number of
5 this one is
egment pair
).9 is twenty

ptimal sub-
ce (SWISS-
balignment,
(24.7 bits).
* However,
;onjunction
an F value
is trimmed
in Fig. 4b;
or of seven.
costs used,
1€ nominal

by allowing
glutathione
’04907)%7 is
:as the one
(26.7 bits).
f gaps, the

ple are not
1 are used
ny ways to
mparison*’

Schuler for

METHODS IN ENZYMOLOGY, VOL. 266

[28] PARAMETRIC SEQUENCE ALIGNMENT 481

[28] Parametric and Inverse-Parametric Sequence
Alignment with XPARAL

By D. GuSFIELD and P. STELLING -

Introduction

When aligning DNA or amino acid sequences using numerical-based
optimization, there is often considerable disagreement about how to weight
matches, mismatches, insertions and deletions (indels), and gaps. Most
alignment methods require the user to specify fixed values for those parame-
ters, and it is widely observed that the quality of the resulting alignment
can be greatly affected by the choice of parameter settings.

Parametric alignment attempts to avoid the problem of choosing fixed
parameter settings by computing the optimal alignment as a function of
variable parameters for weights and penalties. The goal is to partition the
parameter space into regions (which are necessarily convex) such that in
each region one alignment is optimal throughout and such that each region
is maximal for this property. Thus parametric alignment allows one to see
explicitly, and completely, the effect of parameter choices on the optimal
alignment. Parametric sequence alignment was first used in a paper by
Fitch and Smith! and was studied more extensively in papers by Gusfield
et al,** Waterman er al,* and Vingron and Waterman.’ The last four papers
concern the number, shape, pattern, and interpretation of the regions. The
basic algorithmic ideas for computing two-dimensional parametric decom-
positions were first developed in contexts other than sequence alignment.®

In this chapter we first describe a publicly available, user-friendly inter-
active software package, XPARAL, that solves the parametric alignment
problem; we emphasize newer features in XPARAL. We next illustrate
the use of XPARAL by reexamining a study done by Barton and Sternberg’
on gap weights used in aligning protein secondary structure. Finally, we
discuss the empirical and theoretical efficiency of XPARAL. We use stan-

'W. Fitch and T. Smith, Proc. Natl. Acad. Sci. U S.A. 80, 1382 (1983).

>D. Gusfield, K. Balasubramonian, and D. Naor, “Proceedings of the Third Annual Sympo-
sium on Discrete Algorithms,” p- 432. Orlando, FL. 1992.

3D. Gusfield, K. Balasubramonian, and D. Naor, Algorithmica 12, 312 (1994).

‘M. Waterman, M. Eggert, and E. Lander, Proc. Natl. Acad. Sci. U.S.A. 89, 6090 (1992).
M. Vingron and M. Waterman, J. Mol. Biol. 235, 1 (1994).
¢D. Gusfield, J. ACM 30, 551 (1983).

7 G. Barton and M. Sternberg, Protein Eng. 1, 89 (1987).

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

482 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES (28]

dard terminology for sequence alignment, but note that the term gap refers
to a maximal contiguous run of spaces (possibly only a single space).

Parametric Alignment and XPARAL Features

The XPARAL package allows the user to specify alignmerrt objective
functions with or without character-specific scoring matrices (such as PAM
matrices). The treatment (mathematical and algorithmic) of these two cases
is somewhat different and is discussed separately.

Any alignment ./ of two strings contains a specific number of matches,
mismatches, indels, and gaps. We denote these numbers by mt.,, ms.,, id,,
and gp.,, respectively. Without the use of character-specific scoring matrices,
the value of alignment o7 is therefore v, B, y, 8) = amt, — Bms, —
vid., — 8gp.., where o, 3, v, and & are variables that adjust the relative
importance of matches, mismatches, indels, and gaps. Note that the value
of the alignment is a linear function of the four parameters. When these four
parameters have fixed values ay, Bo, Yo, and &, then the fixed-parameter
problem is to find an alignment .5/ maximizing the objective function:
oMty — Bomsy — Yoid, — &8P

The XPARAL package allows the user to select two of the parameters

a, B, v, and & to be variable, and to choose constant settings for the other
two parameters. For illustration, suppose 'y and & are chosen to be variable,
while o and B are fixed at one. This is a choice that is typical for aligning
amino acid sequences. As a function of two variable parameters, the value
of alignment .7 specifies a plane in three-dimensional space. Thus,>* for
any pair of input sequences, the 7y, § parameter space decomposes into
convex polygons such that any alignment which is optimal for some «, vy
point in the interior of a polygon 2 is optimal for all points in > and
nowhere else. XPARAL computes and displays this polygonal decomposi-
tion. The user can then select any particular polygon 2 to see an alignment
that is optimal for all points in 7, and to display the number of matches,
mismatches, indels, and gaps in that alignment. There may be alternative
alignments that are optimal throughout 2 (and nowhere else), but all
those cooptimal alignments have exactly the same number of matches,
mismatches, indels, and gaps. XPARAL can count the number of cooptimal
alignments in polygon 2 and display each one in turn.

Figure 1 shows the XPARAL display of one such polygonal decomposi-
tion of the vy, 8 space. The grid points are superimposed and will be explained
later. The topmost windows display menu buttons. The two horizontal
windows below the menu buttons display the input sequences (which must
be scrolled to see the complete sequences); the main window shows the

polygonal decomposition and contains one dark polygon; the horizontal

'siy3rom ded snsioa sjopur 10 Ae[dsIp Ty VIX ‘1ol

000000006
00000000 °2¢6
00000000 " 16

00000000 "G
000000000

00000000 " L~
00000000 "9T~-
00000000 "655
00000000 80%

L

9T
ZL
0¢

190ULISIITQ
onTep ubryy andur
tonyes Tewgadp

X
X aurog ay
:deg
*12q/ur
YO eMS TR
1yo3el
isenyep
:sden
isYeq/ur
ISeYQQEeMSTH
1 SeYOqBl
1s3uno)

UoFjewIoyur JuswubyTy andur

BOIY UT JON

19p/u1 ® jo ySon
- -

N\

b
XU~ o o4 O Oma

) g

000000°0F ©3 000000°0 A 000000°0T O3 000000°0 $X {uo}63y

[8 snTd 052 Wva s,33o4&%a |[00 " T=co 00" T=T3|[

(6)A-(9T)%-(gL)zo+{6T) IO :amp

rap refers

objective

tas PAM
matches,
ns.,, id.,.
matrices,

LwO cases

Bms , —

i

ess WM—”?IQM.HN-&

uyqFT--TT3

wuﬂwﬂucmmmmxm>wukw==£mwm

mv=>ﬂiu>unuﬂauvuvmuwnhwbhmﬂzoMmum&mvk>zu>>v=m|«»uUu>#OUHmHuvmmu>Hmem
NUU&HUUhRM>:=mﬂmﬂ=mmmUUUwﬂu>Hmeumm>mmm

batbaz
bayasz

s relative

hese four
arameter

burpeyg

suobATog 2189

function:
rameters

variable,
aligning
he value

sabuwy S3UR3SUCDH

24 for
yses mnto

18,
:omposi-
lignment

‘ernative

buyaoong sjuemubI Ty

»optimal
omposi-
xplained
iows the

yrizontal

484 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES [28]

window below the input windows shows an alignment that is optimal for
all the vy, & points in the dark polygon. The smaller horizontal windows
below the alignment window give information on the settings the user has
selected as well as on the number of matches, mismatches, spaces, and gaps
in the displayed alignment. Those numbers remain the same thf'oughout
the entire polygon, but the value of the alignment changes throughout the
polygon. When the user selects a particular point, the value of the optimal
alignment at that point is displayed to the right of the main window.

Use of Scoring Matrices

The XPARAL package allows the user to define and use any character-
specific scoring matrix, such as a PAM matrix, to assign a weight to each
possible pair of characters (either a match or a mismatch). With the use
of scoring matrices we let smt., denote the total weight given to the matches
in alignment ./ and let sms,, denote the total weight given to the mis-
matches in .7, Then the value of .7 is v (e, B, v, 6) = asmt, + Bsmsy, —
vid., — 8gp.,. The term Bsms., is added, rather than subtracted, because the
scoring matrices already incorporate the appropriate sign of the mismatch
penalty. When selecting two parameters to be variable, the value of align-
ment .o/ is again a function of those two variable parameters and defines
a plane in three-space.

Choice of Alignment Model and Input Mode

Using XPARAL, the user can specify whether the alignment should be
global (Needleman-Wunsch), global with end gaps free, local (Smith-
Waterman), or internal, where end spaces in the longer string are penalized
but end spaces in the shorter string are ignored. Sequences are input to
XPARAL either from files or at the input window. XPARAL also allows the
input sequences to be taken from a file that holds a previously determined
reference alignment .7, Then, when the user selects a point p in the decom-
position, XPARAL displays the value of the input alignment at p, the value
of the optimal alignment at p, and the difference between the two values.
In this mode, XPARAL can also solve the inverse-parametric problem:
For what points in the vy, & space does the optimal alignment (computed
by dynamic programming) have a value which is closest to the value of the
reference alignment .o7? That is, if we let v(e, B, v, 8) denote the value of
the optimal alignment at point (a, 8, v, 6), then we seek the vy, & points
where v(ag, Bo, v, 6) — v..{(ao, Bos Vs 8) is minimum. These points are
called inverse-optimal.

[28]

vert
com
whe
plar
1S S¢
dect

sett)
func
min
the
the
whe
to t
the
and
Inve
the
if a
the:
cal
ter

and
htty
froi

Usi

Bai
seq
stuc
Sug
aga
alos
reg
resi

SCO

S [28]

it is optimal for
zontal windows
1gs the user has
spaces, and gaps
ime throughout
throughout the
: of the optimal
in window.

: any character-
weight to each
). With the use
1 to the matches
‘en to the mis-
., + Bsms., —
ed, because the
f the mismatch
value of align-
ers and defines

ment should be

local (Smith-
g are penalized
es are input to
.also allows the
sly determined
7 in the decom-
L at p, the value
the two values.
ietric problem:
ent (computed
he value of the
te the value of
the vy, & points
ese points are

[28]} PARAMETRIC SEQUENCE ALIGNMENT 485

By convexity, the inverse-optimal point(s) must occur either at a single
vertex, at a single edge (line segment between two vertices), or at a single
complete polygon of the polygonal decomposition. The latter case happens
when the plane representing the value of .o/ is parallel (or identical) to a
plane in the decomposition. For efficiency, the inverse parametric problem
is solved using gradient-descent rather than by first finding the complete
decomposition.

Inverse-parametric computation is useful for trying to deduce parameter
settings where the optimal alignment (with respect to a chosen objective
function) might likely reconstruct correct alignments that have been deter-
mined by other methods. Of course, a parameter setting that minimizes
the numerical difference between the value of the optimal alignment and
the value of the reference alignment is not necessarily a parameter setting
where the optimal alignment is most similar in form (an undefined concept)
to the reference alignment. In experiments we have done, however (see
the next section), we see a good correlation between this numerical distance
and the ability to recapture significant features of the reference alignment.
Inverse-parametric computations also allow an efficient, but rough, test of
the validity of both the alignment model and the reference alignment. For
if a numerical-based alignment model is valid in some biological setting,
then a known alignment that is correct in that setting should have a numeri-
cal value that is close to optimal, at least for some points in the parame-
ter space.

XPARAL is written in C++ and compiled for the DECstation 5000
and the DEC . Compiled versions can be obtained at the following web site:

http://wwwcsif.cs.ucdavis.edu/ ~gusfield/strpgms. Source code is available
from the authors on request. At R

Using XPARAL to Study Gap Models for Secondary Structure

We illustrate one use of XPARAL by reexamining a study done by
Barton and Sternberg’ on the effectiveness of global and end-gap free
sequence alignment to correctly align protein secondary structures. Their
study examined sequences whose three-dimensional structure was known.
Superimposing the structures for two proteins gives a reference alignment
against which they evaluated alignments computed from sequence data
alone. They scored a sequence alignment .o/ by identifying the residues in
regions of known secondary structure and counting the number of those
residue pairs which align the same in .7 as in the reference alignment.

The sequence alignment objective function they used was the following;
Maximize smt., + sms., — vid., — dgp., over all alignments .o7, where the
scoring matrix was integer-rounded PAM250 with a constant of 8 added

486 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES (28]

to every entry.® They considered every integer combination of y and & from
0 to 10 and found alignments with optimal values (using both global and
end-gap free models) at each of those 121 integer y, § combinations. Each
optimal was then scored, as above, to evaluate it against the reference
alignment. They considered five such pairs of sequences, but full details were
published for only one pair (immunoglobulins FABVL versus FABVH). In
that case, the best of the 121 optimal sequence alignments they found
received a score of 32 of a possible maximum of 41. Optimal global and
end-gap free alignments at the 121 integer points were next computed using
a new alignment model that penalizes gaps and indels in the known regions
of secondary structure more heavily than gaps and indels outside those
regions. With this differential gap model, they found several integer points
where the optimal alignments had scores of 36.

One of their main conclusions’ is that standard alignment models are
not adequate for aligning secondary structure, but the differential gap model
described above is effective. A similar conclusion was reached by Lesk er
al.® The final recommendation, to use secondary structure information when
available, is not in dispute, but such information is not always available.
Moreover, since secondary structure is often predicted from sequence alone,
one would like an independent alignment method to test those predictions,
rather than simply incorporate them. So the effectiveness of standard align-
ment models remains of interest.

Vingron and Waterman® have also examined the immunoglobulins
FABVL and FABVH using their parametric alignment program. In contrast
to the previous study, they found polygons in the y, § space where the
resulting alignment agreed with the main features of the known structural
alignment. This gives a different picture of the effectiveness of standard
alignment models to align secondary structure. However, Vingron and
Waterman® used corrected sequences compared to those used by Barton
and Sternberg,” modified PAM250 differently, used local alignment, and
did not use a numerical score to evaluate alignment quality. So those
differences alone might account for the differing results. Alternatively, the
different results might be due to chance, since only one optimal alignment
was computed at each sample point, even if several cooptimal alignments
exist, or it may be that complete parametric decomposition yields a wider,
more informative range of alignments than is obtained from the (grid)
sampling approach.’ :

8 For clarity, the score of an alignment .7 is the number given by the Barton and Sternberg
evaluation criteria, while the value of .<¥ is the number given by the dynamic programming
objective function. The term optimal refers to the value.

 A. Lesk, M. Levitt, and C. Chotia, Protein Eng. 1,77 (1986).

h A~ A e (e e T e S o 7 B T (R [T U o T o I VR 5 T o B o il |

. e et N

[28]

fy and & from
rth global and
inations. Each
the reference
ill details were
sFABVH). In
ts they found
1al global and
ymputed using
{nown regions
outside those
integer points

nt models are
tial gap model
ed by Lesk er
rmation when
‘ays available.
quence alone,
se predictions,
tandard align-

aunoglobulins
im. In contrast
ice where the
ywn structural
is of standard
Vingron and
.ed by Barton
lignment, and
lity. So those
:rnatively, the
nal alignment
1al alignments
rields a wider,
»m the (grid)

on and Sternberg
nic programming

[28] PARAMETRIC SEQUENCE ALIGNMENT 487

We used XPARAL to examine why the two studies obtained differing
results. We first kept the exact alignment conditions of Barton and Stern-
berg’ (using their exact sequences, using integer-rounded PAM?250 plus 8,
and computing global and end-gap free alignments), but we used XPARAL
to completely decompose the vy, § parameter space. We considered three
questions. First, with these conditions, are there polygons where an optjmal
alignment has a larger score than 32? Second, if there are such alignments,
were they missed’ because of a limited choice of test points, or because
the polygons are small, or because only a single optimal alignment was
computed at each test point? Third, how well does the inverse-parametric

feature of XPARAL find parameter settings where high-scoring alignments
are obtained?

Results from Empirical Study

The polygonal decomposition obtained is shown in Fig. 1, with the 121
integer points superimposed. The striking feature is that although there
are only seventeen polygons in the decomposition, the 121 integer points
miss the interior of all but four of the seventeen polygons. Moreover,
several of the polygons have multiple (up to 12) sample points on their
boundaries but none in their interiors, so polygon size is not the reason
that interior points were missed. Conversely, more than 40% of the test
points fall into the three largest polygons, and so give redundant infor-
mation.

Sampling at interior points gives robust alignments since any alignment
that is optimal at an interior point is optimal throughout the polygon,
whereas an alignment that is optimal on an edge or vertex may only be
optimal on that edge or vertex. In particular, with only seventeen align-
ments, no mater what vy, & point p is selected (in Fig. 1), one of those
seventeen alignments will be optimal at p. The larger set of 121 alignments
computed at integer sample points need not have that property. Interior
points are further desirable because the number of cooptimal alignments
in the interior of a polygon is always less than the number on any of its
boundaries, except at borders of the parameter space. So although the
integer points provide a dense, regular, sampling of the parameter space,
they may only provide a biased representation of the alignment space and
miss important alignments. We believe this happened. _

Without using differential gap penalties, XPARAL found a polygon
containing optimal alignments with score as high as the best alignments
found when Barton and Sternberg’ used their differential gap penalties.
The interior of the polygon labeled A contains 24 cooptimal alignments,
18 with a score of 36 and 6 with a score of 32. The alignment XPARAL

488 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES (28]

displayed for polygon A had a score of 36. The differences among the 18
high-scoring alignments are outside of the regions of secondary structure,
as are the differences among the 6 lower scoring alignments. So with respect
to secondary structure, there are effectively two different optimal align-
ments in polygon A. Three integer points fall on the boundary of A, but
none falls in the interior. The polygon bordering A from below has six
cooptimal alignments, all with score 32. So the three alignments computed’
at the grid points on the boundary of A missed the high scoring alignments,
essentially by chance. However, the chance that a deterministically com-
puted alignment is one of the high-scoring alignments is improved by sam-
pling in the interior of A. For example, when an alignment is computed
on the boundary of A and the polygon below it, the algorithm chooses a
single alignment (and always the same one no matter how many points on
the boundary are sampled) from among 18 with a high score and 12 with
a low score. Inside A, the algorithm choses from among 18 with a high
score and 6 with a low score. The way, then, to optimize the chances
that a deterministic algorithm will find a high-scoring alignment, without
enumerating cooptimals, is to compute one alignment in the interior of
each polygon and one on each boundary and vertex.

We have no theorem that integer points miss polygon interiors with high
probability, but it is not surprising that they do (especially near parameter
settings where biologically reasonable alignments occur), since one should
expect those boundaries to preferentially contain integer points. To see
this, consider the equations for the values of two neighboring alignments
oty and 75, and let id; and gs; denote the number of indels and gaps in
alignment .%/;. Each equation describes a plane, and every polygon boundary
lies on the intersection of two such planes. A boundary therefore lies on
a line

5 _ C + y ld1 - ld2

852 — 851 852 — 851
where C is the total of the match and mismatch weights for 27, minus the
total of the match and mismatch weights for .o;. With an integer PAM
matrix, C is an integer, and so the intercept of the line will be an integer
if Cis a multiple of gs, — gs;. That is likely because gs, — gs1 is an integer
and tends to be small, often one. The reason is that the number of gaps
tends to be small for real protein data, and the number of gaps must
monotonically fall along any vertical line of increasing &, whenever the line
crosses a boundary. For example, in Fig. 1, on the vertical line starting at
(0.25, 0) and ending at (0.25, 10), the alignments encountered have 14, 11,
10, 8, 7, 6, 5, and 3 gaps in that order. Those two facts (small gap number

28

an
for
ary
hal
slo’
Int
pre

i\
to

72
for
int
me
by
pc
32
ali
ov
al
Sp
in

Rt

3 8

(28]

among the 18
dary structure,
So with respect
optimal align-
dary of A, but
below has six
'nts computed’
ng alignments,
nistically com-
rroved by sam-
1t is computed
thm chooses a
namny points on
re and 12 with
18 with a high
‘e the chances
iment, without
the interior of

:riors with high
\ear parameter
1ce one should
points. To see
ing alignments
Is and gaps in
ygon boundary
erefore lies on

" .7>» minus the
1 integer PAM
| be an integer
sy 1s an integer
umber of gaps

of gaps must
enever the line
line starting at
=d have 14, 11,
ill gap number

[28] PARAMETRIC SEQUENCE ALIGNMENT 489

an monotonic change) suggest that gs, — gs; will tend to be a small integer
for alignments in neighboring polygons. In fact, 17 of the 27 interior bound-
ary edges in Fig. 1 lie on lines with integer intercepts, and 5 more have
half-integer intercepts. The argument for integer (or small denominator)
slope is similar, and 21 of the 27 boundary edges have integer slopes.
Integer (or half-integer) slopes and/or intercepts imply that the edges will

preferentially contain integer points. v
-

Results from Inverse-Parametric Alignment

We used the same immunoglobulin sequences to test the inverse-para-
metric feature of XPARAL. For reference alignment we used the alignment
of score 36 that was obtained’ with differential gap and indel penalities.
XPARAL found that all the points in the polygon labeled B (Fig. 1) are
inverse-optimal, and hence the plane for the reference alignment is parallel
to the plane for polygon labeled B. The reference alignment has 30 matches,
72 mismatches, 16 indels, and 7 gaps, whereas the three optimal alignments
for polygon B have 29 matches, 73 mismatches, 16 indels, and 7 gaps. It is
interesting how similar the two vectors are. Moreover, the optimal align-
ment value (at every point in B) differs from the reference alignment value
by less than 1%. So the reference alignment is very close to optimal in that
polygon, although each of the three cooptimals in B have a score of only
32. This provides a rough confirmation of the validity of the standard
alignment model (applied to FABVL and FABVH sequences). There are
over 2°® alignments of these two sequences, and yet there are only 120
alignments that are (co-)optimal anywhere in the entire 7y, § parameter
space, and only 110 (co-)optimal alignments inside the 17 polygons found
in the bounded 10 by 10 region.

Related Results

All of the above results remain essentially the same when global align-
ment is used in place of end-gap free alignment. However, there are align-
ment models in which the results are stronger. For example, when PAM250
is used instead of PAM250 plus 8, polygon A essentially expands to contain
three interior integer points, and XPARAL again returns a displayed align-
ment of score 36. Departing completely from these conditions, using global
alignment, choosing « and ¥y to be variable, and setting 8 = 6 = 0 (as is
sometimes suggested for DNA), but using the PAM250 matrix, then the
decomposition contains 11 polygons, including a large one where the refer-
ence alignment’ is optimal. In other words, the standard alignment model

490 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES [28]

without differential gap weights not only returns an alignment with a score
as good as the reference alignment, it returns the reference alignment ex-
actly.

%

Conclusion from Empirical Study -

To study properties of particular alignment models, parametric align-
ment can more selectively and effectively home in on critical parameter
regions than can a grid sampling of the parameter space. Cooptimal or
near-optimal alignments in those critical regions can then be generated and
studied in more depth. Generating a range of alignments, such as all of the
optimal alignments from each polygon that neighbors the polygon which
contains some initial parameter setting, also provides an alternative to the
recommended practice of generating suboptimal alignments for a single
fixed parameter setting.

Efficiency of XPARAL

We have put a great deal of effort into making XPARAL practical.
The decomposition shown in Fig. 1 took less than 6 sec to compute using
aDEC a, and 14 sec on a slower DECstation 5000/25. As another empirical
measure, XPARAL computed only 160 fixed-parameter alignments to de-
termine that decomposition. With additional programming effort, that num-
ber can be reduced by about one-half. We will now prove that for most
alignment models, the number of fixed-parameter alignments that
XPARAL must compute to find the decomposition is proportional to the
number of polygons in the decomposition. This issue was stated as an open
question by Pevzner and Waterman.'” The result to be established here
was claimed earlier® without a proof.

Basic Algorithm for XPARAL

We need to describe the inner workings of XPARAL at a high level.
Our approach is different in some important ways from the Waterman ez
al* method, and does not use infinitesimals. For illustration, we again
assume that y and & are the variable parameters. The workhorse of
XPARAL is the following problem called the ray-search problem: Given
an alignment .7, a point p where .o/ is optimal, and a ray % in v, & space
starting at p, find the furthest point (call it 7*) from p on ray h where &/
remains optimal. If .o/ remains optimal until & reaches a border of the

10p_Pevzner and M. Waterman, Proc. Israel Symposium on Theory of Computing and Systems,
158. (1995).

ES [28]

nent with a score
ce alignment ex-

>arametric align-
ritical parameter
:e. Cooptimal or
se generated and
such as all of the
e polygon which
\ternative to the
ents for a single

ARAL practical.
0 compute using
mnother empirical
ilignments to de-
effort, that num-
ve that for most
alignments that
dportional to the
stated as an open
established here

~ at a high level.
the Waterman et
ration, we again
1e workhorse of
problem: Given
y hin vy, & space
1 ray h where .</
a border of the

mputing and Systems.

[28] PARAMETRIC SEQUENCE ALIGNMENT 491

parameter space, then r* is that border point on 4. The ray-search problem
is solved as follows:

Set r to the (y, §) point where 4 intersects a border of the parameter space.
While .7 is not an optimal alignment at point r do

begin

Find an optimal alignment .o/ * at point r. -
Set r to be the unique point on h where the value of ./ equals the value
of .o7*.

end;

Set r* to r.

%

This algorithm is Newton’s classic zero finding method specialized to a
piecewise linear function. The following three facts will be needed in the
analysis and are easy to establish: Newton’s method finds r* exactly; unless
</ is optimal at the initial setting of r, the last computed alignment .</* is
cooptimal with .o/ at r* and yet is also optimal on h for some nonzero
distance beyond r*; and, when it computes an alignment at a point r on A,
none of the alignments computed previously (in this execution of Newton’s
algorithm) are optimal at r.

We now explain how to find the edges of polygon 2°(%/), given an
alignment ./ that is optimal at a point p, and known to be optimal for an
(unknown) polygon 2(7). First pick any ray A from p and solve the ray-
search problem along h. There are two degenerate cases that can occur:
one is that r* lies on a border of the parameter space, and the other is that
r* is a vertex of the decomposition. We will consider those degenerate
cases later and assume for now that they do not occur. Therefore, the ray
search along h will find a point r* that lies on an edge e of polygon #°(.</).
By Newton’s second fact, the ray search will also return an alignment
£7/* that is optimal in the interior of the polygon bordering edge e. The
intersection of the two planes for.o# and .27 * describes a line /* that contains
edge e, so the full extent of e can be found by solving two more ray-search
problems using ./ In one problem, ray 4 is the half-line of [* starting at
r* and running in one direction along /*, and in the other problem ray 4
is the remaining half-line of /* in the other direction. These two ray searches
find the opposite endpoints of edge e. Once edge e is fully described, we
select another ray 4 from p that does not intersect edge e, and find a second
edge of 22(.«¢). By linking identical endpoints of edges of 9°(.«) that have
been found, it is easy to continue selecting rays from p that do not intersect
previously discovered edges or vertices of °(«¢). In this way, we find all
the edges of 2(&¥), stopping when the discovered edges of Z°(7) link
together to form a closed cycle.

492 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES (28]

Consider now the two degenerate cases that may occur when trying to
find an edge of #°(.</). In the case that r* is on a border of the parameter
space, then that border line is used in place of /*. In the other case, when
r* is a vertex, the algorithm will realize this because ./ will not be optimal
past r* on at least one of the two rays on /* from r*. When this occurs,
the algorithm simply begins a new ray search from p using" a ray that avoids
r* and all other previously discovered vertices and edges.

To compute a full polygonal decomposition, one first finds an alignment
that is sure to be optimal for some (unknown) polygon. This is easy to do
with a constant number of ray searches, and we omit details. Now we
explain how the algorithm finds successive polygons. When finding the first
polygon # (and for each additional polygon it finds), the algorithm inserts
into a list, L, one distinct vector (smt.,«, Smss, id.«, gp.,+) for each align-
ment .=/* found to be optimal in the interior of a polygon bordering 7.
When 2 is finished, the algorithm finds and marks one of the unmarked
vectors from L, say for /', and then finds the polygon 2(./') where ./’
is optimal. The parameter space will be fully decomposed when all vectors
in L are marked. Since the algorithm never chooses a marked vector, nor
inserts two equal vectors, and since when a polygon is found the algorithm
learns one alignment optimal at the interior or each neighboring polygon,
each polygon in the full decomposition is found exactly once.

Time Analysis and New Idea

The above details lead to the following time analysis. Let R, E, and V
be the number of polygons, edges, and vertices, respectively, in a decomposi-
tion, and let O(nm) be the time to compute a single fixed-parameter align-
ment for sequence of lengths #n and m > n. How many ray searches are
executed to find a polygon 2(.</), given .7 and p? Let d be the number
of edges of #(.«/). Then 3d ray searches are done to find the edges of
2(./), and, in the highly degenerate case that selected rays from p intersect
all the vertices of ~2(%/), then another 3d (wasted) ray searches may be
done as well. Hence at most 6d ray searches suffice to describe 2(.<).
Each edge lies on at most two polygons, so the algorithm does at most 12F
ray searches to find the complete decomposition. Further, from Newton’s
third fact each ray search requires at most R fixed-parameter alignment
computations, so the complete decomposition requires at most 12RE fixed-
parameter alignments which can be done in O(ERnm) time. This unsatisfac-
tory bound will be improved with one additional idea.

The new idea is to modify the Newton algorithm (given .&¢) to pick the
initial point r far enough on 4 to be at or beyond the (unknown) point r*,
yet as close to r* as present information allows. Consider any alignment

1en trying to
e parameter
r case, when
it be optimal

this occurs.
y that avoids

1in alignment
Is easy to do
ils. Now we
ding the first
rithm inserts
r each align-
sordering
e unmarked
") where </’
‘n all vectors
1 vector, nor
ae algorithm
ing polygon,

R.E,and V
tdecomposi-
imeter align-
searches are
the number
the edges of
m p intersect
ches may be
cribe (7).
at most 12 £
ym Newton's
2r alignment
12RE fixed-
is unsatisfac-

) to pick the
vn) point r*.
1y alignment

pako s e

28] PARAMETRIC SEQUENCE ALIGNMENT 493

/' computed before the present execution of Newton’s method. Compute
the intersection of the planes for ./ and ./’ and project that line onto the
v, & plane. If the projection intersects A, then the initial r need not be any
further from p than r', since &/’ has greater value. than &/ beyond r'. If
the projection misses h, then ./ has greater value than .o/’ at every point
on h. Any intersection and projection can be done in constant time. "Re-
peating this for each previously computed alignment ./, we set the initial
r to the point closest on 4 to p among all the computed r’ points.

The modified Newton method clearly reduces the number of needed
alignments, but by how much, and how much added time is needed to
implement it? During the entire algorithm we will keep a list L' that is a
superset of list L. Whenever any alignment is computed, the vector for
that alignment is placed into L', if it is not already there. When we begin
any ray search, we use L’ as explained above to find the initial point r. It
takes constant time to compute each point ', so the added cost of using
L' in a single ray search is proportional to the size of L'. We claim that
size is at most V + E + R, that is, over the entire running of the algorithm
only V + E + R distinct vectors will be computed. This follows because
XPARAL is a deterministic algorithm so that no matter how many times
it might compute an optimal alignment at the same vertex, it always returns
the same alignment (hence, same vector). Similarly, even when XPARAL
computes alignments at different points on the same polygon edge, it will
return the same alignment each time, and it is true for alignments inside
a polygon, since all optimal alignments inside a polygon have the same
vector. So the added bookkeeping time for using L' is just O(V + E + R)
per ray search or O[12E(V + E + R)] overall.

For the analysis of the number of needed fixed-parameter alignments,
call an alignment computation redundant if it returns a vector that is already
in L'. We claim that in any single ray search (using modified Newton with
alignment .</) only the last alignment computation in that search could be
redundant. To see this, note that if &7 is optimal at the initial », then only
one alignment is computed in that ray search; otherwise, the redundant
alignment, .o/', is computed at a point closer to p than the initial r. Since,
by Newton’s third fact, each vector computed during the ray search is
distinct, <7’ must have been in L' before the present ray search. But that
would contradict the choice of the initial r.

We can now analyze the time to find a complete polygonal decomposi-
tion. There are still at most 12E ray searches, and, in each, at most one
computed alignment is redundant. Each other alignment computation finds
a new vector to add to L’ (which has size at most V + E + R), so the
complete polygonal decomposition is computed using at most V + 13E +
R fixed-parameter alignments. This leads to an overall time bound of

494 MULTIPLE ALIGNMENT AND PHYLOGENETIC TREES [28]

O[12E(V + E + R) + (V + 13E + R)nm). Now a polygonal decomposition
can be viewed as a connected planar graph, and when each vertex is incident
with at least three edges (as in the case of a polygonal decomposition),
then V = E = 3R. This is easy to show using Euler’s classic theorem, but
is not true for general planar graphs. So the terms 12E and V + E + R
and V + 13E + R are each proportional to R, that is, each are O(R).
Hence, the above time bound becomes O(R? + Rnm), which is O(R +
nm) per polygon. “

The bound of O(R + nm) per polygon holds no matter what choices
are made in XPARAL. However, it was shown?? that when no character-
specific scoring matrices are used, and two variable parameters are picked,
then R = O(nm). In fact,>? for global alignment, when no scoring matrices
are used then R < n?”>. When scoring matrices are used, but y and & are
the chosen variable parameters, then again R = O(nm). This establishes the
claim that for most of the (important) parameter choices, a full polygonal
decomposition can be found in O(nm) time per polygon, proportional to
the time needed to compute just a single fixed-parameter alignment. It is
unknown how big R can be when scoring matrices are used and «, 8 are
the variable parameters. The algorithm description and analysis above is
much cruder than what is actually implemented in XPARAL but suffices
for the main result.

Acknowledgments

We thank John Nguyen for helpful efforts and insights in working with XPARAL. Research
was partially supported by Grant DE-FG3-9ER6999 from the U.S. Department of Energy.

