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Chapter 8

Design (with Analysis) of Efficient Algorithms

Dan Gusfield

Department of Computer Science, University of California, Davis,
CA 95616, U.S.A.

1. Introduction

This chapter is an introduction to the design (with analysis) of efficient
computer algorithms. The main theme of this chapter will be to illustrate the
interelationship between mathematical insight, data structures, and the design
(with analysis) of ‘provably’ efficient algorithms. The process of designing an
efficient algorithm is interwoven with its analysis, the analysis of the data
structures to be used, and often with the discovery of mathematical structure
underlying the problem that the algorithm is to solve.

The approach taken in this chapter is an experiment. We have chosen not to
survey the entire (huge) field of algorithmic design, for to do so would not
permit rigorous treatment of any topic. We have chosen instead to discuss a
large range of current and historical issues by focusing on a single set of related
problems. We will look in detail at the task of calculating a maximum flow and
a minimum cut in a network, along with several associated problems. The
intention is not to provide a comprehensive or completely up-to-date discussion
of network flow algorithms, but rather to use this focus as a means to discuss in
some detail many major ideas in the design or analysis of efficient algorithms,
and the computational models that these algorithms are designed for.

We will start with the most basic network flow algorithm for a sequential
machine and show how it has been successively improved and changed by
additional insights into the network fiow problem itself, by new algorithmic
ideas, by new data structures, by new methods of analysis, by changes in the
accepted notion of ‘efficiency’, and by changes in the assumed computational
model. In this way we will see how related questions are answered under most
of the computational settings of current interest. We will discuss sequential
algorithms, parallel algorithms, randomized algorithms, parametric algorithms,
distributed algorithms, amortized time analysis, approximation algorithms,
all-for-one results, results based on preprocessing, and strong versus weak
polynomial time algorithms.
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2. Maximum network flow on a sequential machine

In this first section we examine the problem of efficiently computing a
maximum network flow and minimum-cut, where the computation is to be
done on a sequential machine (RAM model) and the measure of goodness of
an algorithm is its worst-case running time. We will follow in spirit an abridged
history of the improvements, allowing us to illustrate the interplay between the
unfolding mathematics of the flow problem, the data-structures proposed, and
the resulting algorithmic ideas. However, the history will be apocryphal in
places, and it will not detail sparse versions of the results, nor the most recent
advances in this field. For a comprehensive discussion of these more recent
improvements, see Goldberg, Tardos & Tarjan [1990] and Ahuja, Magnanti &
Orlin [1989].

Definitions. Let G = (N, E) be a directed graph on the set of nodes N and set
of edges E, and let c(i, j) be a positive real number on directed edge (i, j),
called the capacity of (i, j). In our notation, the edge is directed from the first
node in the pair to the second node. We designate two particular nodes s and ¢
as the source and the sink, respectively. A flow f is an assignment of real
numbers to edges such that the following conditions are satisfied:

(1) For every edge (i, j), 0<f(i, j)<c(i, j). This is called the capacity
constraint.

(2) For every node i other than s or ¢,

2 fUb= 2 fi)).

i EE j: (L ))EE

In other words, the flow into i equals the flow out of i. This constraint is called
the conservation constraint.

It is easy to prove that in any flow f, %, f(s, i) — L f,8)=Z, f(i, 1) —
L, f(t. 1), and we call this the value of flow f, and denote it by f, ., or by f when
the source and sink are clear by context. Intuitively, the flow value is the net
amount of flow that is sent out of s and also the net amount of flow that is
received at t. We will henceforth assume that there are no edges directed into s
or out of ¢, since such edges are useless in computing a maximum s, ¢ flow.
Consequently the flow value f, , =%, f(s, i) = L, 0.

An s, t cut of G is a partition (X, Y) of the nodes of G where s € X and
t€ Y. The capacity of the cut (X, Y), denoted C(X, Y), is the sum of the
capacities of the edges directed from X to Y, i.e., C(X, Y) = Liex ey, J).
Given a flow f, and an s, 1 cut (X, Y), the net flow across the cut, denoted
f(.\’_Y)* is

> fih- 2 fG ).

iex.jey ieY.jex

The connection between s, 1 flows and s, ¢ cuts is very fundamental. The first
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fact, which follows immediately from the definitions, is that for any s, ¢ cut
(X, Y)and anys, t flow f, fy y, < C(X, Y). That is, the net flow across any cut
cannot exceed the capacity of the cut. The next fact, which is intuitive, is that
for any s, 7 flow fand any s, t cut (X, Y), f,, < fx y,- That is, the flow from s to
t cannot exceed the net flow across any s, ¢ cut. This fact is physically intuitive,
and we omit a formal proof of it, although in general in this field it is not a
good idea to rely exclusively on physical intuition.

Combining the above two facts we have the following lemma and the
theorem that follows immediately from it.

Lemma 2.1. For any flow f and any s, t cut (X,Y), f,, < C(X,Y).

Theorem 2.1. If there is an s,t cut (X,Y) and an s,t flow f such that
foxv, = C(X,Y), then f is a maximum s,t flow and (X,Y) is a minimum
capacity s, t cut.

In the next section we will show that the converse of this theorem also must
hold.

2.1. First methods

A history of maximum flow algorithms will normally begin with the Ford-
Fulkerson algorithm, although there were related mathematical theorems and
even algorithmic methods that precede that method.

The Ford-Fulkerson method starts with an assignment of zero flow f to each
edge, i.e.. f(i, j)=0 for each edge (i, j). At a general iteration of the
algorithm there is a flow f which is not necessarily maximum. From that flow f,
the algorithm constructs a graph G’, called the residual graph of f, according to
the following rules:

(1) If f(i, j) >0, then create the edge (j, i) in G and assign it a capacity of
fli, j). Edges of this type are called backward edges.

(2) If f(i, j)<c(i, j), then create the edge (i, j) in G’ and assign it a
capacity of c(i, j) — f(i, j). Edges of this type are called forward edges.

Note that every edge in the residual graph has a strictly positive capacity.
The residual graph is used to determine whether fis a maximum flow, and if
not, to indicatec how to augment the flow. These two tasks are accomplished in
the Ford-Fulkerson algorithm by details suggested in the following theorem.

Theorem 2.2. The flow f is a maximum s,t flow if and only if there is no
directed path from s to t in G’.

Proof. Let S be the set of nodes which are reachable from s via some directed
path in G’, and let T=V—§.

Suppose first that £ & S, so that (S, T) is an s, ¢ cut. Consider the capacity of
the cut. For cvery edge (i, j) in G where i €S and jE T, it must be that
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JG, )= c(i, j), for otherwise edge (i, j) would be a forward edge in G’ and so
J would be reachable from s and hence j would be in S. Similarly, for every
edge (i, j) where i € T and j € S, it must be that f(i, j) =0, for otherwise edge
(j. 1) would be a backward edge in G’ and i would be in S. Hence

fon= 2 fi.p)= 3 fip= Z e )=cS.T).
eSS jer ieT,jJES €S jerT
Then, by Lemma 2.1, fis a maximum s, ¢ flow and (S, T) is a minimum s, ¢ cut.

For the converse, suppose that 1€ S and consider a directed simple path
(one with no cycles) P in Gf from s to ¢ that starts at s and ends at 1. Let & be
the minimum capacity in G/ of the edges on P. We will show that the total low
from s to t can be increased to fi.=/f.,+ 8. To accomplish this, for every edge
(i. j) on P which is a forward edge in G’, set G, J) to f(i, j) + 8; for every
edge (4, j) on P which is backward edge in G’, set f'(J, i) to f(j, i)~ 8; for
every other edge on G, set f'(i, j) to f(i, j).

We will show that f' is an s — ¢ flow of value f,, + 8. First, note that s is
incident with exactly one edge (directed out of 5) on P, t is incident with exactly
one cdge (directed into r) on P (and both must be forward edges), hence
L f(s,i)=8+L%, fis,i)and ¥, f(i,1)=8 + X, fld, 1.

Next, note that for every other node i on P is incident with exactly one edge
on P directed in, and exactly one of P directed out of i. We will show that f’
satisfies the conservation constraint at each such node i. If both the edges of P
incident with i are forward edges, exactly one is into i and one is out of i, so

2 D=8+ X f(i)

I (JU)EE ji(j.)EE

and

2 flip=8+ 2 fij).

J L )EE jiUg)EE
Since fis a flow, it follows that
2 fUD= E .
Fr(j. el jii.j)EE

A similar argument holds if both are backward edges. Now if the edge of P
into / is a forward edge, and the edge of P put of i a backward edge, then

2 G =8-8+ X f(j.i)

e JoOeE

and

> U= X fi )

jru.per i ))EE
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hence

X fUiy= 2 ).
iGgaer G )EE

A similar argument holds if the in-edge of P at i is a backward edge and the
out-edge of P at i is a forward edge. So the assignment f! satisfies the
conservation requirement.

The only thing left to check is that 0= f'(i, j) < c(i, j) for each edge (i, j).
Recall that & is the minimum of capacities in G’ of the edges on P. So, if (i, j)
is a forward edge, then

O=f, )+ o6=["0 =[G )J)+cl )= fi. =c ).

If (i. j) is a backward edge, then
c(j, D=, D=1, 0)=fj. )= 8=fj, )~ f(ji)=0.

Hence we have shown that f’ is an s,¢ flow, and since X, f'(i, )=
8+ X, f(i.r). and 8 >0, it follows that f. >f . and f is not a maximum
flow. [

The Ford-Fulkerson method
All the essential elements of the Ford—Fulkerson method, and most of the

proof of correctness, have been outlined in the proof of Theorem 2.2. In detail,
the algorithm is the following:

(1) Set f(i, j)=0 for every edge (i, j).

(2) Construct the residual graph G’ from f.

(3) Search for a directed path P from s to rin G, If there is none, then stop,
fis a maximum flow.
Else, find the minimum capacity 8 in G’ of any of the edges on P.

(4) If (i, j) is a forward edge on P, then set f(i, j) to f(i, j) + 6. If (i, j)isa
backward edge on P, then set f(j, i) to f(j, i) — 6.

(5) Return to Step 2.

2.2. Termination

Since & >0, every iteration of the Ford—Fulkerson algorithm increases the
amount of flow f|  sent from s to t. Further, since edge capacities are only
changed by addition and subtraction operations, if all the edge capacities in G
are integral, then & is always integral and hence at least one. Since the
maximum flow is bounded by the capacity of any s, ¢ cut (Lemma 2.1), we have
the following theorem.
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Theorem 2.3. [f all the edge capacities are finite integers, then the Ford—
Fulkerson algorithm terminates in a finite number of steps.

By the same reasoning, it is also easy to see that the theorem holds when all
the capacities are rational. However, the theorem does not hold for irrational
capacities. We will see later how to fix this.

Now, in the proof of Theorem 2.2, if the algorithm terminates, the final flow
[ saturates the s, r cut S (defined in the proof of Theorem 2.2), so that fis a
maximum flow of value f,, and (S, V— S) is a minimum s, ¢ cut of capacity f, .
So for the case when the capacities of G are rational, we have proved the
converse to Theorem 2.1, the famous max-flow min-cut theorem:

Theorem 2.4. The maximum s, t flow value is equal to the minimum capacity of
any s, 1 cut.

Theorem 2.4 is an example of a duality theorem or min = max theorem. Such
duality theorems appear extensively in combinatorial optimization, and often
are the key to finding efficient methods, and to their correctness proofs.

There is a problem in extending the theorem to the case of irrational
capacities: we do not yet have a proof that the Ford—Fulkerson algorithm
terminates when capacities are irrational. In fact, it is known that the algo-
rithm, as given, might not terminate in this case. This issue will be resolved in
Section 3.3 and then the max-flow min-cut theorem for any capacities will have
been proven.

Efficiency

Eventual termination is not the only issue. We want the algorithm to
terminate as quickly as possible. Unfortunately, even in the case that all the
capacities are integral, and hence the algorithm terminates, the Ford—Fulker-
son algorithm can require as many as ;. iterations of Step 3 [Ford &
Fulkerson, 1962]. Hence the only provable time bound for the algorithm (with
integer capacities) is O(ef, ,), where e is the number of edges. Each residual
graph and augmenting path can certainly be found in O(e) time.

The time bound of O(ef,,) is not considered a polynomial time bound in
either a strong or a weak sense. To be a (weakly) polynomial time bound, it
must grow no faster than some polynomial function of the total number of bits
used to represent the input. But a family of examples can be constructed where
the capacities of the edges can be represented in O(log f, ) bits, and where the
algorithm uses €( f, ,) iterations. Hence, the number of iterations is exponen-
tially larger than the number of bits used in the input.

A stronger notion of a polynomial bound would require that the bound grow
no faster than some polynomial function of the number of items in the input,
i.e.. e + n. The bound Ofef,,) certainly does not fit that criterion since fi.is
not even a function (let alone a polynomial) of n and e. We will discuss the
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distinction between strong and weak polynomial bounds more deeply in
Section 14.

The first strongly polynomial bound for network flow was shown by Dinits
[1970] and independently by Edmonds & Karp [1972], who both proposed a
modification of the Ford-Fulkerson algorithm to be discussed below. They
proved that the modified algorithm terminates correctly within O(n°) time,
where n=|N|. This time bound is correct even if the edge capacities are
irrational. We will examine the Edmonds—Karp method as we derive the even
faster Dinits method.

3. Ford-Fulkerson leads ‘naturally’ to Dinits

In this section we develop the Dinits algorithms for network flow. We also
show a continuity of ideas that leads ‘naturally’ from the Ford-Fulkerson and
Edmonds—-Karp methods to the Dinits method. The word ‘naturally’ is in
quotes because the continuity was seen only in retrospect, and because the
Dinits algorithm actually predates that of Edmonds—Karp. The Dinits method
was developed in the Soviet Union in 1970, but became known in the West
only in the later part of that decade. During that time a different algorithm
containing some of the ideas of the Dinits method was independently de-
veloped in the West by Jack Edmonds and Richard Karp, but the ideas were
not as fully developed as in the Dinits method. In fact, it was not even
recognized, when the Dinits method first became known in the West, that the
Dinits methods could be viewed as a natural refinement of the Ford—Fulkerson
method —it looked very different at first. We now see it as essentially a more
efficient implementation of the Ford-Fulkerson method.

The Ford-Fulkerson (FF) method is a fairly natural algorithm not far
removed from the definitions of flow. The Edmonds—Karp (EK) and Dinits
algorithms to be discussed can be derived from the FF algorithm by exploiting
deeper observations about the behavior of the FF algorithm. As a result, these
algorithms are less natural and farther removed from the basic definitions of
flow.

3.1. Path choice for the Ford-Fulkerson method

The Ford-Fulkerson algorithm builds a succession of residual graphs, finds
an augmentation path in each, and uses the path to augment the flow.
However, there can be more than one s, ¢ path in a residual graph, and the
method does not specify which path to use. It is easy to construct networks
[Ford & Fulkerson, 1962] where the Ford-Fulkerson method could use just a
few augmenting paths, but if it chose paths unwisely, it would use a huge
number of paths. Hence the question of which paths to select is important.
One reasonable suggestion is to pick the path that increases the flow by the
largest amount. This idea was explored in the early 1970s [Edmonds & Karp,
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1972}, but a different idea was found to be better. The idea is to choose the
augmentation path with the fewest edges. This is the first idea of the Dinits
method, and is also the key idea in the Edmonds—Karp method [Edmonds &
Karp, 1972]. Later, this same idea was applied to the bipartite matching
problem, yielding the fastest known method for that problem [Hopcroft &
Karp, 1973].

We hereafter refer to the Ford-Fulkerson algorithm where each augmenta-
tion path is the shortest s, ¢ path in the residual graph, as the EK algorithm.

We now explore the idea of choosing the augmentation path with fewest
edges (the EK algorithm), and show how the Dinits algorithm evolves naturally
from it, although we note again that this exposition is a corruption of the true
history of network flow algorithms.

Definition. For i from 1 to r, let G’ be the ith residual graph constructed by the
EK algorithm, and let P, be the s, ¢ path found by the algorithm in G'. Then for
node v, let D'(v) be the smallest number of edges of any v, ¢ path in G', and let
d;= D'(t). Any v, path with D'(v) edges will be called a shortest v, t path.

The following two facts are easy to verify, and are left to the reader (these
facts are true for the Ford-Fulkerson algorithm as well as for the EK
algorithm).

Fact 1. The capacity in G'"' of an edge (x, y) is less than its capacity in G' if
and only if edge (x, y) is on P,.

Fact 2. The capacity in G'*" of an edge (x, y) is greater than its capacity in G' if
and only if the edge (y,x) isin G' and is on P,. As a special case of this, any
edge (x, y) is in G'"' — G' only if the edge (y,x) is in G' and is on P,.

As a consequence of these facts, the capacities of all edges not in P, are the
same in G' and G,

Lemma 3.1. For i from 1 to r, and for any node v, D'(v) < D'*'(v), and so
lsd,=d,=---=d =n.

Proof. Let P, be a shortest s, ¢ path in G'. The EK algorithm augments flow on
P, and then creates G'*' from G’ by changing some edge capacities, by
deleting any edges whose capacities fall to zero, and by possibly adding some
new edges not in G'.

To see how D'*'(v) compares to D'(v), we create G' ™' from G' in two steps:
first, delete all the edges in G' - GHI; second, add in all the edges in
G'"' - G'. After the first step, D'"'(v) = D'(v), since deletion of edges from
G' certainly does not decrease any D value. We will add the new edges in one
at a time and see that after each addition the D values remain the same or
increase, but never decrease.

Let (x, y) be a new edge added. By Fact 2, edge (x, y) in G'"' is the reversal
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of an edge (y,x) on P, in G' But, P, is a shortest s, ¢t path in G', and so
D'(y)=D'(x) + 1. (If D'(y) < D'(x), there is an s, r path of fewer edges than
P.. by following P, to y and then going from y to t with D'(y) edges.) Clearly,
the addition of (x, y) does not decrease the distance from y. Further, since
D'(v) > D'(x), any path from any node z to ¢ using edge (x, y) will have
distance greater than (D'(z, x) + D'(x)) = D'(z), where D'(z, x) is the shortest
distance from z to x in the ith augmentation graph. Therefore, the addition of
(x, y) cannot decrease the distance to ¢ from any node, and so D'(v)< D" \(v),
for all nodes v, and in particular d,<d,_,. Further, d, <n, since no simple
path can be longer than n, the number of nodes in the graph. [

Given Lemma 3.1, we can partition the execution of the EK algorithm into
phases, where in each phase, all the augmentation paths used by the algorithm
have the same number of edges, and all the augmentations of that length are in
that single phase. More formally:

Definition. A phase of the EK algorithm is a maximal portion of the execution
of the algorithm where all the augmentation paths have equal length. If G' is
the first residual graph and G is the last residual graph in a phase, then
d, \<d,=d, <d,,,.

It follows immediately from Lemma 3.1 that in the EK algorithm there are at
most n phases.

The idea of the Dinits algorithm is to efficiently find the augmentation paths
inside a single phase. We will argue that inside a phase we can streamline the
way cach successive augmentation graph is constructed from its predecessor. In
particular, we will see that inside a phase we can completely ignore any edges
whose residual capacities are increased by the EK algorithm, including all the
new residual edges that the EK algorithm adds. This streamlining may at first
secem only a cosmetic improvement, but, in fact, it holds the key to a significant
speed up.

Lemma 3.2. For any node v, let P(v) be any shortest v, t path in G\ If P(v)
contains at least one edge of G'*' — G', then P(v) has at least D'(v) + 1 edges.

Proof. Let (x, y) be the closest edge to r on P(v) such that (x, y)€ G'"' -G
By Fact 2, (y, x) must have been on P,. P, is a shortest s, f path in G', so
D'(y)= D'(x) + 1, and it follows that D'"'(x) =1+ D""'(y) = 1 + D'(y) since
all the edges from y to r on P(v) are in G'. But 1+ D(y) = D'(x)+2, so
D'"'(x)> D'(x). Now let (x/, y'") be the next closest edge to t on P(v) such that
(x'.y")isin G~ G'. Again (y’, x’) must have been on P, and D'*'(x') =
L+ D" (y)>1+ D'(y’). The inequality follows from the fact that all the
cdges on P(v) from y' to x are also in G', and that D'*'(x) > D'(x). Iterating
this argument along edges on P, that are in G'™' — G', we obtain the
lemma. O
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The following corollary is immediate.

Corollary 3.1. If for some i <j, P(v) contains at least one edge of G’ — G/, then
P(v) has at least D'(v) + 1 edges.

A short digression
Digressing briefly from the exposition of the Dinits algorithm, we can now
bound the running time for the EK algorithm.

Corollary 3.2. The Edmonds—Karp algorithm runs in O(n’) time.

Proof. In any augmentation path P,, at least one edge (x, y) becomes satu-
rated and hence does not appear in any successive residual graphs until ( y, x)
is used on an augmentation path P, for some j>i. But, by Corollary 3.1,
D'(y)< D'(y). Hence the reappearance of edge (x, y) in G'*' is associated
with an increase in D(y). As D(y) is bounded by n, edge (x, y) can be
saturated at most n + 1 times, and this holds for each edge into y. Further,
there are at most n edges into y, so the total number of times that the edges
into y can be saturated by an augmentation in algorithm EK is O(n’).
Therefore, the total number of augmentations of the EK algorithm is O(n),
and since each augmentation takes O(e) time, the total time for the algorithm
is O(n’e) = O(n’). Note that this bound can also be shown to be O(ne’). O

Back to the Dinits method

Dinits improved upon the EK algorithm, obtaining a running time of O(n*),
by more fully exploiting Lemma 3.2. In particular, by setting v to s in Lemma
3.2 we get:

Corollary 3.3. Any s, t augmentation path in G'"' which contains an edge in
G'"' = G' has at least d, + 1 edges.

The importance of this corollary is that if a directed edge (x, y) in G is not
on any shortest s, ¢ path at the start of a particular phase in the EK algorithm,
it will not be on any shortest s, ¢ path during any part of the phase. So suppose
that a new phase of the EK algorithm has just begun, i.e., the previous
augmentation path had been some length d, but there are no length-d
augmentation paths in the current residual graph. Let G' be the residual graph
at the start of the phase. Then Corollary 3.3 says that we can execute the entire
phase using residual graph G', without ever adding new edges to G'. In fact,
Corollary 3.3 says that we might as well remove from G’ any edge that is not
on some shortest s, path in G'—we can execute the entire phase on this
reduced graph without affecting the correctness of the EK algorithm! We now
make this idea precise.

Definition. The layered graph LG’ for G' is the graph obtained from G' by
removing all edges which are not on some shortest s, ¢ path in G'.
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Note that in a layered graph, all s, ¢ paths have the same length, so every s, ¢
path is a shortest s, ¢ path. It is easy to find the layered graph LG’ for G' in
O(e) time by breadth-first search (BFS). Breadth-first search will give each
node v a number /(v) which is the minimum number of edges from s to v along
any s, v path in G'. Then LG’ consists of all edges (u, v) in G' such that
[(u) =1Lv)— 1, and I(v) <I(r). Once the node labels have been assigned, the
proper edges can be selected by scanning through them in O(e) time. Below we
give the BES algorithm for assigning node labels.

Breadth-first search
Let Q be a queue, i.c., a list in which new elements are added at the end, and
elements are removed from the top. A queue is also known as a first-in first-out
list.

(1) Set I(s) =0; mark s and add it to Q.

(2) While Q is not empty, execute Steps 3 and 4.

(3) Remove the top node w from Q. _

(4) For each unmarked node u connected from w by a directed edge in G’
mark u, add it to Q. and set [(u) = I(w) + 1.

It is easy to prove by induction, that the assigned node labels are correct.

Using the definition of a layered graph, we can summarize the observations
so far: it G' is the augmentation graph at the start of a phase, then the entire
phase of the EK algorithm can be executed on the layered graph LG’ in place
of G'. LG’ can be found by breadth-first search in O(e) time.

The algorithmic importance of this may not be at first apparent. The EK
algorithm spends O(e) time to build each augmentation graph, and O(e) time
to find a shortest s, ¢ path in it. The above observations show that we only need
to build a new (layered) augmentation graph at the start of each phase, and
this reduces the time involved in building augmentation graphs. But does it
lead to an overall speedup in the EK algorithm? If the costs of finding
augmentation paths are not reduced, then the answer is ‘no’ since each path
continues to cost O(e). The importance of layered graphs is that they do in fact
allow augmentation paths to be found faster, as follows.

Since any s, ¢ path in LG’ is a shortest s, ¢ path, and it can have at most n — 1
edges, a shortest s, 1 augmentation path in LG’ can be found myopically in
O(n) time: just follow any sequence of edges from s to ¢ in LG’ So to
implement a phase we do the following:

The Dinits algorithm for a single phase

Repeat
Myopically follow any path P from s, keeping track of the minimum residual
edge capacity 8 along that path. If the path reaches ¢, then execute Step A.
Else execute Step B.

Until all edges have been removed from LG".

Step A (when ¢ is reached): augment the flow fin G along the edges of P by
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& units, and reduce the capacity of these edges in LG' by & units. The capacity
of at least one edge in LG’ on P will become zero. Remove any such edges
from LG’

Step B (when the path in LG’ from s reaches a node v which has no edges
out of it): remove all edges into v from LG".

Lemma 3.3. The Dinits algorithm for a single phase correctly implements a
phase of the EK algorithm, and it runs in time O(ne).

Proof. First note that if edge (x, y) is in LG', then edge (y, x) cannot be in
LG'. This means that during a phase of the EK algorithm executed on LG', the
capacities of the edges of LG' never increase. Therefore, once the capacity of
an edge becomes zero, the edge can be removed. The correctness of the
algorithm then follows from Lemma 3.3.

For the time bound, note that each myopic search for a path takes O(n)
time, since the length of any path is at most n. Each such myopic search ends
with the removal of at least one edge of LG, and hence there are at most e
such searches. [

The Dinits network flow algorithm is the EK algorithm where each phase is
implemented as above. Since in each phase the length of the s, ¢ path increases,
there can be at most n phases. Hence, we have:

Theorem 3.1. The Dinits network flow algorithm runs in time O(n’e) = O(n*).

To review, the speed-up of the Dinits algorithm over the EK algorithm
comes first from understanding how successive augmentation paths are related,
Icading to the notion of a phase, and second from the ability to implement an
cntire phase on a single layered graph, leading to an O(n) method to find each
augmenting path. The EK algorithm needs ®(e) time to find each augmenta-
tion path becausc it searches in an arbitrary residual graph, while the Dinits
algorithm restricts its search to a layered graph. This illustrates the main theme
of this chapter, how mathematical insight and algorithm analysis (in this case of
an cxisting algorithm) leads to the design of a more efficient algorithm.

3.2. An O(n’) network flow algorithm

We now show how to reduce the time for computing a maximum flow from
O(n'e) to O(n’) by reducing the time for a single phase computation from
O(ne) to O(n”). The idea will be to look further at the set of augmentation
paths that could have been found in a phase of the EK or the Dinits algorithm.
That is. instead of trying to find the paths one at a time during a phase, as the
EK and Dinits methods both do, we try to find a subset of edges, and flows on
those cdges, which could have been obtained from the superposition of
augmentation paths found in a phase. It turns out that we can find such a set
faster than by actually finding individual augmentation paths, and since this set
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of edges could have come from the Dinits or EK algorithm, we can correctly
use them in the network flow algorithm.

Before we delve into the details, we have to slightly switch our view of what
is being computed on a residual graph.

Definition. For a layered graph LG’ used during phase i of the EK or Dinits
algorithms, define g(u, v) to be c(u, v) — ¢(u, v), where c(u, v) is the capacity
in LG' of edge (u. v) at the start of phase i, and ¢(u, v) is its capacity at the end
of the phase.

In the Dinits method the flow fis modified in Step A immediately after each
augmentation path is found. These modifications are related to, but distinct
from, the ongoing modifications of LG'. Suppose we only make the modi-
fications on LG’, and delay changing the flow f until the end of the phase. What
we would know at the end of the phase is the flow f which is correct for the
start of the phase, and the function g. From that we could easily obtain the
flow f”, the correct flow for the end of the phase, by superimposing f and g:

If (u, v) is a forward edge in LG', then set f'(u, v) to
flu, v) + g(u, v) .

If (u, v) is a backward edge in LG’, then set f'(u,v)to
fu,v)y—g(u,v).

So instead of finding augmenting paths one at a time, if we had some other
method for determining the function g we could simulate a phase of the Dinits
algorithm (which itself simulates a phase of the EK algorithm). So is there any
easy way to find the function g? To answer that, we look a little more closely at
what g is.

It is easy to verify that the function g is an s, ¢ flow in LG'. However, it is not
necessarily a maximum flow, since for any edge (u, v) in LG', g(u, v) starts at
zero and only increase during a phase. That is, if we consider a phase of the
Dinits or EK method to be computing an s, flow g in LG’, then that
computation never decreases the flow in any edge of LG, and by simple
example, such an algorithm cannot be guaranteed to find a maximum flow.
Instead, g is something called a blocking flow.

Definition. A blocking flow in a graph is a flow in which at least one edge on
cvery s, ¢ path is saturated. It is easy to construct examples illustrating that a
blocking flow is not necessarily a maximum flow.

Clearly, g is a blocking flow in LG’ for if it was not blocking, then additional
s. t paths in LG’ could be found, and the phase would not be complete. We
would like to say that conversely any blocking flow in LG’ can be used to
simulate a phase of the Dinits method. Unfortunately this is not quite correct
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uniess we modify Step A of the Dinits method as follows: after finding a path P
with minimum capacity 8, set § to be any positive value less or equal to §’, and
use & as before. It is easy to see that even with this change the maximum flow is
still correctly computed, although one might suspect that if we were to modify
the Dinits method in this way, the algorithm would become very inefficient.
We will see that this need not be the case.

Lemma 3.4. Let f and LG’ be as above. If g is any blocking flow in LG', then
the superimposition of f and g gives a flow f’ which could have been obtained by
the execution of a phase of the (modified) Dinits algorithm on LG,

Proof. Given g we will find s, ¢ paths which could have been found by the
modified Dinits method. First remove any edge (u, v) where g(u, v) = 0. There
are s, ¢ paths in LG, and g is a blocking flow, so there must be at least one
edge (s, u) such that g(s, u) > 0. Then, since g is a flow, there must be an edge
(u, v) where g(u, v)>0. LG' is acyclic and all paths end at ¢, so repeating this
reasoning, we find an s, ¢ path P in LG’ among edges with positive flow g. Let &
be the smallest g value among the edges on P. Now decrease g(u, v) by ¢ for
every edge on P. What remains is again an s, ¢ flow, so we can again find an s, ¢
path. Repeating this operation, we can decompose g into a set of s, ¢ paths, and
for each such path £ >0. Clearly, these paths could have been found (in any
order) by an execution of the modified Dinits method, provided that it chose &
to be e. Finally, since g is a blocking flow, such an execution of the Dinits
algorithm would terminate after finding these flows. [

Hence any phase of the Dinits algorithm can be simulated if we have a
blocking flow for the layered graph of that phase. Then, one way to speed up
the Dinits algorithm is to find a blocking flow in a layered graph in time faster
than O(ne). The first solution [in time O(n” + ¢)] to this was proposed by
Karzanoff [1974]. A simpler method was later discussed by Malhotra, Kumar
& Maheshwari [1978], and many additional methods have since been found. In
this section, we follow the method called the wave method due to Tarjan
[1983], which is itself a simplification of the Karzanoff method.

3.3. The wave algorithm

All of the above methods for finding a blocking flow in a layered graph are
preflow methods. A preflow is a relaxation of a flow; it is an assignment of
non-negative real numbers to edges of the graph satisfying the capacity
constraints, but the original conservation constraint is replaced by the following
relaxed constraint:

For every node i other than s or ¢,

> fbhE X fi ).

Ji(JL)EE ji(i,j)EE

In other words, the flow into i is greater or equal to the flow out of i.
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We define e(v) (excess at v) to be the total flow into v minus the total flow
out of v. In a preflow f, node v (v #s, t) is called unbalanced if the excess is
positive, and is called balanced if the excess is zero. The residual graph G’ for
a preflow fis defined exactly as a flow f. That is, if f(u, v)>0, the directed
edge (v. u) is in the residual graph with capacity f(u, v); if f(u, v) < c(u, v), the
directed edge (u, v) is in the residual graph with capacity c(u, v) — f(u, v).

The wave method uses preflows until it ends, at which time each node is
balanced, and hence the ending preflow is a flow; we will see that it is in fact a
blocking flow. During the algorithm, each node will be called either blocked or
unblocked. Initially s is blocked, but all other nodes are unblocked; when a
node becomes blocked, it never again becomes unblocked.

The algorithm tries to balance an unbalanced unblocked node v by increasing
the flow out of v, and to balance an unbalanced blocked node v by decreasing
the flow into v. The algorithm operates by repeatedly alternating a wave of
increase steps (where flow is pushed towards ) and a wave of decrease steps
(where flow is pushed back towards s). We will describe the increase and
decrease steps in detail below, but before we do, we give the high-level
description of the algorithm.

The wave algorithm for a blocking flow g in a layered graph _

(0) Set g(u, v) =0 for every edge (u, v) in the layered graph LG"

(1) Saturate all edges out of s.

(2) Find a topological ordering of the nodes of the layered graph. That is,
find an ordering of the nodes such that for any directed edge (u, v), u appears
before v in the ordering.

(3) Repeat Steps 4 through 7 until stopped.

(4) Examine each node v in the established topological order, and execute
Step 4a.

(4a) If v is unblocked and unbalanced, then attempt to balance it by
executing the Increase Step for v. If v cannot be so balanced, then
declare it blocked.

(5) If there is any unbalanced blocked node, then go to Step 6. If there is
not such a node, then stop the algorithm.

(6) Examine each node v in reverse topological order and execute Step 6a.
(6a) If v is blocked and unbalanced, then balance it by executing the
Decrease Step for v. Note that v will always become balanced in this
step.

(7) 1f there is an unblocked, unbalanced node, then go to Step 4, else stop

the algorithm.

We can now describe in detail the increase and decrease steps executed while
examining a node v.

Increase Step. Repeat the following operation for each neighboring node w
of v until either v is balanced, or no further neighboring nodes of v exist.
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If w is an unblocked node, and g(v, w) < c(v, w), then increment g(v, w) by
min[e(v), c(v, w) — g(v, w)].

Decrease Step. Repeat the following operation for each neighboring node u
until v is balanced:

If (u,v) is an edge with flow g(u,v) > 0, then decrease g(u, v) by
min[ g(u, v), e(v)].

We prove the correctness and the time bound for the wave method with the
following lemmas. Note first that once a node becomes blocked in the
algorithm, it never becomes unblocked.

Lemma 3.5. If node v is blocked, then there is a saturated edge on every path
from v 1o t.

Proof. The proof is by induction on the order that the nodes become blocked.
Node s is initially blocked, and all edges out of s are saturated. So the lemma
holds at this point. Suppose it holds after the kth node becomes blocked. Now
before the k + 1 node becomes blocked some flow could be decreased from a
node v to a blocked node w, but this happens only in Step 6a, and only if v is
blocked. Hence by the induction assumption, all paths from w contain a
saturated edge. The k + 1 node v becomes blocked only in Step 4a, and only
after all the edges out of v are saturated, hence the inductive step holds. O

Lemma 3.6. If the method halts, all nodes are balanced and the preflow is a
blocking flow.

Proof. Note that after Step 4, there are no unbalanced unblocked nodes, so if
the algorithm terminates in Step 5, then all nodes are balanced. Similarly, after
Step 6 there are no unbalanced blocked nodes, so if the algorithm halts in Step
7, all nodes are balanced. Hence if the algorithm terminates, then the preflow
is a flow. To see that the flow is blocking, note that for every edge (s, v) out of
s, either (s, v) is saturated or v is blocked, since v had to be blocked before
flow on (s, v) could be decreased. But if v is blocked, then by Lemma 3.5 all v
to 1 paths are blocked. O

Theorem 3.2. The wave algorithm computes a blocking flow in a layered graph
in O(n*) time.

Proof. Nodes only become blocked in Step 4a, and once blocked remain
blocked forever. Further, when a blocked node becomes unbalanced in Step
4a, it is immediately balanced in the next execution of Step 6a, and no new
unbalanced nodes are created in Step 6. So the algorithm terminates unless at
Icast one new node becomes blocked in each execution of Step 4; hence, there
arc at most n — 1 executions of Step 4 and at most n — 2 of Step 6. In each such
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step, we attempt to balance n — 2 nodes, so there are O(nz) times when the
algorithm attempts to balance nodes. Each such attempt (at a node v, say)
cither succeeds or results in saturating all edges out of v.

To bound the running time of the algorithm it is not enough to bound [by
O(nz)] the number of attempts to balance the nodes, since in each attempt to
balance a node v, several edges out of v are examined. We now examine how
many edges are examined by the algorithm. The flow on an edge (v, w) is
increased only if w is unblocked, and is decreased only if w is blocked, hence
the flow on (v, w) increases for some time, then decreases, but never again
increases. During the increase part, each flow increase either balances v or
saturates (v, w). Any edge can be saturated only once, so over the entire
algorithm there can be at most O(n” + e) edges examined during the Increase
Step. Similarly, during the decrease part, each flow decrease on (v, w) either
reduces its flow to zero (which can happen only once) or ends an attempt to
balance w. Hence there can be at most O(n” + e) = O(n’) edges examined
during the Decrease Step. The number of edges examined dominates the
running time of the method, so the theorem follows. O

3.4, Section summary

To summarize this section, the maximum s, ¢ flow and minimum cut can be
found in O(n") time by the Dinits network flow method if the wave algorithm
is used to execute each phase. The Dinits method executes at most » phases,
where in a phase a blocking flow in a layered graph must be found. The wave
algorithm finds a blocking flow in a layered graph in O(n”) time, so a total time
bound of O(n?) is achieved.

4. The breakdown of phases: Goldberg’s preflow-push algorithm

The idea of a phase was central to the speedup of the Dinits and wave
methods over the Ford-Fulkerson and EK methods. The basic observation was
that when shortest augmenting paths are used, the computation naturally
partitions into at most n phases, and in each phase a blocking flow in a layered
graph is computed; the speedups then resulted from implementing a phase
more efficiently. The overall time bound was just the product of the bound on
the number of phases and an independent upper bound on the worst-case
running time of phase. But maybe there is some important interaction between
phases. Perhaps the number of phases affects the total time taken by the
phases, or perhaps when one phase takes a long time, the next phases take less
than the worst-case upper bound on an arbitrary phase. As long as the
worst-case time bounds are obtained by multiplying a bound on the number of
phases by an independent bound on the worst-case running time of a phase, no
analysis of such intcraction is possible.

Goldberg [1987] introduced a network flow algorithm that had the same
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dense worst-case running time, O(n’), as the best previous algorithms, but
whose analysis did not divide the algorithm into phases. Hence the time bound
for the algorithm is not just a bound on the number of phases times a bound on
the time per phase. This sort of analysis, where the bound comes from
analyzing an entire sequence of operations is often called an amortized analysis.
Hence the analysis of the Goldberg algorithm differs from that of the Dinits
algorithm in that the former analysis is more amortized than the latter. We will
see other amortized analyses below when we consider parametric flow, and in a
later section when we discuss the problem of computing the connectivity of a
graph.

Goldberg’s method was modified by Goldberg & Tarjan [1988] and is now
generally referred to as the Goldberg-Tarjan (GT) method. The amortized
analysis of the GT method allows additional advances, one of which, paramet-
ric flow, will be discussed in detail in the next section. Another advance, by
Goldberg & Tarjan [1988], was the improvement of the running time to
O(ne log(n’)/e), which is O(n’) for dense graphs, and O(ne log n) for sparse
graphs. This second advance relies heavily on the use of a data structure called
a dynamic tree and will not be discussed in this article.

4.1. The generic algorithm

The Goldberg method is a preflow method, maintaining a preflow until the
end of the algorithm when it becomes a (maximum) flow. During the algorithm
each vertex v has an associated label d(v) which is always between 0 and
2n — 1. These d labels are called valid for the current preflow f if d(s) = n,
d(t) =0, and d(u) < d(v) + 1 for any edge (u, v) in the current residual graph
for f. Throughout the algorithm the d labels never decrease and are always
kept valid (a fact that we will prove later). A directed edge (u, v) is called
admissible if and only if it is in the current residual graph and d(u) = d(v) + 1.

The basic step of the Goldberg algorithm is called a node examination of an
active node. In a node examination of active node u, all the excess at u is
pushed along admissible edges out of u to neighbors of u in the current residual
graph. If at any point in the examination, the active node u has no more
admissible edges out of it, then d(u) is changed to min[d(v) + 1: (u, v) is an
edge in the current residual graph]. It is easy to prove, by induction on the
number of pushes say, that any active node has a residual edge out of it. So the
relabeling is always possible and creates an admissible edge from u to v
allowing additional flow from u to be pushed to v. Hence, the node examina-
tion of u ends only when all excess at u has been pushed out of u, at which
point u is no longer active. After a push, of amount 8 say, has been made along
edge (u, v), we change the preflow f along the edge as follows: if (u, v) is a
forward edge (i.e., an original edge in G), then f(u, v) gets increased by 8. If
(u, v) is a backward edge, then f(v, u) gets decreased by 8. These changes of f
are considered part of the node examination of u.

As an implementation detail, any push along an edge is required to push as
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much as possible, i.e., an amount equal to the minimum of the node’s excess
and the capacity of the edge. A push is called saturating if the push fills the
residual edge (either forward or backward) to capacity, and non-saturating
otherwise.

We can now describe the generic Goldberg algorithm.

The generic Goldberg algorithm
Push flow out of s to neighbors of s so that all edges out of s are saturated.
{This makes all neighbors of s active.}
Set d(s) = n, d(t) =0, and d(u) equal to the number of edges on the shortest
path from u to ¢ in the graph.
While there are any active nodes other than s or ¢
begin
Pick an active node u other than s or t and perform a node examination of
u.
end.

Note that the notion of the residual graph is important in the algorithm even
though it is not explicitly in the algorithm description. It is important because
the definition of an admissible edge ultimately depends on the current residual
graph. Hence the residual graph must be (explicitly or implicitly) updated as
the computation proceeds (after each node examination).

It is easy to see that the algorithm always maintains a preflow. Clearly then,
if the algorithm terminates, the preflow is a flow, because when a node has no
excess the flow into it equals the flow out of it. We will show that the algorithm
does terminate after some additional implementation detail is presented. But
with the help of the following lemma, we can already prove that at termination
the flow is a maximum flow.

Lemma 4.1. Throughout the algorithm, the d node labels are valid.

Proof. It is immediate that the initial d values are valid. Now consider the first
point in time where an invalid labeling occurs, and suppose it is d(u) > d(v) + 1
tor a residual edge (u, v). What could have happened between the time all
labels were valid, and the point of first invalidity? There are three things that
could have happened: either (u, v) was already a residual edge and d(u)
changed or d(v) changed, or (u, v) was not a residual edge but residual edge
(u. v) got created the point of invalidity. Whenever the value d(u) is changed it
is set to min{d(v) + 1: (u, v) is an edge in the current residual graph], hence
this does not create an invalid node label. If d(v) is changed it must increase
(since node labels never decrease); but just before that point d(v) < d(v) + 1,
since (u,v) was a residual edge and the node labels are valid. When a new
edge (u, v) is added to the residual graph it is because of a push from v to u in
the residual graph. But this means that the edge (v, u) was admissible, so
d(v) = d(u) + 1. Certainly then d(u) < d(v) + 1, the requirement for validity on
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the new edge (u, v) entering the residual graph. Edges leaving the residual
graph have no affect on validity. O

Theorem 4.1. Assuming the algorithm terminates, the preflow at termination is a
maximum flow.

Proof. We have already noted that at termination the preflow is a flow, hence
the residual graph is then a residual graph for an s, t flow. The flow will be
maximal if and only if there is no s to ¢ path in that residual graph. Since the
node labels are always valid and d(s)=n and d(t) =0 throughout the algo-
rithm, any path from s to ¢ in the residual graph would have to have n edges,
hence n + 1 nodes, which is not possible. Hence there is no s to ¢ path in the
residual graph at termination (or ever), and so the preflow is a maximum
flow. [

4.2, Additional implementation details

Before we can completely prove termination and worst-case time bounds,
there are two important implementation details to discuss: how admissible
edges are searched for during a node examination, and which active node to
examine if there are choices. We first address the admissible edge question,

How 1o search for an admissible edge

For cach node v, the algorithm keeps a list I(v) in arbitrary but fixed order,
containing every node w such that either edge (v, w) or (w, v) is in G. Hence
I(v) represents all the edges (v, w) which could possibly be admissible. At any
point during the algorithm there is a pointer p(v) into /(v). At the start of the
algorithm each p(v) points to the top of I(v). When node v is examined the
algorithm finds admissible edges out of v by searching through /(v) in order,
starting at p(v). advancing p(v) each time a new node of I(v) is considered.
Further, the algorithm will only consider updating d(v) when it has passed the
bottom of I(v). The algorithm remains correct, because in the generic al-
gorithm d(v) is changed when there are no admissible edges out of v, and
although that might happen before p(v) is at the bottom of I(v), it certainly
cannot hurt to explicitly check all the remaining potential residual edges. So
the algorithm will only consider changing d(v) when p(v) passes the bottom of
{(v). This detail by itself does not imply that d(v) will definitely change at that
point, however, we will prove that implication. That is, we will show that if the
bottom node of /(v) is passed, then there are no admissible edges out of v. At
that point then, d(v) is changed to min[d(w)+ 1: (v, w) is an edge in the
current residual graph], p(v) is set to the top of I(v), and the examination of v
continues.

Since the change of d(v) creates a new admissible edge out of v, this cycling
scan through I(v) always results in all excess being pushed out of v during an
examination of v. Note that at most one non-saturating push (the last one, if
any) from v occurs during a single examination of v.
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Lemma 4.2. When the bottom of I(v) is passed (but before d(v) is changed),
there are no admissible edges out of node v in the current residual graph.

Proof. For any node w on I(v), p(v) passes w during a node examination of v
only when edge (v, w) is not admissible. Since that time, the algorithm might
have examined nodes other than v, and so we have to see what effect this
might have on the admissibility of (v, w).

At the moment that p(v) passes w edge (v, w) is not admissible, so either
edge (v.w) was not in the residual graph, or d(v) was strictly less than
d(w) + 1. In the latter case d(v) is still strictly less than d(w) + 1 when p(v)
passes the bottom of I(v), because d(v) has not changed and d(w), if changed,
has only increased. In the former case, it may be that edge (v, w) is in the
current residual graph, although it was not in the residual graph when p(v)
passcd w. This can only happen if there was a push from w to v in the
meantime; at that time d(w) equaled d(v) + 1. But this again implies that
d(v) <d(w) + 1 when p(v) passes the bottom, so (v, w) is still inadmissible.
Since w was arbitrary, we have proved that there are no admissible edges out
of v when p(v) passes the bottom of I(v). O

Note we have actually shown something a little stronger which will be
needed later. We have shown that if w is above p(v) in I(v), then edge (v, w) is
inadmissible.

We can now complete a little of the timing analysis, and hence also a little of
the termination argument.

Lemma 4.3. For any node v, d(v) is always less than 2n.

Proof. First, only node labels of active nodes are changed, so once a node
becomes permanently inactive its node label is fixed. So we only need to show
what happens to active nodes.

Next, we claim that for any active node v there is a directed path in the
current residual graph from v to s. For suppose not, and let W be the set of
nodes which are reachable from v along any directed path from v in the current
residual graph. Let W=V — W. By assumption s € W. By the maximality of W,
all flx,y)=0forallxeW, ye W, otherwise there would be a residual edge
from W to W. But if there is no flow (or preflow) into W from W, there
certainly cannot be any excess at any node in W. So there is a directed path
from v to s in the current residual graph. Let w be the node adjacent to s on
this path. Because d(s) = n, and node labels are always valid, it follows that
d(w)=n + 1. Repeating this argument along the path to v, and using the fact
that there are only n nodes, we see that d(v)<2n. O

Lemma 4.4. The generic algorithm does at most O(n’) node relabel operations,
and at most O(ne) saturating pushes.

Proof. Since d(v) < 2n for cach node v, and cach relabel of v increases d(v),
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the total number of relabels is bounded by 2n°. Now d(v) increases each time
the bottom of /(v) is passed, since there are no admissible edges out of v at
that point, so the bottom of v can be passed at most 2n times. Each saturating
push along an edge out of v advances p(v) by one position, so the total number
of saturating pushes out of v is 2n times |I(v)| (which is the number of
neighbors of v in G). Summing this over all nodes bounds the total number of
saturating pushes by 2ne. [

To complete the time analysis of the algorithm we essentially need only
consider the number of non-saturating edge pushes. This is most easily done by
adding computational implementation detail given below.

4.3. How to chose among active nodes

There are two well-studied specialized versions of the generic algorithm. In
the FIFO version, nodes are placed on the end of a queue as they become
active, and are picked for examination off the top of the queue. In the max-d
version, the active node picked for examination is always the one with the
largest d label. Both methods lead to an O(n) time algorithm, but the max-d
method is easier to analyze (following an argument given by Cheriyan &
Maheshwari [1989]), and has additional applications we will discuss later.

Note that Lemmas 4.3 and 4.4 remain valid for the max-d version of the
algorithm since they did not rely in any way on how active nodes were chosen.
The next lemma does rely on the max-d version of the algorithm, and nearly
completes the remaining time analysis.

Lemma 4.5. The max-d algorithm performs only O(n’) non-saturating pushes.

Proof. In the max-d algorithm, at most n consecutive node examinations can
occur without at least one node label increasing. To see this, note that excess is
always pushed from the highest labeled active node to a lower labeled node
(since it is pushed along admissible edges). So, since each node pushes out all
its excess when examined, if no node labels change during n node examina-
tions. then all excess in the network will either be pushed forward to ¢ or
backward to s. At that point the algorithm terminates with a maximum flow,
since there will be no active nodes. Each node examination can do at most one
non-saturating push, so there can be at most n non-saturating pushes between
node label increases. Each node label is bounded by 2n, and node labels never
decrease, so there can be at most O(n’) non-saturating pushes. [

Theorem 4.2. The max-d version of the Goldberg algorithm finds a maximum
flow in O(n’) worst case time.

Proof. The time analysis is divided between the time for all the non-saturating
pushes, and the time for all-other-work. Lemma 4.5 showed that the total
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number of non-saturating pushes is bounded by O(n?), and each can clearly be
done in O(1) time.

Ignoring for now the time to find the max-d active node, the time for
‘all-other-work™ is just O(ne) as follows. Each operation other than a non-
saturating push or a relabeling causes p(v) to advance for some v, and d(v)
advances every time p(v) passes the bottom of I(v). Since d(v) <2n, and |I(v)|
is the sum of the in and out degrees of v in G, the total advancement of all n
p-pointers is bounded by 2n £, |I(v)] = O(ne). Relabeling also only costs O(ne)
since a node gets relabeled at most 2n times, and the time for each relabel is
bounded by the sum of its in and out degrees. So the time for all-other-work is
O(ne).

Now we discuss how to find an active node of maximum d label. To do this
efficiently, the algorithm keeps a set A of 2n — 1 linked lists of active nodes,
cach indexed by a number from 1 to 2n — 1. List j keeps all the active nodes
whose d label is j. A is used to locate an active node of maximum d label. If
there is more than one, then the node picked for examination is the first one on
the list. Each push from a node v must be to a node with d label equal to
d(v) — 1. so finding the next active node of maximum d value takes constant
time. Further, updating A after a node relabeling involves only constant work,
s0 A can be maintained and used in O(n”) time plus O(1) time per push. [

5. Parametric flow: The value of amortizing across phases

The worst-case (dense) running time of the Goldberg algorithm presented
above is no better than that of earlier algorithms. However, the analysis of the
Goldberg algorithm is not divided into phases and this amortization across
phases can be very useful in analyzing more complex applications of network
flow algorithms. In this section we give one example in detail.

5.1. The problem

One of the most useful applications of network flow is in the solution of
combinatorial problems by a sequence of maximum flow or minimum cut
calculations. For examples of such problems, see Picard & Queyranne [1982],
Gustield & Martel [1989], Gusfield & Tardos [1991], Gusfield {1991], Cunning-
ham [1985], and Gallo, Grigoriadis & Tarjan [1989]. In many problems the
networks in the sequence are similar and differ only by a systematic change in
some of the edge capacities. In particular, the edge capacities are often
functions of a single parameter A, and the particular combinatorial problem is
solved by finding the value of A whose corresponding maximum flow or
minimum cut meets some side constraint(s). Hence problems of this type are
solved by searching over the possible values of A (in some efficient manner),
solving a maximum flow problem for each fixed value of A generated.

Of coursc, for each fixed value of A in the generated sequence we could solve



398 D. Gusfield

the corresponding maximum flow problem from scratch, but the similarity of
the problems can often be exploited to solve the entire sequence faster. For a
large and important class of such problems, we will see that a sequence of
O(n”) maximum flow problems can be solved with the same worst case time
bound as just a single maximum flow problem. The use of the Goldberg (and
Goldberg-Tarjan) algorithms in parametric analysis was initiated by Gallo,
Grigoriadis & Tarjan [1989] who showed that a sequence of O(n) maximum
flow problems can be solved in the worst-case time bound for only a single
flow. The result given here is an improvement on that result and is taken from
Gusfield [1990b], and Gusfield & Tardos [1991].

Definition. In a monotone parametric flow network G, the capacities of the
edges out of s are non-decreasing functions of the real parameter A, and the
capacities of the edges into ¢ are non-increasing functions of A. All other edge
capacities are fixed, as in a normal flow network. For a given value A*, we
define G(A*) as the ordinary flow network that results from plugging in A* into
the capacity functions of the edges out of s and into ¢. Given a sequence of
values A <A, <--- <A, (in sorted order), the parametric flow problem is to
compute the maximum flow and minimum cut in G(4,),..., G(A,). We will
let f, denote a maximum flow in G(A)).

5.2. The central idea

In G(A;,,) the edge capacities out of s increase and those into ¢ decrease
compared to G(4A,), so f; is a legal preflow in G(A,,,), and we can start the
computation of f., with the initial preflow f; rather than starting from the zero
flow. This ‘common-sense’ idea has been around (in use with other flow
algorithms) for a long time. What is new is that by using this idea together with
the max-d version of the Goldberg algorithm, it can be proved that the total
work involved in the k network flow computations is at most O(n’ + kn).

The fundamental result of Gallo, Grigoriadis & Tarjan [1989] is the fol-
lowing:

Theorem 5.1. In a monotone parametric flow network G, if the values A, <
Ay <--- <A (or A > A, > > ),) are specified in this order, then a maximum
flow and a minimum cut in each of the networks G(A),...,G(A,) can be
computed on line in O(n’ + kn’) rotal time.

Thus for k = O(n), all the flows can be done in the same worst-case time as
the fastest known algorithm for a single flow. This result has many applications
and leads to the fastest solutions of many combinatorial problems. It is
important to note that in all of these applications it is the minimum cut that is
nceded; the maximum flow is computed in order to find the minimum cut.
Martel [1989] showed that the O(n’+ kn’) bound can also be obtained by
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using either the Karzanoff or the wave versions of the Dinits maximum flow
algorithm in place of the GT algorithm.

The GGT algorithm [Gallo, Grigoriadis & Tarjan, 1989] (establishing
Theorem 5.1) is based on the idea that the maximum flow in G(A,) can be used
to obtain a good initial preflow in G(A,, ) and that, if care is taken, the last d
labels in G(A;) remain valid for this initial preflow. In detail, for each i, the
initial preflow in G(A,,,) is obtained from the maximum flow in G(A,) by
increasing the flow in every edge (s, v) to ¢, (A,,,) if d(v) <n —1, by reducing
the flow in every edge (v, f) to ¢,(A,,,), and by leaving all other edge flows as
they are in the maximum flow in G(4A;). Each d(v) is unchanged from its last
value in G(A,)).

It is easy to verify, by the fact that A, <A,,, and the monotonicity of the
capacity functions, that this initial flow assignment is a preflow in G(A,, ,); it is
also easy to verify that the d labels are valid for this preflow. After the initial
preflow is set, the maximum flow in G(A,, ) is found by resuming the GT flow
algorithm and running it to completion.

5.3. Parametric flow with the max-d version

Theorem 5.2. In a monotone parametric flow network G, if the values A, <
Ay <o <A (or Ay > A, >+ > A,) are specified in this order, then a maximum
flow and a minimum cut in each of the networks G(A,),..., G(A,) can be
computed on line in O(n® + kn) total time.

Proof. As mentioned above, we use the max-d version of the Goldberg
algorithm. However, we note two additional implementation details that are
needed for this result. First, when beginning the flow computation in G(A,,,),
the initial position of each p(v) is its ending position in the flow computation in
G(A,). Second, s must be at the bottom of any I(v) list that it is in, and
similarly for ¢. The first modification is needed for the time analysis below, and
the second modification is needed for the correctness of the method. The
reason is the following. For the correctness of the Goldberg algorithm,
whenever d(v) changes there must be no admissible edges out of v. From the
comment after Lemma 4.2 we know that for a single flow computation if w is a
node above p(v) in I(v), then (v, w) is not admissible; so when p(v) passes the
bottom of I(v) there are no admissible edges out of v. To ensure that after a
capacity change, edge (v, w) is still inadmissible if w is above p(v), we always
put s and ¢ at the bottom of any list they are in, since an inadmissible edge not
incident with s or ¢ is clearly still inadmissible after a capacity change.

For the time analysis, we note how the O(rn’) bound for a single flow
computation is affected when k flows are computed by the method described
above. Again, the analysis is divided into time for non-saturating pushes, and
all-other-work. In the above parametric method, the d labels never decrease,
and each is bounded by 2n no matter how large k is. Further, p(v) is not
moved when the edge capacities change. So the analysis for all-other-work
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inside the k flow computations is unchanged, and the time is again O(ne). The
time for making the capacity changes is certainly bounded by O(kn) as is the
time to set up A after each capacity change. Note that A is empty at the end of
each flow computation. So all-other-work inside and between flow computa-
tions is bounded by O(ne + kn). Note that we have amortized over the entire
sequence of k flows. Had we just taken the O(xn’) bound on the time for any
single flow and multiplied by k, our desired bound would be impossible.

To analyze the number of non-saturating pushes, note that inside any of the
k flows there cannot be more than n non-saturating pushes before a d label
increases, for precisely the same reason as in a single flow. However, there
may be n — 1 non-saturating pushes, then a capacity change, and then another
n — 1 non-saturating pushes, all without a label change. So each time the
capacities change the bound on the total number of allowed non-saturating
pushes increases by #n. Hence the total number of non-saturating pushes over &k
flows is bounded by O(n® + kn). Therefore, the time to compute the k flows is
O(n” + kn). The analysis here is again amortized over all the k flows.

We now discuss how to find the k minimum cuts. Define S, to be the set of
nodes reachable from s in the residual graph obtained from the maximum flow
in G(A,); let T, = N\S,. It is known [Ford & Fulkerson, 1962] that S,, T, is the
unique ‘leftmost’ minimum s, ¢ cut. That is, if S$’, 7’ is another minimum s, ¢
cut in G(A,), then §;,C S’. We will find S;, T, in each G(4,), but we cannot
search naively from s since that would take Q(km) total time. We note the
following two facts. First, S, C S, , for every i [Stone, 1978; Gallo, Grigoriadis
& Tarjan, 1989]; second, if w is in S,,,\S;, then w must be reachable in the
G(A; ) residual graph from a node v € S, |\ S, such that (s, v) is an edge in G
and ¢,(A;,,)>c,(A,) [Gallo, Grigoriadis & Tarjan, 1989]. To search for S,
we start at from such nodes v, and we delete any edge encountered that is into
S;. Hence the search for S, | examines some edges not previously examined in

any search for S, j <i, plus at most n edges previously examined. So, the time
to find all the &k cuts is O(m + kn). O

5.4. Parametric flow for parameters given out of order

In Theorem 5.2 the values of A changed monotonically and there are many
applications where this is the case. However, it is even more useful to be able
to handle the case when the A values change in no ordered manner. It was
shown by Gusfield & Martel [1989] that a sequence of flows determined by k
values of A given in any order can be computed in O(n” + kn®) time; later this
was improved to O(n” + kn) by Gusfield [1990b] and Gusfield & Tardos [1991].
We will not give either result here, but examine an important special case
where the values of A are given out of order.

The special case of binary search

We consider the special case where the A values are generated by some
binary search over the space of possible A values (this is the case in several of
the applications). What is special about such a sequence of A values is that at
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any instant there is an interval [A,, A,] such that the next A value is guaranteed
to fall into this interval, and such that either A, or A, will next be set to A.
Hence A, monotonically increases, A, monotonically decreases, and the inter-
vals are nested over time. The nested interval property will make the algorithm
and the analysis particularly simple: we will be able to charge all the flow
computations to exactly two monotone sequences of continued flows.

The binary search process iterates the following until the desired value of A is
found or A, = A,. Assume initially that A, and A, are known, that the maximum
flows f(A;) and f(A,) in G(A,) and G*(A,), respectively, are also known.

(1) Given a new value A* between A, and A, dovetail the following two
computations: compute the maximum flow in G(A*) by continuing the flow
computation from f( A,) (this corresponds to increasing A to A*); compute the
maximum flow in G*(A*) by continuing the computation from f(A) (i.e.,
decreasing A to A*). Stop as soon as either of these flow computations finishes,
and call the resulting flow f(A*).

(2) Use f(A*) to determine (in the binary search process) which of A, or A,
should be changed to A*, and make the change.

If it is A, that changed to A*, and the dovetailed flow computation from f(A,)
finished. then set f(A;) to f(A*); if it is A, that changed but the dovetailed
computation from f(A,) did not finish, then finish it, and set f(A,) to the
resulting flow.,

If it is A, that changed and the dovetailed flow computation from f(A,)
finished. then set f(A,) to f(A*); if it is A, that changed but the dovetailed
computation from f(A,) did not finish, then finish it and set f(A,) to the
resulting flow.

Time analysis

Consider an iteration when A, is changed to A* (in Step 2). The work in that
iteration is either involved in finding f(A*) by continuing the flow from f(A,)
(the value of A, is before Step 2), or in finding (or attempting to find) f{A*) by
continuing the flow from f(A,) (A, before Step 2). Because of the dovetailing,
the amount of the latter work is dominated by the amount of the former work
and so the total work in the iteration is at most twice the amount used to
continue the flow from f( A,). By symmetry, the same conclusion holds when A,
changes to A™.

We will identify two sequences of A values, one increasing and one decreas-
ing. such that the associated flows for each sequence can be charged as in
Theorem 5.2, and such that all other work is dominated by the work done in
these two sequences. The first sequence (of increasing A values) will be called
S, and the other sequence (of decreasing A values) will be called S.. The first
values of S, and S, are the first A, and A, values used in the binary search.

In general, whenever A, is changed to A* (in Step 2), add A* to the end of S,
and whenever A, is changed to A*, add A* to the end of S,. By construction, if
A, and A, are two consecutive values in S, then f(A,) is computed in the
algorithm by continuing the flow from f(A,). Hence all of the flows associated
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with §, form one (increasing) sequence, and Theorem 5.2 applies. Similarly, all
the flows associated with S, form one (decreasing) sequence and Theorem 5.2
again applies. By the comment in the first paragraph, all other work is
dominated by the work involved in computing the flows in these two se-
quences. Hence we have the following.

Theorem 5.3. In a binary search that probes k values of A, the total time for all
the flows is O(n’ + kn). So if the binary search is over D possible values for A,
then the time for the binary search is O(n’ + nlog D).

5.5. An application: Network reliability testing

In a communication network G = (V, E), each node v can test k(v) incident
lines per day, and each line e must be tested #(e) times. The problem is to find a
schedule to minimize the number of days to finish the tests. This problem can
be solved as a parametric network flow problem in the following bipartite
network GB: there are n nodes (one for each node of V) on one side and m
nodes (one for each edge of E) on the other side; there is an edge (v, e) from
node v to node e in GB if and only if node v €V is an endpoint of edge e € E
of graph G. Each edge (e, 1) in GB has capacity #(e), and each edge (s, v)
capacity k(v). If we multiply the capacity of each (s, v) edge by a parameter A,
then the problem is to find the minimum integer value of A such that there is a
flow saturating the edges into .

A direct method to solve this problem is to search for the proper A by binary
search. Let T= X, t(e); then the binary search would solve O(log T') network
flow problems. These flows are in the form assumed for Theorem 5.3, hence
the optimal schedule can be found in O(n’) time for T =0(2").

6. Computing edge connectivity: The amortization theme writ small

The edge connectivity of a connected undirected graph is the minimum
number of edges needed to be removed in order to disconnect the graph, i.e.,
after the edges are removed, at least two nodes of the graph have no path
between them. The set of disconnecting edges of minimum size is called a
connectivity cut. The computation to find edge connectivity, and a connectivity
cut. is based on network flow but we will see that by exploiting properties of
the problem, and by amortizing the analysis, we can obtain a much faster
algorithm than at first may be suspected.

The most direct way to compute edge connectivity is to put a unit capacity
on each edge, and then consider the (3) minimum cut problems obtained by
varying the choice of source and sink pair over all possibilities. The smallest of
these pairwise cuts is clearly a connectivity cut. With this approach, the edge
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connectivity can be computed in O(n’F(n)) time, where F(n) is the time to find
a minimum cut between a specified source—sink pair in a graph with n nodes.
In a graph where all the edges have capacity of one, it is known [Even &
Tarjan, 1975] that the Dinits algorithm will have at most O(n”"?) phases, rather
thdn the general bound of n phases. So, for the connectivity problem F(n) =
O(n *e), and the edge connectivity and a connectivity cut can be found in
O(n”""“e) time.

The first improvement over this direct method is to note that only n — 1 flows
need to be computed. To achieve the bound of only n — 1 flows, simply pick a
node v arbitrarily and compute a minimum cut between v and each of the other
n — 1 nodes. The minimum cut over these n — 1 cuts will be a connectivity cut
because a connectivity cut must separate at least one node w from v, and
clearly no v, w cut can be smaller than the connectivity cut. Hence the
minimum cut separating v from w is also a connectivity cut. So a time bound of
O(n'"*"e) is achieved.

0.1. An n — 1 flow method allowing amortization

There are actually several ways, different than the approach above, to
organize the flow computations so that only n — 1 total flows are necessary. We
will follow one such method that will allow us to amortize the time for these
n — 1 flows, achieving a total running time bounded by O(ne). Not only is this a
spced up over the above approach based on the Dinits method, but the
algorithm will be considerably simpler than the Dinits method.

Let us assume an arbitrary ordering of the nodes v, v,, ..., v,, and define V,
to be the set {v,, v,,...,v;}. The graph G, is the graph obtained from the
original graph G by contracting the set V, into a single node called v,. That is,
the nodes V, are removed and a node v, is added, and any edge (v;, v;) from a
node v; 'V, to a node in v, €V, is replaced by an edge from v; to v,. Note that
G, could also be defined as the graph obtained from G,_, by contractmg v, into
),- Let €, denote a minimum cut between v,,, and v, in G,.

Lemma 6.1. The smallest of the cuts C;, (i=1,...,n—1) is a connectivity cut
of G.

Proof. Let C be a connectivity cut in G, and let k + 1 be the smallest integer
such that v, and v, , | are on opposite sides of C. Hence all the nodes of V, are
on one side of C and v, | is on the other side. Note that for any i, any cutin G
separating V, from v, | is a v, v; ., cut in G, and conversely. So C and C, must
have the same number of edges, and C, must be a connectivity cut in G. O

Now we consider the total time to compute the n — 1 C, cuts. As should be
expected, each C; will be obtained from a maximum v,, , v, flow in G,. To
compute these flows efficiently, we will use a slight variation of the Ford-
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Fulkerson algorithm, differing from the original Ford-Fulkerson algorithm in
two implementation details.

First, for every iteration i=1,...,n— 1, after the maximum Viyry> Uy flow
and minimum cut C, are found in G,, we scan the current adjacency list of v
and for any node v, # v, adjacent to v,,, we mark v; and the edge v;, v, ,,.
Then we contract v, into v,, updating the appropriate adjacency lists, thus
creating graph G, ,. Note that at this point the set of nodes which are adjacent
to v, in G, and the edges incident with v, are all marked.

Second, when computing a maximum wv,,,, v, flow in G, we start by
searching for paths of length one or length two in G, and flow one unit on each
such path found. These paths will be called short paths. Note that these paths
arc in G, and not in a residual graph. The node and edge markings discussed
above make this search particularly easy: simply scan the current adjacency list
of v, for either v, or a marked node (note that v, can appear more than once
because of previous node contractions). Every occurrence of v, indicates an
cdge between v, and v,, and every marked node w # v, indicates a path of
length two from v, | to v,. In particular, this path consists of the unique edge
(v;, . w) followed by one of the possibly many (due to previous contractions)
edges (w, v,). Note that the node and edge markings allow each node w to be
processed in constant time.

The search for short paths ends when all paths of length one or two are
blocked. Because each edge saturated at this point is either connected to v, or
v; ., there is no need to ever undo flow on these edges, so we can remove from
further consideration any edges that are saturated at this point. This will be
important for the time analysis below.

To complete the v,,,, v, maximum flow in G, we follow the original
Ford-Fulkerson algorithm, i.e., successively building residual graphs (ignoring
the saturated edges on short paths found above), finding augmentation paths,
and augmenting the flow by one unit for each such path. All paths found
during this part of the algorithm will have length three or more, and are called
long paths.

i+1»

6.2. Analysis

The modified Ford—Fulkerson method clearly finds a maximum Ui,y Ug flow,
and C, is easily obtained from it, as shown in Theorem 2.2. Then by Lemma
6.1, the connectivity and connectivity cut are correctly obtained from the
smallest of these n — 1 cuts.

Theorem 6.1. The total time for computing the n — 1 C, cuts is O(ne).

Proof. Note first that the time for computing any particular cut C, cannot be
bounded by O(e), but rather the O(ne) bound will be obtained by amortizing
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over all the flows. The time needed to find a minimum cut given a maximum
flow is clearly just O(e) per flow, as is the time to mark nodes and edges and do
the updates to create the next G,. Hence the total time for these tasks is O(ne).

Now in any iteration i, the short paths in G, are found in time O(n), since
the size of v,,,’s adjacency list is at most size n— 1, and, by use of the
markings, processing of any node on the list takes constant time. Hence over
the entire algorithm the time for these tasks is O(ne), although a closer analysis
gives an O(e) time bound.

So the key to the time analysis is to show that the searches for long paths
(done by using the original Ford-Fulkerson method) take only O(ne) total
time over the n — 1 flows. Each search for a long augmentation path takes O(e)
time, and we will show that at most n — 1 such long searches are done over the
entire algorithm.

In iteration i, suppose a long augmentation path begins with the edge
(V.. w). At the end of iteration i node v, is contracted into v,, so node w
will be adjacent to v, thereafter. Hence in any iteration j > i, if v, 1s adjacent
to win G, then there is a path of length two from v, ; to v, through w. The
edge (v,.,, w) is unique and so will become saturated during the search for
paths of lengths one or two. The flow in that edge will not be decreased, so in
iteration j, w cannot be the second node on a long augmentation path. It
tollows that over the entire algorithm a node can be the second node on a long
augmentation path at most once. Hence the number of long augmentation
paths is at most n — 1, and the theorem is proved. O

The amortization in the above analysis is on the number of long augmenta-
tion paths. In any of the n iterations the number of long augmentations might
approach n —1, but over the entire algorithm the total number of long
augmentations is never more than that number.

6.3. Historical note

The history of the above O(ne) connect1v1ty algorithm is similar to the
history of the first O(n*) and O(n’) network flow algorithms, which were
discovered in the Soviet Union in the early 1970s, but were unknown to the
western researchers for some time after that. The O(ne) connectivity algorithm
discussed in this section is due to Podderyugin [1973] [see Adelson-Velski,
Dinits & Karzanov, 1975] who developed it in 1971. However, it was only
published in Russian, and, as far as we know, the method was never discussed
in the western literature until now (this article). In the meantime, Matula
[1987] independently developed an O(ne) connectivity algorithm in 1986 which
incorporates many of the same ideas as the above method, but which will in
general do fewer than n — 1 flows. Matula further showed that connectivity can
be found in ()(/\n ) time, where A is the connectivity of the graph. Note that
since A= e/n. An” < ne.
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7. Matching: Optimal, greedy and optimal-greedy approaches

A matching in a graph is a set of edges such that no two edges have a node in
common. A maximum cardinality matching, or maximum matching for short,
in a matching with the largest number of edges over all matchings. A perfect
matching is one where every node is incident with an edge in the matching. In
many problems solved by matching, each edge of the graph has a weight, and
the problem is to find a matching maximizing the sum of the edges in the
matching. We call this the weighted matching problem.

7.1. Cardinality matching

The cardinality matching problem in a bipartite graph G = (N,, N,, E) can
be solved by general network flow aigorithms as follows. Let N, and N, denote
the nodes in the two sides of bipartite graph G. We introduce two new nodes, s
and ¢, connecting every node in N, to s and every node in N, to . The resulting
graph consists of all the original edges of G plus these new edges. Let H denote
the new graph, and give every edge a capacity of one.

Theorem 7.1. An integral maximum s,t flow in H defines a maximum
matching.

Proof. Note that because all edge capacities are one, and the maximum flow is
integral, the flow can be decomposed into node-disjoint s, ¢ paths consisting of
three edges. The set of middle edges on these paths clearly defines a matching.
Conversely if the matching is not maximum, then there is some edge (v, w)
with v € N, and w € N, which can be added to the matching. But, since all
edge capacities are one and the flow is integral, the path s, v, w, r with flow one
could then also be added to the flow, contradicting the assumption that it is a
maximum flow. Hence the matching defined by the flow is maximum. [

Since network flow on n nodes runs in O(n®) time, maximum cardinality
bipartite matching can be computed in O(n”) time. However, we will show that
the Dinits algorithm only uses O(v/7) phases in H, rather than the general
bound of n phases. Each phase can still be implemented in O(n®) time, hence
bipartite matching runs in O(n>’) worst-case time using Dinits algorithm. We
begin with the following lemma.

Lemma 7.1. Let H be as above, and let F be the maximum flow value in H, and
let F' be the maximum flow value after phase i — 1 of Dinits algorithm. Then
i=n/(F—F).

Proof. The total flow F in H can be obtained by superimposing the flow of
value F' in H obtained at the end of phase i — 1 with the maximum s, ¢ flow

w
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obtained in the residual graph G' defined from F’. Further, we can think of the
maximum flow problem in G’ as a new flow problem on a graph with zero flow,
and we know that it will have a maximum flow of value F— F'. In H every
node either has one edge into it from s or one edge out of it to ¢, and all edges
in G have capacity onc. Further, the Dinits algorithm always maintains an
intcgral flow, so every edge either has flow one or zero. Now consider a node
v & N,. If there is any flow from s to v at this point, then in G' there will be no
(s, v) edge (since it is saturated) but there will be exactly one edge into v from
anode w €V, (w is the node that v sent its unit flow to). If there is no flow into
v at this point, then there is exactly one edge, namely (s, v) into v. Similarly,
for any node w on the ¢ side of H there is exactly one edge out of w. It follows
that the maximum integral s,  flow in G' is partitioned into s, t_paths that share
no nodes except for s and r. Since there are only # nodes in G', the shortest of
these paths must be less than or equal to n/(F — F'). Hence the length of the
layered graph LG’ obtained from G’ is at most n/(F — F'). Since the length of
the layered graphs grow by at least one in each phase, i<n/(F—F'). O

Theorem 7.2. In graph H defined above the Dinits algorithm can only use 2\
phases.

Proof. Assume the total flow value F is greater than V7, since otherwise the
theorem is immediate. Now consider the phase i in which the flow reaches or
exceeds F'— vn. At the start of phase i the flow F’ is less than F — V7, so
F—-F >~vn By Lemma 7.1, i<n/(F— F')<+vn. Further, at the end of
phase i, the flow is at least F — /7 so there can be at most v7 additional
phases, and the theorem follows. [

This thcorem is of importance in its own right, but it also illustrates a
common theme in the design of cfficient algorithms: seeking out and taking
advantage of special structure. There is no fancy name or philosophy suggest-
ing how to identify which structures will be the most useful, but digging for
structure and exploiting what is found is certainly one of the most productive
techniques in finding efficient algorithms. We will see another example of this
later in this section.

We should also mention that a maximum cardinality matching in a general
graph can be found in O(n””) time by a much more complex algorithm.

7.2. Weighted matching and the greedy paradigm

We now look at a simple and very fast heuristic, the greedy method, for
finding a maximum weight matching in any graph. The heuristic does not
always produce an optimal matching, but it is guaranteed to find one with
weight at least one half that of the optimal.
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Greedy matching
Inpur: A weighted graph G = (N, E); w(e) represents the weight of edge e.
Output: A matching M, with total weight at least half that of the maximum
weight matching.
(1) Set M to the empty set, and set A to E.
(2) While A is not empty do
Begin
(2.1) Pick the edge e in A with the largest weight w(e) of all edges in
A.
(2.2) Put edge e in set M; delete e and all edges incident with it from
A.
End
(3) Output edge set M.

Theorem 7.3. Let M’ be the optimal matching in G, and let c(M') and c(M)
denote the weights of the optimal and the greedy maichings, respectively. Then
c(M)le(M")= 3.

Proof. Initially, every edge of M’ is in A. Each time an edge e is chosen for M,
the only edges of M’ that get deleted from A are those edges incident with an
endpoint of e. M’ is a matching, and so at most two edges, ¢, and e,, of M’ are
deleted from A at each step. Since e is chosen over both e, and e,, w(e)=
w(e,) and w(e) = w(e,), so w(e) = L(w(e,) + w(e,)). Eventually, A is empty; at
that point, every edge e’ in M’ is associated with an edge e in M, such that
w(e) = w(e'), and at most two edges in M’ are associated with the same edge in
M. Hence ¢(M)= ic(M'). O

Corollary 7.1. M' has cardinality at least one half that of the maximum
cardinality matching in G.

In fact, if edges are picked arbitrarily in Step 2.1, the resulting matching has
cardinality at least one half the maximum. This is easy to prove, and is left as
an exercise.

It should be clear why this approach to matching is called a ‘greedy
algorithm’. Another suggestive term for it is a ‘myopic algorithm’. Greedy
algorithms are generally fast, but in most cases give results that deviate from
the optimal solutions by large or even unbounded amounts. A very elegant
theory based on matroids has been developed which explains and predicts
when a certain type of greedy approach will be guaranteed to yield an optimal
solution [see Lawler, 1976]. However, not all greedy methods can be explained
by matroid theory. The example below is such a case.

7.3. A problem where the greedy algorithm finds the optimal matching

Weighted matching is a very important problem because many, varied,
combinatorial problems can be cast and solved in term of weighted matching.
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Sometimes the problem being solved via matching can be shown to have
special structure, and this structure can be exploited to speed up finding the
optimal weighted matching. Below we can discuss a case where the edge
weights have special structure allowing the optimal weighted matching to be
found in O(e) time via a greedy approach.

The box inequality

Let u, u', v, v’ be four nodes in a complete bipartite graph G =(N,, N,, E)
(a complete bipartite graph is one where there is an edge between every node
in N, and every node in N,) such that # and u’ are in N, and v and v’ are in N,.
Suppose w.l.o.g. that w(u, v) = max[w(u, v'), w(u', v), wu', v')]. If w(u, v) +
w(u'. v") = w(u, v') + w(u', v), then these four nodes satisfy the box inequali-
ty. A complete bipartite graph is said to satisfy the box inequalities if the box
inequality is satisfied for any two arbitrary nodes from N, together with any
two arbitrary nodes from N,.

Below we will discuss a problem solved by weighted bipartite matching,
where the graph satisfies the box inequality. But for now we show the following
theorem.

Theorem 7.4. If the complete bipartite graph satisfies the box inequalities, and
all weights are non-negative, then the greedy matching is a maximum weight
matching.

Proof. Let M be the matching found by the greedy algorithm. If there is more
than one maximum weight matching, then let M’ be a maximum weight
matching which contains the largest number of edges also in M. Suppose M’
has weight strictly greater than M. Since G is a complete bipartite graph and all
weights are non-negative, both M and M’ will be perfect matchings.

Let M@ M’ be the symmetric difference of the sets of edges in M and in M.
That is, M® M’ is the set of edges which are in exactly one of the two
matchings M or M'. M & M’ must be non-empty for otherwise M = M'. Since
both matchings are perfect, any edge in M@ M’ is part of an even length
alternating cycle where every other edge is from M (M’'). Let C be such an
alternating cycle, and let e = (u, v) be the first edge in C considered by the
greedy algorithm. We claim edge e must be in M. If not, then at the time e was
considered either edge (u,v') and (u’,v) was in M, for some nodes u’, v'.
W.L.o.g. say that (u. v") was in M. Then v’ is not in C, since e is the first edge
on C considered by the algorithm. But this is not possible, because u is in C so
the other endpoint (v') of the edge in M touching u must, by definition, also be
in C. Hence e = (1. v) is in M.

Let (. v') and (u', v) be the edges of M’ in C that touch u and v. We know
these edges exist since C must have at least four edges. Since (u, v) is the first
edge in C considered by the greedy algorithm, w(u,v)=max[w(u, v'),
wlu' v)]. We claim also that w(u, v) = w(u',v’). This is clearly true if
(1. v") € M. since it then would be in C. So suppose (', v') is not in M. But
both «’ and v' are in C, so neither were matched at the time (u,v) was
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examined, so it w(u, v) < w(u’, v'), then (1, v’) would have been taken into
M, a contradiction. Hence w(u, v) = max{w(u, v'), w(u', v), w(u', v')], and by
the box inequality, w(u, v) + w(u', v') = w(u, v') + w(u', v).

Now consider the matching formed from M’ that omits edges (u', v) and
(u,v") and includes edges (u, v) and (u', v'). It is immediate that this is still a
perfect matching, that it contains one more edge of M than did M’, and (by the
box inequality) that it has weight greater or equal to that of M’. But that
contradicts the choice of M’', proving the theorem. O

A matching problem in molecular biology where the box inequalities hold

A central task in molecular biology is determining the nucleotide sequence
of strings of DNA. For our purposes, DNA is just a string composed from an
alphabet of four symbols (nucleotides): A, T, C, or G. Efficient methods exist
for determining the sequence of short strings of DNA, but in order to sequence
long strings (which are of more interest) the long strings of DNA must first be
cut into smaller strings. Known ways of cutting up longer strings of DNA result
in the pieces becoming randomly permuted. Hence, after obtaining and
sequencing each of the smaller strings one has the problem of determining the
correct order of the small strings. The most common approach to solving this
problem is to first make many copies of the DNA, and then cut up each copy
with a different cutter so that the pieces obtained from one cutter overlap
picces obtained from another. Then, each piece is sequenced, and by studying
how the sequences of the smaller pieces overlap, one tries to reassemble the
original long sequence.

Given the entire set of strings, the problem of assembling the original DNA
string has been modeled as the shortest superstring problem: find the shortest
string which contains each of the smaller strings in the set as a contiguous
substring. In the case when the original DNA string is linear, the problem of
finding the shortest superstring is known to be NP-complete but there are
approximation methods which are guaranteed to find a superstring at most
three times the length of the shortest string [Blum, Jiang, Li, Tromp &
Yannakakis, 1991].

The methods discussed by Blum, Jiang, Li, Tromp & Yannakakis [1991] are
heavily based on weighted matching, where weight w(u, v) is the length of the
longest suffix of string u that is identical to a prefix of string v. In the initial
part of the method, the weight w(u, v) is computed for each ordered pair (this
can be donc in linear time [Gusfield, Landau & Schieber, 1992]), and a
bipartite graph G = (N,, N,, E) is created with one node on each side of the
graph for each of the small DNA strings. The weight of edge (u,v), u€ N,
vEN, is set to w(u,v), and a maximum weight matching is found. This
matching is then used to construct a superstring which is at most four times the
length of the optimal superstring. This error bound is then reduced to three, by
another use of weighted matching using suffix—prefix lengths derived from
strings obtained from the factor-four solution.

The point of interest here is that for weights equaling the maximum
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suffix—prefix overlap lengths, as above, the weights satisfy the box inequality,
and hence the two matchings needed in the above approximation method can
be found by the greedy algorithm.

Theorem 7.5. Let graph G with weights w be obtained from a set of strings as
defined above. Then G satisfies the box inequalities. That is, if w(u,v)=
max[w(u, v'), wu',v), wu', v')], then w(u,v)+wu' v')=wu,v')+
w(u', v), for any nodes u, u' in N, and v,v' in N,.

Proof. Assume w.l.0.g. that w(u', v) = w(u’, v'). We divide the proof into two
cases. Either w(u', v') =0 or w(u’, v') > 0. The first case is shown in Figure 1.
Since it is a suffix of «’ that matches a prefix of v, the left end of u’ cannot be
to the right of the left end of v. Also, since w(u, v) = w(u’, v), the right end of
i’ can also not be to the right end of u. So, we define x = w(u’, v) < w(u, v).
With the lengths x, y, z as shown in the figure,

wu. o)+ wu',v)=x+y+zzz+x=wu,v)+ wu',v).

The second case when w(u’, v') >0 is shown in Figure 2. With x, y, z as
shown in the figure

w(u.v)y+ w(u',v')

=xtytz)ty=(y+2)+(x+ty)=wu,v)+ wu,v). O
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8. Parallel network flow in O(n2 log n) time

In this scction we discuss how to compute network flow on a parallel
computer. But first, we have to define what we mean by a parallel computer.
There are many ways that parallel computers have been defined and modeled,
some more realistic than others. The most critical differences have to do with
whether more than one processor can read or write the same memory cell
concurrently, and how the processors communicate. One model that is general-
ly agreed as meaningful is the concurrent read exclusive write parallel random
access machine (CREW PRAM).

In the CREW PRAM model there are k processors that are identical except
that they each have a unique identifying number. These processors can execute
their programs in parallel, and each processor is a general purpose sequential
computer, in particular a RAM (random access machine). The processors are
assumed to work in lock-step synchrony following a central clock that divides
the work of the processors into discrete time units. The processors may have
separate memories, but they share a common memory that any of them can
read from or write into. Each processor can read or write a single memory cell
in a single time unit. We assume that the hardware allows any number of
processors to read the same memory cell concurrently (concurrent read), but if
more than one processor tries to write to the same cell in the same time step,
then the result is unassured (exclusive write). Hence any program for this
parallel system should avoid concurrent writes. The processors communicate
with each other via the shared memory. The parallel time for a parallel
algorithm refers to the number of primitive time units (each of which is enough
for a single step of the algorithm on any processor) that have passed from the
initiation of the algorithm to its termination, no matter how many processors
are active at any moment.

Below we will describe an implementation of the max-d GT algorithm on a
CREW PRAM using k = O(e) processors, and a shared memory of size O(e)
cells. In particular, there will be a constant number of memory cells and a
constant number of independent processors for each node and each edge of G.
The algorithm will run in O(»” log n) parallel time. This speed up over O(n’) is
not very dramatic, however, it is the best that is known (for dense graphs) and
has been obtained by a variety of different methods, suggesting that improving
the bound may be a difficult problem. This bound was first obtained by Shiloah
and Vishkin [1982] using only O(n) processors. We will follow ideas that are
closer to those given by Goldberg & Tarjan [1988], but again using O(e)
processors rather than O(n) processors.

The parallel GT algorithm will be broken up into stages, and each stage will
be broken up into four substages. In the first substage of a stage, the label of
any active node v is set to min[d(w)+ 1: (v, w) is an edge in the current
residual graph]. In the next substage, all the active nodes of max-d label are
identified. In the third substage each such node v will, in parallel with the
others, push excess out along admissible incident edges until either v has no
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more excess or until v’s label must be incremented. In the final substage, each
node ‘receives’ its new flow (if any) and recomputes its excess. After this, the
stage ends. The algorithm ends in the stage when there are no active nodes.
We will provide implementation details and justify the time bound below, but
first we establish the following.

Theorem 8.1. The parallel GT algorithm introduced above correctly computes a
maximum flow.

Proof. In the sequential algorithm, it was easy to establish that if the algorithm
terminated, then it terminated with a maximum flow. The key to this was that
the node labels were always valid. It is easy to verify that in the parallel GT
algorithm, the node labels are valid after the first substage in each stage. Hence
it is again easy to see that, if the algorithm terminates, it terminates with a
maximum flow. We will establish termination below by bounding the number
of stages. [

Lemma 8.1. /n the parallel max-d algorithm, there can be at most O(n’) stages.

Proof. Between two consecutive stages either the max-d value will increase,
remain constant, or decrease. In the first two cases the node label of at least
one node will increase, and hence there can be at most 2n” stages of this type
(the second case is a little more subtle than the first, but is not hard). For the
third case, note that since the max-d label of any active node is between 2n and
0 (this follows from validity), at any point in time the number of stages that
cnd with max-d decreasing can be at most 2n larger than the number of stages
that end with max-d increasing. Since there can be only O(n”) increasing cases,
there can be at most O(n°) stages of the third type as well. [

Below we will show how to implement a stage in O(log n) parallel time using
O(e) processors, yielding an O(n” log n) parallel time algorithm.

8.1. Parallel implementation

We will discuss each substage and show how it can be implemented in
O(log n) parallel time. The central idea in each substage is the same, the use of
a binary tree with at most n leaves. The easiest conceptual way to think of the
tree is that each vertex in the tree contains a dedicated processor. Since the
treeis binary. the number of processors in any tree is O(n), and the height of
the trec is O(log n).

How to update node labels in parallel

A node v can compute its updated d(v) label during the first substage as
tollows: it signals the processors associated with the possible residual edges out
of v to determine (in parallel) which of them are residual edges. Each edge
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processor can do that because it knows the current flow on the edge. A
processor representing residual edge (v, w) then reads d(w) and inserts it into a
leaf in a binary tree for v, in a predefined leaf specified for (v, w). A processor
representing a possible residual edge out of v which is not in the current
residual graph enters a value large than 27 in its predefined leaf. This tree has
d, leaves. where d, = |I(v)|, the number of possible residual edges out of v.
Then in O(log d,) parallel time, the minimum of the values at the leaves is
computed by the obvious tournament computation. That is, once the value is
known for each of the two children of a vertex in the tree, the value at that
vertex is set to the minimum of the value of its children. The value at the root
of the tree is the overall minimum. If the root value is greater than 2x, then
there are no residual edges out of v, and d(v) is unchanged. Otherwise, the
processor at the root changes d(v) to one plus the value at the root.

For any node v of G, the total number of processors needed to implement
the tournament is O(d,) since the binary tree contains only that many vertices.
So the number of processors involved in this substage is X, d, = O(e).

How to find the active nodes of max-d label

The processor for any node v knows the current excess at v and the updated
d(v). Each processor associated with an active node inserts the current d value
in a predefined leaf of a binary tree. Then by the tournament method again,
and in O(log n) time using O(n) processors, the maximum of these values is
found and placed in a memory cell. All the active node processors then read
this cell in unit time to determine if their node is of max-d.

How to push in parallel

For each node v in G, we will again use a binary tree with d, leaves, where
cach leaf in the tree is associated with a possible residual edge out of v. Again,
cach vertex in the tree has an assigned dedicated processor. Hence over all the
trees there are O(e) processors assigned. Essentially, the leaves of the tree
correspond to the list /(v) described in Section 4.2.

We will determinc in O(log d,) parallel time which edges v should use to
push out its excess, and how much to push on each edge. At the start of this
substage, the processor for the leaf corresponding to edge (v, w) determines
whether (v, w) is admissible (by reading d(v), d(w) and knowing whether
(v. w) is a residual edge), and what the capacity (v, w) in the current residual
graph is. If the edge is admissible, then its current capacity is written at the
leaf. If the edge (v, w) is not admissible, then a zero will be written instead of
its capacity.

Processing the vertices of the tree bottom up from the leaves, we collect at
each vertex the sum of the numbers written at the leaves in its subtree. This
process is completed in O(log d,) parallel time, since the entry at a vertex is
the just the sum of the two entries of its two children, and the depth of the tree

is O(log d,). At this point, all the processors associated with leaves of v’s tree
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can read, in unit time, the sum at the root, to determine if all their associated
edges will become saturated or not.

If the number at the root is smaller or equal to e(v), then every admissible
cdge out of v will get saturated. This message is sent back down the tree to the
leaf processors which make the flow changes on their associated edges.

If the sum at the root of v’s tree is greater than e(v), then only some of the
admissible edges out of v will be used. However, at most one edge will get new
flow without getting saturated. The allocation to edges is done in O(log d(v))
time by working down from the root. Essentially, we will write at each vertex x
of the tree the amount of flow to be pushed from node v along edges associated
with leaves in the subtree of x. Hence the number written at a leaf for edge
(v, w) is the amount to be pushed along edge (v, w) in the residual graph. In
detail, we do the following: let n(x) denote the number presently written at
tree vertex x. First change n(r), the number written at the root, to e(v). For
any trec vertex x, let x’ be the right child of r and x” be its left child. Set n(x")
to the minimum of a(x’) and n(r); then set n(x") to the maximum of
n(r) — n(x’) and zero. Once the numbers at the leaves have been written, the
processors associated with those edges can make the flow changes on these
edges in parallel.

How to receive flow

In the previous substage flow was pushed along certain edges. The amount
pushed out of a node v is known during the substage and so the excess at v is
updated then. However, the total flow entering a node w must also be
determined. This is again easily computed in O(log n) parallel time using a
binary trce for each node, where cach leaf is associated with a possible residual
cdge into w. We omit the details.

8.2, Final result

Since there are O(n”) stages in the parallel method and each can be
implemented to run in O(log n) parallel time with O(e) processors, we get the
following theorem.

Theorem 8.2. A maximum flow can be computed in O(n’ log n) parallel time
using O(e) processors.

8.3. Work versus time

In the above implementation we used O(e) processors to compute maximum
flow in O(n” log n) parallel time. If we were to convert this parallel algorithm
to a sequential one we would immediately obtain a sequential time bound of
O(en” log n), which is much larger than the known O(n’) bounds. This leaves
the intuition that a ‘better’ parallel algorithm may be possible, one which either
uses fewer processors or has a smaller worst-case bound.
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To cxamine this issue we define the work of a parallel algorithm to be the
product of the parallel time bound and the maximum number of processors
needed by the algorithm. There are network flow algorithms which run in
O(n” log n) time using only O(n) processors, hence using only O(rn’log n)
work [Shiloah & Vishkin, 1982], and similar results have been obtained for
sparse graphs [Goldberg & Tarjan, 1988]. The notion of work is important not
only as a way of distinguishing between equally fast parallel algorithms, but
because the number of assumed processors may not be available. In that case
the degradation of the running time is related to the assumed number of
processors; the smaller the number of assumed processors, the smaller the
degradation.

In addition to reducing the work needed by the parallel algorithm, most
parallel algorithms for network flow have been implemented on the EREW
PRAM model. In that model only one processor can read (exclusive read) any
memory cell in one unit. Since this is a more restrictive assumption than for a
CREW PRAM, results on EREW PRAMs are considered more realistic, or at
least more likely to be implementable on real parallel machines.

9. Distributed algorithms

In this section we briefly discuss another form of parallel computation,
namely distributed computation. There are numerous particular models of
distributed computation but they all try to capture the notion of several
autonomous, often asynchronous, processors each with their own memory
solving some problem by their joint actions and restricted or local communica-
tion. This is in contrast to the single processor model, and even in contrast to
models of synchronous parallel computation, where there is an assumed
common clock, shared memory, and possibly a very rich or highly structured
communication network. In particular, in the distributed model, computation
on any processor is considered to be much faster than interprocessor communi-
cation, and so it is the later time that is to be minimized.

The efficiency of a distributed algorithm is usually measured in terms of the
number of messages needed, and the complexity of the computations that each
processor does. Alternatively, one can measure the worst-case, or average-
case, parallel time for the system to solve its problem. To make this measure
meaningful, we usually assume some maximum fixed time that a processor will
wait after it has all the needed inputs, before executing a single step of the
algorithm. However, it is possible to sometimes relax even this assumption,
and there also are general techniques for converting asynchronous distributed
algorithms to synchronous ones with only a small increase in the number of
messages used.

In this article we can only give some flavor of the nature of distributed
computation, and will examine only a very simple problem, the shortest path
communication problem. Although simple, this problem actually arises in some
distributed versions of the Goldberg-Tarjan network flow algorithm.
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9.1. Shortest path communication

Consider the situation where each node v on a directed graph must repeated-
ly send messages to a fixed node ¢, and so wants to send the message along a
path with the fewest number of edges (a shortest path). The nodes are assumed
only to know who their neighbors are in the graph. In order to know how to
route a message on a shortest v to f path, v only needs to know the first node w
after v on such a shortest path, since the edge (v, w) followed by a shortest w
to 1 path is shortest v to ¢ path. When the system first starts up, or after some
cdges have been removed, the distances to ¢ increase, no node can be sure of
the shortest path from it to . The goal at that point is for the system to begin
some asynchronous, distributed computation, so that at the end of the compu-
tation, every node v learns which one of its neighbors is the first node on the
shortest path from v to 1. We ignore for now the question of how the nodes
know to start this process. In the KE, Dinits or GT network flow algorithms,
the distance to ¢ from a node v in the evolving residual graph does only
increase as was shown earlier.

We first assume that a central clock is available, so that the actions of the
processors can be divided into distinct iterations. Later we will remove this
assumption. Let H be any directed graph with designated nodes s and ¢. For

any node v, let D(v) denote the number of edges on the shortest v to ¢ path in
H.

Lemma 9.1. For each node v, let D(v) be a number assigned to node v, such
that D(1)=0. If for every node v, D(v)=1+ min[D(w): (v, w) is a directed

edge in HY, then D(v) is the distance of the shortest (directed) path from v to t in
H.

Proof. Suppose not, and let v be the closest node to ¢ such that D(v) # D(v),
the true distance from v to . Let P, be the shortest path from v to ¢ and let w
be the node after v on P,. By assumption D(w) D(w). But then D(v)<
Dw)+1=D(w)+ 1= D(v). So, suppose that D(v) < D(v); then there is an
edge (v, u) to a node u such that D(u) < D(w) and, by assumption, D(u) =
D(u). But that would contradict the assumption that P, is the shortest v to ¢
path. Hence D(v) = D(v) for every node v. O

We will use the above lemma to compute the shortest distances from each
node to 1. Suppose we start off with numbers D(v), where for all v D(v)<
D(v), and D(v)=<1+ min[D(w): (v, w) is a directed edge in H]. We call a
node v deficient if the second inequality above is strict. We can think of D(v) as
an underestimate of D(v). We will modify the D(v) values in the following
algorithm, then show that the algorithm terminates, and that at termination,

D(v) = D(v) for each v.
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Distance estimate algorithm

Repeat
Step A. For at least one node v such that the current D(U) is less than
l+mm[D(w) (v.w) is an edge in H], i.c., v is deficient, set D(v)=
I + min[ D(w): (v, w) is an edge in H].

Until D(v) =1+ min| D(w): (v, w) is an edge in H] for every node v.

Note that if more than one deficient node is selected in Step A (any number
are possible), then the updates to the D values are made in parallel.

Theorem 9.1. The distance estimate algorithm terminates, and upon termination
D(v)= D(v) for all v.

Proof. First we show that D(v) < D(v) throughout the algorithm. Suppose not,
and let v be the first node set to a value above D(v). As before, let w be the
first node after v on P,. Then at the point that D(v) is set above D(v),
D(w) < D(w). so Dv)=s1+ D(w) = D(v), which is a contradition. Now the
algorithm must terminate since each time a D(v) value is changed it is
increased by a least one, and D(v) is bounded by D(v). At termination, the
conditions of Lemma 9.1 are satisfied, hence the theorem is proved. [

We now add implementation detail to the distance update algorithm so that
it runs efﬁc1ently We will assume that at the beginning of the algorithm the
minimum of {D(w): (v, w) is a directed edge in H} is known for each v, and
hence that all the initially deficient nodes are known. Note that a deficient
node remains deficient until its D value is increased.

Although we assume that initially deficient nodes are known, we will need an
cfficient way to identify nodes which become, or become again, deficient
during the algorithm. It is not efficient to have each node scan the D values of
its neighbors at each iteration of Step A. That would take O(e) messages per
iteration. Instead, whenever a D(v) is changed, the updated D(v) is sent to
cach node u such that (u, v) is a directed edge in H. If a node u receives such a
message in one iteration, in the next iteration it compares its current D(u)
against one plus the values it received in the previous iteration. The smaller of
these candidate values is then taken as the current D(u). We associate the work
to send these messages and then to do the comparisons, to the nodes of the
previous iteration whosc values have changed. In this way, the total amount of
work involved in such checking is just O(n) times the number of nodes whose
D value changed in the previous iteration. Hence we have the following
theorem.

Theorem 9.2. Let D(v) be the initial values given to each node v, and let
S =X, [D(v) = D(v)], where D(v) is the correct v to ¢ distance. Ignoring the
work 1o locate the initially deficient nodes, the distance estimate algorithm uses at
maost O(nS) message passes.
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9.2. The asynchronous case

The distance estimate algorithm is more sequential than is permitted in the
distributed model. The problem is that in the above discussion of the distance
estimate algorithm there are definite iterations of Step A, and there is a
centralized clock that establishes the starts and ends of each iteration. The
implementation specified that every node receiving one or more messages from
its neighbors in one iteration should use this information to update its ) value
in the next iteration. But in the distributed model, the processors run at
differing speeds, and there is no central clock, so the notion of iterations is not
applicable. This difficulty is easily handled.

We change the implementation of the algorithm so that whenever a node v
decides to update its distance estimate, it simply uses its knowledge of who its
ncighbors are (this knowledge is assumed to be current), and the D values that
it has reccived since D(v) was last changed. The algorithm with this modi-
fication is truly distributed, and the estimates will converge to the correct
distances. The proof of this is almost identical to that of Theorem 9.1. Hence if
D(v) is the correct distance from v to ¢, and ﬁ(v) is the initial estimate, then
the system will converge to the correct distance values using only n & [D(v) —
D(v)] = nS messages.

Although the D values will converge to the correct distances, how will the
nodes in the system know when this has happened? Whenever a node v
dd]acent to ¢ sees that D(v) = 1, it knows that D(v) = D(v). This will eventually

happen for every node v whose shortest path to ¢ is the single edge (v, t), and
there certainly must be one such v. When a node realizes it has the correct D
value, it sends an appropriate message to its neighbors. In general, any node v
which learns that the true distance of all its neighbors have been established,
and which sees that D(v) = 1+ D(w) for its neighbor w with minimum D(v),
knows that D(v) = D(v) and should send a message to its neighbors. In this
way, all the nodes in the system eventually realize that the correct distances
have been found, and only e additional messages have been passed. So the
total number of messages used is nS + e.

We leave to the reader the problem of modifying the distance estimate
algorithm so that it can work even when path distances decrease, and in the
case that cdge distances can take values other than one.

10. Many-for-one resulits
10.1. Introduction

It often happens that a sequence of related instances of a problem must be
solved. In some cases, each instance must be solved from scratch, but in many

notable cases it is possible to solve all the instances at a cost which is
substantially less than the total cost of solving each instance from scratch.
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Results of this type are called many-for-one results, or quantity-discount
results. If one can solve all the problem instances for the price of one, then the
result is called an all-for-one result. We have actually already seen such a
result, namely the parametric flow problem. There we saw that O(n) problem
instances, in a highly structured sequence of problem instances, could be
solved in O(n’) time, which is the best (dense) bound presently known for
even one problem instance. Here we consider another important class of flow
related problems for which there is an elegant many-for-one result.

To start, we consider the problem of computing the maximum flow value for
cach of the (3) possible source—sink pairs in an undirected, capacitated graph
G. If each pair were considered separately, then (%) solutions of a network
flow problem would be required. However, we will show that all (5) flow
values can be determined after computing the flow between only n—1
source—sink pairs. Hence the total computation is a factor of n faster than the
straightforward approach.

This result was originally obtained by Gomory & Hu [1961]. Their method
produces an edge weighted tree with n nodes, such that the value of the
maximum flow in G for any pair of nodes, say s and ¢, is the minimum weight
of the edges on the path between s and ¢ in the tree. A tree which represents
the flow values in this way is called an equivalent-flow tree. Gomory and Hu’s
method in fact constructs a special equivalent flow tree called a cut-tree with an
additional desirable feature: for any pair of nodes (s, t) if you remove the
minimum weight edge on the path from s to ¢, then the resulting partition of
nodes defines a minimum (s, ¢) cut in G. Hence a cut-tree not only compactly
represents flow values, but also compactly represents one easily extracted
minimum cut for each pair of nodes. It is not true that every equivalent-flow
tree for G is also a cut-tree for G.

The key algorithmic feature of the Gomory—Hu method is the maintenance
of ‘non-crossing’ cuts. In the method, if a minimum cut (X, X) has been found
between a pair of nodes, then every successive cut (Y, Y) computed by the
method (for any other pairs of nodes) must have the property that either all of
X, or all of X is on one side of the (Y, 1_/) cut. That is, the (Y, Y) cut splits
only one side of the (X, X) cut. The implementation detail to enforce this
non-crossing property of the cuts makes the method complicated to program.

Simpler methods which avoid the need to find non-crossing cuts, and which
also require only n—1 flow computations, were later obtained [Gusfield,
1990c] for finding equivalent-flow trees and cut-trees. These methods work
with any minimum cuts, whether they cross or not. Although the algorithms do
not need to maintain non-crossing cuts, their existence is central to the proofs
of correctness used by Gusfield [1990c].

Recently, the role of non-crossing cuts has been further reduced with the
development, by Cheng & Hu [1989], of a new, equally efficient algorithm,
that produces a tree called an ancestor cut-tree. This tree has all the advantages
of an equivalent-flow tree (and others as we will see), but lacks some of the
advantages of a true cut-tree.
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10.2. The Cheng—Hu method for ancestor cut-trees

We will represent the minimum cut values of a graph G, containing n nodes,
with a binary tree 7. Each internal vertex of T will be labeled with a
source—sink pair (p, q), and will be associated with a minimum ( p, g) cut in
G; each leaf of T will be labeled by one node in G, and each node in G will
label exactly one leaf of 7. Further, for any two nodes i, j in G, if the least
common ancestor of [ and j in 7T is labeled by the pair (p, g), then the
associated minimum ( p, ¢) cut is a minimum (/, j) cut as well. Hence this tree
represents the maximum flow values for every pair of nodes, and allows the
retrieval of one minimum cut for any pair of nodes. However, it is not as
compact as a cut-tree, for a cut-tree takes only O(n) space, while the cuts
associated with an ancestor cut-tree are stored explicitly and hence take Q(n°)
spacc.

As an example, the graph shown in Figure 3a has an ancestor cut-tree shown
in Figure 3e.

Note that for clarity, the word ‘node’ refers to a point in G, while ‘vertex’
refers to a point in an ancestor cut-tree.

The algorithm builds successive trees T, T,,..., T,_, = T, each containing
one more leaf than its predecessor. The following fact about any T, will be
proved in Lemma 10.1 later.

Fact. If v is any internal vertex of T, labeled with the pair (s, t), and its two
children are labeled with the pairs (i, j) and (p, q), then i and j are together on
one side of the (s, t) minimum cut associated with v, and p and q are together on
the other side of the cut.

In order to describe the algorithm, we first define T, to be the subgraph of T,
consisting of the internal vertices of tree T, and describe how to place the
leaves of T, given tree T, . This process is called sorting the nodes of G into
T

Starting at the root of T, we separate the nodes of G according to the cut
specified at the root node. For example, if the cut at the root is an (s, 7) cut,
then we place on one branch out of the root all the nodes of G on the s side of
the cut, and on the other branch out of the root we place all the nodes of G on
the 1 side of the cut. There still is a question of which edge to use for which set.
Suppose the two children of the root are labeled with the pairs (i, j) and
(p. q). Given the fact stated above, we use the following rule to assign the two
parts of the (s.r) cut to the two edges out of the root of T,: the part of the
{s. 1) cut containing { and j is placed on the edge from the root to its child
labeled with the (7, j) cut, and the part containing p and ¢ is placed on the
other edge out of the root.

In general, at any vertex x to 7, we split the nodes of G that are on the
edge leading to x into the two edges out of x, according to how the cut at x
separates these nodes. To decide which set goes on which of the two edges out
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Fig. 3. Graph G and the cuts used by the algorithm.

of x, we follow the same rule stated for the root. If x is a leaf of T/, then the
nodes of G on the edge entering x are split into two children of x according to
how the cut labeling x splits these nodes. The children of x are then leaves in
T,.

For example, in Figures 3b through 3e, the nodes written on the edges of the
intermediate treces show the sorting process.

An added feature of any tree 7,, which will be maintained inductively, is
that after each iteration of the algorithm, the set of nodes contained in any leaf
will have exactly one designated node called the representative of that set.

The tull algorithm is now the following.
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The Cheng-Hu algorithm
Set k to 0.
The initial tree T, consists of a single leaf containing all the nodes of G.
Arbitrarily set one of the nodes to be the representative of this leaf.
Repeat
Pick a leaf x of T, which contains more than one node of G; suppose i is the
representative of x, and let j be any other node of G in x. Declare j to be a
representative.

Find a minimum cut (X, X) between i and j; let its value be f(i, j), and
assume that i€ X.

Find the closest ancestor vertex y of x in T, whose cut value is less than or
equal to f(i, j); let z be the vertex below y on the path from y to x in T.
Create a vertex labeled with (7, j), and place it between y and z in T,.
Remove all the leaves of T,, creating tree T, ,,; then sort the nodes of G
into T, ,,, creating tree T,,,. Set k:=k + 1.

Until each leaf node of T contains only a single node of G.

Note that z may be a leaf of T),. Note also that at least one of the children of
vertex x is a leaf of T, .

Correctness of the algorithm

The key to the correctness of the algorithm is that every intermediate tree
T, ., is sortable. For a tree to be sortable, we need that the (s, ) cut (say) at
any internal vertex x partitions the nodes on the edge coming into x such that
all nodes in labels of the internal vertices in the left subtree of x are on one side
of the (s, t) cut, and all nodes in labels in the right subtree of x are on the other
side of the cut. If this condition is satisfied, then the tree is sortable. To prove
that the tree is always sortable, we start with the following definition.

Definition. For a vertex x in T, let p and ¢ be any two nodes of G which are
each used in some label (not necessarily the same label) of a vertex in the
subtree of T, rooted at x. We say that p and g are connected in the subtree of
x, if there exists a sequence (p,v,), (v,,v,),...,(v;, ), where the second
node in cach pair is the first node in the succeeding pair, and cach pair is a
label of a vertex in the subtree of x.

For example, in Figure 3e let x be the root of the tree, and let p be A and g
be B. Then p and ¢ are connected in the subtree rooted at x through the path
(A.C). (C, D), (D, E).

Lemma 10.1. Any intermediate tree T, , | produced by the algorithm is sortable.
In addition, all of the nodes in pairs labeling the vertices in the subtree of x are
connected.
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Proof. We prove the lemma inductively. T, is clearly sortable, and since it has
no internal nodes, it has the claimed connectedness property. Suppose T, is
sortable and has the connectedness property. Let (i, | ) be the source—sink pair
used by the algorithm to create T, |, where i is a representative of a leaf w in
T',. Let x denote the new vertex created, labeled with the pair (i, j).

Suppose first that in T, , |, x takes the place that w occupied in T,,thenT,,,
is sortable since T, was, and the new (i, j) cut simply splits the nodes coming
into x into two branches. Further, the label of the parent of x must contain
cither i or j (by the way that representatives of leaves are created, and the fact
that T, was sortable). Suppose, w.l.o.g., its label is (4, s). Then, there is a
sequence (s, 1), (i, j)in T,,,, so j is also connected to s in T, .. Since the
connectedness property holds for T,, s is connected to all nodes in labels of the
subtree of x in 7, ,.

Now suppose that x is inserted between two internal vertices y and z, where
v 1s the parent of z. We first show that T, | is sortable. All nodes that were on
the incoming edge into z in 7, are now on the incoming edge into x in T, .
Hence. all vertex labels of the subtree rooted at x are contained on the set of
nodes coming into x. In particular, i and j are on that edge.

For any internal vertex, labeled (s, ), in the subtree rooted at x, f(s, 1) >
f(i, j), and therefore the (i, j) cut cannot separate s from . Further, by
induction, all nodes used in labels in this subtree are connected, so it follows
that the (i, j) cut cannot separate any two nodes p and g which are used as
labels in this subtree. For suppose that the (i, j) cut did separate p from gq.
Then the (i, j) cut must also separate two nodes in a label on the chain of
labels connecting p and ¢, a contradiction. Thus, the cut at x partitions the
incoming nodes into two sets, such that one set contains all labels in the
subtree of x. The part of the cut containing these nodes is passed on to z, while
the other part becomes a leaf of 7, , below vertex x. From z downwards, the
tree is certainly sortable as before.

To show that the connectedness property holds for T,,,, consider an
arbitrary subtree of T,,,. If it does not contain the new vertex x, then the
claim clearly holds for it. If it does contain x, then it must contain the
immediate ancestor of leaf w in T,. As before, assume that the label of that
ancestor is (i, s). Now (i, s), (i, j) is a sequence in the subtree of T, ., rooted
at x. Further, by the induction hypothesis, in T,, s and ¢ are connected in the
subtree of z if ¢ is used in a vertex label in the subtree of z. It follows that i and
¢ and j and f are connected in the subtree of x in T, ., and the connectedness
property holds. [

Lemma 10.2. If the least common ancestor of nodes i and j has label (p, q),
then the associated minimum (p, q) cut separates i and J, and so f(i, j)=

fp. q).

Proof. Follows immediately from the sorting process. [
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Lemma 10.3. Ler S=(i,v), (v}, 0,),...,(vy, J) be a sequence of node pairs,
where the second node of each pair is the first node of the succeeding pair. Then
[, jy=min[ f(x, y): (x, y) is a pair in S].

Proof. Let (X, X) be a minimum (i, j) cut. Since i € X and j€ X, there
must be a pair (v,,v,,,;)ES such that v, € X and v, , € X, and hence
fv,. v, )=f{, ), and the lemma follows. O

Theorem 10.1 For any nodes i and j in G, the cut (p, q) at the least common
ancestor x of i and j in T is a minimum (i, j) cut in G.

Proof. By Lemma 10.2, f(i, j) < f( p, q). Now consider the set of vertex labels
in the subtree of T rooted at x. By applying the connectedness property shown
in Lemma 10.1, we can connect all the vertex labels in the subtree of x into a
single sequence (i, v,), (v;,v,),...,(v,, J) (vertex labels may be repeated).
Then by Lemma 10.3, f(i, j) = min[ f(u, v): (u,v) is a vertex label in the
subtree of x]. But by construction of 7, x has a smaller associated cut than any
vertices in its subtree, and so f(p, ¢) < f(u, v) for any label (u,v) in the
subtree of x. Therefore f(i, j) = f(p, q), and the theorem follows. [J

So the ancestor cut-tree can be built with n — 1 flow computations, takes
O(#) space, and can be used to retrieve in O(n) time the minimum cut value of
any pair of nodes in G. In fact, any value could be retrieved in O(1) time after
an initial preprocessing phase taking O(n) time. This is accomplished by using
a fast least common ancestors algorithm [Harel & Tarjan, 1984, Schieber &
Vishkin, 1988] that will be briefly discussed in the next section. If simpler
methods are desired, it is not difficult to devise a method to collect all the (%)
values from the tree in O(n’) time. Hence the ancestor cut tree has all the
advantages of an equivalent-flow tree. Further, by Lemma 10.2, for any pair of
nodes (7, j), the tree can be used to retrieve an actual (i, j) minimum cut.
However. n — 1 minimum cuts need to be explicitly stored, so it does not have
all the advantages of a cut-tree.

We should note that the use of representatives in the algorithm makes the
correctness proof easier, but their use is not essential. In fact, the algorithm
would be correct if we arbitrarily select any pair of nodes in a leaf. Also, if the
values for only a subset of the node pairs are needed, then the algorithm can
be terminated early. We leave the details to the reader.

10.3. Additional uses of the ancestor cut-tree

Closer examination of the proof of Theorem 10.1 yields the following
important observation made by Cheng & Hu [1989]. Suppose that instead of
defining the value of a cut (X, X) as the sum of the edge capacities crossing the
cut. we give the cut an arbitrary value. Then for a pair of nodes (i, j) we define
fG. j) as the minimum value of all the cuts separating i from j. Under this
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definition of f(i, j), all of the lemmas and theorems in the preceding section
remain valid, for all of them depend only on the fact that fG, j) is the
minimum value of the cuts separating i from j. Hence there exists ancestor
cut-trees for any such values applied to cuts in G. Further, if it is possible to
efficicntly find a cut of value f(i, j) when a pair (i, j) is specified, then an
ancestor cut-tree for these cut values can be found efficiently, with only n—1
calls to the routine which gives the cut values and the cuts.

There are many applications of this more general cut framework. As one
useful application, let G be a directed graph with edge capacities, let C(X, X)
be the sum of the capacities of the edges crossing from X to X, and let C(X, X)
be the sum of the capacities of edges from X to X. Then we define the value of
the cut (partition) X, X to be the minimum of C(X, X) and C(X, X), and we
define f(i, j) as before to be the minimum value of all the cuts which separate i
from j. By the max-flow min-cut theorem f(i, j) = min{F(i, j), F(j, i)], where
F(i, j) is the maximum flow value from i to j, and F(j, 1) is the maximum flow
value from j to i. Since G is directed, F(i, j) need not be equal to F(/, i). This
particular function f(i, j) was studied by Schnorr [1979] who called the
function B(i, j) and used it in computing the directed connectivity of a graph.
He showed that all the B(i, j) values could be computed with O(n log n)
minimum cut calculations in a graph of n nodes, although these flows can be
implemented to run in O(n") amortized time. However, the ancestor cut-tree,
when G has been given the above cut values, clearly also represent B(i, j).
Moreover, for any / and j, 8(i, j) and the associated cut can be found with only
two network flow computations—the maximum flow from i to J, and the
maximum flow from j to i. Hence, an ancestor cut-tree for the B function can
be constructed in 2n —2 flow computations on G. This achieves the same
overall time bound as the Schnorr method, O(n*), but it does not need any of
the involved implementation details that the Schnorr method uses to achieve
that amortized bound. Further, when the graph has spccial properties allowing
a specialized faster than general network flow method to be used, the time to
build the ancestor-tree is automatically improved, while the Schnorr method
may not be able to exploit the faster flow.

One of the applications of the B8 function is in the area of data security
[Gusfield, 1988], where it is shown how to compute the tightest upper bounds
on a secure matrix entry (i, j) by computing (i, j) in a directed graph derived
from the matrix. Hence the tightest upper bounds on all the cell values can be
computed with only O(n) flow computations, even though there may be Q(n°)
upper bounds that need to be determined. The time to determine all these
values is then the time for just n — 1 flow computations, plus a total of O(n*)
time. Full details of this application are given by Gusfield [1990a].

11. The power of preprocessing: The least common ancestor problem

The previous section discussing the Cheng—Hu algorithm stated that the least
common ancestor of any two leaves of a tree can be found in constant time,
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after a linear time amount of preprocessing. That is, the tree is first prepro-
cessed in linear time, and thereafter each least common ancestor query takes
only constant time, no matter how large the tree is. Without preprocessing, the
best worst-case time bound for a single query is linear, so this is a most
surprising and useful result. Since it has applications in network algorithms and
it illustrates the tremendous speedup that can sometimes be achieved through
preprocessing, we will briefly discuss some of the ideas used for this method.

The actual method we will present is not ‘correct’ because it needs a few
(probably realistic) assumptions and needs to allocate (but not use) more than
linear space. Still, it will capture the spirit of the correct method and will be
practical for reasonable sized problems.

111 An “incorrect’ method

Suppose first that the tree T is a rooted binary tree, so that every internal
node has exactly two children. Let d be the length of the longest path from the
root to a leaf in T and let n be the number of nodes in 7. We will first label
cach node v in T with a description of the unique path from the root to node v
as follows. Counting from the leftmost bit of the desired node label, the ith bit
corresponds to the ith edge on the path from the root to v; a zero in bit i
indicates that the ith cdge goes to a left child, and a one in bit i indicates a
right child. So for example a path that goes left twice then right and then left
again ends at a node which will be given the label 0010. We will now extend
these node labels so that the root also has a label and so that all labels consist
ot d -+ 1 bits. To do this we add a 1-bit to the right end of every label, and then
add 0-bits to the right of each label so that each resulting label has exactly
d + 1 bits. We will use L(v) to denote the resulting label of node v.

It is not difficult to sece how to set these labels in O(n) time during a depth
first traversal of T, if we assume that multiplication by a number as big as 27
can be done in constant time. During the depth first traversal, we construct the
path label of v by shifting the path label of its parent v’ one bit to the left
(multiplying by two) and adding one if v is a right child of v'. To get the final
label for v we multiply its label by two, add one, and then multiply by 297
(shift left by d — k bits).

We keep L(v) at node v in T, so that when given v we can retrieve L(v) in
constant time. Conversely, we will also need to be able to find any node v from
its label L(v) in constant time. One simple, but very space inefficient way to do
this is to reserve a space A of 2" words addressed by all the possible binary
numbers of length d + 1. Whenever a label L(v) is computed, we write v in
A(L(v)). So the total time we set up this spacc is only O(n). A more practical
approach would be to hash the L labels into a space much smaller than A.

Now suppose we want to find the least common ancestor of nodes x and ¥,
and say that it is node z. We first take the exclusive or (XOR) of L(x)and L(y)
and look for the leftmost 1-bit in the resulting number. The XOR of two bits is
1 1t and only if the two bits are different. The XOR of two numbers, each of



428 D. Gusfield

which consists of d + 1 bits, is just the XOR of the d + 1 pairs of bits taken
independently. For example, XOR of 00101 and 10011 is 10110.

Suppose that the leftmost 1-bit in the XOR of L(x) and L( y) is in position k
counting from the left. Then the leftmost k — 1 bits of L(x) and L(y) are the
same, and hence the paths to x and y agree for the first kK — 1 edges, and then
diverge. It follows that L(z) consists of the leftmost £ — 1 bits of L(x) [or L(y)]
followed by a 1-bit followed by d + 1 — k zeroes. We assume that our machine
can find the leftmost 1-bit in a number in constant time. Again, this is not an
unreasonable assumption on most machines, depending on how big n is. So
L(z) can be found in constant time. Given L(z) we find z in entry A(L(z)) in
constant time.

11.2. How to handle non-binary trees

If the original tree T is not binary we modify any node with more than two

children as follows. Suppose node v has children v, v,,...,v,. Then we
replace the children of v with two children v, and v* and make nodes
U,,...,0, children of v*. We repeat this until each original child v, of v has

only one sibling, and we place a pointer from v* to v for every new node v*
created in this process. Later, whenever any such a new node v* is returned by
the least common ancestor algorithm, the pointer at v* leads to the true least
common ancestor v in 7. Note that the transformed tree has at most 2n nodes.

So assuming a shift (multiply) by up to d bits can be done in constant time,
that XOR on d bits can be done in constant time, that the leftmost 1-bit can be
found in constant time, and that we have space of size 29" the above gives a
linear time preprocessing method, and constant time look-up method for the
least common ancestor problem. All these assumptions are reasonable for
reasonable values of n, except for the space required. However, we can still
obtain a practical method (but lacking the theoretical constant time guarantee)
if we use hashing for A, since we only hash n numbers.

11.3. A peek at a correct method

The deficiencies of the above method are: we must allow word sizes to be
d + 1 bits which in worst case is # + 1 bits (although in any actual case of d = n,
the ancestor problem is trivial); we assume the ability to shift (by at most d
bits), to do XOR and to find the leftmost 1-bit in constant time; and we need
space 2" or must use hashing.

The correct method avoids all of these deficiencies with the same idea. It
efficiently maps the nodes of T into a balanced binary tree B with n nodes in
such a way that if x maps to B(x) and y maps to B(y), then the ieast common
ancestor of B(x) and B(y) in B can be used to quickly find the least common
ancestor of x and y in T. Since B is balanced its maximum depth d is O(log n).
That means that only O(log »n) bits need to be used for L labels, and that the
other assumptions needed in the first method need not be made. The way that
the mapping is done is complex, and is a major achievement.
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This peek at the correct method has not done justice to the real method, and
the interested reader is referred to the paper by Schieber & Vishkin [1988].
The fact that the problem can be solved in constant time was first shown by
Harel & Tarjan [1984].

12. Randomized algorithms for matching problems

We will now consider the use of randomization in algorithms. In particular
we will discuss how randomization can be used in a fast parallel algorithm for
constructing a maximum cardinality matching in a bipartite graph. The major
focus is randomization, but the specific topic will also allow an additional look
at parallel algorithms.

Rgcall from Section 7 that a maximum cardinality matching can be computed
in O(n””) time by maximum flow in a graph where all edges have capacity one.
This is faster than the O(n’) bound for flow in general graphs. As another
distinction between flow in this special bipartite graph and general maximum
flow, we will discuss here very efficient (polylog time) parallel randomized
algorithms for bipartite matching, while we saw earlier that the best available
(deterministic) parallel algorithm for network flow runs in O(n’ log n) time.
Even when randomization is allowed, no one knows a fast parallel algorithm
for the general network flow problem.

We will discuss in detail matching under the Monte Carlo model, but also
introduce the other common model, the Las Vegas model. The matching result
is due to Mulmuley, Vazirani & Vazirani [1987]. In our discussion we will first
assume that a perfect matching exists in the bipartite graph, discuss how to find
such a perfect matching, and then discuss how to reduce the problem of
constructing a maximum cardinality matching to the perfect matching problem.
Along the way we will also see how to test if a graph has a perfect matching.

12.1. The Monte Carlo model

By randomization we mean that the algorithm (not the input) has some
random component. Typically there is some point where the algorithm ran-
domly generates a number according to some distribution, and then uses that
number to direct its computation in some way. It may seem strange at first that
certain problems can be efficiently ‘solved’ by a randomized algorithm, but not
cfficiently by any known deterministic algorithm. Parallel matching is one such
problem.

To dcﬁne a Monte Carlo algorithm we restrict attention to decision prob-
lems. i.c.. problems which have either a ‘yes’ answer or a ‘no’ answer. A T(n)
time Monte Carlo algorithm is a randomized algorithm which outputs either
‘ves” or 'no’ and has the following three properties.

(1) On any input of size n, the algorithm halts in O(7(n)) time.

(2) For any input, if the algorithm answers ‘yes’, then ‘yes’ is definitely the
correct answer.
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(3) For any input, if the algorithm answers ‘no’, then ‘no’ is the correct
answer with probability at least one-half.

Notice that the probability in the last statement is taken over the randomized
exccutions of the algorithm, and not over the distribution of the input - the
probability of one-half holds for any input. This is the novel and surprising
aspect of randomizing the algorithm. Notice also that each time the algorithm
is run, the probability of an incorrect ‘no’ answer is independent of all other
executions of the algorithm so if we run the algorithm 100 times, say, and get a
‘no’ answer each time, then the probability that ‘no’ is incorrect is less than
12"

A parallel algorithm which always terminates in O(log* n) time, for some
fixed &, is said to run in polylog parallel time. A Monte Carlo algorithm which
runs in polylog time on a parallel machine (PRAM model) with at most a
polynomial number of processors (as a function of n), is said to be in the
complexity class RNC. An algorithm in class RNC is referred to as an RNC
algorithm.

The Monte Carlo model has been defined for ‘yes/no’ problems, but its
definition can be easily extended to optimization problems or construction
problems. In that case the algorithm produces a proposed solution which is
correct with probability at least one-half.

12.2. Self-reduction in sequential and parallel environments

A natural approach to designing a parallel algorithm is to divide the problem
into independent pieces so that the solution to the original problem can be
constructed quickly from information obtained about each piece. Independ-
ence of the pieces means that work on the pieces can be done in parallel. Of
course, the key problem is to find such a nice division.

One idea for dividing up the matching problem was suggested by the early
result that the following decision question can be solved, as we will see below,
by an RNC algorithm.

Decision problem. For any fixed edge e, is e in some perfect matching in G?

Now in the scquential environment, the ability to answer this decision
question can easily be used to construct a perfect matching as follows. Order
the cdges arbitrarily as e, e,,...,e,. Test if e, is in some perfect matching of
G. and if so modify G by deleting the endpoints of e, and all incident edges
from G. Next test whether e, (if it has not been removed) is in some perfect
matching in the new G. In general, for every edge e, there is a current G, and
if e, 1s in a perfect matching in the current G, then G gets modified as above.
When all edges have been removed, the set of edges which were found to be in
some perfect matching of their associated G, form a perfect matching in the
original G. This process of constructing a solution by repeatedly solving a
decision question is called self-reduction.
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Difficulties in the parallel environment

Although we will see that the above decision question for matching can be
solved fast in parallel, the self-reduction used seems to be a very sequential
process. so it is not clear how to use it to construct a perfect matching fast in
parallcl. A natural response to this difficulty is to ask all the decision questions
in parallel, i.c., for each edge e determine whether there is a perfect matching
in the original G containing e. These questions are independent and so can be
solved in parallel. But now the set of edges which are in some perfect matching
may not themscelves form a matching. The problem is that the perfect matching
may not be unique, and two adjacent edges in G may be in separate perfect
matchings. However, the above method would work if there were only one
perfect matching in G.

Given the problem of non-unique matchings, the next immediate idea is to
find a way to distinguish the perfect matchings so that one of them is unique.
An easy way of doing this is to introduce edge weights that make the minimum
weight perfect matching unique. In particular, give edge e, weight 2*. Then the
sum of the weights in any edge set is different from the sum for any other edge
sct. Hence there can be no ties for the minimum weight perfect matching. With
this idea the appropriate decision question is the following.

Weighted decision question. Given a fixed edge e, is e in some minimum weight
perfect matching?

We can ask this decision question about each edge e in parallel, because the
questions are independent of each other. Further, since the minimum weight
perfect matching is unique, the set of edges which are in some minimum weight
perfect matching form the unique perfect matching. So if we could solve the
above weighted form of the decision question fast in parallel we would have a
good parallel method to construct a perfect matching.

The problem with the above idea is that we do not know how to solve the
stated decision question fast in parallel when the weights are so large. However,
the decision question can be solved fast in parallel (as we will see) when the
weights are ‘small” (polynomial in m). But then the minimum weight perfect
matching is not always unique, and when it is not unique the ‘yes’ answers to
all the questions asked in parallel do not specify a matching. So we seem to
have taken one step forward and one step back.

Here is where the power of randomization comes in. We will show that the
minimum weight perfect matching is unique with high probability if the weights
are chosen uniformly over the interval 1 through 2m. This is the basis for the
following randomized matching method.

Randomized matching algorithm
(1) For each edge e choose a weight w(e) uniformly from the interval 1
through 2m.
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(2) For each edge e test whether e is in some minimum weight perfect
matching for the above weights. If yes, place e in set S.

We will see that S is a perfect matching (always assuming that one exists in
G) with probability at least one-half. We will also see how to solve Step 2 fast
in parallel.

If we want to exclude the possibility that S is not a perfect matching, then we
should add an additional Step 3: check whether S is a perfect matching, and if
not, return to Step 1. Since the weight assignments in each execution of Step 1
are independent and the probability that an execution gives a perfect matching
is at least one-half, the expected number of iterations until S is a perfect
matching is at most two. With Step 3, the algorithm becomes a very fast
expected time parallel method.

We now begin the detailed investigation of these claims.

Lemma 12.1. If each edge weight w(e) is selected uniformly from the integers in
the range 1 to 2m, then the minimum weight perfect matching is unique with
probability greater than one-half.

Proof. There are (2m)™ equally likely assignments of integers to the edges of
G. We will estimate how many of them have more than one minimum weight
perfect matching. Fix a particular edge e and then fix an assignment Q of
weights for all edges other than e. Since there are 2m choices for w(e), there
are 2m assignments of weights to all the edges which agree with Q. Given Q,
let M(e) be the minimum weight of any perfect matching which excludes e, and
let M'(e) be the total weight of the edges other than e in any minimum weight
perfect matching which contains e. M(e) is defined to be some large finite
number if there is no perfect matching excluding e, and similarly for M'(e). If
both perfect matchings exist, then the second one will have the same weight as
the first only when w(e) is exactly M'(e) — M(e). This happens in at most one
of the 2m assignments which agree with Q. So there is a minimum weight
perfect matching containing e and a minimum weight perfect matching not
containing e, in at most one of these 2m assignments. Letting Q vary over all
possible assignments, we conclude there is both a minimum weight perfect
matching containing e and one not containing e in at most 1/2m of the (2m)”
weight assignments.

Now for any fixed assignment of edge weights, the minimum weight perfect
matching is unique unless there is at least one ‘witness’ edge e where the
minimum weight perfect matchings with and without e have equal weight. As
shown above, any fixed edge e is the ‘witness’ of non-uniqueness in at most
1/2m of the weight assignments. Since there are only m edges, at most
one-half of all the assignments have such a witness, and the lemma follows. [

Corollary 12.1. For any graph G containing a perfect maiching, the random
maiching algorithm constructs a perfect matching with probability at least
one-half.
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Proof. When the minimum weight perfect matching is unique, the ‘yes’
answers to the weighted decision questions, asked in parallel, specify a perfect
matching. With the edge weights selected as above, the minimum weight
pertect matching is unique with probability at least one-half. [J

Note that the lemma and corollary hold for non-bipartite graphs as well as
bipartitc graphs. However, the details of how to solve the decision question are
more involved for the non-bipartite case, and for convenience we will only
discuss the bipartite case.

[2.3. How to solve the decision problem

We now begin to show how to solve the weighted decision question. Given a
set of edge weights in the range 1 to 2m, and assuming that G has a unique
minimum weight perfect matching M, is e in M?

For any edge e = (i, j), let G(e) = (X, Y, E) be the graph obtained from G
by deleting i and j and all incident edges. We assume that the nodes of X are
renumbered consecutively from 1 to |X|, and similarly for the nodes of Y.
Hence the correspondence of numbers to nodes in each G(e) may be different
from each other and from G. We let M be the unique minimum weight perfect
matching in G, and let w denote its weight. We also assume for now that we
know w (but of course not M); we will see how to compute w below.

The solution to the decision problem is based on the relationship between
matchings in a bipartite graph and the determinant of a certain matrix obtained
from it. The method will be applied both to G and to G(e) for each e, but we
will focus on G(e); the case of G is simpler. We start with an idea that does not
quitc work and then add in the needed modification.

The simple matrix A

Let the two sides of a bipartite graph G(e) be denoted by X and Y, where
|X]=[Y[|. Let A be the adjacency matrix of G(e), i.e., a ,=lifieX, jey
and (i. J) € G(e); a, ;=0 otherwise. Now the determinant of A is defined as

E S((f) ]—I a/mr(i) »
o

where o is a permutation of the integers from 1 to |X], and s(o) is a function
which evaluates to either +1 or —1. Details of this function are not needed in
this discussion.

It is usetul to consider a particular permutation o as describing a ‘potential’
perfect matching containing the potential edges (i, o(i)) for i € X, o(i)E Y.
Since o is a permutation, each node / € X and o(i) € Y is incident with exactly
one of the “potential’ edges described by o. If (i, o(i)) is an edge in G(e) for
cach i € X, then the potential matching is a perfect matching in G(e), and
la,, ., =1.1f (i, o(i)) is not an edge in G(e) for some i, then 11 a; .y =0 and
o does not describe a perfect matching in G(e).
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Hence if the det A is not zero, then G(e) must contain a perfect matching,
although the converse does not hold. Each perfect matching contributes either
a +1 or —1 to the determinant, and by cancellation the determinant could be
zero even when G(e) has a perfect matching. So with the current A, we cannot
determine from det A whether G(e) has a perfect matching. We will modify A
so that this, and more, will be possible.

A modified matrix A N
Matrix A is now defined as follows: set a, ;= 2¥If (i, ) is an edge in
G(e), and a, , = 0 otherwise. Then we have the following.

Theorem 12.1. If det A =0, then e is not in M. If det A#0, then e € M if and
only if 2% ™) is the largest power of two which evenly divides det A.

Proof. If e & M then let o be the permutation of the integers in X which
describes the perfect matching M — e in G(e). Then in A, lla,,,, =2""".

Since M is the unique minimum weight perfect matching in G, the minimum
weight perfect matching in G(e) (if one exists) has weight at least w — w(e).
Further, it has exactly that weight only if e € M. Therefore, any permutation
o' # o contributes either a zero term to det A [when o' does not describe a
perfect matching in G(e)], or contributes a term of +2* with k> w — w(e).
Hence no subset of these other terms can sum to +2" 7" It follows that if
e & M. then det A 50, and so det A =0 implies that e & M. The first statement
of the theorem is proved.

For the second part, recall that all terms in det A are powers of two with
absolute value larger or equal to 2", So 2"~ divides det A when it is not
zero. Now 2" *"*! does not divid det A (assumed to be non-zero) if and only
if +2" s a term in det A (this follows simply from the fact that det A is the
sum of numbers which are powers of two). But the only permutation that can
contribute £2” " is ¢, so M — e must be a perfect matching in G(e), so

" 7OT does not divide det A if and only if e€ M. [

At this point we can also describe a randomized method for the decision
question: is e in some perfect matching in G, assuming that G has a perfect
matching? This is equivalent to asking if there is a perfect matching in G(e),
which is answered by the following immediate corollary of Theorem 12.1.

Corollary 12.2. Assume that G has a perfect matching. If det A # 0 then there is
a perfect matching in G(e). If det A =0 then the probability that [det A = 0 and
G(e) has a perfect matching] is at most one-half.

How to compute w

Replace G(e) with G in the above discussion and let A be defined for G.
Since M is the unique minimum weight perfect matching in G, det A will not
be zero, and +2" will be the smallest term. Therefore, 2" will be the largest
power of two that divides det A. To obtain w, simply test in parallel powers of
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two to find the largest which divides det A. The number of such independent
tests is bounded by log(det A), which is polynomial in m, so only a polynomial
number of processors are needed.

Summary of the method

The one detail that we cannot explain here is that the determinant of a
symmetric # by n matrix can be computed fast in parallel, in fact by an NC’
algorithm. An NC” algorithm is a deterministic parallel algorithm which uses a
polynomial number of processors and runs in O(log” n) parallel time. With that
assumption, it should be clear that the following algorithm can be implemented
to run in parallel in O(log” n) time with just a polynomial (in m) number of
Processors.

(1) Select edge weights uniformly from 1 to 2m.

(2) Form A from G and compute w, the weight of the (assumed unique)
minimum weight perfect matching in G.

(3) For each edge e in G form A [conceptually from G(e)] and compute
det A. If det A =0 then place e into set S. If det A+ 0 then find the largest
power of two. z, which divides det A. If z=2"""" then place e in §.

We have shown that S is the perfect matching M under the assumption that
(; has a unique minimum weight perfect matching, and that this happens with
probability at least one-half for the edge weights chosen. So we have an NC”
method which is guaranteed to find a perfect matching with probability at least
one-half, assuming there is a perfect matching in G. Note that this gives an
RNC method to determine if a graph has a perfect matching (when we cannot
assume that it does): run the above algorithm and examine S; if S is a perfect
matching, then ‘yes’ is definitely the correct answer; if S is not a perfect
matching, then ‘no’ is the correct answer with probability at least one-half.

The reader should consider at this point why we cannot make the above
method deterministic? We mentioned earlier that if we set w(e,) = 2%, then the
minimum weight perfect matching is definitely unique, so the only source of
randomness in the above method would be eliminated. So why did we not use
these weights? The problem is that a; ; would then be 2% for (i, j)=e,. These
numbers would then not be representable in polynomial space as a function of
n. and operations on them would require more than polynomial time in n. So
such large numbers simply violate the basic model of what kinds of numbers
are permitted. Because of the requirement to use numbers in the correct range,
we needed to introduce randomization into the method.

12.4. The cardinality matching problem

We started with the problem of constructing in parallel a maximum cardinali-
ty matching, but have focussed above on the perfect matching problem. How
do we usc the latter to solve the former?

Supposc that the maximum cardinality matching in G is n — k, where each
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side of G has n nodes. Let G(k) be obtained from G by adding k nodes to each
side of G and connecting each of them to all the n nodes on the other side.
Then there is a perfect matching in G(k). So the maximum cardinality
matching in G can be obtained by finding the smallest k such that G(k) has a
perfect matching. We saw above how to test if G(k) has a perfect matching so
that the probability of an incorrect ‘no’ answer is at most one-half. Each
iteration of this test is independent of the others, so if it gives a ‘no’ answer g
times, the probability of error [G(k) has a perfect matching but the algorithm
did not find one] is less than 1/2 So if we test each k in parallel say 100 times,
and k' is the smallest value such that the test for G(k’) found a perfect
matching, the probability that the maximum matching is greater than n — k' is
less than 1/2'". So we can use this method to quickly find a matching which,
with very high probability, is a maximum cardinality matching.

If we run the Monte Carlo perfect matching algorithm just on a single G(k),
then we have a fast parallel Monte Carlo method for the decision question: is
there a matching of size n — k or more? When the method says ‘yes’ it is
certainly correct, and when it says ‘no’ it is correct with probability at least
onc-half.

12.5. A Las Vegas extension

The method above has the property that when it says ‘yes’ there is a
matching of size n — k or more, it is certainly correct, but when it says ‘no’, it
could be wrong with some small probability. If we could construct a symmetric
algorithm that was surely right when it said ‘no’ and wrong with some small
probability when it said ‘yes’, then we could dovetail the two computations to
get a method that was already right. This approach leads to the idea of a Las
Vegas algorithm.

A Las Vegas algorithm also has a random component, but compared to a
Monte Carlo algorithm it is a more reliable algorithm, although not as certain
to be fast. In particular, a randomized ‘yes/no’ algorithm is called a T(n)-time
Las Vegas algorithm if it satisfies the following two properties:

(1) If the algorithm halts, then it definitely outputs the correct answer.

(2) For any input of size n, the expected running time of the algorithm is
bounded by O(T(n)), where the expectation is taken over the random choices
of the algorithm.

More generally, an optimization algorithm, such as one which finds a
maximum cardinality matching, is called a T(n)-time Las Vegas algorithm if it
is randomized and has the properties: (a) if it halts then it has the optimal
solution; (b) the expected running time, averaged over the random choices of
the algorithm, is bounded by O(T(n)).

In the case of bipartite graphs, we can very simply turn the Monte Carlo
algorithm we have for finding the maximum cardinality matching into a Las
Vegas algorithm for maximum matching.
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Las Vegas bipartite matching

(0) Set k' =0.

(1) Repeat the Monte Carlo decision algorithm once, in parallel, for each
G(k), k=n— k', in parallel.

(2) In parallel, examine each output set of edges S, checking for a matching.
If no matching is found, repeat Step 1. Else let M be the largest matching
found.

(3) If the size of M is less than n, then test whether a larger matching is

possible as follows:

(3a) Considering the matching problem as a flow problem as detailed at
the start of Section 7, build the residual graph for the flow corresponding
to matching M.

(3b) Secarch for an s to ¢ directed path in the residual graph. In other
words, test whether ¢ can be reached from s via a directed path.

(3c) If there is no path, then M must be the maximum cardinality, so
report with certainty that M is optimal and stop.

(3d) If there is a path, then a larger matching is possible. Set k' =
M|+ 1 and return to Step 1.

The expected number of iterations of Step 1 before the maximum cardinality
matching is found is two. When M is the maximum cardinality matching, Step 2
will determine that for sure and stop the algorithm. So the method is Las
Vegas. Steps 2 and 3 can be implemented to run in polylog time with a
polynomial number of processors (we leave the details as an exercise). Hence
the method is a polylog parallel Las Vegas algorithm using only a polynomial
number of processors to find a maximum cardinality matching in a bipartite
graph. Notice that in this Las Vegas algorithm the only randomness comes in
the phase where matchings are constructed. The test of optimality is de-
terministic.

For non-bipartite graphs Karlof [1986] extended the Monte Carlo matching
algorithm to a polylog parallel Las Vegas algorithm using only a polynomial
number of processors. He first developed a complementary RNC Monte Carlo
algorithm to solve the decision question: does G have a perfect matching.
Karloff's algorithm is complementary to the one we discussed in that when it
says ‘mo’ it is certainly correct, and when it says ‘yes’ it is correct with
probability at least one-half. So if you alternate running the two Monte Carlo
algorithms until either the first one says ‘yes’ or the second one says ‘no’, the
resulting answer will certainly be correct. If the correct answer is ‘yes’, then the
expected time before the first algorithm halts is within two iterations; similarly
if the correct answer is ‘no’, then the expected time for the second algorithm to
halt is within two iterations. The dovetailed algorithm therefore has expected
running time of no more than two iterations. Hence it runs in expected polylog
time with a polynomial number of processors, and if it halts it always gives the
correct answer. The dovetailed algorithm is therefore a Las Vegas algorithm
for testing for a perfect matching. The extension to the maximum cardinality
case is left for the reader.
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13. A matching problem from biology illustrating dynamic programming

Having discussed several variants of the matching problem on different
machine models, we turn now to a very special variant that arises in biology.
This problem will allow us to introduce and discuss an important algorithmic
technique, namely recursive programming and a speedup of it known as
dynamic programming.

The following is a simple version of a problem that arises in predicting the
secondary folding structure of transfer RNA molecules. Let L be a string of n
binary characters, i.e., each character is either 0 or 1. We define a matching as
set of pairs of characters in L, each pair containing exactly one one and one
zero, such that no character appears in more than one pair. We say that
characters i and j of L are matchable if and only if exactly one of them is a one
and the other is a zero.

We consider the string L to be arrayed around a circle and define a nested
matching as a matching where each matched pair is connected by a line inside
the circle such that no two lines cross each other. That is, for any positions i < j
in L, if the character in position i is matched to the character in position j, then
no character below i or above j can be matched to a character between i and J.
The problem is to find a nested matching of largest cardinality. It is the nesting
property of the matching that makes this problem interesting; without that
constraint, the problem is easily cast and solved as a maximum flow problem.
We will solve the problem by recursive programming and show how that leads
to a dynamic programming solution.

13.1. A recursive solution

Define C(i, j) as the value of the optimal nested matching on the substring
defined by characters in positions i through j of L. Clearly then, we seek the
value C(1, n). For the base case, C(i,i+1)=1 if the two characters are
different and C(i, i + 1) = 0 if they are the same.

We approach the problem of computing C(1, n) by thinking recursively,
starting with the question: what are the possible matches for character 1?
Either character 1 is not involved in a match, or it matches with some character
k =n, where characters 1 and k are matchable. In the first case C(l,n)=
C(2, n). In the second case C(1,n) =1+ C(2,k—1)+ C(k+1, n), where we
define C(p, q)=0if p=gq.

So (1, n) = max[C(2, n), max,_,[1+ C(2, k—1)+ C(k + 1, n)]: i and k
are matchable].

Of coursc, this leaves the question of what C(2, n) is and what Clk+1,n)is
for cach k =< n. Still, with only this small effort and little notation, we could
actually program a computer to compute C(1,n), provided that we use a
programming language that allows recursion, i.e., that allows a function with
parameters to be defined in terms of itself. For example, we can write the
following recursive ‘program’ to compute C(i, ) for i <j.

— bl kA
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If i=j Then C(i, j):=0 Else
Begin
If i=j—~1 Then
Begin
If characters i and j are different
Then C(i, j):=1
Else C(i, j):=0
End
Else
Begin
Ki=C(li+1,7)
For k between / + 1 and j — 1
Begin
If characters i and k are matchable
Then K:i=max[K, Ci+1, k—1)+ Clk+1, j)+1]
End
End
Ci, =K
End

13.2. Defects of the recursive solution

Then we can start the recursive program by calling C(1, n), sit back and wait
for the output. The computer will make all the subsequent required recursive
calls, stacking all pending calls, until the base cases are reached. Then it climbs
back up the tree of pending calls filling in the computed values, etc., until
C(1, n) is learned. This recursive program is easy to think up and program, and
it leaves all the drudge work to the computer (a good use for a computer), but
it is not satisfactory for large n because of the time it takes to execute. The call
to C(1, n) makes about 2n calls to compute other values of C, and in general
C(i, j) makes about 2(j — 1) calls to other C values. So the number of calls in
total when computing C(1, n) in this way is Q(n!), a very unsatisfactory growth
rate.

The reason for this large growth is that any particular C(i, j) can be called a
very large number of times in the above recursive program. And yet, there are
only O(n”) distinct choices for the pair i and j. This suggests that if we can
avoid duplicate calls to the function with the same choice of parameters, then
we can speed up the solution. Indeed, it is possible to avoid all duplicate calls
in a top~down manner, i.e., using the above top—down recursive method that
starts by calling C(1, n). This leads to a solution that runs in O(xn*) time for the
RNA folding problem. Further, it is possible to write a general recursion
implementing system which will automatically avoid duplicate calls, and hence
find by itself an efficient implementation of the otherwise inefficient recursive
program. However, this approach is not usually taken. Instead, a different,
slightly more efficient but less automatic method is often used to overcome the
problem of duplicate calls. That method is called dynamic programming.
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13.3. Dynamic programming

In the context of the RNA folding problem, dynamic programming is simply
the above recursive solution to computing C(1, 1), but with the modification
that the C(i, j) values are computed bottom—up rather than top—down. That is,
we start by computing C(i, i + 1) for each i, and continue computing C(i, j) in
order of increasing difference j—i. In this way, once C(i, j) has been
computed and stored for each pair i, j where j— i <t, then we have all the
needed values to compute C(i, j) for j—i=1r, using only O(j—1) table
look-ups per pair. Hence C(i, j) can be computed for all pairs i, j in O(n?)
total time.

The approach to RNA folding is typical of problems solved by dynamic
programming. The problems often have a fairly direct recursive solution, but
direct recursive implementation of the solution solves the problem top—down
and hence duplicates calls to subproblems. However, if the structure of the
subproblems is regular enough so that the subproblems can be nicely ordered,
then the subproblems can be solved and their values tabulated in a bottom—up
manner. This bottom-up tabling of solutions to subproblems is called dynamic
programming. In this view, dynamic programming is a way to efficiently
implement recursive programming, and it works when the structure of the
subproblems is sufficiently well behaved. The reader should be aware however
that this view of dynamic programming as an implementation technique,
reducing its importance as a conceptual technique, is somewhat non-standard.

14. Min-cost flow: Strong versus weak polynomial time

In this section we will briefly discuss a generalization of the network flow
problem called the min-cost flow problem. As in the case of the original
network flow problem, we will first develop a finite time algorithm which is not
necessarily polynomially bounded. Then we will discuss some recent develop-
ments showing how this algorithm can be converted into a (strongly) polyno-
mial time solution. That solution will be related to the first, merely finite,
solution in a way that is very analogous to the relationship of the Edmonds—
Karp network flow algorithm to the Ford—Fulkerson algorithm. Finally, we will
discuss an earlier, yet still valuable, approach to the problem which first lead to
a (weakly) polynomial time solution. This method, also developed by Edmonds
& Karp [1972], is called scaling.

[n an instance of the min-cost flow problem each directed edge (i, j) has an
associated cost w(i, j) as well as the normal capacity c(i, j). The cost of a flow
f from source s to sink ¢ is

2 fl )y xw(, j) .

(i)

The min-cost flow problem is to find an s, ¢ flow of maximum value which has
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minimum cost among all maximum value s, ¢ flows. The problem was shown in
1972 to be solvable in polynomial time using scaling by Edmonds & Karp
[1972]. but the result is not totally satisfying to some because it is not strongly
polynomial.

An algorithm is considered strongly polynomial if the number of primitive
operations of the algorithm is bounded by a polynomial function of the number
of input elements alone, always with the implicit assumption that the time of
each operation is bounded by a polynomial in the size of the input. That is, if
somc of the input elements consist of numbers, then the polynomial bound on
the number of operations is independent of how large the numbers are. In the
casc of the maximum flow problem, the EK, Dinits, GT and wave algorithms
are all strongly polynomial —in each case the worst-case number of primitive
operations (additions, subtractions, comparisons, data movements) is a func-
tion of the number of nodes and edges of the graph, and not of the size of the
edge capacities. Of course, the time to carry out a given operation will be
affected by the size of the numbers, but not the number of such operations.

For contrast. recall that an algorithm is considered polynomial if the worst
case number of operations is bounded by a polynomial in the total size of the
input, i.e., the number of bits needed to represent the input. In this model, the
number of arithmetic operations need not be related to the number of input
elements, just to their total size.

In the first polynomial method for min-cost flow, the scaling method
[Edmonds & Karp, 1972], the number of primitive operations is O(rn* log U),
where U is the largest edge capacity in the graph. This bound is a polynomial
function of the size of the input, because the input takes at least n + m + log U
bits.

Now there is a school of thinking which might be called the ‘bit-is-a-bit-is-a-
bit" school, which considers the polynomial bound of O(n” log U) to be every
bit as good as a bound which does not contain U, but many people find
themselves in the opposite camp. For them, a strongly polynomial time bound
is superior, and so the question of whether the min-cost flow problem could be
solved in strongly polynomial time was an attractive open problem for some
time. Indeed, the same question is still open for linear programming — polyno-
mial time algorithms are known, but not strongly polynomial ones. The
min-cost flow question was solved by Tardos [1985]. We will not describe her
solution. but will briefly describe a different strongly polynomial solution. But
first we develop a finite method for the problem.

I4.1. Finite ime solution for min-cost circulation

[n discussing min-cost flow algorithms it is convenient to first generalize the
problem to the min-cost circulation problem. A circulation is a generalization
of a flow where all the conditions for flow must apply, but additionally the
inflow must cqual the outflow at all nodes, i.e., including nodes s and . The
min-cost circulation problem is to find a circulation f of minimum total cost
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Now the min-cost circulation problem is a true generalization of the min-cost
flow problem since not all min-cost circulations will be maximum s, ¢ flows, but
a min-cost maximum s, f flow can be achieved as a min-cost circulation as
follows: add an edge from ¢ to s with infinite capacity and cost M <0, where
|M| is larger than L iy#.sy Wi, j). A min-cost circulation in this network will
consist of a min-cost (maximum) s, ¢ flow of some value, say v, and a flow along
edge ¢, s of v units. So the min-cost circulation problem generalizes the
min-cost flow problem.

An early finite method [Rock, 1980] for solving the min-cost circulation
problem is the following.

Cycle augmentation algorithm

(1) Find a circulation f (possibly all zeros) in G. Let G’ be the residual
graph. ‘

(2) For every forward edge (i, j) in G/ associate the weight w(i, j), and for
every backward edge (i, j) in G associate the weight —w( j, i).

(3) Search for a negative weight cycle C in G’. If there are none, then stop;
f is a min-cost circulation.

(4) If C exists, then let u be the minimum residual capacity of any edge in C.
For every forward edge (i, j) in C set f(i, j) to f(i, j) + u. For every backward
edge (4, j) in Cset f(j, i) to f(j, i) — u. The new fis still a circulation, but it
has less cost than the previous f.

(5) Go to Step 2.

It is not difficult to prove that this algorithm is correct, and assuming that all
edge costs are rational, that it terminates in finite time. Searching for a
negative weight cycle is also not a difficult task; it can be done by a
modification of the dynamic programming based shortest path algorithms that
allow negative as well as positive distances.

Analogies to Ford—-Fulkerson

To see how the above algorithm is analogous to the Ford—Fulkerson
maximum flow method, consider how to use it just to find a maximum flow.
One simple way is to set the cost of edge (¢, s) to —1 and the cost of all other
edges to zero. Then if we start with the zero circulation, each negative weight
cycle in the residual graph is actually an s,¢ path in the residual graph,
followed by the 1, s edge. The Ford—Fulkerson maximum flow algorithm allows
any (s, t) residual path to be used, and the above algorithm allows any negative
weight cycle to be used. Further, as in the Ford-Fulkerson method, the
number of iterations of the algorithm, although finite, may be exponential in
terms of n and m alone.

The final, but very recent, analogy is that the number of iterations in the
above circulation method can be made polynomial (in fact strongly
polynomial) by a rule for choosing negative weight cycles which generalizes the
shortest augmenting path rule of the Edmonds—Karp method. The rule is to
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use the negative weight cycle of smallest mean weight. That is, if cycle C has
total weight w(C) <0 and has k edges, its mean weight is w(C)/k. There are
strongly polynomial methods for finding the smallest mean weight cycle [Karp,
1978], so this gives a strongly polynomial method for min-cost flow. This
approach was discovered by Goldberg & Tarjan [1989]. It is not the fastest
presently known solution to min-cost flow, but it is perhaps the most satisfying
in the way it ties together the history of the maximum flow and the minimum
cost flow problems.

The minimum cycle-mean method is the proper generalization of the EK
maximum flow method which augments along shortest s, ¢ paths in the residual
graph. Put a cost of zero on all original edges and a cost of —1 on the (¢, s)
edge; then the minimum cost circulation gives a maximum s, ¢ flow, and the
minimum cycle-mean rule specializes to the shortest s, t path rule of the EK
algorithm.

14.2. An earlier polynomial method based on scaling

Despite the analogies developed above between the history of the maximum
flow and the min-cost flow problems, there is one major difference between the
two stories. The first polynomial time methods for maximum flow were also
strongly polynomial, while the first polynomial time method for min-cost flow
[Edmonds & Karp, 1972] was not strongly polynomial. A strongly polynomial
time method did not appear for more than ten years after that [Tardos, 1985].
The first polynomial min-cost flow method introduced a technique called
scaling which has continued to be an important technique in its own right. For
that reason we will now examine a polynomial (but not strongly polynomial)
time scaling method for the min-cost flow problem. In particular, we will
discuss the capacity scaling method of Rock [1980] modified by Andrew
Goldberg.

The idea of the method is to solve the min-cost flow problem on successively
closer approximations of the original capacities. Let U be the largest edge
capacity and let J = {log, U| + 1. J is the number of bits used to represent U in
binary. The method consists of J iterations. The purpose of iteration k is to
compute the min-cost flow where the approximate edge capacity of any edge is
the number created by the leftmost k bits of its original capacity. So for
example, at the end of the first iteration any original edge capacity equal to or
greater than 27 will be approximated by 1, and all other approximate edge
capacities will be zero.

At the end of iteration k, the circulation will be a min-cost circulation for
capacities given by the leftmost & bits of the true capacities. At the start of
iteration k + | the current flow assignment and edge capacity of every edge is
doubled. Note that the circulation is still min-cost for these new capacities. At
this point the edge capacity of any edge is at most one less than the number
given by the leftmost k& + 1 bits of its true capacity. An edge will be called
deficient if its capacity is less than its k + 1 bit capacity. One by one we will
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increasc the edge capacity of each deficient edge by one unit, and update the
circulation to be a min-cost circulation. Iteration k + 1 ends when there are no
remaining deficient edges.

What remains is to explain how to efficiently update the min-cost circulation.
Suppose the capacity of edge e = (i, j) is increased by one. If edge (i, j) is
already in the residual graph or is new but no negative cycles get created, then
the current circulation is optimal. If edge (i, j) is new and its addition to the
residual graph creates a negative cycle, then we find the most negative cycle C
and augment around it by exactly one unit, the residual capacity of edge (i, j).
We will show that the resulting circulation is min-cost for the current
capacities. Note first that C must contain (i, j) and therefore C is obtained
from the shortest path from j to i [excluding edge (j, /)] in the current residual
graph. To find that path we delete edges (i, j) and (j, ) from the residual
graph; the resulting graph has no negative cycles (although it has negative
cdges). so dynamic programming methods such as Floyd’s method can find the
most negative path P from j to i in O(n’) time.

Lemma 14.1. After augmenting around the most negative cycle C by one unit,
the resulting residual graph contains no negative cycles.

Proof. Before increasing the capacity of (i, j) the circulation is min-cost, so
any negative cycle created (when the capacity of (i, j) is increased) must
contain edge (i. j). Suppose that the augmentation around C creates another
negative cycle €' in the resulting residual graph. C’ must contain at least one
edge which was not in the residual graph before C was augmented. Let X be
the set of such new edges in C’ and note that each of these must be in C but in
the opposite direction then they are in C'.

Suppose edge ( p, q) is the first edge on the j to i path P such that its reverse
[edge (g. p)] is in X. Then consider the j to i path P’ formed by taking P until
p followed by path C' until ¢ and then P until J. Now both C and C’ have
negative total weight, and edge ( p, g) has a weight which is the negative of the
weight of (g, p), so the cycle P’ plus edge (i, j) is more negative than C. Note
that the cycle P’ plus edge (i, j) has fewer edges in X than does C’. Iterating
this argument until there are no edges from X on the cycle, we obtain a cycle
that only contains edges of the residual graph before C was augmented, and
which is more negative than C —a contradiction. [

There are m edges, so every iteration takes O(mn’) operations, and since
there are only log U iterations, the method uses O(mn’ log U) operations, and
with a closer analysis the bound can be reduced to o(n’ log U). A polynomial
but not strongly polynomial time bound.

14.3. Edge cost scaling

The idea of the method is to solve the min-cost flow problem on successively
closer approximations of the original costs. Let Cmax be the largest edge cost
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and let J = [log, Cmax/|. J is the number of bits used to represent Cmax in
binary. The method consists of J iterations. The purpose of iteration k is to
compute the min-cost flow where the approximate edge cost of any edge is the
number formed from the leftmost k bits of its original cost. So for example, at
the end of the first iteration any original edge cost equal to or greater than 2’
will be approximated by 1, and all other approximate edge costs will be zero.
In iteration k + 1 the approximate edge costs are updated by doubling the
approximate edge costs of iteration k£ and adding one to the cost of any edge
whose original cost has a one in bit £+ 1. Then the min-cost flow from
iteration k is used as a starting point to efficiently find a min-cost flow for the
k + 1 bit costs. It is not obvious and we will not go into details, but the
(k + 1)st min-cost flow can be found from the previous one using at most »
network flow calculations (these do not involve costs) each on a graph that is
ctficiently derived from the original graph and the most recent flow. So every
iteration takes O(n') operations, and since there are only log(Cmax) itera-
tions, the method uses O(n*log Cmax) operations. Another polynomial but
not strongly polynomial bound.

15. Weighted node cover: Approximation algorithms based on network flow

In this section we consider a common approach that is taken to problems
which are known to be NP-hard. We will illustrate the approach with the node
cover problem, and a polynomial-time approximation algorithm for it based on
network flow.

[5.1. The node cover problem

Let G be an undirected graph with each node i given weight w(i) > 0. A set
of nodes § is a node cover of G if every edge of G is incident to at least one
node of S. The weight of a node cover S is the summation of the weights,
denoted w(S), of the nodes in S; the weighted node cover problem is to select
a node cover with minimum weight.

The node cover problem (even when all weights are one) is known to be
NP-hard, and hence we do not expect to find a polynomial-time (in terms of
worst-case) algorithm that is always correct. Therefore, we relax somewhat the
insistence that the method be both correct and efficient for all problem
instances. There are many types of relaxations that have been developed for
NP-hard problems. The most common is the constant-factor, polynomial-time
approximation algorithm.

For a graph G with node weights, let $*(G) denote the minimum weight
node cover. Let A be a polynomial time algorithm that always finds a node
cover, but one that is not necessarily minimum; let S(G) denote the node cover
of &G that A finds. Then A is called a constant-error polynomial-time approxi-
mation algorithm (or approximation algorithm for short) if for any graph G,
S(G)Y/S*(G) = ¢ for some fixed constant c.
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For the node cover problem we will give an approximation algorithm, based
on network flow, with ¢ = 2. First, we observe that the node cover problem has
a nice solution when the graph G is bipartite.

For a bipartite graph G = (N, N, E), connect all nodes in N to a new node
s, and connect all nodes in N’ to a new node 1. For every node [ € N, set the
capacity of edge (s, i) to w(i), and for i € N', set the capacity of edge (i, t) to
w(i). Set the capacity of all original edges in E to be infinity. Call the new
graph G.

Theorem 15.1. A minimum s, t cut in G defines a minimum node cover of G.

Proof. Let C be a minimum s, ¢ cut in G. To get a node cover S*(G) of G we
use the rule that if i € N and edge (s, i) is cut by Corifi€ N’ and edge (i, t) is
cut by C, then i is in $*(G). Set $*(G) is clearly a node cover of G, for if there
is an edge (u, v) with neither u or v in $*(G), then the path s, u, v, ¢ is not cut
by Cin G. To see that $*(G) is a minimum node cover, note that any node
cover §’ of G defines an s, t cut C' of G of equal cost: if i€ NN S’, then
(s,1)EC", andifieE N'N S’, then (i, 1) € C'. Since Cis a minimum s, ¢ cut, its
cost is less than or equal to the cost of any minimum node cover of G, so the
node cover $*(G) is a minimum node cover of . [

15.2. The approximation algorithm for general graphs

Given G, create bipartite graph B = (N, N, E) as follows: for each node i in
G, create two nodes i and i, placing i on the N side, and i’ on the N’ side of B;
give both of these nodes the weight w(i) of the original node i in G. If (i, j) is
an edge in G, create an edge in B from i to j’ and one from Jto i’ Now find a
minium cost node cover S*(B) of graph B. From S$*(B), create a node cover
S(G) in G as follows: for any node i in G, if either i or i’ is in S$*(B), then put i
in S(G).

It is casy to find examples where S(G) is not a minimum node cover of G,
and where $(G)/S*(G)=2 for any G and any choice of node weights.
However, no worse error ever happens.

Theorem 15.2. S(G)/S*(G)<2 for any G and any choice of node weights for
G.

Proof. If node i is in $*(G), then put both nodes i and i’ of B into a set Q. Itis
easy to see that Q is a node cover of B, and that its costs is twice that of
S*(G). Hence the minimum node cover of B has cost at most twice that of
S*(G). Now let S*(B) denote the minimum node cover of B, and for every
node i in G, if i or i’ of B is in S*(B), then put node i of G in a set S. It is easy
to verify that S is a node cover of G, and its cost is at most the cost of S$*(B).
Hence § has cost at most 25*(G). O
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Now the time for this approximation algorithm is O(n"), the time to find the
minimum cut in B. In addition to the above method, there are approximation
methods for the node cover problem which also achieve a factor-two approxi-
mation and which are not based on network flow. Some of these run in O(n)
time [Bar-Yehuda & Even, 1981; Gusfield & Pitt, 1986].

15.3. A small (worst-case) improvement in the approximation

We now examine a modification of the heuristic that improves slightly the
worst-case approximation bound, but might be much more effective in prac-
tice. First observe that we do not need to double the occurrence of each edge
of . That is, for each edge (i, j) of G, put into B either the edge (i, j') or the
cdge (/,i"), but not both. It should be clear that with this sparser graph B, a
node cover of B still defines a node cover S(G) of G such that S(G)/
S*(G)=2. This seems intuitively better than the original construction because
the number of edges has been reduced by half, so intuitively the node cover of
B should be smaller. However, every node of G still ‘appears’ twice in B. This
doubling can be reduced with the following rule.

First, pick any edge (i, j) in G and place i (but not i) in B. Then for every
neighbor & of i in G (including j), place k' (but not k) in B, and put the edge
(i, k') into B. Similarly, for every neighbor k (including i) of j in G, put k (but
not k') in B, and put the edge (k, j') into B. Then neither i’ nor j appears in
B. and each neighbor of i/ or j in G appears only once in B. After putting in
these nodes and edges, add all nodes which are not neighbors of i or j, and for
each edge (u, v) of G which does not yet appear in B, place either edge (u, v')
or (u', v) into B.

Theorem 15.3. Letting S(G) be the node cover of G defined by the node cover
S*(B), and assuming all nodes have positive weight, S(G) <2S*(G).

Proof. First, any node cover of B defines a node cover of G of no greater cost,
since every edge in G is in B and its end points correspond to its correct
endpoints in G. Hence the cost of S(G) is no more than S*(B). Now suppose
that edge (i, j) in G is the one picked by the modified method, so that neither
" nor j are in B. Consider any optimal node cover $*(G) of G. It certainly
must include either i or j, since (i, j) is in G. Now create a node cover S’ of B
from $*(G) by taking into S’ any node k if & is in B and $*(G), and any node
k' it k" is in B and S*(G). Hence some nodes in S*(G) may be taken twice
into §’, but neither of i or j can be taken twice. Since one of i or j must be in
S*(G), at least one of its nodes is taken only once into S, and hence S’ cannot
be as much as double the cost of $*(G). Therefore S(G)<S*(B)<S§'<
25%(G). In fact, S(G)=28*(G) — min[w(i), w(j)]. O

The best edge to pick (to get the best guaranteed approximation result) is
the edge (i, j) in G where min[w(i), w( )] is maximized. The heuristic can be
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improved by iterating, as long as every edge of G ends up in B at least once. It
1s an interesting open question how nodes and edges should be picked in order
to optimize the effectiveness of this heuristic.

16. Summary and thesis

In this chapter we have discussed a large range of current and historical
issues in algorithm design and analysis by focusing on network flow and related
problems. In this way we have looked at many computational models, al-
gorithm design and analysis techniques, and general design paradigms. Perhaps
more important, we have seen many different types of questions that have
been addressed by research in algorithm design and analysis. The field is not
Just concerned with worst- (or even average-) case running times on algorithms
that are always correct, deterministic, run on sequential machines, and assume
that all data appear at the start of the algorithm and disappear at its end. It is
difficult to set out a taxonomy of all the types of questions, results, computa-
tional models and techniques that were discussed, but it is instructive to try,
and also to try to set out some conclusions.

16.1. Models

We summarize the broad computational models that were discussed in this
chapter. We first used the most familiar model, the random access machine
(RAM) model, when we examined the Ford-Fulkerson algorithm, the
Edmonds-Karp algorithm, the Dinits and wave algorithm and the Goldberg—
Tarjan algorithm in Sections 2, 3, 3.3, 4. Parallel random access machines
(PRAMs) were introduced when discussing parallel implementation of the
Goldberg-Tarjan algorithm in Section 8 and again in Section 12 where we
discussed randomized matching on a parallel machine. In Section 8 we
distinguished between concurrent read concurrent write (CRCW) programs
and exclusive read exclusive write (EREW) programs. We also introduced
there the notion of parallel work. The notion of a distributed computation, in
both the synchronous and asynchronous case, was introduced in Section 9 on
shortest path communication problems. Randomized algorithms and the class
RNC were introduced in Section 12, where randomized methods for finding
maximum cardinality matchings were discussed. In that section we looked both
at Monte Carlo and Las Vegas randomized models. In Section 14 on minimum
cost flow, we introduced strong versus weak polynomial time, addressing the
issue of how input should be represented. Since running times of algorithms
arc expressed as a function of the input size, the question of input size is
central to what running times are established. -
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16.2. Questions

The standard question asked is about the worst-case running time of a
sequential algorithm that must always be correct, and where no two instances
of the problem can be assumed to be related. This was the assumption during
most of the chapter, e.g., in the discussions on maximum flow algorithms on
sequential machines. However, in Sections 5, 10 and 11 we discussed parame-
terized algorithms, many-for-one results, and a method based on preprocess-
ing, where a sequence of problems must be solved, and where the times
obtained were significantly better than by solving each instance from scratch.
In Section 12 on randomized algorithms we dropped the insistence that the
algorithm and its analysis be deterministic, and that it always be right. Further,
we distinguished between Monte Carlo randomization where the algorithm
must be fast but it can be wrong in certain ways with certain probabilities, and
Las Vegas randomization where the algorithm must always be right, but it must
only be fast in expectation. In Section 15 we considered approximation
algorithms, where the method must be fast in worst-case, but can make errors
as long as the maximum deviation from the optimal is bounded by a constant
ratio. We distinguished between strong and weak polynomial time and al-
gorithms, where the central issue is whether the algorithm runs in polynomial
time as a function of the number of objects in the input, or just in the total size
of the input.

16.3. Design and analysis paradigms and techniques

It 1s sometimes difficult to separate design techniques from analysis tech-
niques since the analysis often guides the design, and the design often suggests
the analysis. Still we can identify some broad paradigms and specific tech-
niques.

The most classic design paradigm is to break a problem into smaller pieces or
units that one can better understand and effectively solve than the whole
original problem. These units must have the property that a solution to the
original problem can be obtained either by iterating through a series of
solutions to these small problems, or by taking the solutions to a set of smaller
problems and using these solutions to construct a solution to the original
problem. The former case is illustrated many times in this chapter. The latter
case is usually called ‘divide and conquer’, and almost none of the algorithms
in this chapter fall into that description. We will return to this point below.

The paradigm of solving a problem by solving a series of smaller more
manageable units was first seen in the Ford-Fulkerson algorithm which
iteratively solves the smaller problem: can a given flow be augmented, and if
s0. how? The problem of computing a flow was understood by Ford—Fulkerson
in terms of the repetitive solving of that more limited augmentation problem.
The Edmonds—Karp algorithm maintains that essential structure. Dinits expan-
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ded the basic unit to a phase, in which a maximal flow is computed on a
layered graph, but still the algorithm and analysis is understood as the solving
of a sequence of phases. Many other examples of this paradigm are contained
in the chapter. Breaking down a problem and analysis into manageable pieces
is clearly the most important paradigm in tackling a hard problem, but it might
only be a starting point. More will be said on this later.

Another broad design paradigm illustrated in this chapter was that of
exploiting special structure of properties of the problem to obtain faster
algorithms. This was certainly important in the discussion on parametric flow,
bipartite matching, computing sets of minimum cuts with ancestor trees,
optimal greedy matching with box inequalities, and edge connectivity.

More technically and narrowly we saw many identifiable design and analysis
techniques. We saw breadth-first search in the FF algorithm; the use of
max-min duality to direct an algorithm and prove its correctness; algorithm
termination proofs by appeal to finite progress; the idea of amortized analysis
in many examples; greedy algorithms for matching; more general than greedy
algorithms, we saw hill climbing or local improvement methods such as in the
FF algorithm or scaling methods for minimum cost flow, where the methods
move from one flow to the next in a greedy manner; algorithms that use
preprocessing; self-reduction in the randomized matching method; and recur-
sive programming which led to dynamic programming.

16.4. A thesis: Combine and prosper versus divide and conquer

In contrast to the idea of breaking problems and analyses down into small
casily solved concatenable units, is the technique of grouping or combining
units together and solving them more efficiently as a whole. This design
technique is often accompanied and encouraged by the very important analysis
technique of amortization.

Dinits saw that the work done during a series of certain augmentations in the
FF method could be grouped together into a larger unit, a phase, and
computed more efficiently as maximal flow in a layered graph. Hence the basic
unit of the FF algorithm (a single augmentation) was expanded and optimized.
By considering a larger unit, the time for a set of augmentation operations was
amortized over all the operations, and hence improved. The wave algorithm
then sped up the work per phase keeping the phase as the basic unit. The
Goldberg—Tarjan algorithm took the next step, breaking down phases entirely
and amortizing the work over the entire flow computation. This allowed
further amortization over a sequence of flows in the parametric setting, with
the resulting faster time bounds compared to solving each problem from
scratch. There the basic unit of a single flow was broken down and all the flows
analyzed together. Along similar lines, the efficiency of the connectivity
algorithm presented in Section 6 was established by amortizing over all the
n — 1 specific flow computations. Taking the worst-case of single flow, and then
multiplying by the number of flows would have given much inferior time
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bounds for both the parametric and connectivity problems. Computation of the
ancestor tree in Section 10 illustrates the same point. The output of that
computatton could be gotten by independent flow computations. But instead of
breaking down the problem into its (%) natural pieces, Cheng and Hu
addressed how to compute the entire constellation of flows, with the resulting
speed up.

We see this same moral in dynamic programming compared to recursive
programming or divide and conquer. Recursive programming and divide and
conqucr are fop—down techniques. In the divide and conquer paradigm one
can design an algorithm by just describing how to efficiently divide the problem
into smaller pieces and how to efficiently combine the solutions to these
smaller pieces to obtain the solution to the original problem. Following this
paradigm, the algorithm designer is allowed to assume that the solutions to the
smaller pieces will be obtained ‘by recursion’. Dynamic programming can be
understood as recursive programming with an implementation trick that works
in highly structured settings. The trick is that of tabulating and reusing
subresults, or evaluating the recursion tree bottom up. The trick is needed,
because the top—down dividing method is often not efficient. But in com-
parison to the divide and conquer paradigm, the dynamic programming trick
requires analyzing, understanding and exploiting the interrelationships between
the recursively called subproblems. It requires an examination of the entire
sequence of computations and recursive calls that a top—down algorithm would
invoke, and reorganizing those computations to avoid redundant work.

The idea of breaking down a problem and analysis into easily solved units is
an important one, and it may be the most effective way to make early progress.
But the examples in this chapter, and the history generally of flow and flow
related algorithms suggest that as a problem is better understood, further
improvements are made by fuzzing or enlarging the boundaries of the basic
unit, or combining units into larger ones, or considering the computation over
the whole set of units. In other words, combine and prosper.
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