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1 Introduction

This work is concerned with lattice T-curves. The notion of T-curves has
arisen in real algebraic geometry as a special case of a method introduced
by Viro [11] of patchworking algebraic varieties. T-curves can be seen also
from a geometric-combinatorial point of view and can be defined in a general
setting as follows:

1.0.0.1 Definition

Let S be a compact surface without boundary equipped with a smooth tri-
angulation 7. A T-curve K on (S,7) is a union of disjoint topologically
embedded circles in S which lie in the 1-skeleton of some cell decomposition
of S dual to the cell decomposition induced by 7.

A T-curve induces a sign distribution on the edges of 7 in the following
way: The edges which intersect the T-curve are of sign —1, and the edges
which don’t intersect the T-curve are of sign +1. A sign distribution induced
by a T-curve has the property that each triangle of the triangulation has
either 0 or 2 edges of negative sign. :

Reciprocally a sign distribution on the edges of a triangulation 7 of a
surface S, such that each triangle has either 0 or 2 edges of negative signs,
gives rise to a T-curve in the following way: Consider a cell decomposition C
of S dual to 7. Assign to the edges of C the sign of the corresponding edges
of 7. The T-curve is the union of the edges of negative sign of C.

Notice that any finite union of disjoint topologically embedded circles in
a surface is the underlying curve of some T-curve. Therefore the underly-
ing curve of a T-curve in this general setting has no special properties. We
will define lattice T-curves in a setting of integral polygons (see section 2),
and study some of their properties. In particular all the lattice T-curves
defined from a given integral polygon have their number of connected com-
ponents bounded from above. Lattice T-curves with the maximal number of
connected components are called mazimal T-curves.
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2 Introduction to lattice T-curves

2.1 Lattice T-Curves on RP?

Viro introduced in [11] a new method to construct algebraic curves. Orevkov
used a particular case of his method and started to develop the notion of
Lattice T-curves on RP? (called just ”"T-curves” in most of the papers in
the bibliography). Lattice T-curves of degree d on RP? (d being a positive
integer) can be constructed as follows (see an example of the construction of
such a T-curve of degree 3 on fig. 2).

1. Let T(d) (or simply T) be the triangle in R? with vertices (0, 0), (0, d), (d, 0).
The reflections through the coordinate axis generate 4 copies of T,
which cover the diamond D(d) with vertices (+d,0), (0, £d). By iden-
tifying each point (z,y) on the boundary of the diamond with the
point (—z, —y), we obtain a surface which is homeomorphic to the real
projective plane RP? (see fig. 1). We give in section 3.1 an explicit
homeomorphism which allow us to identify this surface with R P2

"00) @0
T(d) \ /
D(d) a b

(D(d)/~) ~ RP?

0.d)

Figure 1: Recovering RP? from T(d).

2. Let T be an arbitrary rectilinear triangulation of T such that its ver-
tices are exactly the integral points of T. The reflections through the
coordinate axis generate from 7 a triangulation of the diamond and
then a triangulation of R P2,

3. Let 6 : TNZ? — {£1} be an arbitrary sign distribution on the integral
points (z,y) of T. We extend this distribution to the diamond in the
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following way:
S((—1)°2, (—1)y) = (~1)™*™8(z,y)  where a,be {0,1} (1)

4. We assign to each edge of the triangulation of the diamond D(d) the
sign equal to the product of the signs of its endpoints. This distribution
of signs on the edges of D(d) induces a distribution of signs on the edges
of the triangulation of RP2. Indeed, since the quotient map D(d) —
R P? identifies an edge of the triangulation lying on the boundary of
D(d) to the opposite edge, we must check that two opposite edges have
the same sign: A point (z,y) € dD(d) is reduced modulo two

e either to (0,0) or (1,1) if d is even. Then, in both cases §(—z, —y) =
(z,y)-

e either to (0,1) or (1,0) if d is odd. Then in both cases §(—z, —y) =
_5(1"7 y)

Therefore if an edge e has endpoints (z1,y:) and (3, y2), then the edge
—e will always have the same sign than e, which is §(z1,y1)d(z2, y2).

5. The distribution of signs on the edges of the triangulation of the di-
amond has the property that each triangle has either 0 or 2 edges of
negative sign. Indeed the product of the three signs of the edges of
a triangle is equal to +1 since it is the product of the squares of the
three signs of the vertices of the triangle (see fig. 3). It is clear that this
property holds also on R P2 Therefore we get a T-curve on (RP?,T)
as explained in the introduction.

Notice that the data (T(d), 7T, —6) gives the same T-curve than the data
(T(d), T, ).

2.2 Lattice T-curves and algebraic curves

2.2.0.2 Definition
Two curves on a surface are called congruent (by homeomorphism) if one can
be transformed into the other by a homeomorphism of the surface.

A celebrated theorem of Viro [11] says that any lattice T-curve of degree
d on R P2, under the assumption of a certain convexity property of the trian-
gulation, is congruent to a real algebraic curve of degree d. For the moment
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Figure 2: Construction of a T-curve of degree 3 on R P, from the basic data
(a triangulation of the triangle T(d), and a distribution of signs on T N Z2.)

1t is not known whether this convexity assumption is necessary for the the-
orem to hold. A property holding for all real plane projective nonsingular
curves of degree d and not holding for a T-curve of degree d on RP? would
show the necessity of this assumption, but such a property is not yet known.
Several important theorems of real algebraic geometry can be stated for T-
curves of degree d on RP? and proved combinatorially without this convexity
assumption.

It is interesting to note that some properties are known to hold for all
lattice T-curves on RP? but not for all plane projective curves: A pair of
connected components of a curve on RP? is called an injective pair if one
component bounds a subset of RP? which is homeomorphic to a disk and
which contains the other component. Itenberg [6] has shown that the number
of injective pairs of a lattice T-curve of degree d on RP? is less or equal
than 3d/2 though some families of plane projective curves have a number of
injective pairs depending quadratically on their degree.
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Figure 3: sign(e;) = 6(P;)6(Pr), so []sign(e;) = [[6(P:)* = 1. Therefore
either 0 or 2 edges have negative sign. Hence a T-curve is a closed curve.

A theorem of Harnack [3] gives a known example of a property of real
algebraic curves which holds as well for all lattice T-curves on RP2.

2.2.0.3 Theorem (Harnack)
(1) A real plane projective nonsingular curve of degree d has the property

that the number of its connected components is less or equal than iﬂéﬂ +
1.

(2) For every integer d > 1, there exist curves of degree d which achieve this
upper bound (they are called maximal curves).

Notice that ﬂ)i(ﬂ is also the number of integral points contained in
the interior of T(d), so property (1) of Harnack theorem can be reformulated
for lattice T-curves on RP? in the following way:

2.2.0.4 Theorem (“Harnack” for lattice T-curves on R P?)

The number of connected components of a T-curve of degree d in RP? is less
or equal than one plus the number of the integral points contained in the
interior of T(d) plus one.

See section 5.3 for a generalization and for more details.

2.3 Some lattice definitions

2.3.0.5 Definition
A segment is an integral segment if its two endpoints are integral points.
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2.3.0.6 Definition

A (closed) polygonal line is a finite union of segments s; U --- Us, C R?
such that for ¢ = 2,...,r — 1, (for ¢ modulo r), the segment s; shares one of
its endpoints with s;_; and its other endpoint with s;,;. We always assume
that the union of any two consecutive segments is not a segment. If all the
segments are integral, the polygonal line is called integral.

2.3.0.7 Definition
A (integral) polygon is a subset of R? bounded by a closed (integral) polygonal
line and homeomorphic to a disk. An edge of the polygon is a segment of its

boundary polygonal line. A vertez of a polygon is an endpoint of an edge of
the polygon.

Notice that a polygon is integral if and only if all its vertices are integral
points.

2.3.0.8 Definition

A triangulation of a polygon is a cell decomposition of the polygon into
simplexes. A simplex of dimension 2 is a triangle of the triangulation, a
simplex of dimension 1 is an edge of the triangulation, and a simplex of
dimension 0 is a vertez of the triangulation.

Vertices and edges of a triangulation shouldn’t be mixed up with vertices
and edges of a polygon.

2.3.0.9 Definition

The parity of an integral point (p;,pe) is (p1 mod 2,p; mod 2) € (Zy)
(Z[2Z) x (Z/2Z). We denote the four values of the parities by (0,0), (0,1),
(1,1) and (1,0).

Notice that the parity of the integral points which lie on a given integral
segment takes exactly two values.

2.3.0.10 Definition
The parity of an integral segment is the sum of the two values that the parity
takes on the integral points of the segment.

Notice that the parity of an integral segment is never (0, 0).

2.3.0.11 Definition

The parity of a vertez of an integral polygon is the sum of the parities of the
two edges of the polygon meeting in the vertex.
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Notice that the parity of a vertex of an integral polygon can possibly take
all four values.

2.3.0.12 Definition
The parity of an edge of an integral polygon is the sum of the parities of its
vertices.

Parities of vertices and edges of an integral polygon shouldn’t be mixed
up with parities of their underlying integral points and integral segments.

2.3.0.13 Definition
A parity is called even if its value is (0,0). A parity is called odd if it is not
even.

We already noticed that the parity of a segment 1s never even.

2.3.0.14 Lemma

If an integral polygon contains a vertex of odd parity, then it contains at
least two vertices of odd parity.

proof. Let’s follow the boundary of the polygon, departing from the vertex
of odd parity and coming back to it. Since the vertex has odd parity, the
"departing-edge” has different parity than the ”coming-back-edge”. So on
the way we must pass through a vertex where meet two edges of different
parity, 1.e. through a vertex of odd parity.

2.3.0.15 Definition

The vertices of odd parity of an integral polygon divide its boundary into
connected components, the closure of which we call the broken edges of the
polygon.

Notice that the parity takes the same value on all the segments of a given
broken edge.

2.3.0.16 Definition
The parity of a broken edge of an integral polygon is the sum of the parities
of all the edges of the polygon contained in the broken edge.

Notice that if an integral polygon has vertices of odd parity, then the
parity of a broken edge of the polygon is equal to the sum of the parities of
the two vertices of the polygon which end the broken edge.
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2.4 Lattice T-curves on more general surfaces

We slightly generalize the construction of lattice T-curves on R P? in a natural
way such that some analogs of real algebraic properties (in particular an
analog of Harnack theorem) still hold.

2.4.1 The ambient surfaces for lattice T-curves

Let II be an integral polygon in R%,, and for every ¢,b € {0,1}, let g4
be the symmetry (z,y) — ((—1)%z,(—1)%y). We glue the disjoint union of
the four copies (044 - II) by their boundary in the following way: For every
¢,d € {0,1}, we identify each point (z,y) on each edge e of (0.4 II) to the
point 044 - (z,y), where (b, a) is the parity of the edge e.

We obtain in this way a surface without boundary, which we will denote
by S(II). The four maps o, glue to a map p : S(II) — II which is a fourfold
ramified covering. The ramifications take place along the broken edges in
the following way: a point in the interior of a broken edge lifts to two points,
and an endpoint of a broken edge lifts to one point.

Lo p(0ap - ) —— S(II)

U (Gap-11) S(IT)

C1,0* ’\\
N Go,1-11
N Q cl,i-H
\ le 01’0-1_[
v Goo-I1=11
01 1° JI1 001 \L u
IT

Figure 4: The fourfold ramified covering structure of S(II). Here Il = T, so
S(II) = RP2

If the parity of the segments of JII takes only one value, then S(II) has
two connected components, each homeomorphic to a sphere. If the parity of
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the segments of OII takes more than one value, then the next proposition,
proved in 4.1.5.2 characterizes completely this surface.

Proposition: (see 4.1.5.2)
Let r be the number of broken edges of II.

o The surface S(II) is orientable if and only if the parity of the segments
of OII takes only two values.

o If S(II) is orientable, then r is even, and S(II) is the connected sum of
(r/2) — 1 tori.

e If S(II) is not orientable, then it is the connected sum of r —2 projective
planes.

In particular the surface S(T) obtained from the triangle T(d) is a pro-
jective plane.

2.4.1.1 Definition

The surface S(II) constructed above is called an ambient surface for lattice
T-curves.

2.4.2 Lattice T-curves on their ambient surfaces

Now we can mimic the procedures 2-5 of section 2.1:

o Let 7 be an arbitrary rectilinear triangulation of II such that its vertices
are exactly the integral points of II. The reflections through the two
coordinate axis generate a triangulation of the disjoint union | |, ,(dap-
IT) which induces a triangulation of S(II).

o Let (z,y) — &(z,y) = £1 be an arbitrary sign distributions on the
integral points (z,y) of II. We extend this distribution on | |, ,(ca - II)
with the same formula than in 2.1 which we rewrite slightly differently:

§(0ap - (2,y)) = (=1)"*HDg(2, y) (2)

Where a,b € {0,1} , (¢, d) is the parity of the point (z,y), and ((a, ), (¢, d)) =
ac+ bd.
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o We assign to each edge of the triangulation of | |, (044 - IT) the sign
equal to the product of the signs of its endpoints. This edge distribution
induces a distribution of signs on the edges of the triangulation of S(II).
Indeed we check that two edges of the triangulation of | |, ,(0as - II)
which become identified in S(II) have same sign: For an edge e of
parity (a,b) of the triangulation and for any c,d € {0,1}, we get from
formula 2 above that,

sign(ocq-€) = (—1)((“'b)’(°’d)>s1'gn (e) (3)

According to 2.4.1 an edge e of the triangulation which is also an edge
of some (o, -II) is identified to (o q- €) if and only if ((a,d), (¢,d)) = 0,
so e and o} 4 - € have same signs.

o The same argument than in 2.1 shows that each triangle of the trian-
gulation of S(II) has either 0 or 2 edges of negative sign, so we get, as
explained in the introduction, a T-curve on S(II).

Notice like in 2.1 that the data (II,7,4) and (II, 7, —§) define the same

T-curves.

2.4.2.1 Definition
A T-curve constructed as above from the data (II, 7, +¢) will be denoted by

K(II,T,4), (or K(II, T,—4¢)) and will be called a lattice T-curve with carrier
polygon 1I.

Notice that a lattice T-curve with carrier polygon T(d) is a lattice T-curve
on RPZ

Let II C R%, be a convex integral polygon. It is well known that we
can define a real compact toric surface X (II) from II. If for any vertex of
even parity we identify its two lifts in S(II), we get a topological model of
the toric surface defined by II. For instance X(T(d)) = RP? So we can
define also lattice T-curves on a toric surface X(II). In fact the theorem of
Viro that we introduced in section 2.2 is stated more generally in [11]: Under
the assumption of a certain convexity property of the triangulation of II, a
T-curve on a toric surface X (II) is congruent to an algebraic curve on X (II)
with Newton polygon II.

It turns out that an analog of Harnack theorem still hold for all lattice
T-curve:
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Theorem: (“Harnack” for all lattice T-curves, see 5.3.1.1)

Let I € R, be an integral polygon.

(1) The number of connected components of a lattice T-curve with carrier
polygon 11 is less or equal than the number of integral points in the interior
of I plus one.

(2) For each integral polygon II, there exist lattice T-curves with carrier
polygon 11 which achieve this upper-bound.

2.4.2.2 Definition

Lattice T-curves achieving the upper-bound of the above theorem are called
maximal T-curves.

The analogy with algebraic curves goes further. We give in section 5 a
construction of surfaces associated to lattice T-curves which are analogs to
the quotients of the complexifications of real algebraic curves by the complex
conjugation. These surfaces allow us for instance to give a nice proof of
the Harnack-like theorem stated above and to define types and orientations
for lattice T-curves. Theorems like Arnold congruence mod4 or Rokhlin
formulas can then be stated for T-curves (but combinatorial proofs are still
to be found). The main application of this construction that we give will be
a certain determination of the congruence classes of maximal lattice T-curves
(see the next subsection for a short explanation).

2.5 Congruence classes of maximal lattice T-curves

Hilbert asked in the first part of his well known 16th Problem, what are
among all the real plane projective nonsingular curves of fixed degree, the
possible mutual dispositions of the connected components. This is equivalent
to the problem of classifying the curves up to topological congruence. Hilbert
has emphasized the case of the maximal curves. The same problem arises
naturally for lattice T-curves.

Though the two following theorems were motivated by the study of Rags-
dale conjecture (see Part II), they can be a first step in finding a reasonable
approximation of the number of congruence classes of maximal lattice T-
curves with a given carrier polygon.

Definition (see 6.3.1.1)
A zone of an integral polygon II is a polygon inside II such that its bound-
ary segments are primitive (i.e. the endpoints are the only integral points
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of the edges), and such that each boundary segment meets the boundary of II.

Definition (see 7.1.0.7)

A decomposition into zones of an integral polygon w111 be called an odd-
cycle-free zone decomposition if, for any integral point in the interior of the
polygon, and for any parity, the number of segments, lying on the boundary
of zones of the decomposition, having the given parity, and having the given
integral point as an endpoint, is even.

Let II be an arbitrary integral polygon, and let A be an odd-cycle-free
zone decomposition of II. In section 7.2 we give a construction of a lattice
T-curve, unique up to congruence, out of the data (II, A).

Theorem:(see 7.3.0.10)

(1) The lattice T-curves obtained by the construction of section 7.2 are
maximal lattice T-curves.

(2) Every maximal T-curve is obtained up to congruence by the construction
of section 7.2.

(1,1 (1,1)

0,0 (0,0) 0,0)

. (L, .

(0,0) 0,0)

Figure 5: An odd-cycle-free zone decomposition and a non odd-cycle-free
zone decomposition. The parity of some points is written.
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3 Constructions

For every a,b € {0,1}, let oqp be the symmetry (z,y) — ((=1)%z,(=1)by).
Let d be a positive integer, and recall that T(d) is the triangle of RZ with ver-
tices (0,0), (0,d), (d,0), and that the union |J, ,(0as - T) covers the diamond
D(d) with vertices +(0,d), £(d,0) (see fig. 1).

3.1 A diamond model for RP?

We have introduced in 2.1 a diamond model of the real projective plane. We
give now an explicit homeomorphism which allow us to identify the model
with the real projective plane.

Let  be the octahedron {z € R®: Y |z;] = d}. A line through the
origin in R? cuts Q) in two opposite points, so the real projective plane R P?
is identified to Q/ ~, where (zo,21,22) ~ (—z0, —71, —22) is the antipodal
relation. The interior of the diamond D(d) is the image of (one-to-one)
projection pg of the upper-half Q(zo > 0) of Q onto the coordinate plane
{zo = 0}. This projection gives the chart Uy = {(zo : 1 : 23), o # 0} ~ R%

po:Us — int(D)
diL’l d(IZg

If we complete this mapping by allowing zo = 0, then we complete Uy by
the line at infinity {zo = 0} (which gives RP?), and the image becomes
the whole diamond with the antipodal relation on its boundary: (X, X3) ~
(—X1,—X,) where X; = 9% Therefore this completed mapping is the

x) +z2

(zo:x1:22) — (

)

required homeomorphism (see fig. 6).
RP2 hom. (Q/ N) hom. (D(d)/ N)
(2o : 212 22) (Ede-'I’ Z‘%Twil’ .Y‘_C,ITZ-'I) : ©, Egglc;d’ {:ifx.-l)
Notice that for any a,b € {0, 1}, the copy (o,p-T) = {(z,y), ((—1)%z,
T} of T is in one-to-one correspondence with the subset {(z : y : 2),(—1)’y z >

0,z (—1)c > 0,(~1)°z (=1)by > 0}.
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3.1.0.3 Definition
We will call the subset {(z : y : 2),(=1)%y 2z > 0,2 (=1)%z > 0,(=1)%z (=1)by >
0} a quadrant of RP2 The above remark allows us to identify (abusively)
the quadrants to the corresponding copies (044 - T).

RP 2

a\}%

Figure 6: Diagram representing the homeomorphism between RP? and

(D(d)] ~)

3.2 Congruent homeomorphisms

The group of the octahedron ) is a group of 48 elements. It is decomposed
into a group of order two (the group of symmetries through the origin) which
we identify with Z, = (Z/2Z), and a group Oct of orientation preserving
motions composed by:

e The identity (one element),

e The rotations of angles 7/2, m, 37 /2 around each of the three coordinate
axis (nine elements),

e The rotations of angles 7/3, 2 /3 around each of the four lines {+z; =
t+a; = +ai} (eight elements),

o The rotations of angle 7 around the six lines {z; = +z;, zx = 0} (six
elements).
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Since R P? can be identified with the octahedron quotiented by the an-
tipodal relation 2/ ~, the group of the octahedron acts on the charts of
R P2 1t is clear that Z, acts trivially, and Oct acts nontrivially. This gives
24 congruent mappings of RP? to the diamond D.

For instance let p be the rotation of angle 7 /2 around the z;-axis, let U; ,
i = 1,2, 3 be the usual charts {(zo : z; : z2) € RP? z; # 0}, and let o be the
homeomorphism introduced in section (3.1) RP? = Uy U {z¢ = 0} — D/ ~.
Then p - 1o = po as shown in the following commutative diagram:

U()U{ZEO:O} 2 UzU{:L'2=0}

Ho H2

X

1
(D) /~) /b%a
a\% E
1 \_)

p. (D(@)/~) k

(] Proj X7

Figure 7: Explanation of the action of a rotation of angle p/2 around the z;
axis.

The transformation D(d) — p - D(d) is detailed from a geometric and
combinatorial viewpoint on figures 7 and 8. Notice that the action on D(d)
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of Oct corresponds to the action on the four symbols “(o,4p-T)” , a,b € {0,1}
of the group of permutation of four elements.

Dy

Figure 8: The same action from a cutting-squeezing-and-pasting point
of view. Combinatorially it correspond to a permutation A, B,C,D —

A,B,D,C.
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4 Basic Properties of Lattice T-Curves

4.1 Ambient Surfaces of Lattice T-curves

Recall that in 2.4 we constructed from an arbitrary integral polygon II € R%,
the surface S(IT), which we called the ambient surface of lattice T-curves.
We give now some properties of this surface. We note a,p, like in 2.4, the
symmetry (z,y) — ((—1)%z, (—1)%), where a,b € {0,1}.

4.1.0.4 Definition

The image of a copy (dap - II) by the quotient map g : | |, 4(74p - IT) — S(II)
is a quadrant of S(II). Since g is one-to-one from a given copy (04p-II) to its
image, we will identify (abusively) a quadrant with its pre-image (o, - II).

4.1.1 The local structure around the lift of a vertex

Let u be a vertex of II. Assume first that u is of even parity, so the two
segments [ and !’ of OII meeting at u are of same parity. The construction in
section 2.4.1 implies then that two copies of II will be glued to one another
by identifying the two corresponding copies of {U!’, and the two other copies
of II will be glued to one another by identifying the two other copies of [ U I’
(see fig. 9).

Assume now that u is of odd parity. The construction in section 2.4.1
implies that the four copies of IT are glued to one another in the following way:
The union of [ with a reflection of ! through a coordinate axis is identified
to the union of the two other copies of [ and the union of I’ with a reflection
of I’ through the other coordinate axis is identified to the union of the two
other copies of I’ (see fig. 9).

If all the segments of OII are of the same parity, then two copies of II
will be glued to one another by all their edges, and the two other copies of
IT will be also glued to one another by all their edges. We get this way two
connected components, each homeomorphic to a sphere (see an example on
fig. 10).

Assume now that the parity of the segments of 9II takes at least two
values. Notice that since the two endpoints u and u’ of a broken edge [ are
vertices of odd parity, they lift each to only one point in S(II). All the other
points of [ lift to two points. Therefore the lift u=1(I) of [ in S(II) is a circle
which is a ramified twofold covering of [, where the ramifications take place
in the lifts 4! (u) and p=1(u’).
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u;
Sl S3
S2
uy

Figure 9: How the segments in the lift of a broken edge are identified two
by two according to their parity. Here s; and s, have same parity and have
different parity than ss.

SE=S
N

Figure 10: Gluing the four copies of II to one another gives a union of two
spheres when all the segments of 9II have same parity.

O

o

4.1.2 Canonical charts for the ambient surface

Let [1,...,l, be the broken edges of II, indexed such that I; meets l;y; ,
: mod r, and let u; be the vertex of II where they meet. Let

Ui=SM\( (J »')

JEi iR+
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So U, is an open neighborhood of p~!(u;) in S(II) and is homeomorphic to
R2 We will assume that the broken edges are oriented locally near their
endpoints, away from their endpoints. So p™(l;) and p~!(l;4+1) are oriented

in U,‘.

4.1.2.1 Definition

The open neighborhood U; equipped with a homeomorphism U; — R? map-
ping p~(;) and p=!(Li41), with their orientations, onto the coordinate axis
Oz and Oy is a (oriented) chart of S(II). The system of charts Uy,...,U,
will be called a canonical system of charts for S(II).

Notice that the chart U; tell how to glue the four quadrants of S(II) onto
pH(l) and gt (liga).

4.1.2.2 Definition

We call (open) quadrants of the chart U; and denote U?’O, U,-o’l, U,-l’l, and
U} the connected components of U; \ (1~ 1(L;) U g~ (li11)) such that U™ is
mapped to the set {(z,y) € R?, (=1)%z > 0,(~1)%y > 0}.

Notice that the closure in S(II) of an open quadrant U}’ is a quadrant
(0c,a-II) of S(IT). So the chart is determined by the correspondence (c, d) —

(a,b).

4.1.2.3 Definition

We call the parity matriz of the chart U;, the matrix M; = < g‘ g‘*‘l )
i Dig1
where (o, 3;) is the parity of the segments of the broken edge ;.

4.1.2.4 Lemma

If the closed quadrant D'f’b of the chart U; is equal to the quadrant (o¢q4 - II)
of S(II), then (a,b) = ((¢,d) - M;).

proof. With our choice of local orientations for the broken edges, U? 0 is
always equal to II = (oo - II), so the permutation (¢,d) — (a,b) can be
considered as an element of GL(2,Z;). Since U2 and U/*° correspond to
the quadrants (0.4 - II) glued to quadrant II along p~!(I); and p='(1)i1,
respectively, we get from the construction in section 2.4.1 that

— (ﬁi’ai) lf(a‘vb) = (0’1)
(e d) ‘{ (Biy1, air1) if(a,) = (1,0)

Notice that this is equivalent to (c,d) = M '(a,b). 0
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R
ylo u%o
g y

Figure 11: A local orientation of all the broken edges determines the label
of the quadrants by the Uf’b. Here the parity of the broken edges [; is in
parentheses. Notice that with the local orientations shown Uio © is always
equal to II.

Notice that the transformations M; — M, correspond to the gluing of
the chart U; with the chart Uj.

4.1.2.5 Definition

We will call M; ; : M; — M; the gluing transformation of the parity matrices
Mi and Mj.

4.1.3 Gluing two charts of the ambient surface

Assume now that II has more than two broken edges. Let Ui,...,U, be a
canonical system of charts of S(II).

Let n; = 0 if the broken edge I/; has even parity, and n; = 1 if /; has
odd parity. Then the gluing of two consecutive charts U; and Uj,; is easily
stated:

4.1.3.1 Lemma 0 1
The gluing transformation M; ;4 is given by the matrix ( 1 ) and the

right-product: My = M; - My

proof. We assume without loss of generality that i = 2, so we will compute
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with:
a1 09 Qy Q3
: (m 52) - ’ <Bz ﬂ3>

Notice that the parities (oq,8;) and (as,83) of the segments of the broken
edges [y and I3 are equal if and only if /; has even parity, so the lemma
holds when 7, = 0. Assume that (as,33) # (a1,51), so n2 = 1. Since the
parities belong to (Z2)? and are never even, and since (a1,3:1) # (o2, B2),
then (as, 83) = (a1, B1) + (2, B2). O

Notice that if an integral polygon II has only two broken edges, then the
canonical system of charts for S(II) has only two charts. Since the parity of

the segments of OII take only two values the gluing of the two charts make
up a surface S(II) which is a sphere (see fig. 12).

1
1 u,
1
u
Uy uy
1,0 0,0 1,0 0,0
ute |, ot U | U
1 2
u L u
uy 12 2 u, 11 1
uit | o vyt | Uy

Figure 12: Gluing the four copies of II to one another gives a sphere when II
has only two broken edges.

Notice that the gluing transformation of any parity matrices is equal to
the product of the transformations of consecutive parity matrices:

k=j—i—1

M, ;= H Mtk itk
k=0
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4.1.3.2 Definition
The canonical system of charts U; equipped with the gluing transformations
M; ; is the canonical atlas structure of S(II).

4.1.3.3 Corollary
If I; has even parity, then a tubular neighborhood of p='(l;) is an annulus.

If l; has odd parity, then a tubular neighborhood of p=!(l;) is a Moebius
band.

proof. With our choice of local orientations for the broken edges of II we
have always

Uy =0 and U, =UM°

and either
U+1—U, and U+1—U,

In which case the tubular neighborhood of /; is an annulus (see fig. 13), or
Ui =UP and UY, =0

In which case the tubular neighborhood of /; is a Moebius band (see fig. 13).

Wi | Wi, & %
Uisl ! Uiy
Ui =U{0 { UP=Uf Ui =00 | UP=UR)
u; u;
Ui =UM | Ud'=U Uil =0t | Ud=Ul
{ \
Uk v (U | /{{ (U

Figure 13: The tubular neighborhood of the lift p=*() of a broken edge [ is
either an annulus if [ is even, either a Moebius band if [ is odd.

So let’s compute U,-l+’01. The closed quadrants Uf’v_0 are always represented

by II. Let (0.4 - II) be the quadrant representing U? 1 s0

(Oa 1) = (c) d) - M;
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(0cq - II) represents also a closed quadrant U;_+1a’b, SO
(4,) = (e, d) - Mins
Since My, = M; - M; ;41 we get that
(a,b) = (0,1) - M i1

From lemma 4.1.3.1 we get directly that (a,b) = (1,0) if /; is even (hence
we get an annulus), and (a,b) = (1,1) if /; is odd (hence we get a Moebius
band). O

Notice from lemma 4.1.3.1 that, given a canonical system of charts, the
gluing transformations of consecutive charts are determined by the sequence
of the n;’s equal to 0 when the broken edge [; is even, and to 1 when [; is
odd. So two integral polygons with the same sequence of n;’s up to circular
permutation give rise to homeomorphic ambient surfaces.

4.1.4 A basis for the 1-homology of the ambient surface

Let S(II) be the ambient surface of a lattice T-curve, and assume that II has
more than two broken edges. Let Uy, ..., U, be a canonical system of charts
on S(II). Recall that with the notations of the charts, the [;’s are the broken
edges of II with endpoints u;_; and u;.

4.1.4.1 Lemma

The lifts p=(13),...,u~*(l,) of the broken edges ls,...,l, form a basis for
the 1-homology space H;(S(II)) (with coefficients in Z if S(II) is orientable,
and with coefficients in Z, if S(II) is not orientable).

proof. To prove this lemma it suffices to check three points:

o The set {u~'(l3),...u"1(l;)} is free in H; since S(II) \ (Ujp~*(L)) is

connected.

o The set {u~'(l3),...,#"1(l,)} is complete since S(II) \ (Usp~1(L)) is

simply connected.

e The set {u"'(l3),...,#7*({,)} has no trivial elements since for any
p~Y(1;), the surface (S(II) \ (Usp~1(L:))) U p='(l;) is either an open
annulus, either an open Moebius band.

O
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4.1.5 The topological characterization of an ambient surface

We have seen in 4.1.1 that if the parity of the segments of the boundary of
an integral polygon II takes only one value, then the surface S(II) has two
connected components, each homeomorphic to a sphere. Assume now that
the parity of the segments of Il takes more than one value. This implies
with lemma 2.3.0.14 that II has at least two broken edges.

4.1.5.1 Lemma

e If1I has a broken edge of odd parity, then it has two broken edges of
odd parity.

o If1II has two consecutive broken edges of odd parity, then it has three
broken edges of odd parity.

proof. Let Uy,...,U, be a canonical system of charts on the surface S(II).
From lemma 4.1.3.1, we get that, to each broken edge of odd parity, cor-

respond a gluing matrix A; = ( ? i ) and to each broken edge of even
parity correspond a gluing matrix Ay = (1) (1) . The product [] of all

gluing matrices of consecutive charts must be the identity. Since the product
with Ay just permutes the columns, if [] contains a matrix A; then it must
11
10

consecutive matrices A;, then it must contains at least three matrices A;. O

contains at least two matrices A;. Since A? = , if [[ contains two

4.1.5.2 Proposition
Let r > 1 be the number of broken edges of II.

o The surface S(II) is orientable if and only if the parity of the segments
of 011 takes only two values.

e If S(II) is orientable, then r is even, and S(I1) is the connected sum of
r/2 — 1 tori.

o If S(II) is not orientable, then it is the connected sum of r —2 projective
planes.

proof. From corollary 4.1.3.3 we know that the tubular neighborhoods of
the lifts of the broken edges of II are all annuli if and only if all the broken
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edges are of even parity. From lemma 4.1.4.1, we know that the lifts of all
the broken edges but two consecutive ones is a basis of the 1-dimensional
homology space of S(II). From lemma 4.1.5.1 we know that if all but two
consecutive broken edges are known to be of even parity, then all the broken
edges are of even parity.

Therefore S(II) is orientable if and only if all its broken edges are of even
parity. From definition 2.3.0.16 it is clear that the broken edges are all of
even parity if and only if the parity of the segments of JII takes only two
values.

From lemma 4.1.4.1 we know that the dimension of the 1-dimensional
homology space of S(II) is » — 2. Since r > 1, the parity of the segments of
Ol takes more than one value, and then S(II) is connected. So if S(II) is
orientable, it is the connected sum of (r—2)/2 tori, and if it is non-orientable,
it is the connected sum of r — 2 projective planes. ]

4.2 Isomorphic T-curves
4.2.1 'Translation of the carrier polygon

Let II be an integral polygon in R%,, and (s,t) be an integral vector such
that the translated polygon II' = II + (s,t) lies in R%,, and let K(II, T, 4)
be a T-curve. Let T’ be the triangulation of II' translated from 7, and let
¢’ be the sign distribution on II' N Z? defined by §'(z,y) = §(z — s,y — ).

4.2.1.1 Proposition
The T-curves K = K(II,T,6) and K' = K(Il', T",4') are equal.

proof. It is clear that the construction of the ambient surface S(II) depends
on II up to translation by an integral vector, so S(II') = S(II). Let (c,d)
be the parity of the point (s,t), and let a,b € {0,1}. If (z,y) € II, then
F((=1)%( + ), (~L)¥(y + 1)) = (—1){@HeD5((~1)7z, (—1)’y). Recall that
the sign of an edge of a triangulation is the product of the signs of its two
endpoints. Therefore the edges of the triangulation of S(II') have the same
sign than the corresponding edges of the triangulation of S(II), so K = K'.

O
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4.2.2 Linear transformation of the carrier polygon

If K is a lattice T-curve with carrier polygon II, and ¢,d € {0,1}, let K9
be the restriction of K to the quadrant (o4 - II).

Let K(II,T,4) be a lattice T-curve and let A € GL(2,Z). We will note
A, the reduction of A in GL(2,Z,). Let T’ be the triangulation of (A - IT)
transformed by A from T, let §'(z,y) = 6(A™' - (z,y)), and let A - K be the
T-curve defined by (A -II,77,4).

4.2.2.1 Proposition
e A- K and K are congruent.

o The homeomorphism S(II) — S(A - II) which transforms K to A - K,

transforms each restriction K¢ into a restriction (A - K)*t.
o (c,d) = (s,t)- As.

proof. Since all the parities are transformed by A,, an edge e of the triangu-
lation 7T is of even parity if and only if the edge A - e of T" is of even parity.
So it is clear from prop. 4.1.5.2 that S(A - II) and S(II) are homeomorphic.

Let U and U’ be canonical charts of S(II) and of S(A - II) around an
arbitrary vertex (of odd parity) u and around A - u respectively. For any
a,b € {0,1}, let (0.4 - II) be the quadrant of S(II) representing U*, and
(054 - (A-II)) be the quadrant of S(A - II) representing (U’)2b. Let M be
the parity matrix of U. Then (A, - M) is the parity matrix of U’. From
lemma 4.1.2.4 we get that

(a,0) = (c;d)- M and (a,b) = (5,8) - (A - M)

Therefore (c,d) = (s,t) - As.

To prove the proposition, we must show that the T-curve K is congruent
to A- K by a homeomorphism U — U’ such that for any a,b € {0,1} , U*? s
U'®?. Tt suffices then to show that the sign of an edge of the triangulation of
(0cd - II) is equal to the sign of the corresponding edge of the triangulation
of (6,4 - (A-1I)):

Let e be a segment of OII and (a, b) its parity. So ((a,b)-‘A2) is the parity
of (A-e). From the definition of the sign distribution &' of (A - K), we get
that the sign of (A - €) is equal to the sign of e. Then from the construction
in section 2.4.1 we get that
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sign (o, (A-e)) = (=1){eDe dgign (4. ¢)
(_1)((s,t)-Az,(a,b))sign (e)
—_— (_1)((Cfd)1(avb)>sign (6)

= sign(o.q4-€)

4.3 Definitions

4.3.0.2 Definition

A primitive segment is an integral segment such that the only integral points
it contains are its two ends. The integral length (or simply length) of an
integral polygonal line is the number of primitive segments contained in it.

Two integral points are neighbors if they can be connected by a primitive
segment,

4.3.0.3 Definition

A primitive triangulation of an integral polygon is a triangulation of the
polygon such that the vertices of the triangulation are integral points, and
the only integral points a triangle contains are its three vertices.

Notice that a triangulation of an integral polygon is primitive if and only
if its set of vertices is exactly the set of integral points of the polygon. So the
triangulation 7 of a lattice T-curve K(II,7,4) is a primitive triangulation
of I .

4.3.0.4 Definition

A piece of a curve homeomorphic to the segment [0,1] C R is called an arc
of the curve.

4.3.0.5 Definition

Let K be a collection of disjoint embedded circles in a surface. A connected
component of K is called an oval if it bounds a subset of the surface home-
omorphic to a disk. The interior of this subset is called the inside of the
oval. The interior of the complementary of the inside is the outside of the
oval. An oval with no other ovals inside will be called an empty oval, and
an oval inside no other ovals will be called an outermost oval. A connected
component of K which is not an oval is called a nontrivial component of K.
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4.3.0.6 Proposition
Let K(T(d),T,d) be a lattice T-curve on RP2. Then

e K has only ovals as connected components if its degree d is even.

¢ K has one and only one nontrivial component if its degree d is odd.

proof. It is clear that on RP? two nontrivial embedded circles which in-
tersect transversally, intersect an odd number of time, and an oval which is
intersected by any embedded circle transversally is intersected an even num-
ber of times. Therefore, since K is a disjoint union of embedded circle, it
has at most one nontrivial connected component.

Consider now a path on the diamond D(d) through the edges of the
triangulation 7, going from one point of the boundary of the diamond to
its opposite point. This path lifts to a loop on RP? which is a nontrivial
embedded circle and which cuts transversally K. So the loop intersects K an
odd number of time if and only if K has a nontrivial connected component.

Let’s follow the path from one endpoint to the other. If the loop intersects
the T-curve r times, then the integral points on the path change signs r times.
So r is odd if and only if the two endpoints of the path have opposite signs.
The formula 1 for the extension of the sign distribution from the triangle
T(d) to the diamond D(d) shows that two opposite points on the boundary

of D(d) have opposite signs if an only if the degree d of the T-curve is odd.
]

Notice that this lemma holds for a real projective nonsingular curve and
can be proved in a similar way which is in that case a direct consequence of
Bezout theorem applied to the curve and a generic line.

Notice that if an oval O of a T-curve lies inside a quadrant of the ambient
surface then all the integral points lying inside O and outside any oval which
lies inside O have same sign.

4.3.0.7 Definition

Let O be an oval of a T-curve, which lies inside a quadrant of the ambient
surface. The sign of the oval O is the sign of the integral points lying inside
O and outside any oval which lies inside O. The remark above show that
this definition is coherent.
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5 The T-filling of a lattice T-curve K.

Recall from definition 1.0.0.1 that a T-curve on a surface S lies on the 1-
skeleton of a dual cell decomposition of the triangulation of S. For lattice
T-curves K(II,T,§), we always work with the dual barycentric cell decom-
position of the triangulation of the ambient surface S(II). An edge of the
1-skeleton of the dual decomposition connects the barycentres of two adjacent
triangles.

5.0.1 Incidence Graphs

5.0.1.1 Definition

The incidence graph of the triangulation of S(II) is the graph obtained from
the 1-skeleton of the dual decomposition by subdividing each edge by a new
vertex at the intersection of the edge with its dual. The image G by the
projection p : S(II) — II of this graph will be called the incidence graph of
the triangulation of II.

In accordance with section 2.4.2, every edge of the incidence graphs inherit
of the sign of the edge of the triangulation it intersects.

Notice that each edge of the incidence graph G of the triangulation of II
lifts to four edges of the incidence graph =!G of the triangulation of S(II).

5.0.1.2 Lemma

For each edge of G, there is exactly two edges, among its four lifts in p~'G,
which have negative sign.

proof. Let e be an edge of the triangulation 7 of II, and let (a,b) be its
parity. Recall the formula 3 which gives the sign of a copy (ocq - €) of an
edge e:

sign (0cq - €) = (—1){@Cdgign (¢)

Notice that ((a,b),(c,d)) = 0 if and only if (c,d) = (0,0) or (c,d) = (b,a).
Since the parity of a segment is never even, (b,a) is not (0,0). Therefore
there is exactly two edges, among the four which lift from e, which have
same sign than e (so there is also two edges which have opposite sign than

e). This proves the assertion, since every edge of =G inherits of the sign
of the edge of the triangulation of S(II) that it intersects. O
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5.1 The Construction

Let K(II,7T,4) be a lattice T-curve, and let G be the incidence graph of
T. Each component C of K is a cycle (in the language of graph theory)
in the incidence graph =!G of the triangulation of S(II), i.e. € is a cyclic
sequence of edges of G, each edge sharing one end with the previous edge
and the other end with the next edge. These cycles don’t intersect. The

projection C = y(C) on II will be considered as the cycle made up by the
projections of the edges of C'. These cycles may intersect.

5.1.0.3 Definition

a thick Y is a tubular neighborhood of the three edges of G lying in a triangle
of the triangulation 7.

Let €;,e2 and e3 be the three edges of G lying in a triangle ¢ of 7, and
indexed counterclockwise, and let A and B; be the endpoints of e;. The thick
Y is obtained by gluing three ribbons e; x [~1, +1] by identifying A x [—1, 0]
in e; with A x [0,+1] in ;44 by (4,z) = (A, —z) (see fig. 14).

From lemma 5.0.1.2 we get that every union e;Ue;,, is an arc of some cycle
C of G, image by the projection y : S(II) — II of a connected component of
the T-curve.

Let t' be a triangle of 7 adjacent to ¢, and let €}, €} and e} be the three
edges of G lying in t/, indexed counterclockwise, with endpoints A’ and B!,
and such that B] = B;. Let s; = B; X [—1,+1] be an end-segment of the
thick Y in ¢, and let s] = B] x [—1,+1] be the corresponding end-segment
of the thick Y in ¢

In the disjoint union of the two thick Y’s in t U ¢/, we identify s; with s/:

1. either by (By,z) — (Bj,—z) if (e U e1) U (€} U €}) is an arc of some
cycle C. So (e3Uey) U (e} U€e'2) is an arc of some cycle C’.

2. either by (By, ) — (By,z) if (e2Ue1) U (e} Ue)) is an arc of some cycle
C. So (es U e1) U (€] U e}) is an arc of some cycle C’.
Notice that in each case C’' may be equal to C.

5.1.0.4 Definition
We will say that two thick Y’s are glued with a twist in the case (2) above,
and glued without a twist in the case (1) above (see fig. 14).

Since the adjacence graph is connected, we obtain, by gluing in this way
the thick Y’s of all the triangles of 7, a surface with boundary.
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Figure 14: A thick Y is glued from three ribbons, and two thick Y’s are glued
with or without a twist.

5.1.0.5 Definition
The surface with boundary constructed above from a lattice T-curve K will
be called a T-filling, and will be denoted F(K).

Notice from the construction of the T-filling F(K), that the connected
components of F(K) are in one-to-one correspondence with the connected
components of K.

5.2 The relation with algebraic geometry

A real plane projective curve C(f) of degree d is a subset {(zo : 21 :
z3) € RP? f(zg,21,22) = 0} for some homogeneous polynomial f of de-
gree d with real coefficients. The complexification CC of C is the surface
{(zo : z1 : z3) € CP?, f(z0,21,%2) = 0} in CP?. The curve is non-(complex)-
singular if the derivative is a nonzero function in all points of the curve (of
its complexification). Notice that CC is invariant under the complex conju-
gation.

Let K be a lattice T-curve of degree d on R P2. We have seen in section 2.2
that the algebraic analog of K is a real plane projective nonsingular curve of
degree d, and with a convexity assumption on the triangulation defining K,
this is more than an analogy, this is a theorem (Viro [11]). Now the algebraic
analog of the T-filling F'(K') is the quotient of the complexification of a real
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C\

Figure 15: The T-curve (plain lines) is drawn on the incidence graph of the
triangulation of RP? (dotted lines). The folded T-curve on the incidence
graph of the triangulation of T uses every edge twice (thick plain lines).

plane projective non-complex-singular curve C of degree d by the complex
conjugation.

It is well known that CC is an orientable surface of genus id—l-)zid;l
Similarly the double of F(K) is also a surface of genus Md—zl. Indeed
to double it we just have to let the (flat) thick Y’s become “hollow Y’s”,
to glue them without worrying about the the twists, and to close the open
ends upon JT by disks (see fig. 17). The number of handles of this surface
is equal to the number of interior integral points of T, and this is precisely
L—Kd;l Moreover the number of connected components of the boundary
is the number of connected components of K. Therefore the T-filling of a
lattice T-curve is characterized topologically the same way than the quotient
of CC by the complex conjugation.

The analogy goes further. The quotient of the complexification of a real
projective nonsingular curve C defines the type (I or II) of C. If C is of type
I, then it gets two opposite (complex)-orientations. Similarly the T-filling
of a lattice T-curve K gives rise naturally to a type (I or II) of K, and two
opposite orientations if K is of type I (see definitions in section 5.4). If K
is a lattice T-curve on RP? these definitions correspond to the types and
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Figure 16: To construct the T-filling F(K), thicken the Y’s in each triangle,
glue any two adjacent thick Y’s with or without a twist (depending on K),
and close the free ends with segments.

orientations of a real plane projective nonsingular curve of same degree.

5.3 First Application: The Harnack Theorem
5.3.1 The Harnack bound

5.3.1.1 Theorem (“Harnack” for lattice T-curves)

(1) The number of connected components of a lattice T-curve is no more
than the number of integral points in the interior of its carrier polygon, plus
one.

(2) There are lattice T-curves with arbitrary carrier polygons which achieve
the upper bound above.

proof. Let’s prove just (1) for the moment. (2) will be proved in prop. 5.3.2.5
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Figure 17: The double of a lattice T-curve of degree d on R P? is a surface of
genus L—M—ld_lzd'z .

where we will construct lattice T-curves with arbitrary carrier polygon which
achieve the upper bound.

Let K(II,T,6) be a lattice T-curve, and let 7 be the number of integral
points in the interior of II. Let’s glue disks along dF(K) to obtain from
F(K) a closed surface S(K). It is clear from the construction of F(K) that
the incidence graph G of the triangulation 7 is a retraction of F(K), so let’s
consider S(K') as the cell complex obtained by gluing disks on G along the
cycles u(C).

Let D be the number of disks glued to G, and let E’ and V' be respectively
the number of edges and vertices of G. Let T, E and V be respectively the
numbers of triangles, edges and vertices of the triangulation 7 of II, and let
be the length of JII. Each triangle of 7 contains three edges of G so E' = 3T.
The vertices of G lie in each triangle and each edge of 7,50 V' =T + E.

On one hand the Euler characteristic of S(K) is
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x(§) = D—E +V'
= D-3T+(T+E)
= D+T-E+1 Indeed since 7 is a triangulation
we have 3T = 2E —

= D4+1-V+I1 Indeed from the Euler relation on T
wehave T - E+V =1

On the other hand x(S’) is equal to 2 — 2g where g is the genus of 5.
Therefore we get

D = (V-1)+1-2g
< 141 SinceV—-Il=iand g >0

This proves (1) since D is also the number of connected components of K.
O

5.3.1.2 Definition

A T-curve K(II,7T,6) with 7 + 1 connected component is called a mazimal
T-curve.

5.3.1.3 Corollary

A T-curve is maximal if and only if its T-filling is homeomorphic to a sphere
with a positive number of holes.

proof. This statement follows from the proof of 5.3.1.1. Indeed the curve is
maximal if the surface S(K) has genus 0. Since a T-curve has at least one
connected component, F(K) is obtained from S(K) by removing a positive
number of disks. o

5.3.2 Harnack T-curves

Let K be a lattice T-curve with carrier polygon II. Recall that the quad-
rants of the ambient surface S(II) are represented by the copies (0qp - II) =
{($> y)a ((—1)(11" (_1)by) € H}’ where a, be {Oa 1}
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5.3.2.1 Definition
Let ¢,a,b € {0,1}, and let § be the distribution of signs defined on the points
(z,y) € (0ap - IT) by:
5z, y) = (=1)°  if (z,y) is of even parity
)= (=1)°*' if (z,y) is of odd parity

The distribution of sign of a lattice T-curve deduced from § by the formula 2
of section 2.4.2 will be called a Harnack sign distribution, and (c,a,b) will
be called the type of §. A lattice T-curve with a Harnack sign distribution
will be called a Harnack T-curve.

In order to write a unique formula to describe a Harnack distribution of
sign, let introduce the Iverson symbol [P] equal to 1 if the proposition P is
true, and equal to 0 if the proposition P is false. Now let g,k = 0 or 1, let
(z,y) be an integral point of (o, - IT), let (e, f) be the parity of (z,y), and
let (c,a,b) be the type of a Harnack distribution of signs § on II. Then we
deduce immediately from the definition 5.3.2.1 above that

§z,y) = (__1)c[(e,f);é(a,b)]-i-((e,f),(g+a,h_H,)) )

5.3.2.2 Definition
Let II be an integral polygon, and let a be an arc which splits II into two
connected components. We will say that a surrounds an integral point P
in IT if P is the only integral point in the closure of one of the connected
component of I\ a.

5.3.2.3 Lemma

Let K(II,T,6) be a Harnack curve, and let (c,a,b) be the type of §. Then
for every g,h = 0 or 1, the integral points of parity (b + h,a + g) will be
surrounded in the quadrant (o4 - II) by an oval of K if they belong to the
interior of the quadrant, or by an arc of K if they are on the boundary of
the quadrant.

proof. According to formula 4 above, the sign of an integral point of parity
(e, f) in quadrant (g, h) depend only on the value of the expression

[(e, /) # (0,0)] + ((e, f), (g + a,h + b)) (3)
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The following array displays the value of this expression for each parity (e, f)
(one parity per line) in each quadrant (g+a, h+b) (one quadrant per column):

I 0o | 1o | @Yy [ (o)
(0,00[0+0=0[{04+0=0[0+0=0[0+0=0
(LO)[1+0=1]1+1=0]1+1=0]140=1
(L)[[1+0=1[1+1=0{140=1[14+1=0
(0,1)[140=1|140=1|141=0(1+4+1=0

By looking at each row of the array we see that in a given quadrant, points
of parity (e, f) = (b+h, a+ g) have opposite signs than their neighbors. This
implies that they are separated from their neighbors by K (by an arc if the
point is on the boundary of the quadrant, and by an oval otherwise). O

Harnack T-curves are called so because in the case of lattice T-curve on

R P?, they are congruent to the well known curves constructed by Harnack [3]
which have

¢ One one-sided component and gﬂ%d_—zl outermost empty ovals if they
have odd degree d (see example fig. 18).
(E=1)(k=2) o pty ovals and %L%l outer-

2
most empty ovals if they have even degree d = 2k (see example fig. 19).

The additive group (Z2)® = {0,1} x{0,1} x{0, 1} acts on the distributions
of signs as follows: Let 8 = (c,a,b) € (Z,)3, and let § be a distribution of
signs on some integral points. Then

(6-8)(z,y) = (~1)HEDEN (2, y)

e One outermost oval containing

(6)
Therefore (Z,)* acts also on the set of lattice T-curves with a given carrier
polygon:

6-K(II,T,8)=K(II,7,0-4)
Notice that 8-6(z,y) = (—1)°6(0ap:(z,y)), and since K(II,T,6) = K(II, T, —4),
the group (Z,)® must be considered as (Z2) X ((Z2)?), where the first factor
(Z4) acts trivially and the second factor (Z2)? = {(a,b), a,b = Oor1} acts
as the group of symmetries {045 : (z,y) = ((—1)°z,(—1)’y)} on the four
quadrants of S(II).

5.3.2.4 Lemma
A Harnack T-curve K'(I1, T, ¢'), with &' of type §' = (c, a,b), is the image by
the symmetry o, of the Harnack T-curve K(I1,T,§) with § of type (1,0,0).
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Figure 18: A Harnack T-curve of degree 5.

proof. Indeed from the definition 5.3.2.1 of the Harnack distributions and
from formula 6 above we get that, for any 8 € (Z,)3, the distribution 8 - ¢’ is
a Harnack distribution of type the sum 6 + 8. So for = (¢ + 1, a,b) we get
that 6- K’ = K. This is equivalent to K’ = 0- K. Since §- K = K(II, T, 6 6)
we get from the remark above that K’ = 0,43(K). ]

5.3.2.5 Proposition
Let K = K(II,T,4) be a Harnack T-curve with Harnack distribution of type

(c,a,b). Let g(s,t) be the number of points of parity (s,t) in the interior of
I1. Then

1. K is a maximal T-curve.

2. The connected components of K are distributed on its ambient surface
as follows:

(a) g(0,0) empty ovals of sign (—1)° in the quadrant (o4 - IT).

(b) g(s,t) empty ovals of sign (—1)°t! in the quadrant o4 4 - II, for
each odd parity (s,t).

(c) either a nontrivial connected component if I has one broken edge

of odd length.
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Figure 19: A Harnack T-curve of degree 6.

(d) either an oval surrounding all the empty ovals of sign (—1)¢, if all
the broken edges of Il are of even length.

proof. Thanks to lemma 5.3.2.4 we assume without loss of generality that
(¢c,a,b) =(1,0,0).

From lemma 5.3.2.3 we get that every point of even parity which lies in
the interior of II is surrounded by an oval of K. From the definition 5.3.2.1
of Harnack distribution of sign, we know that this oval is of sign —1. This
proves assertion 2a.

From lemma 5.3.2.3 we get as well that for every point P of odd parity
(s,t) which lies in the interior of II, its copy (o, - P) is surrounded by an
oval of K. From the definition 5.3.2.1 of Harnack distribution, and from
formula 4 we get that this oval is of sign +1. This proves assertion 2b.

Let g = 5.,,9(s,t). We just proved that K has g empty ovals. Moreover
from lemma 5.3.2.3 we get that for every integral point JII one of its symmet-
ric copy is surrounded by an arc of K, so there is at least one more connected
component of K. So from the part (1) of theorem 5.3.1.1 we deduce that K
has exactly g + 1 connected component. This proves assertion 1.
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Let’s call O the connected component of K which intersects (transver-
sally) all the lifts in S(II) of the broken edges of II.

Assume first that IT has a broken edge ! of odd length. From lemma 5.0.1.2
we know that among the two lift of an edge e of the triangulation T one is of
negative sign and the other one is of positive sign. Therefore the lift p=*(1)
in S(II) is intersected transversally an odd number of times by O, which
implies, since p~*(!) is an embedded circle, that O is not an oval of K (see
fig. 20). This proves assertion 2c.

T¢)

Figure 20: If an edge of II is of odd length, then a component of K cuts the
embedded circle p~}(I) an odd number of times. Therefore this component
is not an oval.

Assume now that all the broken edges of II are of even length. This
implies that all the endpoints ¢~ (u;) of the broken edges are of same parity.
Thanks to prop. 4.2.1.1, we assume without loss of generality that they are
of even parity. Therefore one integral point over two on 0II is of even parity.
Since ¢ is assumed to be of type (1,0,0), all the points of even parity lying on
OII are surrounded by arcs of II in the quadrant II, and all the other points
lying on OII are surrounded in another quadrant.

By retracting each arc, which surrounds an integral point lying on O1II,
toward this point, we shrink O onto the boundary of the quadrant II. Since II
is homeomorphic to a disk, this boundary, and hence O, is an oval. It is clear
that during the shrinking no crossing with another connected component of
K happened, so O, like the boundary of II, surrounds exactly the empty
ovals within II (see fig.21). This proves assertion 2d. O
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Notice that the assertion 1 of proposition 5.3.2.5 proves (2) of theo-

rem 5.3.1.1, and therefore finishes the proof of 5.3.1.1. O
Oup+ I n O O
IT
— O O O
o o O O

Figure 21: When all the edges of II are of even length, the “special” compo-
nent of the Harnack T-curve can be moved onto the boundary of II. Therefore
it 1s an oval.

5.3.2.6 Corollary
Any two Harnack T-curves with same carrier polygon, with same Harnack
distribution, and with two arbitrary triangulations, are congruent by an

homeomorphism of S(II) which is the identity on the boundary of the quad-
rants of S(II).

proof. Indeed since the sign distributions on the integral points are the same,
the sign of the segments on the boundary of the quadrants of S(II) are also
the same. This fixes the T-curves on this boundary. Prop. 5.3.2.5 shows that
the connected components of any two such Harnack T-curves, restricted to
a given quadrant, are congruent. U

5.4 Second Application: Orientation of T-curves

5.4.0.7 Definition

A real algebraic curve is called a dividing curve (or a curve of type I) if it
divides its complexification into two connected components, and is called a
non-dividing curve (or a curve of type II) if it does not divide its complexi-
fication.
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Figure 22: Eight types of Harnack distributions for four Harnack curves
symmetric to one another.

5.4.0.8 Lemma
A real plane projective nonsingular curve is of type I if and only if the quotient
of its complexification by the complex conjugation is orientable.

proof. Let K be a real plane projective nonsingular curve of degree d, let
CK be its complexification, and let 7 be the complex conjugation. Recall
that CK is an orientable surface of genus id—_%d—'—zl. If the curve K is of type
I, then the quotient CK/7 is homeomorphic to a component of CK \ K, and
therefore orientable.

Recall that K is the set of fixed points of 7. Assume now K is of type
II. Let P € CK a point not in K, and let v be a path connecting P to its
conjugate 7(P) which doesn’t intersect K. Since 7 reverses the orientation
of CK, the image of the path v in CK/7 is a closed path which reverses the
orientation. O

5.4.0.9 Definition
A lattice T-curve is of type I if its T-filling is orientable, and of type II if its
T-filling is non-orientable.

Let K be a real plane projective nonsingular curve of type I. The curve K
divides its complexification CK into two orientable halves. An orientation on
CK induces an orientation on each of the halves. These orientations induce
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in turn two opposite orientations on K (since it is the boundary of each of
the halves).

Let K = K(II,T,4) be a lattice T-curve of type I. Since F(K) is ori-
entable, an orientation on it induces an orientation on its boundary. Let’s
retract F'(K) to the incidence graph G of the triangulation 7, so we get an
orientation of the cycles C = pu(C) which are the images of the connected
components of K. An segment e of C lifts to a segment 0,4 - € of C. If e is
oriented from endpoint (z,y) to endpoint (z’,y’), then segment o,y - € will
be oriented from o,p - (z,y) to oap - (z',y'). We get this way an orientation
of all the connected components C of K (see fig. 23). The two opposite
orientations on F(K) induce then two opposite orientations on K.

Figure 23: The oriented cycles on the incidence graph on II lift to oriented
cycles on the incidence graph on S(II). We just sketched here small portions
of two cycles meeting on an edge.

5.4.0.10 Definition
The orientation described above on a lattice T-curve of type I will be called
a (type I)-orientation of the T-curve.

Now we have defined type I and type II, and type-I-orientation for a
lattice T-curve, it would be interesting to prove for lattice T-curves of given
degree on R P? theorems known for real plane projective nonsingular curves
which take into account type and orientation. That would be useful in order
to find extensions of these theorems to all lattice T-curves. For instance:

Arnold congruence. An oval is even (odd) if it is contained inside an
even (odd) number of other ovals. Let P and N be the number of even and
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odd ovals. For a dividing curve of even degree d = 2k, this congruence, of

Arnold [1], holds:
P — N = k* mod 4

Rokhlin formulas. Let K be a dividing curve. So we can compare the
orientation of any two connected components of K. A pair of nested ovals is
called an injective pair. An injective pair is positive if the orientation of the
two ovals can be recovered by an orientation of the annulus they bound, and
the pair is negative if the orientation of the two ovals is not coherent with
any orientation of the annulus they bound.

If K has odd degree, an oval O can be of two kind: The one sided com-
ponent can be doubled and then deformed and moved to the boundary of O,
and if its orientation coincide with the orientation of O, then O is positive,
otherwise O is negative. Let II* and II~ be the number of positive and neg-
ative pairs, let AT and A~ be the number of positive and negative ovals, let
[ be the total number of connected component of the curve, and let d be the
degree of the curve. These two formulas, of Rokhlin [10], hold:

2
20t —117) =l—£f—1— if d is even

(At A7) +2(II* — ) =1 -

—(-d_ll(& if d is odd

5.5 Gluing lattice T-curves

5.5.1 Gluing the curves

5.5.1.1 Definition
If two lattice T-curves K; = K(II;,71,6;) and K, = (II,, 73, 42) satisfy the

following gluing conditions:
1. II, UII; is a polygon II, and II; NII, is a polygonal line.
2. 41 is equal to 65 on II; N II,.

then their gluing K #K; is the curve K(II, T, d) where (T,4¢) is equal, on
II;, to (71,61), and on II,, either to (73,d2) if & = &; on I, NIy, or to
(7-2, —52) if 52 = —61 on H1 N Hz.

Recall that for a lattice T-curve K (II, T, §) and a symmetry o4 : (z,y) +
(=1)%z,(=1)%y) , a,b € {0,1}, the symmetric lattice T-curve (oq4p - K) is
defined by K(II, 7,044 - ), where aa4 - §(z,y) = (=1){@H g (2, y).
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5.5.1.2 Lemma

Let a,b € {0,1}. If two lattice T-curves K; = K(II;,71,6,) and K, =
K (I3, T3, 82) satisfy the gluing conditions and if the primitive segments of
II, N II; have all parity (a,b), then K, and (0p4 - K3) satisfy also the gluing
conditions.

proof. Since the primitive segments of II; N II, have all same parity, the
parity of the integral points of II; NII; takes only two values, say (a’,b") and
(a”,b"). If e is an edge of the triangulation 7 lying on IT; NII, with endpoints
(z',y') and (2”,y"), then

(:O-b,a . 52(.’17/, y/))(ab,a : 52($H, y”)) = Sign (Ub,a * 6)
(= 1)\ B 45 (b)) iy o

= sign(e) sincea’+a" =a
and ¥/ +b" =0

— 51(xl, yl)al(w”’ y//)
Therefore o}, - 62 equals to +6; on II; N II,. O

Notice that K;#(c - K3) can be, up to congruence, the same curve than
K \#K, (see fig. 24), or another curve (see fig. 25).

5.5.2 Orienting locally the T-curves to be glued

A symmetric copy (044 - v) of an oriented arc v gets an orientation induced
by symmetry from (the orientation of) +: If 4 is oriented locally away from
(toward) one of its endpoint P, then (o, p-7) is oriented locally away from (to-
ward) (045 P). So we can always compare the orientation of two symmetric
arcs.

Let Ky = K(II,,71,6:1) and K; = K(Il;, 73, 42) be two lattice T-curves
satisfying the gluing conditions, and such that the parity of the segments
of II; N II, takes only one value (b,a). We denote like in section 2.4.1 the
quotient maps

gi:| J(oea L) — S(IL) and
q:| |(oea- (UML) — S(I; UTI,)
and the projections
pi: S(IL) — II; and
p:S(IL UML) — (II; UIlL)
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Figure 24: Here K # K, and K;#(0o,1 - K;) are congruent curves.

Let P1 be a point of intersection of K with the lift x4 (Il N II;). Let
P= ,ul(Pl) and let P, be the pomt of intersection of K, with u; (H1 N II,)
such that p(Pz) P. We have g, (Pl) =gq; (P2) (0ca- P)U (0atcprd P)
for some ¢,d € {0,1}.

For i = 1,2, let ; be a small arc of K; through P;. The point P; discon-
nects ¢; into two connected components, one in quadrant o4 II; the closure
of which we denote o and one in quadrant 044 44 - II; the closure of which
we denote o. An orientation on a; induces an orientation on o} and on o
which in turn induces

e an orientation on oj and on o} by the gluing K, #K,.
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Figure 25: Here K;#K, is a Harnack curve, and K;#(oo, - K2) is a non

maximal curve.

e an orientation on (0, - @) and on (04p-cfy) by the gluing K #(04 5 K).

5.5.2.1 Lemma
The orientation on o) and oy, and on (0ap - o) and (04 o) defined above

induce an orientation on oy and on (0,.p - a2) which are opposite to each
other.

The proof is illustrated on fig. 26. a

5.5.3 Gluing the T-fillings

Let K; = K(I1,,71,61) and K, = K(II,, 73, 62) be two lattice T-curves satis-
fying the gluing conditions. For i = 1,2, we denote like in section 2.4.1, the
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Ocd I1

Gc+a,d+b -I1

S{Iy) SIy) Uec-II; Uoc.II

S(I;UII,)

S(Hl U Cab 'HZ)

Figure 26: The arcs a; and o5 are cut each into two arcs. These four arcs are
re-glued two by two in two different ways according to the gluing of K #K,
or to gluing K#(op,4 - K2). The orientation of a; being fixed, it implies two
different orientations of as.

projections y; : S(IL;) — II; and p : S(II; UILR) — (II; U ).

F(K1#K,) is obtained from F(K;) and F(K>) by identifying segments s
of 0F(K,) with segments s’ of F(K>), with or without a twist, as explained
in section 5.1. An orientation on a segment s correspond to an orientation on
an arc of K going through the lift u7* (II;NII;). As explained in section 5.5.2
this orientation induces an orientation on the corresponding arc of K, by
Ki#K,.

Notice from fig. 5.5.3.1 that s and s’ are identified with a twist if they

have same orientation and without a twist if they have opposite orientation.

5.5.3.1 Lemma

Assume that the parity of the segments of II; NI, takes only one value (b, a).
Then the segments s and s' are identified in F(K #(04p- K2) with (without)
a twist when they are identified without (with) a twist in F(K,#K3).

proof. An arc v of K, with an orientation and a symmetric arc (a,4p-7) with
the orientation induced from 4 by symmetry, project by u, to the same arc
on the incidence graph of 7; and with the same orientation. Since F(K3) is
constructed from the images of the connected components of K, by u,, the T-
fillings F(K;) and F (0,4 K3) are equals but we get from lemma 5.5.2.1 that
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Figure 27: Gluing F(K;) and F(K3) corresponding to fig. 24.

the orientation of s’ induced from s by K;#K; is opposite to the orientation
of s" induced from s by K;#(0ap- K2). The remark above finishes the proof.
0O

5.5.4 Gluing maximal lattice T-curves

Let K; = K(IIy,71,61) and K; = K(II,, 73, 82) be two lattice T-curves satis-
fying the gluing conditions. Like previously the segments on 8F(K;) which
are identified in the gluing F(K,#K,) with segments on F(K,) will be de-

noted s when considered as part of 0F(K}) and s’ when considered as part
of OF(K>).

5.5.4.1 Lemma
If K©1# K, is a maximal T-curve, then K, and K, are also maximal T-curves.

proof. Recall from lemma 5.3.1.3 that a T-curve is maximal if and only if its
T-filling is a sphere with holes. If F(K}) or F(K3) has the property of being
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F(K; # K,) F(K, # (0g1-K2)

Figure 28: F(K,#K;) and F(K#(0o, - K3)) corresponding to fig. 25.

not orientable or having some handle, this property remains in F(K;#K>).
Since K;#K, is maximal, F(K;#K>) is a sphere with holes, F(K;) and
F(K,) should be as well spheres with holes. Therefore K; and K, are maxi-
mal. a

5.5.4.2 Definition

Let S, and S, be two surfaces. The r-connected sum of S; and S, is the
surface obtained by removing r disks from S;, and r disks from S,, and by
gluing on the holes made up this way r cylinders connecting S; to S,.

Notice on fig. 30 that more complicated connected sums are equivalent
to r-connected sums.

5.5.4.3 Lemma

If K\#K, is a maximal T-curve, then the segments s belong all to only one
connected component of 0F(K,), and the segments s’ belong all to only one
connected component of 0F(K,).

proof. Let’s glue disks along the boundary of F(K}), F(K3), and F(K1#K),
so we get three surfaces S(K;),S(K3) and S(K;#K>) without boundary.
Now the assertion of the lemma can be restated as follows: “The surface
S(K1#K,) is a 1-connected sum of the surfaces S(K;) and S(K;)”. Since
K\# K, is maximal, we get from lemma 5.3.1.3 that S(K;#K3) is homeo-
morphic to a sphere, and from lemma 5.5.4.1 that S(K;) and S(K3) are also
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F(K; #K,) F(K; # Oyp - K2)
- A

S N

Figure 29: The orientation in F(K3) of a segments s’ is induced from the
orientation of the corresponding segment s in F(K;) and depends on whether
s 1s identified to s’ with a twist or without a twist.

homeomorphic to spheres. And it is clear that the r-connected sum of two
spheres is a sphere if and only if r = 1. a
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Figure 30: A more complicated connected sum of two surfaces is equivalent
to a r-connected sum (here r = 2).

6 From Harnack T-curves to Maximal T-curves

6.1 No Twist Implies Harnack T-curve

Let K(II,T,6) be a T-curve. Recall that the T-filling F(K) is constructed
by gluing the thick Y’s with or without a twist.

6.1.0.4 Lemma

For every triangle t of T, the T-curve K doesn’t intersect some copy (045 t),
and in each other copy of t the T-curve K surrounds a copy of a different
vertex of t (see fig. 31).

proof. Let P, P,, P; be the vertices of ¢t and let (c;,d;) be the parity of P..
Then the lemma can be restated arithmetically as follows:

For some indexation {(ay,b1),...,(a4,bs)} of the four element set {0,1} x
{0,1}, and for every circular permutation {1, j,k} of {1,2,3}, we have:

1. 8(0aip; - Pj) = 6(0aip; - Pi) # 8(0aip; - Fi)
2. 5(004,54 ’ Pl) = 6(004,174 ’ P2) = 5(004174 ) P3)
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Let (—1)" = é(P;). Then from formula 2 of section 2.4.2, we get that asser-
tion (1) is equivalent to

((ai,bi), (¢jrd;)) +m; = {(ai,bi),(ck,di)) +m  or more simply:
((ai,b:), (c; + ex,dj +di)) = n +m (7)

((aiybi), (¢, d)y +m; = ((aiy 1), (ciydi)) +mi + 1 or more simply:
((a:,0i), (¢ +ciydj +di)) = mi+mi+1 (8)
Since (c;,d;) # (cx,dk), equations 7 and 8 are linearly independent. So

this system has a unique solution (a;, b;).
Similarly assertion (2) is equivalent to

((a4,04), (c1,d1)) +m = ((as,b4),(c2,d2)) +m2  or more simply:
((as,b4),(c1+ c2,d1 +d3)) = m+m (9)

((aq,bs),(c1,dr)) +m = {((as,bs),(cs,d3)) + 73+ 1 or more simply:
((aa,b4),(c1 +e3,dy +d3)) = mi+ms (10)

For the same reason this system has a unique solution (a4, bs). i

vl
Nz

Figure 31: How a T-curve intersects the four symmetric copies of a triangle
of the triangulation.




6 FROM HARNACK T-CURVES TO MAXIMAL T-CURVES 55

6.1.0.5 Lemma

Let ¢, and t4 be two adjacent triangles of T such that the corresponding thick
Y’s are glued without a twist. Let Py, P, Py and P,, P3, P, be the vertices of
t, and t4 respectively.

1. Py and Py have same parity if and only if §(P,) = 6(Py).

2. If P, has a different parity than Py, then K will surround copies of P,
and P, in different quadrants.

proof. Without loss of generality we assume that in II the point P, is sur-
rounded by an arc of K. Let (a;,b;) be the parity of P,.

For some c,d € {0,1} , (¢,d) # (0,0), an arc of K surrounds a copy of
P, in (0cq-t1). Since the thick Y’s in ¢; and t4 are glued together without a
twist, the same arc must surround the same copy of P, in 0.4 t4. The same
1s true with P3 instead of P, with some e, f # ¢,d (and ¢, f # (0,0)) (see
fig. 32). We have then

5(0'c,d . Pl) = J(O'C’d . P4)
(2) { 8(0uy - P) = 8(ces - Py)

From formula 2 of section 2.4.2 we get that §(P;) = §(P,) if and only if the
following system has a solution:

((C, d)a (al + a4,b1 + b4)> =0
(b) { ((eaf)a (al + a4,b1 + b4)> =0

Since (¢,d) # (e, f) this is equivalent to (a; + a4,b; + bs) = (0,0), which
means that P; and P, have same parity.

Assume now that (Py) # 6(Ps), so K doesn’t intersect t4. The T-curve
K surrounds P, in ¢;. We get from lemma 6.1.0.4 that K surrounds a copy
of Py in some (o - t4), where o0 # oo (in fact it is easy to compute that
g = Uc+e,d+f)' a

6.1.0.6 Proposition
If all the thick Y’s are glued in F(K) without twists, then K is a Harnack

T-curve.

proof. Thanks to prop. 4.2.1.1, we assume without loss of generality that II
contains an even point.
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Figure 32: If the thick Y’s in ¢; and ¢, are glued with no twists, then §(P,) =
d(P,) if and only if P; and P4 have same parities (here they have same parities
on the right diagram, and different parities on the left diagram).

Since the incidence graph in every quadrant of S(II) is connected, we get
from lemma 6.1.0.5 that all the even points in some quadrant (o, - IT) have
a certain sign and all the odd points in (g, - II) have opposite sign. This is
the definition of a Harnack distribution, so K is a Harnack T-curve. O

6.2 Maximal Implies Gluing of Harnack T-curves

Let K(II,T,6) be a T-curve. Recall that the T-filling F(K) is constructed
by gluing thick Y’s: Let ¢; and ¢; be two adjacent triangles of 7. Denote s; ;
the segment of the thick Y of ¢;, which lie on #; ; = t; N t; and denote s;; the
same segment when considered as a segment of the thick Y of ¢;. Then s;; is
identified to s;; with or without a twist. When s, ; is identified with a twist,

we will denote it s; ; tw s;;.

6.2.1 An algorithm to cut T-fillings

If K is not a Harnack T-curve, we describe now an algorithm which splits
F(K) into two connected components F; and F,. The algorithm finds a
sequence of oriented surfaces Sy, ..., S, together with a sequence of twists

Siygi YW Sjidys vy Sin e tW Sj 4. The initial data is:

e Sy = F(K). Notice that Sy is orientable.
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o The first twist s;, ; tw 8j i, is chosen arbitrarily.
The algorithm itself is given as follows:

e S is the surface obtained by cutting Sk-; along the kth twist, (s;, j, tw
Sjix) 7 (Sipje U 84,0, )- The surface Sy is orientable since Si_; is
orientable.

o If S; has two connected components, the algorithm stops, i.e. k = r.

e There exist a loop around a vertex of 7 in Sk_;, which passes through

Sip.gx TW Sj, i\, otherwise it is clear that cutting s;, j, tw s;, ;, to form Sk
would disconnect S, and the algorithm would have already stopped.

e Let’s orient such a loop. This loop must pass through an odd number

of other twist, otherwise Sx_; wouldn’t be orientable. Let s;,,, j.., tw
Sjes1ving: 0€ the next twist encountered when following the loop from

Sij, i tW Siksin:

The algorithm stops since there is a finite number of twists. By this al-
gorithm, F(K) may be cut along too many twists. So for each twist cut
(Sikvjk tw Sjk,ik) = (Sik,jk U sjkﬂ'k)? if its re—gluing (Sikyjk U Sjkyik) = (Sikvjk tw
S5.,i,) doesn’t reconnect the two connected components of S,, then let’s re-
glue it. After this operation let F; and F; be the two connected components
into which F(K) is split.

Notice that the algorithm gives also a decomposition of II into two con-
nected components. Since the twists are located on the edges of the triangu-
lation 7, at each cut of a twist s;, , tw Sjeixy let’s cut also IT along the edge
ti.gx Of T. Let’s re-glue also the cuts which are not necessary, so at last we
get from II two connected components, one is a polygon, but the other one
may not be a polygon (but may be a polygon with a hole).

6.2.2 Spheres with holes glued by twists

6.2.2.1 Proposition
If K is maximal, then either K is a Harnack T-curve, either it is a gluing of

two maximal T-curves K, and K, such that F(K,) is glued to F(K,) by one
or two twists and nothing else.
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proof. If F(K') has no twist, then we know from 6.1.0.6 that K is a Harnack
T-curve. So assume now that F(K) has a twist.

Figure 33: Here F(K) becomes disconnected after 3 cuts along twists.

Let Fy and F; be the two connected components into which F(K) is
decomposed by the above algorithm. Since K is maximal, F(K) is homeo-
morphic to a sphere with holes (see cor. 5.3.1.3) and each of F} and F; is
also homeomorphic to a sphere with holes (for the same arguments than in
lemma 5.5.4.1). So for the same arguments than in lemma 5.5.4.3, we get
that Fy and F, are glued to one another along one connected component O,
of 0F; and one connected component O, of dF;.

Let Dy and D, be the two disks obtained from F; and F; by gluing disks
along the connected components of their boundary other than O; and O,.
Let S’ be the surface obtained from F(K) by gluing disks along the connected
components of 0F(K). The surface S’ is also obtained by

o gluing D to D, into a surface D; ; by the r twists used in the algorithm:
(Sikvjk U Sjk,ik) — (Sikvjk tw Sjk,ik) yk=1,...,r
e gluing disks along the connected components of 0D ».

Since D is glued to D, only by twists, it is easy to compute that 9D, ,
has two connected components if the number r of twists is even, and only
one connected component if 7 is odd (see fig. 34). If r is odd, by doubling
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Figure 34: The holes O, and O, give rise to one or two holes in F(K;#K).
Here D1 and D, are the disks obtained by filling the holes of F(K;) and
), except Oy and O;. Unfill the holes in D; 3 to get F(K #K3).

S-S

Figure 35: Double the surface, then take the half. Here it is a torus with one
hole.

D, ; along its boundary and by taking the half of it (see fig. 35), it is easy to
see that D, 5 is a sphere with % handles and one hole.

If r is even, it is easy to make a hole from one twist (see fig. 36): Let’s
slide along 0D, an end of a "twisted bridge” (between D; and D) until it
comes close to the other end of the twisted bridge. Since the slid end passes
through an odd number of twists, it become untwisted. Now by the same
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trick than above, it is easy to compute that D , is a sphere with % handles
and two holes.

Since K is maximal, S’ is a sphere, so D ; is a sphere with holes. There-
fore r = 1 or 2 (see fig. 37).

Figure 36: An end of a twisted ”bridge” is slid along the boundary until it
comes close to the other end. So we get a surface with one hole and an odd
number of twists. Here it is a torus with two holes.

Let’s cut the polygon II along the edges of T on which lie the one or two
twist. Then II becomes decomposed into two polygons II; and II,. Indeed
to decompose II into a polygon and a polygon with a hole, one would need
to cut II at least along three edges of 7. Therefore K is the gluing of two
lattice T-curves Ky = K(IIy, 71, 61) and K, = K(II3, T, 82), where (75, 6;) is
the restriction to II; of (7,4). Moreover F; = F(K;) and F; = F(K,), and

since these two surfaces are spheres, K; and K, are maximal. a

6.2.2.2 Definition

The total parity of an integral segment is the element 8 = (e, f,g) € (Z3)?
defined as follows:

e = abl +ad'b
= b+ ¥
g = a+d
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48~ C
-0

Figure 37: For one twist, we get a disk and for two twists we get an annulus.

where (a,b) and (@', ') are the two values that the parity takes on the integral
points of the segment.

Notice that the total parity (e, f, g) of a segment contains its parity (f, g).
Notice that there is exactly six total parities of integral segments though (Z,)3
contains eight elements. Parities (0,0,0) and (1,0, 0) cannot exist since they
correspond to a segment having even parity. This definition which embed
some edge parities in (Z,)? may seem strange at first glance, but it allows us
to present in a nice way the following property.

6.2.2.3 Lemma

Let Ky = K(II,,71,6,) and K, = K(Il,,72,62) two Harnack T-curves which
satisfy the gluing conditions and such that the parity of the segments of
[T, NI, takes only one value. Let 6(s) be the total parity of the segments of
IT, NII;. Let 6, and 6, be the types of §; and 8;. Then either 8, = 8, either
02 = 9(8) -+ 01.

proof. Let (a,b) and (a’,?') be the two values that the parity takes on the
integral points of II; N II;. Since the additive group (Zz)? is transitive, we
have 8, = 646, for some 8 = (e, f, g) € (Z,)?, so 3(z,y) = 0-61(z,y) for any
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(z,y) € (II; N II3). Recall from formula 6 of section 5.3.2 that 6 - §(z,y) =
(—1)eHf9)ledD§ (2, y), where (c,d) is the parity of (z,y). Since K and K,
satisfy the gluing condition, é; = d; on II; N1II; so &;(z,y) = 0 - &i(z,y) for
any (z,y) of parity (a,b) or (a’,b’). Therefore to find § we must solve:

e+((£,9),(a,0)) = 0
e+((f,9),(,0)) = 0

Which is equivalent to the following Kramer system:

fa+gb =e
{re = (11)

It is clear that (e, f,g) = (0,0,0) is a (degenerate) solution. In that case
81 = 0, so let’s assume that (e, £, g) # (0,0,0), so 8; # 6,.

o Either the system 11 above is degenerate:

ab +a'b =
< ((a,b),(¥,a")) = 0

either (a,b) = (0,0) or (a’,¥')=(0,0)
{ either (a,b) = (o', V)

(a,b) = (a’,b’) is impossible because (¢ + ¢/, d + d') is the parity of the

segments of II; N I3, and a parity of a segment is never even. So the

system is degenerate if and only if (a,b) = (0,0) or (d’,b') = (0,0). In

that case e = 0 and we can write (e, f,g) = ((ab’'+a'b), (b+V), (a+a'))

which is different from (0, 0,0) since (a,b) is different from (a’, v').

o Either the system 11 above is non-degenerate, i.e. ab’' +a'b = 1. In
that case:

— Either e = 0, so we get f = g = 0 which is impossible since we
assumed (e, f,g) # (0,0,0).
— Eithere=1,soweget f=b+b and g=a+d'.

So finally, we get that either § = (0,0,0), and then 8, = 6, either § #
(0,0,0), and then 8 = 8(s) so 8, = 6(s) + 6. O
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n=(0,0) + n=(0,0) + A+ n =00 ——
AL TR A TR AN
n

9(s)=(+1,-1,-0-1)\+/\+/.- 9(s)=(+1,+1,-1)\+ . 8(s) = (+1,-1, 1) +/
n=a1 _ , Sk , . ko
A AN L LA ,\+ ZA PN
/_

n=(1,0) > n=(0,1)

6(s)=(-1,-1,+-1)x‘“\/+ 0(s) = (_1,+1, 1)\
N 4

Figure 38: The total parity 6(s) of a primitive segment s, and its action as a
symmetry on the distribution of signs on s. This action doesn’t change the
sign of s, although it may change the signs of the integral points of s (in that
case the symmetry is represented with doted arrows).

0(s)=(-1,-1 1—) \_’ V

6.3 Zone decompositions, and Harnack zone-wise sign
distributions

6.3.1 Zone decompositions
Let’s recall the definition of a zone given in section 2.5.

6.3.1.1 Definition

A zone will be an integral polygon Z C II such that its boundary is a union of
primitive segments having each at least one end on 9II. A zone decomposition
of IT s a cell decomposition of I such that the two dimensional cells are zones.

6.3.1.2 Lemma

Let T be a primitive triangulation of an integral polygon II, and let Z and
Z' be two zones of Il which are union of triangles of T. Then Z N Z' is the
union of some integral points, some primitive edges, and some zones of II.

proof. Indeed the intersection of a primitive segment of 0Z with Z’ is either
empty, either an integral point, either the segment itself. Since the boundary
of ZN Z' is a union of intersections of primitive segments of 3Z with Z’ and
of intersections of primitive segments of 0Z’ with Z, it is a union of integral
points, and primitive segments having each at least one endpoint on 9II. So

+
=(1,0) -F) =(1,1) 9
. n - /+ n _ﬁ

n=(0,1) k S

+

+

+



6 FROM HARNACK T-CURVES TO MAXIMAL T-CURVES 64

if int(Z) N int(Z’) # 0, then the two dimensional part of Z N Z’ is a union
of zones of II. O

6.3.1.3 Definition
The intersection AN A’ of two zone decompositions of an integral polygon

IT 1s the cell decomposition of II with all the possible intersections of zones
of A with zones of A’ as cells.

6.3.1.4 Corollary

Let T be a primitive triangulation of an integral polygon II, and let A and A’
be two zone decompositions of I1, such that every zone is a union of triangles
of T. Then AN A’ is a zone decomposition of II.

proof. Indeed this assertion follows by applying lemma 6.3.1.2 to every zone
of A successively with every zone of A’. a

6.3.1.5 Definition
A sign distribution on an integral polygon will be called a Harnack zone-

wise distribution, if it is a Harnack sign distribution on any zone of a zone
decomposition of the polygon.

6.3.2 Harnack zone-wise decomposition

6.3.2.1 Lemma
Let II be an integral polygon, let A be a zone decomposition of II, let § be a
Harnack zone-wise decomposition (with respect to A), and let T and T’ be

two arbitrary primitive triangulation of Il which are sub-decompositions of
A. Then K(II,T,4) and K(II,T",8) are congruent.

proof. Indeed let Zy, ..., Z, be the zones of A, let §; be the sign distribution
4 restricted to Z;, let 7; and T be the restrictions of 7 and 7’ to Z; and
let K; = K(Z;,Ti,é;), and K! = K(Z;, T!,é;). Form corollary 5.3.2.6 we get
that K; and K| are congruent by homeomorphism which is the identity on
the boundary 0Z;. Therefore, since K = #K,- and K' = #K,’ (ie. K
is the gluing of all the K; and K’ is the gluing of all the K7), the curves
K(II,7,6) and K(II,7",§) are congruent. 0

6.3.2.2 Proposition

For any maximal lattice T-curve K(II,T,$), the triangulation T is a sub-
decomposition of some zone decomposition A of Il, and § is a Harnack zone-
wise sign distribution with respect to A.
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proof. From prop. 6.2.2.1 we know that the algorithm of section 6.2 de-
composes II into two polygons II; and II, which have only one or two edges
in common. Therefore it is clear that II; and II; are zones of II. In this
algorithm, the twists are chosen with some degree of freedom. So a partic-
ular progression of the algorithm is characterized by an ordered sequence of
twists. Let Iy, ..., I, be all the indexations of the possible sequences of twists
characterizing a progression of the algorithm.

So to each I; corresponds a decomposition of II into two polygons IIy;
and Ily;4;, and since those polygons are zones, to each I; correspond a zone
decomposition A; of II. From corollary 6.3.1.4 we get that the intersection
of all the A; is a zone decomposition A of II. Let (7z,dz) be the restriction
of (T,6) to a zone Z of A, and let Kz = K(Z,7z,3z).

Since the algorithm of section 6.2 has been used as much as possible, all
the twists of F/(K) have been cut at some stage. So for every zone Z of A,
the T-filling F(Kz) contains no twist. From prop. 6.1.0.6 we get that K,
is a Harnack T-curve. So K = # Kz and ¢ is a Harnack zone-wise sign
distribution with respect to A. ]
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7 From zone decompositions to Maximal T-
Curves

7.1 Minimal and odd-cycle-free zone decompositions
Let II be an integral polygon and A be a zone decomposition of II.

7.1.0.3 Definition
A zone decomposition will be called a minimal zone decomposition if there
exist a zone-wise Harnack distribution of signs é on II, with the property
that for any two adjacent zones Z; and Z; of A, the restrictions dz; and ¢z
are of different type.

7.1.0.4 Definition

The incidence graph of a zone decomposition A of an integral polygon II is
the 1-skeleton I' of a cell decomposition of II dual to A. So I' is a graph, its
vertices represent the zones of A, and two vertices are linked by a number of

(graph-)edges equal to the number of (zone decomposition)-edges shared by
the two corresponding zones.

7.1.0.5 Definition

A set of zones Z;,...,Z, of a zone decomposition A of an integral polygon
will be called a cycle of zones if they are represented by the vertices of a
(graph-)cycle on the incidence graph of A. We will assume in our notations
that the zones are indexed always in the same direction, say counterclockwise.
We will call an edge of the cycle, and we will denote it e; the edge shared by
Z; and Z;y1, with ¢ modulo r (if r = 2 there is two edges e; and e, shared
by both Z; and Z;). We will also note usually S the vertex common to all
the zones Z;.

Notice that if A is an arbitrary zone decomposition of II, it is possible to
make a minimal zone decomposition A’ out of A, by the following algorithm:

o IfZ,,...,Z, is a cycle of zones of A, let’s fix a Harnack distribution 4,
of arbitrary type 6, in Z;, and let é; be the Harnack distribution in Z; ,
i=2,...,r,0f type §; = 6, + 23;21 6(e;). Thanks to lemma 6.2.2.3 we
have 6;_; # 6; and 6;_; = é; on €;_;.

o If 6,4+ 6(e,) # 61, then let’s remove the edge(s) of Z; N Z,, and consider
Zy U Z, as a new zone Z]. By doing this operation as many times
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as necessary, we get a new cycle of zones Zj,2,,...,Z,, where Z] =
Zsta U---UZ, U Z; (s may be equal to 1), such that §,; = 6, i.e.
Y7, 8(ei) = (0,0,0) mod 2.

¢ By doing the operation above simultaneously on all cycles of ', we get
from A a new zone decomposition A’.

7.1.0.6 Lemma
The new zone decomposition A’ is minimal.

proof. Indeed, let’s choose a type 6; of Harnack distribution in an arbitrary
initial zone Z;. For any zone Z of A, let §; be the type of the Harnack
distribution in Z defined from 6, as follows: Since the incidence graph I of
A’ is connected, there is a path on I from the vertex representing Z; to the
vertex representing Z. Let ej,..., e, be the edges of zones of A’ which are
represented by the edges of this path. Then 87 = 6; + >_7_, 0(e;).

The result doesn’t depend on the path chosen. Indeed let 8, be the
type found with another path. The difference of the two paths is a union
of cycles. From the construction of A’ we get that the sum of the total
parities of the edges of each cycle is equal to (0,0,0). This implies that
6, = 8z. So from this construction we get that for any two adjacent zones
Zi, Z; € A, the Harnack distributions dz, and 6z; have different types, and
from lemma 6.2.2.3 we deduce that the two distributions are equal on Z;NZ;.

So the sign distribution § which is equal to §7 on any zone Z € A’ shows
that A’ is a minimal zone decomposition. a

We recall here the definition of an odd-cycle-free zone decomposition given
in section 2.5 in slightly different terms.

7.1.0.7 Definition

An odd-cycle-free zone decomposition of an integral polygon is a zone de-
composition of that polygon such that, for any cycle of zones of that zone
decomposition, and for any parity, the number of edges of the given cycle
and of the given parity is even.

7.1.0.8 Lemma
An odd-cycle-free zone decomposition is a minimal zone decomposition.

proof. Indeed let A be an odd-cycle-free zone decomposition. If we apply the
algorithm described above we must get A = A’. It is clear that a necessary
and sufficient condition for this is the following: For every cycle of zones
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Ziy.oy Ze of A, the sum ) 1_, 6(e;) is equal to (0,0,0) (with the notations of
definition 7.1.0.5). Since all the segments e;,. .., e, have a common endpoint,
S, the total parity 6(e;) of an edge e; depends only on the parity of the other
endpoint, and therefore depends only on the parity (a,b) of e;. Since for
each parity, the number of segments ¢; of that parity is even, for each total
parity, the number of segments e; of that total parity is also even. Therefore
Z:r'zl 0(6,’) = (07 Oa O) a

Notice that the converse of this lemma is not true. We exhibit in fig. 39
a minimal zone decomposition which is not an odd-cycle-free zone decompo-
sition.

Figure 39: A minimal zone decomposition of the triangle T(4) which is not
an odd-cycle-free zone decomposition. Notice that the lattice T-curve on
R P? constructed from it is not maximal.

7.2 From minimal zone decompositions to T-curves

Now we describe in two steps a construction of a T-curve K out of the data
(I, A) where II is an integral polygon (the carrier polygon of K), and A is
a minimal zone decomposition of II.

o Let complete arbitrarily the zone decomposition A into a primitive
triangulation 7T of II.

e Since A is minimal, let § be a zone-wise Harnack distribution of signs,
such that for any two adjacent zones Z;,Z; € A, the restrictions dz,
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and dz; have different types.

7.2.0.9 Lemma

Let I be an integral polygon in R, let A be a minimal zone decomposition,
and let K = K(II, T, ) be the lattice T-curve constructed as above from the
data (II, A). Then K depends, up to congruence, neither on the choice of the
triangulation T which completes A, neither on the choice of the zone-wise
Harnack distribution of signs 6.

proof. Let K' = K(II, 7", 4) be a lattice T-curve constructed as above from
the data (II, A) with the same choice of sign distribution § but with an
arbitrary other choice of triangulation 7.

We get from cor. 5.3.2.6 that for any zone Z € A, the Harnack T-curve
Kz = K(Z,Tz,6z) (where (Tz,6z) is the restriction of (7,6) to Z) is con-
gruent by a homeomorphism which is the identity on the boundary of the
quadrants of S(Z), to K = K(Z,7T,0z). Since K is the gluing of the Har-
nack T-curves Kz for all the zones Z of A, we deduce that K is congruent
to K.

Now let K’ = K(II,T,¢') be a lattice T-curve constructed as above from
the same data (II,A) with the same choice of triangulation 7 but with
another choice of sign distribution §’, such that for a given zone Z of A,
the restriction éz is of type (1,0,0)..

Since for any two adjacent zones Z;,Z; € A, the restrictions éz, and
dz, have different types, we get from lemma 6.2.2.3, that the type of dz, is
determined by the type of dz;. Since the adjacence graph of A is connected
and since A is a minimal zone decomposition, § is determined by the type of
dz.

From lemma 5.3.2.4 we get that all the types of §7 can be obtained from
the type (1,0,0) by letting (Z;)? act on 7. Moreover it is clear that for any
6 € (Z3)*, an initial distribution (8 - 67) gives rise to the distribution (6 - §)
on II. So we deduce from lemma 5.3.2.4 that K and K’ are symmetric to
one another, hence they are congruent. (]

7.3 odd-cycle-free zone decomposition and maximal T-
curves
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7.3.0.10 Theorem

(1) Every lattice T-curve constructed as in section 7.2 from a data (II, A),
where A is an even zone decomposition, is a maximal lattice T-curve.

(2) Every maximal T-curve can be constructed as in section 7.2 from a data
(II, A), where A is an odd-cycle-free zone decomposition.

7.3.1 Proof of the part (1) of theorem 7.3.0.10

7.3.1.1 Definition
Let II be an integral polygon and let Zi,...,Z, be a cycle of zones of a

zone decomposition of II. The completed zone Z; is the piece of II which
is delimited by the edges Z;.; N Z; and Z; N Z;4,, and by OII, and which

contains Z;.

Figure 40: A zone and its completed zone.

Let A be an odd-cycle-free zone decomposition of an integral polygon II,

and let K = K(II,T,d) be a lattice T-curve constructed as in section 7.2
from the data (II,A). We will give now a reduction algorithm which will
output a sequence of zone-wise Harnack T-curves, K = K° K!,... KT,
where K' = K(II, T,4%), and a sequence A = A° Al, ... A" of odd-cycle-
free zone decompositions, such that K* is constructed as in section 7.2 from
the data (II, A?), such that A**! contains less zones than A?, such that II is
the only zone of A" (so K" is a Harnack T-curve), and such that all the K*
have homeomorphic T-filling. Let I'* be the incidence graph of A°.
(a)  Assume first that IV has a vertex of multiplicity one (i.e. it is the
endpoint of only one edge of %), let Z; be the zone of A’ represented by
this endpoint. So Z; is adjacent to only one zone Z, € A’ and only by one
primitive segment. Let 6 be the total parity of that segment.
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The completed zones 21 and Z, decompose II. Let §;,; be defined by its
restrictions to Z1 and to Z2 in the following way:
51+1

Zl = 5‘21
+1 1
& 5 = (0-6 %)
So 8% and 871 have same type. Let K*t! = K(II, T, 6"*!). So K'Z'FLIJZ2
1s a Harnack T-curve. The curve K* is the gluing of the curves K, and

K: 5y and the curve K**! is the gluing of the curves K’+1 K' and K'+l =
(6- K3, : )

From prop. 6.2.2.1, we get that F(Kj) is the gluing of F(K‘ ) and F(ng)
by one twists only (upon the segment Z; N Z;), and from lemma 5.5.3.1 we
get that F(K'*1) is the gluing of F(K'Zl) and F(6 - K%) = F(K}z) upon
the same segment but with no twists. Therefore F(K*) ~ F(K**') (see for
instance the first diagram in fig. 37).

Since Z; and Z, are adjacent, it is clear that Z; U Z, is a zone in II. So
let A**! be the zone decomposition obtained from A’ by taking Z, U Z, as
a new zone (and keeping the other zones). It is clear that A;y; is again an
odd-cycle-free zone decomposition, and since K* is the T-curve constructed
as in section 7.2 from the data (II, A?), it is clear that K**! is the T-curve
constructed as in section 7.2 from the data (II, A*+1).

(b)  Assume now that I has no endpoint, but has some cycle of zones
Zi,...,Z,. The completed zones Zi,...,Z, decompose II. Let 5+ be de-
fined from its restrictions to the completed zones Z in the following way:

5::}-1 — zZl

. j_l

SF = (D_6(en)-8p,) forj=2,...,r
k=1

Where 6(ex) is the total parity of the edge of the cycle of zones ¢, =
Zg_1 N Z, (see def. 7.1.0.5 for more precisions on the notations). Let K*t! =
K(I, T, 8.

From lemma 6.2.2.3 we get that the distributions 6’+1 have same type 6,
therefore 6! restricted to Z; U ---U Z, is a Harnack dlstrlbutlon of signs,
and K, '“j is a Harnack curve.

From prop. 6.2.2.1, we know that F(K;) is the gluing of the surfaces
F(K}j) by twists upon the edges e;, and that F(K**!) is the gluing of the
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same surfaces upon the same edges but with no twists. Since A’ is an odd-

cycle-free zone decomposition, the number r of zones in the cycle of zones is

even. So by flipping, for one index 7 over two, the surfaces F(K‘ZA,) (which
J

are each attached to the rest of F(K*) by two twists) in the hole where lies
S (the vertex common to all the zones Z;), we undo the twists two by two
(see fig. 41). Therefore the resulting surface is homeomorphic to F(K*+!).

Since the zones Z,...,Z, form a cycle of zones, it is clear that their
union, is also a zone of II, so let A**! be the zone decomposition obtained
from A* by taking Z; U---U Z, as a new zone (and keeping the other zones).
It is clear that A;4; is again an odd-cycle-free zone decomposition. Since K;
is constructed as in section 7.2 from the data (II, A?), it is clear that K*t! is
constructed as in section 7.2 from the data (II, A**1).

F(K3,) F(K3,)

Figure 41: How to undo the twists of F(K*) to get F(K'*!).

(c) By doing steps (a) and (b) alternatively as much as possible, we
decrease the number of zones in the sequence A’ until we get just one zone,
II itself, in A". So the last curve K" is a Harnack curve. Therefore F(K")
is a sphere with holes, and since F(K") = F(K™!) = ... = K(K?), we get

from lemma 5.3.1.3 hat K° = K is a maximal T-curve. O



7 FROM ZONE DECOMPOSITIONS TO MAXIMAL T-CURVES 73

7.3.2 Proof of the part (2) of theorem 7.3.0.10

(a) Let K = K(II,T,4) be a maximal T-curve. From prop. 6.3.2.2 we get
that the triangulation 7 is a sub-decomposition of some zone decomposition
A of II. From the proof of prop. 6.3.2.2, we deduce easily that A is a
minimal zone decomposition: Indeed if e is an edge of two adjacent zones
of A which were to have Harnack distributions of same type, there would
be no twist upon e, so the cutting algorithm of section 6.2.1 wouldn’t have
separated these two zones. Hence K is congruent to a T-curve constructed
as in section 7.2 from the data (II, A).

(b)  Let’s show now that A is in fact an odd-cycle-free zone decomposition.
Let Z,,...,Z, be a cycle of zones of A.

Let’s show first that r is even. Let 4 be a loop on F(K) around the
vertex S common to all the zones Z; (see fig.42). The only twists through
which v passes are situated upon the edges ey, ..., e, of the cycle (because
K restricted to each Z; is a Harnack curve). Since K is maximal, F(K) is
orientable. This implies that v passes through an even number of twists, so
r is even.

Figure 42: If K is maximal, then the number of zones in a cycle of zones
must be even, otherwise F'(K) wouldn’t be orientable. Here the orientation
on F(K) is not reversed along a loop when the cycle has four zones, but it
is reversed when the cycle has three zones.

Recall that a segment has never even parity, so the parity of a segment
can be (1,0), (1,1) or (0,1). Let N, be the number of edges e; of parity
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(a,b). From the last paragraph we get that
NI,O + Nl,l + N(),l =0 mod 2 (12)

Since A is minimal, we have also

> " 6(ex) = (0,0,0) (13)

Recall that the parity (a,b) of a segment is included as the two last coor-
dinates in the total parity § = (c,a,b) of the segment. So the equation 13
above can be restated with the parity of the edges (instead of their total
parity) in the following way:

Nio-(1,0) 4+ Ny - (1,1) + Nojy - (0,1) = (0,0) mod 2
Which is equivalent to

leo + N1’1 =0 mod 2 (].4)
Nl,l + NO,I =0 mod 2 (15)

Putting equations 12, 14, and 15 we get that N1o = Ny; = Nyy = 0.
Hence the zone decomposition is even. a



Part 11

The Ragsdale Conjecture for
Maximal Lattice T-curves

75



8§ INTRODUCTION. 76

8 Introduction.

Part II of this text is only concerned with lattice T-curves on R P?, therefore
from now on to avoid too many repetitions we will always assume, unless
explicitly stated, that lattice T-curves are on R P2, We will keep the notations
and definitions of part I. So, as in part I, we denote by T = T(d) the triangle
in R? with vertices 49 = (0,0), 4; = (d,0), and A; = (0,d). Recall that
R P? has a fourfold ramified covering structure on T, given by . : RP? —» T,
(zo: 2y i T2) > (Elzllzl.l’il%lﬁ) We denote too by Iy = A1 A, I} = Az Ap, and
ly = ApA, the segments forming the edges of T. So the lifts p~1(l;) are the
lines z; = 0 of RP2.

A,=00 1, A, =(d,0)
Figure 43: The ambient triangle.

For short we will write simply algebraic curve for “real projective non-
singular algebraic curve”. We will use the letter K for curves. So if K is an
algebraic curve, and if it is defined by a polynomial f, we will denote it by
K(f).

Recall (in slightly different words than in def. 7.1.0.5) that a cycle of zones
of a zone decomposition A of T is the sequence of all the zones Zi,..., Z, of
A which share an integral point S lying in the interior of T. The zones are
assumed to be always indexed in the same way (say counterclockwise around
S). An edge of a cycle of zones is .a primitive segment of Z; N Z;4; (this
intersection is exactly one primitive segment when r > 2).

Recall (see def. 7.1.0.7) that an odd-cycle-free zone decomposition of T
1s a zone decomposition A such that for every parity, and for every cycle of
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zones of A, the number of edges of the given cycle of zone, which have the
given parity, is even.

Recall the construction of 7 of a lattice T-curve from an odd-cycle-free
zone decomposition A of T. Since A is odd-cycle-free we can choose a zone-
wise Harnack distribution of signs § on T such that for any two adjacent
zones Z;, Z; of A, the Harnack distributions dz, and éz; (i.e. the restrictions
of 6 to Z; and Z;) have different types (see lemma 7.1.0.8). Then we choose
a primitive triangulation 7 of T which completes A. Let K = K(T,T,4).

Any other choice ¢’ for the zone-wise Harnack distribution of signs, and
any other choice 7" for the triangulation completing A would have led to a
lattice T-curve K’ = K (T, 7", 4') which is congruent to K (seelemma 7.2.0.9).
Since we are just interested in lattice T-curves up to congruence, we denote
by K(A) any lattice T-curve which is constructed that way from an odd-
cycle-free zone decomposition A.

Recall that a mazimal curve (of degree d) is a curve with the maximum
number of connected components. The Harnack theorems (see reference [3]
in the case of algebraic curves, and theorem 5.3.1.1 for lattice T-curves) states
that this number is equal to %ﬂ + 1.

Recall now the main theorem of part I (applied here to lattice T-curves
on RP?):

Theorem: (see 7.3.0.10)

(1) Every lattice T-curve which is constructed from an odd-cycle-free zone
decomposition of T (as recalled above) is a maximal T-curve.

(2) Every maximal T-curve can be constructed (as recalled above) from an
odd-cycle-free zone decomposition of T.

Recall that the connected components of a lattice T-curve of even degree
2k are only ovals, and the connected components of a lattice T-curve of odd
degree 2k + 1 are all ovals but one which is one-sided.

We will denote, as in part I, by 0,4 the symmetry (z,y) — ((—1)%z, (—1)%),
where a,b € {0,1}.

8.0.2.1 Definition (even/odd ovals, P and N)

An oval lying inside an even (an odd) number of other ovals is called an even
(an odd) oval. We will write P (resp. N) for the number of even (of odd)
ovals of a curve K.
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Figure 44: A curve with 3 even ovals and 5 odd ovals.

8.1 Some history.

In 1907 Virginia Ragsdale [9] wrote the following conjecture: Assume that the
polynomial f defining an algebraic curve of even degree K(f) takes negative
values outside all the ovals, and denote by {f > 0} and {f < 0} the subsets
of RP? where f takes positive and negative values. Then

1. f K = K(f) is a maximal curve of degree 2k, then the number of
connected components of {f > 0} and of {f < 0} are both greater or
equal than 2(k —1)(k —2) + 1.

2. If K = K(f) is not a maximal curve, then the number of connected
components of {f < 0} and of {f > 0} are both less or equal to
k* + 3(k —1)(k - 2).

Let’s write R(k) for the Ragsdale bound 3’5(—];:11 +1. It is easy to calculate
that in both cases the two inequalities are equivalents to the following ones
(notice that the number of connected components of {f > 0} and {f < 0}
are respectively equal to P and N + 1).

N <R(k)-1 and P < R(k)

In 1937 Petrowskii, who wasn’t aware of Ragsdale work, concludes his pa-
per [8] by pointing out that in all the known curves of degree 2k (the "known
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curves” at that time were mainly the families of curves due to Harnack and
to Hilbert), one has:

N < R(k) and P < R(k)

In 1980 Viro [7] constructed algebraic curves of even degree with N =
R(K), so the Ragsdale conjecture was reformulated since then like in Petrowskii’s
paper. In his paper Viro gave at the same time a possible generalization of
Ragsdale conjecture in more modern terms: Let K be here the set of fixed
points of an anti-holomorphic involution on a nonsingular simply connected
compact complex surface CK. Do the following inequality hold:

dimH,(K;Z/2Z) < h"'(CK)

In 1993 Itenberg [4] disproved Ragsdale conjecture by constructing T-
curves of degree 2k with:

2 _

N = R(k)+|_k—§8k—+i3j—1 or
k? — 6k + 13

P o= R(k)+ [T

Where we denote by |a| the greatest integer smaller than a.
In 1994 [2] T improved Itenberg result by constructing T-curves with:

k* — 7k + 16

N = R)+|——F——]-1 o
P = R(k)-i—Lkz—_—?Gk—ﬂJ

It is interesting to notice at this point that the conjunction of Harnack
theorem (see theorem 2.2.0.3) P+ N < (2k —1)(k—1) + 1 and of Petrowskii
inequalities [8] |P — N| < R(k) + 1, shows that

2 k? — 9k
k__%’ﬂ and NSR(k)+#

P < R(k) +
Therefore there may be still some gap to fill, and a sharp bound still remains
to be found.

Being more careful at the way Ragsdale wrote her conjecture we see that
she stated two different forms of her conjecture, (1) a weak form (for maximal
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curves), and (2) a strong form (for all the curves). Finally it is the strong
form which has been disproved and the weak form still remains open, namely
do the following inequalities:

N < R(k) and P < R(k)

hold for all maximal curves of degree 2k?

8.2 The main theorems.

Let R(k) be, as previously, the Ragsdale bound %(#l +1, and let M (k) be
the maximum number of connected components of a curve of even degree 2k.
It is interesting to notice that Itenberg’s counterexamples are T-curves with
M(k) — % + ... ovals, where the dots represent some term of lower degree
in k, but my counterexamples are T-curves with M(k) — k + ... ovals. I
constructed also T-curves with N or P equal to R(k) + k/3 +..., and with
just M(k) — 2 ovals. So it seemed very possible that there exist maximal
T-curves with N or P passing R(k) at least by a nonzero linear term in k.
The main theorem of this section shows that this is not the case, namely:

Theorem: (see 12.4.0.12)
The following inequalities hold:

N<R(k)+3 and P <R(k)

for every maximal lattice T-curve of even degree 2k.

In the proof of this theorem appears an intermediate theorem. Let A be
an odd-cycle-free zone decomposition of T, let K = K(A), and let A’ be
the decomposition of T obtained from A by removing all the edges of zones,
which have an endpoint of even parity. It is easy to check that A’ is again
an odd-cycle-free zone decomposition, so let K’ = K'(A’).

Theorem: (see 10.6.0.5)

The number of even (odd) ovals of K is equal to the number of even (odd)
ovals of K'.

8.3 Some new definitions

Some integral points of the boundary of a zone are of particular interest.
They are mainly the vertices of the zone, but in some cases an interesting
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integral point can belong to the interior of an edge of the zone (see fig 45).
Since the term “vertex” is already over-used, we will use some new term,
and give at the same time a precise definition of the integral points of the
boundary of a zone, which are of interest:

8.3.0.2 Definition (the nodes of a zone)
A node of a zone is an integral point which belongs to the boundary of the

zone, but doesn’t belong to the interior of the intersection of the zone with
OT (see fig. 45).

Figure 45: nodes and vertices of a zone.

8.3.0.3 Definition (inner-node and boundary-node)
An inner-node of a zone is a node of the zone, which lies in the interior of
T. A boundary-node of a zone is a node of the zone, which lies on T.

8.3.0.4 Definition (consecutive boundary-nodes)

Let A be a zone decomposition of T. Two boundary-nodes (of zones) in
A are consecutive if one is met after the other one when following T in
clockwise or counterclockwise direction.

8.3.0.5 Definition (separating segments and edges)
A separating edge of a zone is an edge of the zone, which is a primitive
segment separating T into two components.
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8.3.0.6 Definition (Pie diagram)

Let A be an odd-cycle-free zone decomposition of T, let K = K(A), and
let A be a homeomorphism transforming T into a disk, and transforming the
edges of the zones of A which do not lie in 011, into segments. A Pie diagram
of K (or just of a part of K) is the image of K under the composition k o p
(recall that u is the projection RP? — T), (see an example on fig 47).

8.3.0.7 Lemma
Let A be an odd-cycle-free zone decomposition of T and let K = K(A). Let

P and P’ be two consecutive boundary-nodes in A (P and P' may be on
different edges of T ). Then

e the segment PP’ belongs to one zone.

o In the pie diagram, it is the same arc of K which surrounds P and P’
in this zone.

proof. That P and P’ are consecutive implies clearly that PP’ belongs to one
zone. Since the distribution of signs in this zone is a Harnack distribution,

the oval surrounding P in the pie diagram surrounds all the integral points
of OT between P and P’ (see fig. 46). 0

Ol

Figure 46: Shape of the arc between two consecutive boundary-nodes.

8.3.0.8 Definition (sector)

Let A be a zone decomposition of T having some zones with an inner-node
S. Let P and P’ be two boundary-nodes linked by two edges of zones of A
to S. The sector PSP’ is the subset of T swept by a half line with origin S
rotating counterclockwise from SP to SP’.
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Now we can reformulate and complete def. 7.3.1.1 of a completed zone:

8.3.0.9 Definition (Completed zones Z° and Z°)

Let A be a zone decomposition of T having a zone Z with an inner-node 3,
and let P and P’ be the boundary-nodes such that SP and SP’ are edges of
Z. The completed zone Z% is the one sector PSP or P'SP containing Z.
Let A be a zone decomposition of T having a zone Z with separating edge
e. So e splits T into two (open) components. The completed zone Z¢ is the
closure of the component containing Z.

<

3 S
N z$
A z;

Z,

Figure 47: Examples of Pie-diagrams and of completed zones.

8.3.0.10 Definition (neighborly in/out-side of an oval)

Let K be a nonsingular curve on RP? We say that a point P lies neighborly
inside (outside) of an oval O of K, if P lies inside (outside) of O and outside
of any oval lying inside (outside) of O.

So the sign of an oval, lying entirely in a quadrant of R P?, of a lattice T-
curve K on RP? (see def. 4.3.0.7) is the sign of the points which lie neighborly
inside the oval.
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9 The Point-Oval Correspondence.

9.1 Definition of the correspondence

Let A be an odd-cycle-free zone decomposition of T, and let K = K(A).
Since K is a maximal lattice T-curve, the number of connected components
of K is equal to (2k — 1)(k — 1) 4+ 1. The number of integral points in the
interior of T is equal to (2k—1)(k—1). So let * be an arbitrary point and let’s
define now a one-to-one correspondence a between the set (int T N Z?) U {*}
and the set of connected components of K in the following way:

9.1.0.11 Definition (1 — Correspondence in the interior of a zone)
Since K = K(A) = K(T,T,$) is the gluing of the T-curves K(Z,7z,dz) for
all the zones Z of A, we get from the proof of prop. 5.3.2.5, that there is an
empty oval surrounding some symmetric copy (o4 - P), for every integral
point P which is not an inner-node for A. So let a(P) be this oval.

Let S be an inner-node of a zone of A, and let Zi,...,Z,, be all the
zones of A sharing S as inner-node. Assume that the Z; are indexed coun-
terclockwise around S, and let SP; = Z; N Z;1 (or SPLUSP, = Z; N Z, if
m = 2).

Let’s have a closer look of K in the pie diagram. From the proof of
prop. 5.3.2.5, we get that an arc a; of K surrounds S in Z;, surrounds P; in
Zit1, and surrounds P;_; in Z;_;.

9.1.0.12 Lemma
The arcs a;41 and a;_; belong to the same connected component of K.

proof. Recall from lemma 5.0.1.2 that on the pie diagram, for each i, the
edge SP; is cut exactly twice by K. More precisely SP; is cut once by a;
and once by a;41, and SP;_; is cut once by a;_;, and once by a;. In RP? the
boundary of |J, ,(0ap - Zf) is equal to |, ,(0ap - (SPizy U SP;)). So, in the
pie diagram, the only way for the arc a;4; which “break in” Z? through SP;,
to escape Zf is to pass through SP;_,. Hence a;y; is connected to a;_; (see
fig. 48). 0

Notice that since A is odd-cycle-free, we get from the lemma 9.1.0.12 just
above that there is two different connected components of K, one component

surrounding S in the union |J ZJ,,,, and one component surrounding S in
the union J Z3.
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Figure 48: Two different connected components of K surround the inner-

node S.

9.1.0.13 Definition (U(S) and U'(S))

1. If the two unions |J Z3; and |J Z5,,, don’t contain the same number of
points among Ao, A; and Aj, then let U(S), or simply U, be the union
which contains the largest number of those points, and let U’(S), or
simply U’ be the union which contains the smallest number.

2. If the two unions contain the same amount of A;’s, consider the two
following cases (see illustrations on fig. 49 (1.a), (1.b), and (2)):

(a) Just one A;, belongs to the intersection of the two unions. Then
two sub-cases arise.

1. Ap belongs to the intersection, then U is the union containing
A; and U’ is the other union.

ii. Ao doesn’t belong to the intersection, then U is the union

containing Ag and U’ is the other one.

(b) The three A;’s belong to the intersection, then U will be any of
the union and U’ the other one.

Notice that in both cases 2a and 2b, U contains Ag.
9.1.0.14 Definition (2 — Correspondence for inner-nodes)

For an inner-node S, let a(.5) be the connected component of K surrounding
, in the pie diagram, S in U. Now in order to see that « is injective one
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(1b)

Figure 49: The four cases arising in the definition of U.

should skip to the prop. 9.2.0.15. Assume now this is true, so one connected
component should be left. Let a(*) be this connected component.

9.2 Properties of the correspondence

Let A be an odd-cycle-free zone decomposition of T, let K = K(A) and let
« be the point-oval correspondence defined in subsection 9 above.

9.2.0.15 Proposition
If S and R are two different inner-nodes, then (S) and a(R) are two different
connected components of K.

proof. Assume that o(S) = a(R) for some S # R. Let Zy,Y, be the zone
of A such that Z§ D R and Y{# D S. We prove now that the assumption
cannot hold.

1. If the oval «(S) surrounds S in Zp then a(S) cannot surround R,
so a(S) # a(R). Therefore Z§ C U’'(S), and similarly Y;® C U'(R).
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Moreover Z3 contains all the zones Y5 other than Y%, and similarly
Y contains all the zones Zs other than ZS. Therefore we have:

U(R) C U'(S) and similarly U(S) c U'(R) (16)

2. Let a(S5) and a'(S) (let a(R) and a'(R)) be the number of points among
Ao, Ay and Aj; which lie in U(S) and U’(S) (in U(R) and U’(R)). From
the inclusions 16 above, one gets that a(R) < a'(§) and that a(S) <
a'(R). From the definition 9.1.0.13 of U and U’, one gets that a'(R) <
a(R) and that a’(S) < a(S), so these numbers are all equal to a same
number a. Since there are three points A;, the number a cannot be 1,
but must be 3 or 2.

3. Assumethat @ = 3. Then U(S)NU’(S) as well as U(R)NU’(R) contains
the three A;’s. But this is impossible since U(S)NU'(S)NU(R)NU'(R)

contains at most two points (two boundary-nodes), (see fig. 50).

Figure 50: The ovals a(.S) and a(R) are represented on the left pie-diagram.
On the right diagram, we see that U(S) N U'(S) N U(R) N U’(R) contains at
most two points.

4. Assume that a = 2. Then U(S) N U’'(S) contains only one A4;. Let’s
write it A(U(S)NTU’(S)). Also intU(S) and int U’(S) contain each one
A;. Let’s write them A(intU(S)) and A(intU’(S)). With R instead
of § we relabel the three A;’s in a similar way: A(U(R) N U(R')),
A(intU(R)) and A(intU(R)).
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(a) From the inclusions 16 above we get that A(int U(S)) and A(U(S)N
U(S")) belong to U'(R), so A(intU’(S)) = A(intU(R)).

(b) Similarly A(intU'(R)) = A(intU(S)).

(c) Since int U(S) and int U(R) are disjoint, A(intU(S)) and A(int U(R))
are different points.

(d) Since there is three points A; we get that A(U(S) N U'(S)) =
A(U(R)NU'(R)).

(e) From the definition 9.1.0.13 of U and of U’, A(intU’(S)) and

A(intU'(R)) are different than Ay. Therefore A = A(U(S) N
U'(S)).

(f) From argument 4c we get that A; is equal either to A(intU(S)),
either to A(intU(R)).

But the last assertion contradicts the definition of U and U’. Indeed for
both U(S)-U’(S) and U(R)-U’(R) we are in case 2(a)i of the definition,
so A; should be equal to both A(intU(S)) and A(intU(R)).
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10 Removing even edges

Let A be an odd-cycle-free zone decomposition of T.

If A contains some zone with an inner-node S, let Z;,...,Z, be the
cycle of zones of A around S. We assume without loss of generality that
the completed zone Z{ is in U and is one of the completed zones Z7 which
contain the largest number of the points among Ay, A; and A4,. We will
denote a; = (5, P;) the edge met first from Z;_; when turning around S
counterclockwise (if r > 2 then q; is just Z;_; N Z;).

Similarly if A contains some zone with a separating edge e, let Z; and Z,
be the two zones adjacent along e. If they don’t contain the same number
of points A;, then we assume without loss of generality that the completed
zone Z7 contains more points A; than Z5.

10.0.0.16 Definition
We will say that an integral segment is even (c,a,b) € (Z;)* if ¢ = 0.

Notice that since the parity of the integral points of an integral segment
takes exactly two values, we get from the definition 6.2.2.2 of the total parity,
that a segment is even if and only if it contains an integral point of even parity.

10.1 Which point inside which oval

10.1.1 Local deformation of a lattice T-curve

Recall that the four quadrants of R P? are represented by the four symmetric
copies (g4p - T), for all a,b € {0,1}.

An arc a of K lying inside a disk in RP? can be moved and deformed by
any sequence of the following operations (represented on figure 51):

1. If a has its two end points in a given quadrant then it can be shrunk,
with endpoints fixed, into an arc inside this quadrant.

2. If a has its two endpoints in two given quadrants which are adjacent in
the disk, then it can be shrunk, with endpoints fixed, into a segment.

3. If a has its two endpoints in two given quadrants which are opposite in
the disk, then it can be deformed into an arc avoiding any one of the
remaining two quadrants.
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Figure 51: The three basic deformations of an arc of the curve viewed on a
pie diagram.

10.1.2 Points inside their corresponding ovals

10.1.2.1 Lemma
For every point P € ((intT) N Z?), some symmetric copy (oa.p  P) lies
neighborly inside a(P).

proof. If P is not an inner-node, then this is clear since the distribution of
signs in the zone containing P is a Harnack distribution. Assume then that
P = S is an inner-node and let’s keep track on the Pie diagram of the inside
of the ovals by drawing small arrows directed inside.

Now assume that the copies (g, .5), for all a,b € {0,1}, surrounded by
a(S) in U are outside a(S) (see the coorientation of a(S) on the pie-diagram,
fig. 52). Since int U’ contains at most one A;, the lift u=1(Z5), for any zone
Z C U’ with inner-node S, is a disk or a union of two disks. So we can move

and deform locally, inside U’, «(S) by a finite sequence of the operations
of 10.1.1 into

1. Either an oval surrounding completely the point S in the Pie diagram

(see fig. 52 (1)).

2. Either an oval surrounding the point S and a point A, in the pie diagram



10  REMOVING EVEN EDGES 91

(see fig. 52 (2)).

These two cases are impossible. Indeed, since we didn’t move or deform
the oval inside U, we see on the diagram that in case 1 the inside is in fact
outside. In case 2 the two arcs of a(S) cutting T on each side of a point A;
should belong to three different quadrants, and at the same time we see on
the diagram that «(S) should belong to no more than two quadrants.

So the assumption cannot hold, and one of the symmetric copy (04,5 S)
must lies (neighborly) inside a(S). O

Figure 52: Impossible shrinking of an oriented oval.

10.2 Where a(x) is not

Let A be an odd-cycle-free zone decomposition of T(d), and let K = K(A).
A separating edge of a zone of A or two edges of zones of A meeting in an
inner-node, split T(d) into two connected components V; and V;. Assume
that V; is the one with the interior that contains the largest number of points
among Ag, A1, and A,. So the interior of V; doesn’t intersect at least one
of the segments among ly, [;, [;. We assume that it is Iy that int V3 doesn’t
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intersect. Let W; be the lift u~1(V}), for « = 1,2. So the interior of W, is
homeomorphic to an open disk or to the union of two open disks.

10.2.0.2 Lemma
The oval a*) of K doesn’t lie entirely in W,.

proof. Let U] be the closure of the complementary of V; in T(2d + 1), and
let A’ be the zone decomposition of T(2d + 1) obtained in the following way:

o Take as zone of A’ all the the zones of A in Vj.

e If Vi NV, contains an inner-node S, then, for each edge Sg of A with
@ of even parity on the segment lo(d), place an edge SQ’ (each time a
different one) of zone of A’ with @’ of even parity on [;(2d + 1) or on
l5(2d + 1).

All the points of parity (1,1) on 8T lie on ly. Since A is odd-cycle-free, the
number of edges SQ of zones of A, with @ of parity (1,1), is even. Therefore
the number of edges SQ of A’, with Q of a given parity, is even. So A’ is
odd-cycle-free. Let K’ be the maximal T-curve K(A'), and let « and o be
the point-oval correspondence of K and K’ respectively.

Since the piece of K’ and the piece of K in W, are equal, we get that
a(P) = o/(P)if P € U,. Since K’ has odd degree, the oval o/(*) is one-sided,
and therefore doesn’t lie entirely in the interior of W,. So all the ovals lying

entirely in W, are of the kind o/(P). Hence a(x) doesn’t lie entirely in W,.
O

10.3 The sign of an oval

Let K be a T-curve. Recall that the sign of an oval of K lying inside a
quadrant of R P2 is the sign of the points lying neighborly inside the oval. If K
has even degree, then this definition is naturally extended to any oval. Indeed
if an oval of K intersects two quadrants, then the points lying neighborly
inside the oval have same signs in both quadrants (this is not automatically
the case if the degree is odd).

10.4 Removing one even edge

Let A be an odd-cycle-free zone decomposition of T(2k) having a separating
edge e which is an even segment, and let 6(e) be the total parity of e. Let
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A’ be the zone decomposition obtained from A by removing the edge e. It is
obvious that A’ is again an odd-cycle-free zone decomposition. So let K and
K' be the maximal lattice T-curves K(A) and K(A’) (so K and K’ have
even degree). Let § and ¢’ be the zone-wise Harnack distribution of signs

defining K and K’, and let @ and o' be the point-oval correspondences for
K and for K'.

10.4.0.3 Proposition

The sign distribution §' can be chosen so that, for all P € intT N Z2, the
sign of o/(P) is equal to the sign of a(P), and the sign of a(*) is equal to
the sign of o/(x).

proof. Let ¢’ be equal to § on Zf. So ¢’ is equal to (8(e)-8) = ((0,a,b)-8) =
§ 0 0,p on Zj5 (see fig. 54). Since for every P € 2§, a copy (0.4 - P) is
surrounded by an oval a(P), the copy (04tcptd - P) is surrounded by the
oval o/(P) and is of sign §'(P) = §(P).

Let W; be the lift u=1(Z§) for ¢ = 1,2. From lemma 5.0.1.2 we get that
there is exactly one connected component O of K (resp. O' of K') which
intersects the lift y='(e) = W; N W,. Since the piece of O and the piece
of 0" in W, are equal, and since the interior of W, is homeomorphic to an
open disk, the points of W; N W, neighborly interior to O remain neighborly
interior to O'. So the sign of O is equal to the sign of O'.

e If a(*) is equal to O, then we get as a consequence of lemma 10.2.0.2
that o/(*) is equal to O’. In this case we just proved that the sign of
a(*) is equal to the sign of o/(*).

e If a(x) is not equal to O, we get from lemma 10.2.0.2 that a(x) C W,.
So o'(%) C Wy and the sign of a(*) is equal to the sign of o/(x).

10.5 Removing two even edges

Let A be an odd-cycle-free zone decomposition of T(2k) having a cycle of
zones, around an inner-node S, with two edges of the cycle SP and SP’
which are both even and both of same total parity §. Let A’ be the zone
decomposition obtained from A by removing SP and SP’. Tt is obvious that
A’ is again an odd-cycle-free zone decomposition. So let K and K’ be the
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maximal lattice T-curves K(A) and K(A'). Let § and ¢’ be the zone-wise
Harnack distributions of signs defining K and K’, and let @ and o' be the
point-oval correspondence for K and K’ .

If the two sectors V] = PSP and Vo = P'SP don’t contain the same
amount of A;’s, then we assume without loss of generality that V; is the one
containing the most of the A;’s.

Thanks to lemma 5.3.2.4 we assume without loss of generality that S itself
is surrounded by the oval a(S). For ¢ = 1,2, let W; be the lift x=1(V;) and
let T; (resp. T}), i = 1,2, be the subsets of W; containing S and bounded
by a(S) (by /(S)).

Since S lies inside (S, the union T3 UT; is homeomorphic to a disk, and
T} and T, are homeomorphic to two disk sectors (see the shrinking of a(S)
on a pie-diagram fig. 54).

10.5.0.4 Proposition

The sign distribution §' can be chosen so that for all P € (int T N Z2), the
sign of o/(P) is equal to the sign of a(P), and the sign of &/(*) is equal to
the sign of a(x).

proof. Let ¢’ be equal to § on V4. So &' is equal to (- §) on V5.

The assertion restricted to the points P # S is obvious (same as in 10.4.0.3).
Let’s see for P = S. Since we assumed that S lies neighborly inside a(S), we
know that S lies either neighborly inside or neighborly outside o'(S), so it
suffices to show that S lies inside /(). Observe that the subset 77 is equal
to Ty and that W, is an open disk or the union of two open disks.

Because the number of edges of the cycle of zones around S in A (and in
A') is even, there are exactly two connected components of K (and of K’)
that cut the edges of the cycle of zones (see section 9.1 and the remark right
after lemma 9.1.0.12), (see also fig. 53). Therefore a(S), (and o/(S)), cuts
the boundary of W, exactly twice.

Hence T; must be homeomorphic to a disk sector, like T} (see fig. 54).
So the side of o/(S) containing T} (and containing S) is homeomorphic to a
disk. Therefore it is the inside of ¢/(S). Moreover, as §(S) = §(S), the two
ovals «(S) and o/(.9) have the same sign.

Similar arguments than in prop. 10.4.0.3 show that the sign of a(x) is
equal to the sign of o/(x). 0
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If the number of edges is odd then O = O’ , otherwise O % O’

Figure 53: One or two connected component according to the parity of the
number of edges.

10.6 Removing all the even edges

Let A be an odd-cycle-free zone decomposition of T(2k), let A’ be the zone
decomposition obtained from A by removing all the even edges. Then it is
obvious that A’ is again an odd-cycle-free zone decomposition of T. So let

K and K’ be the maximal lattice T-curves K(A) and K(A’).

10.6.0.5 Theorem
The number of even (odd) ovals in K' is the same than in K.

proof. Thanks to lemma 5.3.2.4 we assume without loss of generality that
the even (odd) ovals of K are the ovals of positive (negative) signs. Then
applying prop. 10.4.0.3 and 10.5.0.4 enough times, one gets rid of all even
edges without changing the signs of the ovals. Hence K and K’ have the
same number of positive (negative) ovals.

Let’s take the same notations than in prop. 10.4.0.3 and in prop. 10.5.0.4.
So the interior of W, is homeomorphic to an open disk or to the union of
two open disks. Since RP? is decomposed into W, and W,, the subset W,
1s non-orientable. In each application of prop. 10.4.0.3 and prop. 10.5.0.4
the sign distribution in V, doesn’t change. Therefore the sign distribution
defining K in the non-orientable subset of RP?\ K has same type than
the sign distribution defining K’ in the non-orientable subset of RP?\ K.
Since the positive (negative) ovals of K are the even (odd) ovals, the positive
(negative) ovals of K’ are also the even (odd) ovals. Hence K and K’ have
the same number of even (odd) ovals. o
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O T,=T;

DISC SECTOR

Figure 54: Removing two even edges.

11 Properties of even-node-free zone decom-
positions

Thanks to theorem 10.6.0.5 to study Ragsdale conjecture for maximal lattice
T-curves, it is enough to study the conjecture for lattice T-curves K (A) where
A is an odd-cycle-free zone decomposition of T(2k) with no even inner-nodes
and no even boundary-nodes. We will consider mainly such decompositions
from now on.

11.0.0.6 Definition (even-node-free zone decomposition)
We will call an even-node-free zone decomposition of T(2k) a zone decompo-
sition of T with no nodes of even parity.

We will study now more precisely the point-oval correspondence in even-
node-free odd-cycle-free zone decompositions of T(2k) to find in prop. 12.3.0.11
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and its corollary a relation between the parity of the points and the property
of the ovals of being even or odd. Thus we will be able to count the number
of even and odd ovals by counting integral points.

11.1 Basic observations

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k).

11.1.0.7 Observation:

Since the three segments [; (the edges of T) are of even length 2k, all the
odd points of 9T of a given parity lie on the same /;. More precisely, points
of parity (1,1) lie on [y, points (0,1) lie on I, and points (1,0) lie on /5. In
particular all boundary-nodes of A of a given parity lie on the same [;.

11.1.0.8 Observation:

Since the nodes of A can be only of three parities, it is clear from the previous
observation (11.1.0.7) that an inner-node S cannot be connected by some
edges of zones of A to the three segments [;.

11.1.0.9 Observation:

Since A is an odd-cycle-free zone decomposition it is clear from observa-
tion 11.1.0.7 that the number of boundary-nodes lying on a given /; and
connected to a given inner-node is even.

n
n 0
N
e =
s (LD >
©.1)
nodes = (1,0) Impossible Impossible

Figure 55: Three observations specific to even-node-free odd-cycle-free zone
decompositions of T(2k).



11 PROPERTIES OF EVEN-NODE-FREE ZONE DECOMPOSITIONS98

11.2 Two important zone-definitions

11.2.0.10 Lemma

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k).
Then there exist a unique zone Z € A such that the lift u='(Z) contains
a nontrivial homology cycle of R P2.

proof. It is clear that “The lift 4~!(Z) contains a nontrivial homology cycle”
can be restated into “The zone Z intersects the three segments 1, I, and I3”.
Let V; be the union of zones of A not intersecting [;, and let V = VoUV, UV,
If V is not equal to T then T \ V is a union of zones intersecting the three
li’s. Since each A; (which is equal to [;N;) cannot belong to the boundary of
a zone (because it is even), there cannot be more than one zone intersecting
the three segments [;. If V = T, then V; NV is the edge SP; of a zone
of A, with P € l;. But then S connects the three I;’s which contradicts
observation 11.1.0.8. a

11.2.0.11 Definition (the special zone)

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k). The
unique zone which, according to the preceding lemma (11.2.0.10), intersects
the three segments Iy, !, and I3 will be called the special zone of A.

11.2.0.12 Definition (separating union of zones)

Let A’ be the decomposition obtained from A by removing all the edges of
zones which are not separating edges. The zones of A’ (view as unions of
zones of A), will be called a separating union of zones of A. We will write
usually Y for the separating union of zones.

11.3 Characterization of a(x)

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k) hav-
ing an inner-node S, and let Py, ..., P, be all the boundary-nodes of zones
of A, which are connected to S and which lie on a given edge I;. We assume
that the P;’s are indexed counterclockwise around S, and let Zy,..., Z,, be
the zones of A such that the segments SP; and SP,,; are edges of the zone
Z;. So Zg shares edge SP, with Z; and Z,, shares edge SP,, with Z,_; (if
S is not connected to any other line than [}, then Z, = Z,,), (see fig 57).
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B A separating union of zones.
[] The special zone Z spe

N The separating union of zones which
= N intersects the three segments 1 ¢, 1;and1 ,

Figure 56: An example of a special zone and separating zones.

11.3.0.13 Lemma
o In the pie diagram of K, the arc of K which surrounds P, in Zy belong
to the same connected component of K than the arc which surrounds

P, in Z,.
e These two arcs surround P, and P,, in the same quadrant.

proof. Since neither S nor P; is even, we get from observation 11.1.0.7 that
the total parity of the segment SP; will be equal to (1, a,b) for some a,b €
{0,1} for all i = 1,...,m. So the type of the Harnack distributions of signs
in all the Z; must alternate. It will be equal to some 8 in Zy, Z,..., 2,
(we know that m is even from observation 11.1.0.9) and it will be equal to
((1,a,0)+8)in Z,,Zs,..., Zm_1. So let’s follow the arc, on the pie diagram,
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Figure 57: The notations for subsection 11.3 (view on a pie diagram).

surrounding P; in Zg (see fig. 58): For some ¢,d € {0,1} this arc surrounds

Sin(ocq-Zj),for j=1,3,...,m —1, and surrounds the boundary-nodes in
(Ocd - Zi), for k=0,2,...,m. O
S
Q.
ZO Zﬁ
Z Z Z
"z, 3 Z, \
0]
P P, < o 'P3 P4\' g P, PG\

Figure 58: The arc surrounding all the P;’s.

11.3.0.14 Lemma
The oval surrounding Py in Z, is not o(S5).

proof. It is clear from observation 11.1.0.8 that either Z5 or Z5 contains
at least two A;’s, so all the Z3;4, belong to U’(S). But the oval surround-
ing Py in Z is precisely the oval surrounding S in all the Z3;41, so from
definition 9.1.0.14, this oval is not the oval a(5). o
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11.3.0.15 Lemma
The oval O surrounding Py in Zq is none of the oR) for the inner-nodes R

in the sector Pl/S?m

proof.

1. Since O surrounds S in all the Zy;,, it is clear that O is none of the
a(R) for any R in any Zy;,,.

2. Let Z be any Z,; and let’s write P and P’ for Py; and Pyiyq. If Z5 = Z,
then Z contains no other inner-node than S. If Z% # Z then Z5\ Z is
a union of sectors @;S5;Q} (ordered counterclockwise around 3, see fig.
59). Since O surrounds P in Z, lemma 8.3.0.7 and lemma 11.3.0.13
show that O surrounds all the Q;, surrounds all the @} and surrounds
P'in Z. Then lemma 11.3.0.14 shows that O is none of the a(;). This
is true for all the Z = Z,;, so the lemma follows by induction on the
inclusion-depth of the sectors.

a

Figure 59: The arc surrounding all the P;’s and Q;’s.

11.3.0.16 Lemma
The two arcs of K passing through a separating edge belong to one connected
component of K.
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proof. Let e be a separating edge. Since e is primitive, the lift x~*(e) is cut
exactly twice by K. Since the lift u=!(T \ €) is disconnected, and since the
connected components of K are closed, the two arcs of K intersecting the
lift ' (e) must belong to the same connected component of K. a

N
N/

Figure 60: The two arcs cutting e are connected.

11.3.0.17 Lemma
Let Y be a separating union of zones of A, let V.= V(Y') be the union in Y
of the zones of A intersecting more than one segment l;, and let K = K(A).

Then the oval o(x) of K surrounds in V all the boundary-nodes of zones of
AinV.

proof. Let 5i,. .., Sy, (we may write S; = Si(Y") if more precision is required)
be all the inner-nodes in V' (ordered counterclockwise). If m = 0, then V
itself is a zone of A, so the only boundary-nodes in V are the endpoints
of separating edges and lemmas 8.3.0.7 and 11.3.0.16 show that it is one
connected component of K which surrounds these boundary-nodes.

If m > 1, then the complement Y\ V is a union of sectors PSP with P
and P’ lying both on one edge /;. Lemma 11.3.0.13 (or lemma 8.3.0.7 if P
and P’ are consecutive) shows that the arc surrounding P in V surrounds as
well P/ in V.

So it is one arc which surrounds all the P and the P’ between two
boundary-nodes of separating edges, but lemma 11.3.0.16 shows that the
two arcs surrounding the boundary-nodes of a given separating edge belong
to one oval, so the arcs surrounding all the boundary-nodes of the zones of
A in V belong to the same oval O.
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Moreover lemma 11.3.0.15 shows that O is none of the a(R) for any
R € Y. Since this is true for any Y and since O is the same oval for all the
Y (again because of lemma 11.3.0.16), we get that O = a(*). 0

Figure 61: a(*) surrounds all the boundary-nodes of V.

11.3.0.18 Corollary
The separating edges of zones of A are all cut by (and only by) a(x*).

proof. This is an immediate consequence of prop. 11.3.0.17. Indeed the

endpoints of a separating edge are boundary-nodes of some zones in a union
V of zones of A (described in prop. 11.3.0.17). ]

11.3.0.19 Lemma
The oval a(x) of K(A) is an even oval.

proof. Let Z be the special zone of A. Since Z intersects segments [, [, and
I, it lies in some union of zones V(Y') (with the notation of prop. 11.3.0.17),
so a(*) surrounds the boundary-nodes of Z. Let Py € ly, P, € I3, and P, € I,
be three boundary-nodes of Z. It is easy to find on a pie diagram a loop in

Z
e which cuts OT only in Py, P;, and P,

o which intersects a(*) near P,
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¢ and which avoids all the other ovals of K intersecting Z.

This loop (see fig. 62) is the image on the pie diagram of four symmetric non
trivial homology cycle on T*. Let (o, - Po) be the copy of Py surrounded
by a(*), and choose one among the two homology cycle passing through
(ap - Po). This cycle cuts a(*) at least once and at most three times. Since
K has even degree all its components are ovals, so the loop must cut a(*)
exactly twice. Since it doesn’t cut any other oval, it means that a(x) is an
outermost connected component. Hence a(*) is an even oval. O

Figure 62: A nontrivial homology cycle cutting only a(x).

11.3.0.20 Lemma
Let K be a maximal lattice T-curve. If the Harnack distribution in the
special zone is of type (1,0,0), then the sign of the even ovals is +1.

proof. Because of lemma 11.3.0.19, it suffices to show that the sign of a(*)
is +1. Let Z be the special zone, let K = K(T,T,d) let K’ be the Harnack
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curve K(T,7,4") where ¢’ is the Harnack distribution of signs on T N Z?
of type (1,0,0). So o/(*) is the nonempty oval of K’ and is of sign +1.
Therefore if K = K’ (i.e. if Z = T), then the assertion of the lemma is clear.
If K # K', we compare the ovals a(*) and o/(*).

The lift of the complement (T \ Z) is a union of disks. Since &z (the
restriction to Z of J) is a Harnack distribution, we know how a(*) intersects
the boundary of the lift x=!(Z), which is also the boundary of the disks:
The boundary of each disk is intersected by a(*) either twice either not at
all. Since é7 = d7, the restrictions of K and K’ to u~'(Z) are equal, and
K' intersects the boundary of the disks at the same places than K does.
Therefore the points of the boundary of p=!(Z) lying inside a(%) are also
lying inside o'(*), so a(*) is also of sign +1. ]

Figure 63: a(x) is, like ¢/(x), an even oval (the arrows represent the inside
of the oval).

11.4 Counting points with signs

Let A be an even-node-free odd-cycle-free zone decomposition of T, and let
K = K(A). Assume that the distribution of signs is of type (1,0,0) in the
special zone.

11.4.1 The integral points of a zone

Notice that a zone in T which is not the special zone has only one completed
zone containing at most one A;.

11.4.1.1 Definition (the top node)
The top node of a zone Z in T is the inner-node S of Z such that Z° contains
at most one A;.
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Notice that all the completed zones of the special zone contain at least
two A;’s, so the special zone has no top vertex.

11.4.1.2 Definition (|Z])
The set of integral points of a zone Z is the union of the integral points of
int Z and of the set of all its inner-nodes except its top one. It will be denoted

1Z].

=

‘

Figure 64: Examples of zones with their top node (black point).

A\

11.4.1.3 Lemma
Let A be an even-node-free odd-cycle-free zone decomposition of T. The
family of subsets |Z| for all Z € A is a partition of (int T) N Z2.

proof. Each point which is not an inner-node belongs to one and only one
set (int Z), hence to one and only one of the sets |Z|. If S is the inner-node
of some zone of A, then from observation 11.1.0.8 we get that there is a zone
Z of A with inner-node S such that Z° contains at least two A;’s. Therefore
S belongs to this |Z|. Since there is only three A;’s, there is only one such
zone. a

11.4.1.4 Lemma
Let A be an even-node-free odd-cycle-free zone decomposition of T, let K =
K(A), let Z be a zone of A, let (c, a, b) be the Harnack type of the distribution

of signs in Z, and let P be an arbitrary point of |Z|. Then the sign of a(P)
is

o equal to (—1)° if P is a point of even parity.

e cqual to (—1)°*! if P is a point of odd parity.
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proof. If P is not an inner-node, this assertion follows from the defini-
tion 9.1.0.11 of a(P), and from the definition 5.3.2.1 of Harnack type.

Now let P = § be an inner-node of parity (e, f). Since the distribution
in Z is of type (¢,a,b), we deduce from lemma 5.3.2.3 that an arc of K
surrounds (G sygetb - S) in (0ftaets - Z). Since S € |Z|, the completed zone
Z? contains at least two 4;’s. So a(S) is the oval surrounding S in Z (in the
pie diagram), (see def. 9.1.0.14 of a(S)). Therefore the arc of K surrounding
(Tftaets  S) In (0fiqerb - Z) belongs to a(S).

The set (T \ Z°) contains at most one A;, so its lift is homeomorphic to
one or two (open) disks. Let e and ¢’ be the two edges of Z meeting at S.
Since a(S) intersects the lifts u~*(e) and p~!(€') each only once, the part of
a(S) in p~(T \ Z%) shrinks into an arc surrounding (Cftaers - S) in the
closure of (07 a.e4s - (T\ Z%)) (see fig. 65). Hence (04q et S) is neighborly
inside «(S5).

Let 6 be the sign distribution defining K. Since the symmetry o444 is
the composition of the symmetries o, and 0,3, we have:

8(ptaets - S) = (~1){ENVENG(5, - §) = 8(aap - S)

The last term is equal, per definition (see def. 5.3.2.1), to (—1)°if S is a point
of even parity, and to (—1)°*! if S is a point of odd parity. This finishes to
prove the lemma since (0f1q.e45 - S) lies neighborly inside o(S). ]

Figure 65: Shrinking of a(S) into a circle surrounding S.

11.4.2 Counting even and odd ovals via integral points

Recall from 11.3.0.18 that the only oval cutting the boundary of the lift of
a separating union of zones Y in T is a(*), so it is coherent to speak about
the ovals in Y, keeping apart a(x*).
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Let A be an even-node-free odd-cycle-free zone decomposition of T(2k),
let K = K(A), and let Y be a separating union of zones from A. Assume
that the sign distribution é defining K is of type (1,0,0) in the special zone
of A.

The set |Y] is equal to intY N Z2. It is partitioned into two sets V; and
Vi, where V, is the union of the sets |Z| such that Z C Y and such that é;
is of type (c,a,b) for some a,b € {0,1}. Let p.|Y| be the number of points
of even parity in V, let n;|Y| be the number of points of odd parity in V.

11.4.2.1 Proposition
The number of even ovals in Y is equal to po|Y| + n;|Y| and the number of
odd ovals in Y is equal to p1|Y| 4 no|Y]|.

proof. Since the Harnack distribution in the special zone is of type (1,0,0),
the even ovals are of sign +1 and the odd ovals are of sign —1 (see 11.3.0.20).
This proposition follows then directly from lemma. 11.4.1.4. o

11.4.2.2 Corollary

The number of even ovals of K is equal to ,(po|Y| + n1|Y|) + 1 and the
number of odd ovals of K is equal to Y (p1|Y| + no|Y|), the two summations
being on all the separating unions Y of zones of A.

proof. Indeed since a(*) is an even oval (see 11.3.0.19), we get the first
assertion from prop. 11.4.2.1, and since the number of ovals is equal to the
cardinal of T N Z? which is equal to > (po|Y| + p1]Y| + no|Y| + ma|Y]) + 1,

the second assertion follows also from prop. 11.4.2.1. O
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12 Lattice geometry

Let A be an even-node-free odd-cycle-free zone decomposition of T, let Y
be a separating union of zones in A, and let K = K(A). Assume that the
sign distribution defining K is of type (1,0,0) in the special zone of A. We
denote, like in 11.4.2, by p.|Y| (by n.|Y|) the number of points of even (of
odd) parity in the union |J|Z| for all the zone Z of A in Y in which the
distribution of sign is of type (c, a,b) for some a,b € {0,1}. We will show in
prop. 12.3.0.11 that

polY|—nolY] <0
if Y intersects only two of the three
P1|Y| - n1IY| <0 { segments lo, [; and [,.

if Y intersects the three

- <
pl|Y| nllyl <4 { segments lo, [; and [,.

The main theorem should then follow in section 12.4 from this result and
from cor. 11.4.2.2.

12.1 Integral points in polygons

If Ais a subset of R? we will write p(A) and n(A) for the number of even
and non even points in A.

12.1.0.3 Proposition

Let I1 be an integral convex polygon. IfII is degenerate, then p(II) — n(Il) <
1. IfTI is non-degenerate then p(II) — n(II) < 0.

proof.
o If IT is degenerate, then II is

— Either a segment. Then its two ends can have even parity, in
which case p(II) — n(II) = 1, otherwise p(II) — n(II) < 0.

— Either an integral point. Then it can have even parity, in which
case p(II) — n(II) = 1, otherwise p(IT) — n(II) < 0.

o If Il is non degenerate, let II' be the convex hull of the even points of
IT (so p(II') = p(II) and n(II') < n(II)).
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— If II' is degenerate, then p(II') — n(II') < 1, but since II is non
degenerate n(Il') < n(II), so finally

p(Il) = n(Il) <0

— If I’ is non degenerate, let 7 be a triangulation of II' such that
its vertices are exactly the even points of II'. Let v, e and f
be respectively the number of vertices, edges and triangles of T .
Euler formula states that v—e = 1 — f. Since each end of an edge
1s even, each edge contains at least one non even point. It is clear
then that e < n(Il), v = p(II) and f > 1, so Euler formula shows
that

pM) —n(ll)<v—e=1-f<0

O
. + e + e + o + o + 0 4 0 4+ @
+ + +++++++++++++
* + e + e + & + o + + o + o
+ -+ ++++7i++++
o + o + o + o + + o + o + @
+ + + + + + + +++++++
. + ® + e+ &+ e+ e +0+e
+ + & ++++++++++++ +
o + o + o + @ + 0 4+ o 4 o+ @

Figure 66: The convex hull of the set of even points of a non degenerate
polygon and of two degenerate ones (a segment and a point).

12.1.0.4 Definition
A vertex of a polygon will be called an obtuse vertez if the angle inside the
polygon, at this vertex, is greater than .

12.1.0.5 Proposition
Let II be a non-degenerate polygon (not necessarily integral) with k obtuse
vertices. Then p(intIl) — n(intIl) < k + 1.

proof. Let’s make an induction on k. If £ = 0 then II is convex and the
convex hull of its interior points is also a convex polygon (may be degenerate),
so from 12.1.0.3 we get that p(intII) — n(intII) < 0+ 1.

Let k be greater than 1 and assume that the proposition is true for any
polygon with less than k obtuse vertices. Let P be an obtuse vertex, and
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let’s draw a line through P and through the angular sector outside IT at P.
The segment carried by this line, which lies in II and has endpoints P and
@ on 911, decomposes II into two polygons II; and II,.

It is clear that we have enough degree of freedom to choose the line so
that the segment P(Q) contains no integral point, except may be P itself, and
so that @ is not a vertex of II (see illustration on fig. 67). Therefore we get
that p(intIly) 4 p(intIl) = p(intIl) and n(intI1;) + n(intIl;) = n(intII).

)

\7) Angle greater than &t

Figure 67: Partition of a non-convex polygon into two “more convex” poly-
gons.

Let ky and k; be the numbers of obtuse vertices of IT; and II,. The angles
in II; and II; at P and at @ are clearly less than m. Therefore k; +k, = k—1.
Now with the hypothesis of induction p(intIl;) — n(intIl;) < k; + 1 and
p(intIl3) — n(intIl;) < k2 + 1. Summing these two inequalities we get

p(intIl) — n(intll) <k + ky +2=k—-1+2=Fk +1

12.2 Congruences in zones

If Z is a zone in T, we write now p|Z| and n|Z| (instead of p(|Z|) and n(|Z])),
for the number of points respectively of even and of odd parity in |Z|.
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12.2.0.6 Lemma

Let Z be a zone in T which is a triangle with vertices P € l;, @ € [; and
Ar = ;N 1; and such that PQ is a separating edge. Then p|Z| — n|Z| =
0 mod 4.

This lemma is well known. It can be viewed for instance as a consequence
of the congruence modulo 8 of Rokhlin for the maximal lattice T-curves with
one nonempty oval (see [5] section 5). ]

Figure 68: Simple nontrivial case illustrating p — n = 0 mod 4.

12.2.0.7 Lemma
Let Z be a zone which intersects only one edge | of T and which has only
one inner-node S. Then p|Z| — n|Z| = 0 mod 4.

proof. We assume without loss of generality that [ = [. If () is a point in T,
let z;(Q) be the distance from @ to l;. Let P, and P; be the two boundary-
node of Z, where P; is closer to [;. By a transformation Q = (z,y) —» Q' =
(z,y + 2kz) , k € Z, the zone Z is transformed into a zone Z' such that

1. If S =(0,1), then z;(S") < z1(P1) (see fig. 69).
2. If S = (1,1), then zo(S5') < zo( Py)

It is clear that |Z| and |Z’| have same cardinal and that the parity of a point
is invariant under Z — Z’. We can translate Z’ to a zone Z” such that
5" belongs to l; (in case 1) or to Iy (in case 2). Since in both cases S” has
same parity than S’ the translation vector is even, so the parity of a point is
invariant under Z' — Z”.

Now the zone Z” can be written as the closure of the difference of two
triangular zones like in lemma 12.2.0.6, Z"” = cl(Z, \ Z;) with the property
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that |Z7| = |Zy| \ |Za| (see fig. 69). So

plZ| = n|Z] = (plZi| - p|Z2|) - (n]Z4] - n|2Z,|)
= (p1Z:]| = nlZi]) = (plZ2] — 1| Z5])

Therefore we get from lemma 12.2.0.6 that p|Z| — n|Z| = 0 mod 4. O
S,
- z

B B Z’= (7 - )

Figure 69: Squeezing and sliding a zone to see it as a difference of two simpler
zones.

12.2.0.8 Lemma
Let Z be any zone intersecting only one edge | of T, then p|Z| — n|Z| =
0 mod 4.

Z=CI(Z()\(ZI UZ2UZS))

Figure 70: The zone Z seen as a difference of simpler zones.
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proof. The zone Z can be written as a difference Z = Z, \ (Z; U --- U Z,,),
where the Z; are like in lemma 12.2.0.7, with the property |Z| = |Z,|\ (|Z:|U
- U |Zn|) (see fig. 70). So

plZ| = nlZ| = (plZo| — (p|Z1]| + -+ + p|Zn])) —
~(n]|Zo| = (n|Z1| + - - + n|Zn]))
= (pl|Zo| — n|Zo|) -

—((plZ1] = n|Zu]) + -+ - + (p|Zim| — 1| Zu]))

The lemma follows since each p|Z;|—n|Z;| is divisible by 4 (by lemma 12.2.0.7).
O

12.2.0.9 Lemma

Let Z be any zone intersecting two edges | and " of T with an inner-node
S = (s1,52). Then p|Z| —n|Z| =0 or 1 mod 4.

Ay ' ' A,
Z=N 7’=7U [

Figure 71: The zone Z seen as a difference and union of simpler zones. The
zone Z" is the triangular zone with vertices P, @ and Ay.

proof. We assume without loss of generality that [ = [; and I’ = [,. By
adding or subtracting zones like in lemma 12.2.0.6 and 12.2.0.8 we transform
Z into a zone Z' with vertices S, P = (p,0), @ = (0,q) and Ao = (0,0)
such that the area of the triangle SPQ has smallest absolute value (see
fig. 71). So we get that p|Z| — n|Z| = p|Z’| — n|Z’| mod 4. Moreover the
zone Z" with vertices P, (), and Ay is a triangular zone like in 12.2.0.6,



12 LATTICE GEOMETRY 115

so p|Z"| —n|Z"| = 0 mod 4. Therefore we must look carefully what are the
points of SPQ which belong or not to |Z’| and to | Z”|. For instance § doesn’t
belong to [Z'| but can belong to |Z”|.

Let A/2 be the area of the triangle SPQ (so A is an integer).

P — 81 —81
—82 q— 82

A= =(p—s1)(g—s2) — 5152

Let u = p—s; and v = g—s,. Since S connects l1, and [,, both its coordinates
should be odd (s; = 2] + 1, and s5 = 2s}, + 1). Since p and q are also odd,

u and v are even (u = 2u’ and v = 2v’), so we get that
uv = 8182+ A
4u'v' = dsisy+2(si+sh)+1+4
That the absolute value of A/2 is minimal implies that
1. A=11if s] + s, =1 mod 2.
2. A= —-1if s{ + s, =0mod 2.
o In case 1 above (see fig. 72 (a)), let 25" +1 = s} + 5. So we get that

u'v’ = sisy + s” + 1, and we can take for instance

o= 1

v\ = sisy+s"+1
In this case § doesn’t belongs to [Z’| but does belong to |Z”|. Therefore
p|Z"| =p|Z'| and n|Z"|=n|Z'|+1 so:
p|Z| - n|Z| =p|Z"| —n|Z"| +1=1mod 4

e In case 2 above (see fig. 72 (b)), let 2s” = s} + s},. So we get that
u'v' = s]sy + s” and we can take for instance

v =1

o' = sisy+s"

In this case S belongs neither to |Z'| nor to |Z”|. Therefore
p|lZ"| =p|Z'| and n|Z"|=n|Z'| so:
plZ| —n|Z| = p|Z"| — n|Z"| = 0 mod 4
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4 + e +
+ o+
. 4
() + o+

(b)

© + (@

A Ay ' P

Figure 72: The two cases arising in the count of p|Z| — n|Z| mod 4.

12.3 Integral points in zones

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k), let
Y be a separating union of zones of A, and let K = K(A). We recall from
the beginning of the section 12 that p.|Y| (resp. n.|Y|) denote the number
of points of even (of odd) parity in the union | J|Z| for all the zone Z of A in
Y in which the distribution of sign is of type (c, a,b) for some a,b € {0,1}.

12.3.0.10 Lemma
Let Z be a zone intersecting only one edge | of T. Then p|Z| —n|Z| < 0.

proof. Let S be the top node of Z, and let 5,...,S,, be the other vertices
of Z. Since the angle in Z at S is less than 7, and the angles in Z at the
S;’s are all the angles greater than 7 in Z, we get from lemma 12.1.0.5 that
p(int Z) —n(int Z) < m+ 1.

Since |Z| N 8Z = US; and since the parity of each S; is odd, we get that
p = p(intZ) and n = n(intZ) + m, so p|Z| — n|Z| < 1, but according to
lemma 12.2.0.8, p|Z| — n|Z| = 0 mod 4, so we have p|Z| — n|Z] < 0. a
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\? Angle greater than =t

Figure 73: What vertices to consider to calculate a bound for p|Z| — n|Z|.

12.3.0.11 Proposition

Let A be an even-node-free odd-cycle-free zone decomposition of T(2k), and
let K = K(A). Assume that the sign distribution defining K is of type
(1,0,0) in the special zone. Let Y be a separating union of zones of A.

1. Then po|Y| — no|Y| < 0.
2. If'Y intersects only two edges of T, then p;|Y| — n,|Y| < 0.
3. If'Y intersects the three edges of T, then p;|Y|— n;|Y]| < 4.

proof. Let | and I’ be two edges of T intersected by Y, and let Zi,..., Z,,
be the zones of A in Y intersecting both { and I’ (m may be equal to 1),
indexed such that for 7 = 1,...m — 1, the intersection Z; N Z;;, is equal to
the top-node S; of Z; and such that Z,, has no top-node. So Z,, is either
the special zone if Y intersects the three edges of T, either a zone with a
separating edge e such that the completed zone Z¢, contains all the other Z;.

Let P; (resp. N;) be the number of points of even (of odd) parity in

U;'=1 |Z;|. So P; = Z;=1 plZ;| and N; = Z;=1 n|Z;].

1. Let Ry,..., Ry be all the inner-nodes of a zone Z;, which are connected
only to [ or only to I’. The angles in Z; at the R,’s are greater than T,



12 LATTICE GEOMETRY 118

and the angles in Z; at S;_; (if ¢ > 2) and at Si4; (if i < m — 1) may
be also greater than 7. So we get from lemma 12.1.0.5 that p(int Z;) —
n(intZ;) < k4 3. But since S; (if 7 > 1) and all the R;’s belong to
|Z;|, we get finally that

plZ,'i bt n|Z,| S 2

2. According to lemma 12.2.0.9, plZf‘ —n|Z5%| = 0orl mod 4 for any
0 <i<m-—1. Since Z7\ (Uj=1 Z;) is a union of zones like in
lemma 12.2.0.8 and lemma 12.2.0.6, we get that

P;—N,-EOorlmod4

3. If Y intersects only ! and I’ among the three edges of T then we get
from lemma 12.2.0.6 that p|Z¢| — n|Z%| = 0 mod 4. Hence, for the
same reason than in parag. 2, we get that

P, — N, =0mod 4

4. Assume that for some 1 <7 < m — 2 one has P, — N; < 1, then from
parag. 1 above we get that p|Z;11|—n|Zi11| < 2,50 Py —N;py < 3, but
from parag. 2, P;y; — Niy1 = Oor 1 mod 4, so finally P,y; — N;y; < 1.
Since P, = p|Z;| and N; = n|Z,|, the same arguments (from parag. 1
and 2) show that P, — Ny < 1. Therefore we get by induction that

Pm—l _Nm—l Sl

5. If Y intersects only [ and !’ among the three edges of T, we get again
from parag. 4 and 1 that P, — N,, < 3, but now parag. 3 shows that
P, — N, = 0 mod 4, so finally

P, —-N,<0
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6. From observation 11.1.0.7 and 11.1.0.9, it is clear that while we go
from Z; to Z;y; around S;, the Harnack types of the distributions in
the zones with top node S; alternate. Since they alternate an even
number of time, the distributions in Z; and in Z;y1 are of same type.
Therefore the distribution is of same type (say (c,a,b)) in the union
Ujo Z;. If Y intersects the three edges of T, we have ¢ = 1 because
the distribution of signs is of type (1,0,0) in the special zone Z,,.

7. Any zone Z of Ain Y\ (U}L, Z;) is like in lemma 12.3.0.10, so p|Z| —
n|Z| < 0. Therefore we get from parag. 6 that

Pet1|Y] = nepa [V <0

8. I Y intersects only ! and !’ among the three edges of T, we get from
parag. 3, parag. 6 and parag.7, that

pelY|—n|Y| <0
This, together with parag. 7, proves part 1 and part 2 of the proposition.

Assume now that Y intersects the three edges I, I’ and " of T. Let
P =P, ;and N = N,,_;. So we have from paragraph 4 that P— N < 1. It
is clear that by taking I’ and [” (resp. " and [) instead of [ and I’ we get also
some number P’ and N’ (resp. P” and N") satisfying the same inequality.
Sop1|Y| = P+ P'+ P"+p|Z,|+ 3 p|Z|, where the last summation is on the
zones of A which intersect each only one edge of T, and in which the Harnack
distribution of signs is of type (1, a,b) for some a,b € {0,1}. Similarly we
get that n,|Y| = N + N’ + N” + 3" n|Z| where the last summation is on the
same zones than for p;|Y|. Therefore

plY|=ni|Y] < (P=N)+ (P = N)+(P"—N")+
91Z0] — nlZal + 3 (012] = ni2)
< 34 (plZm| = n|Zal) + O (p12] — n|2)))

e Since the angles in Z,, at all the inner nodes may be greater than 7, and
since all the inner nodes belong to |Z,,|, we get from lemma 12.1.0.5
that p|Zn| — n|Zn.| < 1.
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¢ From the same argument than in parag. 7 we get that > (p|Z|—n|Z]) <
0.

Therefore we get that p;|Y'|—n;|Y| < 4. This proves part 3 of the proposition.
O

12.4 Proof of the Main Theorem
12.4.0.12 Theorem
The number of even ovals of a maximal T-curve of even degree 2k is no more

than %’;;ll + 1, and the number of its odd ovals is no more than %’;;11 +4.

proof. Let K = K(A) be a maximal T-curve of degree 2k. As we noticed
at the beginning of section 11 we assume without loss of generality that the
odd-cycle-free zone decomposition A is even-node-free. We assume also that
the distribution of signs in the special zone is of Harnack type (1,0,0). Let
P (resp. N) be the number of even (of odd) ovals of K.

1. From corollary 11.4.2.2 we get that

P=1+) (po|Y|+m|Y]) and N =Y (p|Y]+no|Y])

the summations being over all the separating unions Y of zones of A.

2. Proposition 12.3.0.11 states that for each separating union Y of zones
of A, and each ¢ = 1 or 0, one has p.|Y| — n.|Y| < 0 except for the
only one separating union of zone Y,pe intersecting {y,l,, and I3 when
¢ = 1 for which one has p;|Yipe] — n1|Yape| < 4. So we get that

P1|Yape| + 10| Yipe] < 11|Yape| + 10| Yape| + 4
and that for (Y, c) # (Yape, 1) we get that

PelY |+ ne1[Y] < nel¥V| + neq Y]

3. The number of points of odd parity in the interior of T is equal to
m. From parag. 1 and parag. 2 we get now that P < 14> (no|Y|+
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n1]Y]). Since the summation is over all the separating zones ¥ of A it
is equal to the number of odd points in T. Therefore we get that

p< 3k(k2— D,

Similarly, from parag. 1 and parag. 2 we get also that N < 4 +
Y (n1]Y] 4+ nolY]) therefore

3k(k — 1)

N <
- 2

+4

12.5 Further Remarks

Let K = K(A) be a maximal T-curve of even degree 2k, and assume that A
is an even-node-free odd-cycle-free zone decomposition of T. Let Zspe be the
special zone of A, let Y, be the separating union of zones of A containing
Zspe, and let P (resp. N) be the numbers of even (odd) ovals of K.

12.5.0.13 Proposition
IfN > 260 1 then v = %=1 4y

proof. Let p|T| (resp. n|T|) be the number of points of even (odd) parity
in the interior of T.

1. Since p|T| = n|T| =1 —k? and k* = 1 or 0 mod 4, we get that p|T| —
n|T| =1 or 0 mod 4.

2. From section 12.4 we get that the cases N = ﬂg_—l) +1,72=230r4
imply that p|Ype| — n|Yipe| = i.

3. Since T \ Y, is a union of zones like in lemmas 12.2.0.7 and 12.2.0.6,
we get that p|Yipe| — n|Y,pe| = p|T| — n|T| mod 4, so from parag. 1 we
get that p|Ype| — n|Y,pe| = 0 or 1 mod 4, which implies that ; must be
different than 2 or 3.
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For every circular permutation {z,j,k} of {1,2,3} let V; be the union of
the zones Z of A in Y. which intersect /; and I} and let p|V;| (resp. n|Vi|)
be the summation over all these zones of the numbers p|Z| (resp. n|Z|).

From section 12.4 we get that N = 3—4’;—_—124-4 implies that p|V;|—n|V;| = 1,
for » = 1,2,3, and that p|Z,e| — n|Zspe| = 1. This is the case (a) illustrated
on fig. 74. But such a configuration hasn’t been found yet, and it is likely that
it doesn’t exist. According to prop. 12.5.0.13, this nonexistence is the only
thing to prove to get rid of the inelegant +3 in theorem 12.4.0.12. Moreover it
is likely too that a configuration such that only p|Z,pe| — 1| Zspe| or such that
only one of the p|V;|—n|V;| equals one (see fig. 74 (b) and (c)), does not exist.
This would imply that N < M;—_—ll (like in the initial Ragsdale conjecture),
so in particular the curves constructed by Viro with N = ﬂ—gll—) +1 (see 8.1)
would not be realizable as T-curves.

Cy - Koy ey

— ‘
pn=0 pn=0 ‘ ‘
©)

(a) )

Figure 74: These three cases seem to be not possible.
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