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Abstract

In this paper we reexamine a problem of protecting sensitive data
in an n by n table of integer statistics, when the non-sensitive
data is made public along with the row and column sums for the
table. We consider the problem of computing the tightest up-
per bounds on the values of sensitive (undisclosed) cells. These
bounds, together with tightest lower bounds (which can be ef-
ficiently computed [G]), define precisely the smallest intervals
that an adversary can deduce for ‘the missing sensitive cell val-
ues. Small intervals compromise the security of the undisclosed
data, and in some cases violate laws on public data disclosure.
We showed previously [G] that each (upper and lower) cell bound
can be computed in O(n®) time by a single network flow com-
putation, but that the bounds are not independent so that only
O(nlogn) upper bounds need to be computed in this (relatively
expensive) way. That is, after O(nlog n) initial bounds have been
computed, each of the remaining (possibly ©(n?)) bounds can be
computed in constant time. In this note we observe that the num-
ber of initial needed bounds can be reduced from O(nlogn) to
2n ~ 1, by exploiting a recent result of Cheng and Hu [CH]

1 Introduction

In this paper we study the problem of protecting sensitive data
in a two dimensional table of statistics when the non-sensitive
data is made public. Work in this area was begun by Fellegi, Cox
and Sande [FEL], [COX75), [COX77), [COX78], [COX80], [SAN],
and partly reported in Denning [DEN page 360-364]. The general
problem is motivated by concerns for privacy and security, and is
a problem of practical importance and active interest for the U.S.
Census Bureau [USDC], Statistics Sweden [DEL] and Statistics

Canada [BCS]. For a more complete discussion of background
and motivation see [DEN].

2 Problem Statements, Definitions and
Main Results

The basic setting for the paper is that one party (the Data Col-
lector), has a two-dimensional table, D, of cross tabulated integer
statistics; each entry D(i,j) is a non-negative integer in cell (i,j)
of D; R(i) is the sum of the cell values in the i'th row of D, and
C(j) is the sum of the cell values in the j’th column of D. All the
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row and column sums are to be made public (disclosed) along
with some of the cell values, but the remaining cell values, called
sensitive values, are to be suppressed (not disclosed). Unless
care is taken, however, the disclosure of the non-sensitive values
might allow an adversary to deduce a small interval into which
the original value of a suppressed cell must lie. Such deductions
are undesirable and, in fact, the Data Collector is often required
by law to guarantee that small intervals cannot be deduced from
the publicly disclosed data [DEL} [BCS].

The problem for the Data Collector is to determine for each
suppressed cell what interval an adversary can deduce. Then
if the interval is too small for a suppressed cell, additional cell
suppressions can be made before the table is released to the pub-
lic. The problem for the adversary is to efficiently compute the
tightest interval for each suppressed cell in the released table.

The Data Collector’s problem must often be solved repeatedly
in the inner loop of algorithms for more complex security prob-
lems. For example, if the upper and lower bounds are too close
for some cells, then additional cells will be suppressed, and then
the bounds must be recomputed to see the affect of the new sup-
pressions. No good way is known to pick additional suppressions,
so many iterations testing out different sets may be needed. In
the case of government statistical agencies the volume of data is
massive, so the computational burden of checking (and recheck-
ing after additional suppressions) each table before its release is
very great. Hence methods that deduce the intervals more effi-
ciently are of great value. In this paper we show how to compute
the tightest upper bounds on the suppressed cells with much
fewer computations than any previous method.

To make the problem setting precise, let X be the set of all
suppressed cells and for cell (i,j) € X, let x(i,j) be a variable
denoting the value of the cell. For each row i and column j» let
R*(i) and C*(j) be respectively the sum of the undisclosed values
in row i of D, and the sum of the undisclosed values in column j
of D. We may assume that | X| > 2n since the exact value of any
suppressed cell is immediately determined if the cell is the only
suppressed cell in a row or column.

Definition: Fori € R, let X(i) be the set of indices j € C such
that (i,j) is a suppressed cell. Similarly, for j € C, let X(j) be the
set of indices i € R such that (i,j) is a suppressed cell.

Definition: We define a legal solutionz of D as a non-negative
integer solution to the following system of linear equalities:

For cach fixed i € R, Y. x(i,j) = R*(i)
JEX(3)

and



by

for each fixed j € C, E x(i,j) = C*(3)-
i€X(7)

Definition: For a suppressed cell (%,7), u(i,j) denotes the
tightest upper bound on the value of cell (4,7),i.e., u(%,7) is the
largest value that z(i,j) can be given in any legal solution of
D. Hence, z(4,7) < u(i,j) for any legal solution z of D, and
z(4,7) = u(i,7) for at least one legal solution z of D.

The tightest lower bound on (3, ), I(4, §), is the smallest value
that z(4,7) can be given in any legal solution of D.

The most direct way to compute the tightest upper (or lower)
bound on a cell (i,7) is to solve a linear program maximizing
(or minimizing) z(4,7) subject to the linear inequalities stated
above. This is quite inefficient both because each linear program
is expensive to execute, and because for |X| suppressed cells,
|X| such linear programs must be solved. Note that |X| can be
©(n?). That is, as a function of n, | X| can grow quadraticly.

A somewhat more efficient approach was discussed in [COX80],

showing that each bound can be computed by one minimum cost
network flow computation.

In contrast to the linear programming and minimum cost
flow approaches, we showed previously [G] how to compute each
bound of a suppressed cell with a single O(n3) time network flow
(non-cost) computation, a large improvement over the linear pro-
gramming and min-cost flow approachs. In an n by n table with
|X| sensitive cells, this approach yields an O(]X|n3) = O(n°)
time algorithm to compute all the bounds. Still, each network
flow is relatively expensive, and so we would like to reduce the
number of network flow computations needed to well below |X|.

In [G]/we noted that the cell bounds are not independent, and
surprisingly there can never be more than 2n — 1 distinct tightest
upper (or lower) bound values in an n by n table, no matter how
many cells are suppressed (we will prove this in section 3.1).
This fact suggests that perhaps only 2n — 1 upper bound values
need to be computed independently, and that after those bounds
are known all the other bounds could be obtained much more
quickly. In [G] we showed how to achieve this for the tightest
lower bounds. We also showed that after a certain set of only
O(nlogn) upper bounds have been computed (by any method),

all the other upper bounds can be quickly inferred from these
initial upper bounds.

In this note we continue this idea, exploiting a recent result by
Cheng and Hu [CH] on computing ancestor cut trees to show that
only 2n — 1 initial upper bounds need to be computed. These
can be computed in O(n*) time. After that, all the remaining
|X|—~2n+1 (perhaps ©(n?)) upper bounds can be inferred in only
O(]1X]) or O(n?) total time. This yields an extremely efficient
approach to finding compromised cells. In order to explain the
new improvement, we first review some material from [G].

3 Computing a single bound

We first consider the problem from the perspective of the Data

Collector (who knows the complete D) and then from the per-
spective of the adversary.

87

Definition: A graph is defined by a set of nodes and edges,
where each edge extends between two nodes. In an undirected
graph an edge (i,j) extends between nodes i and j, and in a
directed graph an edge < 1,7 > extends from i to j. The capacity
of an edge < i,j >, denoted ¢ < 1,7 >, is a fixed non-negative
number assigned to the edge. A bipartite graph is a graph where
the nodes can be partitioned into two sets such that every edge
in the graph touches one node of each set. Figure 2c shows a
directed bipartite graph with edge capacities.

The following graph G(D) is the most important construct in
this paper and its use transforms the upper bound problem from
a problem in linear algebra to a problem in graph theory.

Definition: Given the complete table D, construct the bipar-
tite graph G(D) as follows: the nodes of G(D) consist of two sets
R and C; in R there is one node for each row of D, and in C
there is one node for each column of D. The edges of G(D) are
constructed as follows: for every suppressed cell (i,5) in D there
are two directed edges between row node i and column node j;
one edge is from i to j and the other from j to i. The capacity
of edge <i,j> is set to M, a finite number larger than the largest
R*(i); the capacity of <j,i> is set to D(i,j).

Figure 2c gives the graph G(D) for the table in Figure 2a.

Definition Given a directed graph with edge capacities and
two distinguished vertices, a source s and a sink t, an s,t flowis
an assignment, f, of nonnegative real numbers to the edges such
the following two properties hold:

Capacity Constraint. For any directed edge < v,w >, the flow
f < v,w > must be between 0 and ¢ < v,w >.

Flow Conservation. For any vertex v # $,¢, fin(v) = fout(v)
where fin(v)= the total flow on arcs directed in to v, fout(v)=
the total flow on arcs directed out of v.

Definition The value of an s, flow fis 3, f < 5,9 > =
T, f < v,t >, ie., the total flow out of s and into t. A mazimum
s,t flow is an s,t flow whose value is as large as any s,1 flow.

Definition A cut of a graph G is a partition of the nodes of G
into two sets (K, K). In an undirected graph, the capacity of the
cut, denoted (K, K), is the sum of the capacities of the edges
that extend between K and K. In a directed graph, the capacity
of the cut is the summation of the capacities of the edges that

extend from K to K. A cut (K,K)is called an s,t cut if s € K
and t € K).

The following Theorem is the most important theorem in net-
work flow and is crucial in this paper.

Max-Flow Min-Cut Theorem [FF]: For any s,t pair, the
value of a maximum flow from s to t is equal to the minimum
capacity of any s,t cut.

Below we will consider a version of the network flow problem

where the graph remains the same, but the choices of source and
sink nodes vary.

Definition: Let FG(i,j) be the value of the maximum flow
from node i to node j in G(D), i.e., i is the source node and j is
the sink node. Note that FG(i,j) is not just the flow f < 1,5 >
assigned to the single edge <i,3>.



With this background, we can state the fundamental theorem
from [G] which shows how to compute any single upper bound.

Theorem 1 [G]: If (i*,j*) is a suppressed cell in D, with i*
€ R and j* € C, then FG(j*,i*) is the tightest upper bound on
the value of cell (i*j*) in D, and Max{0, D(i*,j*) - FG(i* j*) +
M] is the tightest lower bound on the value of cell (i*,j*) in D.
Hence for any cell (3,7), u(3,7) can be computed with only a

single (non-cost) network flow computation on a graph with 2n
nodes.

Note that since u(i*,j*) = FG(j*,i*), we only need the value
FG(j*,i*), and not the full associated flow pattern. By the Max-
Flow Min-Cut Theorem, FG(j*,i*) is also the value of the min-
imum directed cut separating node j* from i*, so the tightest
upper bounds can be obtained from algorithms which only find
minimum cuts, rather than flows. This will be important below.

The adversaries problem

In the above method, and in its improvements below, we use the
original values in D to compute the tightest upper bounds. The
Data Collector has these values, but the adversary does not. In
[G] we showed that the tightest bounds can be computed start-
ing from any legal solution to D, and one legal solution can be
computed in O(n®) time by one network flow computation. So
the adversary simply finds one legal solution z to D and then
uses z as if it were the original solution. Exactly the same upper
and lower bounds result. Hence the adversary’s problem reduces
to the Data Collector’s problem.

3.1 Speeding up the computation of tightest
bounds

If each bound is computed independently as above, and there are
©(n?) suppressed cells in an n by n table, the best implied time
bound for finding all the bounds would be O(n®). However, there
is a great deal of interdependence between the bounds, and it is
not necessary to compute each one independently. One reflection
of the interdependence of the bounds is that there can never be
more than 2n — 1 distinct upper bound values in any n by n
table, no matter how many cells are suppressed; similarly there
are never more than 2n — 1 distinct lower bound values. This
was initially noted in [G}; below we will present a simpler direct
proof. This dependence will allow us to compute the tight upper
bounds using much fewer than |X| network flows in general.

Definition: For two nodes i and j in G(D) define (i,j) as the
minimum of the flow values FG(i,j) and FG(j,i).

Lemma 1: Let (i,j} be a suppressed cell in D. Then in G(D),
FG(i,j) > FG(j,i), where i € R, and j € C. Hence 8(3,5) =
FG(j,1).

Proof: This is trivialy true because there is a direct edge from
i to j with large capacity M, hence FG(i,j) > M, while by Theorem
1, FG(j,i) is the tightest upper bound on the value of cell (i,j)
which is certainly bounded by R*(i) < M. O

Lemma 1 and Theorem 1 together imply:
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Lemma 2: For a suppressed cell (i,j) in D, the tightest upper

bound, u(3, j), on the value of cell (i,j), is equal to 4(i,j), defined
on G(D).

Given Lemma 2, we can now prove that the number of distinct
upper bound values is at most 2n — 1.

Theorem 2: For any directed graph G with k nodes, the
number of distinct 8 values is at most k — 1. Hence the number
of distinct upper bounds in an n by n table is at most 2n — 1.

Proof: First, suppose all the 8 values are known and let G’
be the undirected complete graph! on k nodes, where the weight
of any edge (i,7) is set to B(3,7). A mazimum spanning tree of
G', denoted MST, is a tree that touches all the k nodes of G’
such that the total weight of all its edges is as great as the total
weight of any other tree in G'. We will show that the weight on
any edge not in MST must be equal to the weight of one of the
edge in MST. This will prove the theorem since there are exactly
k — 1 edges in MST.

Consider any pair of nodes (u,v) such that edge (u,v) is not
in MST. The addition of edge (u,v) to MST creates exactly one
cydle, call it C. The minimum weight edge, (z,y), on C must
have weight greater or equal to 8(u,v), i.e., B(z,v) = B(u,v).
If not, then the spanning tree constructed by deleting (z,¥) and
adding edge (u,v) would have total weight greater than MST,
which is impossible.

We will show the converse, that 8(z,y) < B(u,v). By the
definition of A(u,v) and by the Max-Flow Min-Cut Theorem,
either the minimum cut from u to v, or the minimum cut from v
to u in G has weight 8(u,v). Suppose that it is the cut (K,K)
from u to v. Let P be the unique path on MST from u to v.
Since v € K and v € K, there must be a pair of consecutive
nodes (z,w) on P such that z € K and w € K. Therefore the
minimum cut from z to w has capacity less than or equal to
B(u,v). By the Max-Flow-Min-Cut Theorem again, this implies
that 8(z,w) < B(u,v). Since (z,¥) is the edge of smallest § on

P, B(z,y) < B(z,w) < B(u,v) as claimed.

Combining the two facts, we get f(u,v) = §(z,y), and so every
B value is equal to one of the k — 1 B values in MST. O

Schnorr [SC] showed that for any directed graph on n nodes,
all the ©(n?) B values between all pairs of nodes could be com-
puted with only O(nlogn) network flow computations. The
value for any pair of nodes which is not a source-sink pair in one
of the O(nlogn) flows can easily be inferred from those initial
O(nlogn) B values. This method is used in {G] to compute all
the tightest upper bounds with only O(nlogn) flows.

‘We now show that all the 8 values can be inferred from only
2n — 1 initial B values, and hence only O(n) network flows are
needed to obtain all the tightest upper bounds in D, no matter
how many suppressed cells there are. This result comes from

exploiting a recent result by Cheng and Hu [CH] on ancestor cut
trees, which we briefly describe.

! A complete graph one where there is an edge between every pair of nodes.




4 'The Cheng-Hu method for ancestor
cut-trees

We begin by discussing a problem on undirected graphs. Let G be
an undirected graph on N nodes. We want to find and represent
the minimum cut values between all (1;') pairs of nodes, but we
want to do only O(N) explicit flow computations, i.e., we want
to directly compute the minimum cut values of only O(N) pairs;
the other values will be inferred from these first ones.

We will represent the minimum cut values of a graph G, con-
taining N nodes, with a binary tree 7. Each internal vertex of
T will be labeled with a source-sink pair (p,q), and will be as-
sociated with a minimum (p, ¢) cut in G; each leaf of T will be
labeled by one node in G, and each node in G will label exactly
one leaf of T. Hence T has 2N — 1 vertices. Further, for any
two nodes 1,7 in G, if the least common ancestor of i and j in T
is labeled by the pair (p, g), then the associated minimum (7, 9)
cut is a minimum (3, ) cut as well. Hence this tree represents
the minimum cut values for every pair of nodes, and allows the
retrieval of one minimum cut for any pair of nodes.

As an example, the graph shown in Figure la has an ancestor
cut-tree shown in Figure le.

Note that for clarity, the word “node” refers to a point in G,
while “vertex” refers to a point in an ancestor cut-tree.

The algorithm builds successive trees To, T3, ...TN-1 = T, each
containing one more leaf than its predecessor. The following fact
about any T; will be proved in Lemma 3 in the appendix.

Fact? If v is any internal vertex of T labeled with the pair
(s,t), and its two children are labeled with the pairs (4,7) and
(p,q), then 1 and j are together on one side of the (s,t) minimum

cut associated with v, and p and ¢ are together on the other side
of the cut.

In order to describe the algorithm, we first define T} to be the
subgraph of T; consisting of the internal vertices of tree T, and
describe how to place the leaves of T}, given tree Tj. This process
is called sorting the nodes of G into T}.

Starting at the root of T/, we separate the nodes of G according
to the cut specified at the root node. For example, if the cut at
the root is an (s, t) cut, then we place on one branch out of the
root all the nodes of G on the s side of the cut, and on the other
branch out of the root we place all the nodes of G on the t side of
the cut. There still is a question of which edge to use for which
set. Suppose the the two children of the root are labeled with
the pairs (4, 7) and (p, q). Given the fact stated above, we use the
following rule to assign the two parts of the (s,t) cut to the two
edges out of the root of T/: The part of the (s,t) cut containing
i and j is placed on the edge from the root to its child labeled

with the (4, j) cut, and the part containing p and g is placed on
the other edge out of the root.

In general, at any vertex = of 77, we split the nodes of G that
are on the edge leading to z into the two edges out of z, according
to how the cut at z separates these nodes. To decide which set
goes on which of the two edges out of z, we follow the same rule
stated for the root. If z is a leaf of T/, then the nodes of G on
the edge entering = are split into two children of z according to
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how the cut labeling z splits these nodes. The children of z are
then leaves in T;.

For example, in Figures 1b through le, the nodes written on
the edges of the intermediate trees show the sorting process.

An added feature of any tree T;, which will be maintained
inductively, is that after each iteration of the algorithm, the set
of nodes contained in any leaf will have exactly one designated
node called the representative of that set.

The full algorithm is now the following:

4.0.1 The Cheng-Hu Algorithm

Set k to 0.

The initial tree Tp consists of a single leaf containing all the

nodes of G. Arbitrarily set one of the nodes to be the representative
of this leaf.

Repeat

Pick a leaf z of T; which contains more than one node of G; suppose
i is the representative of z, and let j be any other node of G
in z. Declare j to be a representative. )

Find a minimum cut (X, X) between i and jf; let its value be
f(4, ), and assume that i € X.

Find the closest ancestor vertex y of = in Tj whose cut value is less
than or equal to f(4, j); let z be the vertex below y on the path from
y to z in T. Create a vertex labeled with (i, ), and place it between
yand z in Ty. Remove all the leaves of T}, creating tree

Ty 44; then sort the nodes of G into T ,,, creating tree

Tpy. Set k:=k+1.

Until each leaf node of T' contains only a single node of G.

Note that z may be a leaf of Tx. Note also that at least one of
the children of vertex z is a leaf of Tk41. A proof of correctness
of the algorithm is contained in the appendix. For the original
proof by Cheng and Hu, see [CH] or [CH1].

Once an ancestor cut tree T has been obtained, it is easy to
explicitly find f(3i,7) for every pair (,7) in a total of O(N?)
time. One way to do this is to process T from the bottom up:
an internal vertex « in T is processed only after its two children
z' and z” have been processed. Inductively, after vertex z’ has
been processed, a list has been compiled of all the nodes of G at
leaves in the subtree of z. Suppose that the cut value associated
with vertex z if ¢. To process vertex ¢ we first set f(i,7) := ¢
for every pair of nodes (,7) where i is in the list for =’ and j is
in the list for z”. Then these two lists are concatenated and the
processing of ¢ is finished.

1f we only want a subset of the (I;) B values (as will be the case
in computing upper bounds in D), then we can find each desired
B in O(1) time using fast least-common-ancestor algorithms [SV]
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27 The ancestor cut tree for the tightest
upper bounds of the suppressed cells in D.

2d. The first pair used to build the ancestor cut tree
is (C],Rl) with cut {Cl}{02, C3, Rl, Rz, R;}

of value 12.

T, :
2e. The next pair is (C3, Ry) with cut
{Rl}{R21 R3) Cl’ 021 CS} of value 19.
G
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2f. The next pair used is (C3, R;) with cut
{Cg' R]}{Rz, R3, Cl, Cz} with cut value 15.

2g. The next pair is (Cz, R2) with cut
{C1,C2, R3}{C3, Ry, R} with value 19.

2h. The final pair is (C3, R3) with cut {C,}{R1, Ra2, R3, Cy,C3}
of value 17.

The final ancestor cut tree T is shown in figure 2b. Notice
that only five cut computations were required, although there are
six suppressed cells.
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[HT]. Therefore to find | X| particular B values, once the ancestor
tree has been constructed, requires only O(N + |X|) time.

4.1 Extension to arbitrary cut capacities

In [CH] the following generalization for an undirected cut capac-
ity is considered. Suppose that instead of defining the capacity
of an undirected cut (K, K) as the sum of the edge capacities
crossing the cut, we assume that the undirected cut is assigned
some arbitrary value as its capacity. Then for a pair of nodes
(1,7) we define f(,3) as the minimum capacity of all the undi-
rected cuts separating i from j. Close examination of the proof
of correctness of the CH method given in the appendix shows
that the proof remains correct for this more general definition of
cut capacity (see [CH] for the original proof). That is the above
method correctly builds an ancestor cut tree for the more general
notion of cut capacity and function f(3,7). So, the ancestor cut
tree for any such f can be constructed with the computation of
f(3,7) for exactly N — 1 (%,7) pairs. Of course, depending on
how the cut values (K, K) are defined and represented, comput-
ing f(i,7) for a pair (¢,7) may not be efficient. None-the-less,
only N — 1 such computations are required to represent all the
(§) f values in an ancestor tree.

5 Using ancestor trees to compute 3 val-
ues

In this section we will apply the above generalized notion of cut
capacities to show how to model the 3 values.

In a directed graph G with N nodes and edge capacities, let
C(K,K) be defined as the sum of the capacities of the edges
crossing from K to K, and let C(K, K) be the sum of the ca-
pacities of edges from K to K. Then we define the capacity of
the cut (partition) (K, K) to be the minimum of C(K, K) and
C(K,K), and we define f(,5) as before to be the minimum ca-
pacity of all the cuts which separate i from j (that is, put ¢ and j

in different sets in the partition). Note that under this definition,

So, the Cheng-Hu method can be used to find all the g val-
ues, provided that when any pair (1, 7) is specified, the required
f(i,7) can be computed and a cut of that value separating i
from j can be found. Now by the Max-Flow Min-Cut Theorem
(i, 5) = min[F(3, ), F(j,1)], where F(z,7) is the maximum flow
value from i to j, and F(j,1) is the maximum flow value from
j to i. Since G is directed, F(i,7) need not be equal to F(7,1%).
Hence B(3,7) = f(i,7) can be computed by two network flow
computations on the directed graph G.

Clearly then, with the above definitions, the f values can be
computed by the Cheng-Hu algorithm, and the tree then repre-
sents all the (I;I) B values. So specializing this to graph G(D),
we can find all the 8 values of the node pairs in G(D) with only
4n — 1 network flow computations (G(D) has N = 2n nodes, and
each f(4,7) value computed by the Cheng-Hu method requires
two network flow computations) plus an additional bottom up
processing of T'. Then if (4,7) is a suppressed cell in D, it tight-
est upper bound is given by (7, 7). In summary we have

92

Theorem 3: All the | X| tightest upper bounds can be com-
puted using only 4|X| — 1 network flow computations on a graph
with 2n nodes, plus O(]X|) or O(n?) additional time.

The advantage of this method becomes more compelling as n

grows and when |X| (which can grow as ©(n?)) is much larger
than 4n.

Although the example is much too small to illustrate the com-
putational efficiency of the method verses independent compu-
tation of each bound, in Figure 2 we show the table from [DEN
page 363}, along with the ancestor cut tree for the tightest upper
bounds for suppressed cells.

5.1 Additional Comments

There are two additional observations that speed up in practice
the above method when specialized to G(D). First, whenever
the Cheng-Hu method requires computing f(i,7) where (i,7) is
a suppressed cell in D, then f(i,j) = F(4,i) (by Lemma 1) so
only one network flow computation is required. Second, since
we really are only interested in knowing the § values for the | X|
node pairs in G corresponding to suppressed cells in D, we might
not need run the Cheng-Hu algorithm to completion. In order
to describe an early stopping rule, we define Sk as the set of
node pairs for which f has been explicitly computed, through
the k’th iteration of the Cheng-Hu algorithm. That is, these are
the pairs which label the internal vertices of Tk. We can then
prove that if i and 7 are in Sk (they need not be in the same
label), then f(4,7) is the value at the least common ancestor
of the leaves containing i and j in T%. It is easy therefore to
maintain a count of how many of the | X| tightest upper bounds
in D can be obtained from each successive Ti. Let us denote that
number as Bx. When |X| — Bi < 4n — 2|Si|, then we abandon
the Cheng-Hu algorithm and compute all the remaining upper
bounds independently.

Using just the first practical speedup, the tree in Figure 2 is
computed with only five network flows rather than the six needed
for independent computation of each bound. Of course, a savings
of one flow is not the goal, but rather a savings of | X|—4n, when
that value is large.

It is interesting to note the meaning of 5(%,5) in G(D) for a
pair (4, 7) which is not a suppressed cell in D. B(4,j) + D(i,3)
is the tightest upper bound on cell (4, j) that would result from

suppressing cell (3,7), assuming all other aspects of U remain
unchanged.

We should note that the O(nlogn) network flows of Schnorr’s
method can be implemented to run in O(n*) overall time [SC]
(the same as if only O{n) flows were needed), but the implemen-
tation needed to achieve this amortized time bound is involved,
and experiments with that method have shown it to be disap-
pointingly slow. With only 4n—1 flows, the same worst case time
bound is achieved, but the new method described here doesn’t
need any of the involved implementation details that the Schnorr
method uses to achieve its amortized bound. Further, when the
graph has special properties (for example it is sparse, or the ca- -
pacities are small) allowing a specialized faster-than-general net-
work flow method to be used, the time to build the ancestor tree
is automatically improved, while the Schnorr method may not be



able to exploit the special properties of the network.

Although we have considered square tables in this paper, any
n by m table can easily be handled. In all the results presented,
simply replace 2n with n + m. For example, the method must
compute at most n + m — 1 initial § values.

6 Related results on 2-D data protection

Related work of note appears in in [K] and [KG). In particular,
one may ask whether a given linear function of the suppressed
cells is invariant over all the legal solutions of D, i.e., does the
function take on the same value for any legal solution of the ta-
ble. In this paper we essentially considered the simplest linear
function, that of a single cell value, and discussed how to com-
pute bounds on its value. In [KG] it is shown that given any
linear function g(S) of the variables corresponding to a set S of
suppressed cells in D, one can determine in linear time if g(5)
is an invariant, i.e., has the same value in every legal solution of
D. If ¢(§) is an invariant, then its exact value can be deduced
by an adversary even if the adversary cannot deduce or closely
approximate the values of the individual cells in S.
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9 Appendix: Correctness of the Cheng-
Hu Algorithm

The key to the correctness of the algorithm is that every inter-
mediate tree T}, is sortable. For a tree to be sortable, we need
that the (s,t) cut (say) at any internal vertex z partitions the
nodes on the edge coming into = such that all nodes in labels of
the internal vertices in the left subtree of z are on one side of
the (s, t) cut, and all nodes in labels in the right subtree of z are
on the other side of the cut. If this condition is satisfied, then



the tree is sortable. To prove that the tree is always sortable, we
start with the following definition.

Definition: For a vertex z in Tk, let p and g be any two nodes
of G which are each used in some label (not necessarily the same
label) of a vertex in the subtree of T} rooted at =z. We say that p
and g are connected in the subtree of z, if there exists a sequence
(p, 1), (v1,2), .-, (v, q), where the second node in each pair is
the first node in the succeeding pair, and each pair is a label of
a vertex in the subtree of z.

For example, in Figure le let = be the root of the tree, and let
p be A and ¢ be B. Then p and q are connected in the subtree
rooted at  through the path (4,C),(C, D),(D, E).

Lemma 3 Any intermediate tree T}, produced by the algo-
rithm is sortable. In addition, all of the nodes in pairs labeling
the vertices in the subtree of z are connected.

Proof We prove the Lemma inductively. Tp is clearly sortable,
and since it has no internal nodes, it has the claimed connected-
ness property. Suppose T} is sortable and has the connectedness
property. Let (4,7) be the source-sink pair used by the algorithm
to create Tk 41, Where 1 is a representative of a leaf w in Tk. Let
z denote the new vertex created, labeled with the pair (%, j).

Suppose first that in T}, ,, = takes the place that w occupied
in Tk, then T, is sortable since T} was, and the new (i, 7) cut
simply splits the nodes coming into z into two branches. Further,
the label of the parent of z must contain either i or j (by the way
that representatives of leaves are created, and the fact that T}
was sortable). Suppose, w.l.o.g., its label is (4, s). Then, there is
a sequence (s, 1), (4, 7) in k41, so 7 is also connected to sin Thya.
Since the connectedness property holds for Tk, s is connected to
all nodes in labels of the subtree of = in Thy,.

Now suppose that z is inserted between two internal vertices
y and z, where y is the parent of z. We first show that T}, is
sortable. All nodes that were on the incoming edge into z in T
are now on the incoming edge into ¢ in T}, ,. Hence, all vertex
labels of the subtree rooted at = are contained on the set of nodes
coming into z. In particular, i and j are on that edge.

For any internal vertex, labeled (s,t), in the subtree rooted at
z, f(s,t) > f(4,7), and therefore the (i,5) cut cannot separate
s from t. Further, by induction, all nodes used in labels in this
subtree are connected, so it follows that the (i,7) cut cannot
separate any two nodes p and ¢ which are used as labels in this
subtree. For suppose that the (i,7) cut did separate p from g¢.
Then the (i, j) cut must also separate two nodes in a label on the
chain of labels connecting p and g, a contradiction. Thus, the
cut at z partitions the incoming nodes into two sets, such that
one set contains all labels in the subtree of z. The part of the
cut containing these nodes is passed on to z, while the other part
becomes a leaf of Tyy; below vertex z. From z downwards, the
tree is certainly sortable as before.

To show that the connectedness property holds for Tk41, con-
sider an arbitrary subtree of Ty41. If it does not contain the new
vertex z, then the claim clearly holds for it. If it does contain
z, then it must contain the immediate ancestor of leaf w in Tk.
As before, assume that the label of that ancestor is (%,s). Now
(i,s), (,7) is a sequence in the subtree of Tx,q rooted at z, and
by the induction hypothesis, in Tk, s and t are connected in the
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subtree of z for any node t in a vertex label in the subtree of z.
1t follows that i and ¢t and j and ¢ are connected in the subtree
of z in Ti41, and the connectedness property holds.

Lemma 4 If the least common ancestor of nodes ¢ and j has
label (p,g), then the associated minimum {(p,q) cut separates i
and j, and so f(3,5) < f(p,9)-

The proof follows immediately from the sorting process.

Lemma 5 Let S = (4,1),(v1,v2), ..., (V6 J) be a sequence of
node pairs, where the second node of each pair is the first node
of the succeeding pair. Then f(3,7) > min[f(z,y) : (z,y) is a
pair in SJ.

Proof Let (X,X) be a minimum (%, §) cut. Since ¢ € X and
j € X, there must be a pair (va,vny1) € § such that vy € X

and vp4 € X, and hence f(va,va41) < f(%,7), and the Lemma
follows.

Theorem 2: For any nodes i and j in G, the cut (p, gq) at the
least common ancestor z of i and j in T is a minimum (i, ) cut
in G.

Proof: By Lemma 4, f(4,5) £ f(p,q).- Now consider the set
of vertex labels in the subtree of T rooted at . By applying
the connectedness property shown in Lemma 3, we can connect
all the vertex labels in the subtree of = into a single sequence
(4,21), (v1,v2), -y (VR ) (vertex labels may be repeated). Then
by Lemma 5, f(i,7) > min[f(x,v) : (,v)is a vertex label in the
subtree of z]. But by construction of T, ¢ has a smaller associated
cut than any vertices in its subtree, and so f(p,q) < f(u,v) for
any label (u,v) in the subtree of z. Therefore f(4,7) > f(p.9)s
and the theorem follows.



