proj(Peo. q1) N proj(p3, p}) = proj(peo, q}) N proj(pi, p2) = gj.

Figure 15 shows a Schlegel diagram of our construction. We emphasize the already
known part of the face lattice, which is also shown in the smaller subfigures. We look in-
side the von Staudt polytope through its facet [P}, P?]; thus [ P!, P?]forms the boundary
of the three-dimensional figure.

To complete our proof, we explicitly list the remaining facets of the von Staudt
polytope P. We use the fact that any 2-face of a 4-polytope belongs to exactly two
facets. So far we have found four facets (and their 2-faces). From now on they are called
known facets (or faces). A known 2-face that is contained in two of the known facets is
referred to as used, the other ones (which merely belong to one known facet) are called
unused. At this stage of the analysis, the only used 2-faces are P!, P2, P?, and P*.

Any vertex is contained in at least one already known facet. This for topological
reasons implies that a vertex that belongs to a new (still unknown) facet is contained in
an unused 2-face. In particular, p., cannot belong to any new facet. In the remainder of
the proof we find the still unknown facets one by one. After each step we change our sets
of known facets (faces) and of the (un-) used 2-faces. Each step starts from an unused
2-face and finds the unknown facet containing it.

Facet F. We are searching for the still unknown facet containing the triangular face -
(pi. P3. p3), which is known as a face of [P!, P2]. Since F differs from [P!, P?], no
other vertex of F; may be from this facet. The other vertices of Fy are thus from P3
and P*, excluding pe. If p3 would be vertex of Fy, then by p) e F; we would have
P! C F', which contradicts py, & F;. Analogously, we see that pz, q; € F1. The only
candldates for vertices of F; are thus p} and p3. However, both points, together with p}
and p2, form the vertex vector of a 2-face (of [P3, P*]). Hence either both or none of
them belongs to Fj, and thus in fact both. This describes the vertex vector of F;. We see
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[P, PY] [P, P [P, P

e

Fig. 15. The von Staudt polytope: the known facets.

that F is the pyramid over a quadrilateral face of P3, P*. This provides the face lattice
of Fy; see Fig. 16.

Note that two unused 2-faces became used, whereas two new unused 2-faces arose.
Moreover, from now on, vertex pi cannot belong to any new facet. The vertices of P
that are excluded as vertices of new facets, are marked by unfilled dots. The shaded areas
in Fig. 16 show the yet unused 2-faces that are not from the obvious facets [P}, P?],

[P3, P4, [P, P3], or [P?, P*). For easier visual checking we have outlined the union
of the unused 2-faces belonging to [P!, P*] and [ P2, P%)].

Fig.16. Facet F;.
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Fig. 17. Facet F;. Fig. 18. Whereis F3?

Facet F>. This time we start with the unused 2-face (p}, p2, p3) C'[P', P2]. The re-
maining vertices of F, come from P and P*, as above. The open line segment (p}, p$)
lies in the relative interior of [P?, P*]; hence p} ¢ F;. This, with respect to the quadri-
lateral face (p3, p}, p3, p3), implies that p} is not in F; either. The only remaining
candidate is p3 (other vertices of P3 are forbidden by pl € P3), so we take it. In the
Figs. 17 and 18 we show the new facet F, and the situation of unused faces (not from
the obvious facets) after F, became known.

Facet F3.  We start with (p3, p3, p3) € L(F)). Since F3 # Fy, we have p} ¢ F;. The
open line segments connecting p3 with points p}, p}, p!, po, (¢}) respectively, lie within
the relative interior of facet [ P!, P2], (P2, P*]). This excludes the latter points from F;.
The only remaining candidates are p3, p3, and p3, but none of these points can become
a vertex of F3 without the other ones (result of quadrilateral faces, as above). Therefore,
F3 = (p3, p3, P}, P}, p3, p3). Since (p2, p, pd) is already known as a face of P, the
face lattice of F3 is uniquely determined. (Note that this verification requires knowledge
of F!) From now on, pg and p§ are omitted from the remaining facets. In Figs. 19 and
20 we show the new facet F3, and the situation of unused faces (not from the obvious
facets) after F3 became known.

Fig. 19. Facet F3. Fig.20. Whereis F3?
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Fig. 21. Facet Fy. Fig. 22. Where is Fs?

Facet F,. Start with (p2, p?, pl), which implies that F, has no other vertex from
[P!, P?). From p; we see that the only possible vertex from [P3, P*]is p3, thus Fy =
(3, %, pl, p3). (Fyis shown in Fig. 21, and in Fig. 22 we have the new situation.)

Facet Fs. Start with (pl, p}, p?); then the other vertices of [ P!, P?] are excluded, As
above, from p;, it follows that only p3 remains as acandidate; i.e., Fs = (p}, pl, p?, p3).
Now p; disappears from the list of possible vertices of new facets. ( Fs is shown in Fig. 23,
and in Fig. 24 we have the new situation.)

Facet Fs. 'This time we start with (p7, p2, p3). The open line segments connecting p?
with the points p}, pl, pl, and py are contained in the relative interior of [P!, P2],
hence Fg does not intersect P!, We know that q, € Fg, since otherwise P3? ¢ Fg. From
F¢ # F; it follows that p‘z" ¢ Fg. The only remaining candidate for a vertex of Fg is
therefore p%. (Fg is shown in Fig. 25, and in Fig. 26 we have the new situation.)

Facet F;. Start with (p2, p3, p3). The vertices of P! are excluded for the same reason
as in Fg, whereas pg is omitted by F7 # F3. As candidates there remain pf and g, but
in view of the quadrilateral face (p3, p3, p?, q}) their appearance as vertices of F; is
equivalent. Therefore F; = (p3, p3, p3. p. q;)- Since (p2, p?, p3) is already known as

Fig. 23. Facet Fs. Fig. 24. Where is Fg?
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Fig. 25. Facet Fg. Fig. 26. Whereis F7?

Fig.27. Facet Fy. -

Fig.29. Facet Fg. Fig. 30. Facet Fy.
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Fig. 31. Facet Fio.

a face of P, the face lattice of F; is uniquely determined. (F7 is shown in Fig. 27, and in
Fig. 28 we have the new situation.)

Facets Fg—Fw The only vertices of P that are vertices of still unknown facets, are
Pi. P3s Pys P0, 4}, P3. P € [P, P?] and p?. Therefore, the remaining facets of P are
pyramxds (w1th the top vertex pl) over the unused 2-faces of [P!, P3], i.e., we have

= (P, P}» P3. P3: P> Fo = (P}, Py, 41, P, P> and Fio = (p{, po. 41, P})- The
corresponding face lattices are obvious. Now all 2-faces are used, i.e., the analysis of the
face lattice L(P) is completed. The facets F3—Fjq are shown in Figs. 29-31.

Acknowledgments

I would like to thank Bert Jongen for his continuing support. Moreover, the remarks by
two anonymous referees, concerning both mathematical precision and stylistic aspects,
are gratefully acknowledged.

References

1. Bochnak, J., Coste, M., and Roy, M.-F., Géométrie Algébrique Réelle, Springer-Verlag, Berlin, 1987.

2. Bokowski, J., and Sturmfels, B., Computational Synthetic Geomerry, Lecture Notes in Malhemancs,
Vol. 1355, Springer-Verlag, Berlin, 1989.

3. Griinbaum, B., Convex Polytopes, Interscience, London, 1967.

4. Giinzel, H., The Universal Partition Theorem for Oriented Matroids, Discrete & Computatwnal Geometry,
15 (1996), 121-145.

5. Giinzel, H., Hirabayashi, R., and Jongen, H. Th., Mulnparametnc Optimization: on Stable Singularities
Occurring in Combinatorial Partition Codes, Control & Cybernetics, 23 (1994), 153-167.

6. Hilbert, D., Grundlagen der Geometrie, 2nd edition, Teubner, Leipzig, 1903.

7. Mnév, N.E., The Universality Theorems on the Classification Problem of Configuration Varieties and
Convex Polytopes Varieties, in: Topology and Geometry—Rohlin Seminar, Viro, 0.Y., ed., pp. 527-543,
Lecture Notes in Mathematics, Vol. 1346, Springer-Verlag, Berlin, 1988.

8. Mnév, N.E. The Universality Theorem on the Oriented Matroid Stratification of the Space of Real Ma-
trices, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 6, American
Mathematical Society, Providence, RI, 1991.



On the Universal Partition Theorem for 4-Polytopes 551

12.

13.
14.

. Richter-Gebert, J., Realization Spaces of Polytopes, Lecture Notes in Mathematics, Vol. 1643, Springer-

Verlag, Berlin, 1996.

. Richter-Gebert, J., and Ziegler, G., Realization Spaces of 4-Polytopes Are Universal, Bulletin of the

American Mathematical Society, 32 (1995), 403412,

. Shor, P, Stretchability of Pseudolines is NP-hard (The Victor Klee Festschrift), DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, Vol. 4, American Mathematical Society, Providence, R,
1991. '

Steinitz, E., Polyeder und Raumteilungen, Encyclopidie der Mathematischen Wissenschaften, Band 3
(Geometrie), Teil 3AB12, pp. 1-139, Teubner, Leipzig. 1922.

Young, J.W., Projective Geometry, Open Court, Chicago, 1930.

Ziegler, G.M,, Lectures on Polytopes, Springer-Verlag, New York, 1995.

Received December 19, 1995, and in revised form December 16, 1996, April 28, 1997, and September 10,
1997.






