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Abstract

Constructibility is a condition on pure simplicial complexes that is
weaker than shellability. In this paper we show that non-constructible
triangulations of the d-dimensional sphere exist for every d > 3. This
answers a question of Danaraj & Klee [5]; it also strengthens a result
of Lickorish [11] about non-shellable spheres.

Furthermore, we provide a hierarchy of combinatorial decomposi-
tion properties that follow from the existence of a non-trivial knot with
“few edges” in a 3-sphere or 3-ball, and a similar hierarchy for 3-balls
with a knotted spanning arc that consists of “few edges.”

1 Introduction

From the hierarchy of conditions on simplicial complexes given by
vertex decomposable = shellable = constructible,

that is,
not vertex decomposable <= non-shellable <= non-constructible,

(non-)shellability is probably the most intensively studied one [1] [2]. All the
boundary complexes of simplicial polytopes are shellable [3] {15, Chap. §],
but not all of them are vertex decomposable [10, Sect. 6]. A mysterious
fact about shellability is that there exist triangulations of d-balls and also
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of d-spheres which are not shellable if d > 3, though all triangulations of
2-balls and 2-spheres are shellable. Non-shellable triangulations of balls are
reviewed in [16].

An explicit construction of non-shellable triangulations of spheres was
given by Lickorish [11]. Lickorish’s result was that triangulations of 3-
spheres which contain a knotted triangle are not shellable, provided that
the knot is complicated enough. (Their (d — 3)-fold suspensions give non-
shellable triangulations of d-spheres for d > 3.) In [11], the added condition
of complexity on the knot could not be deleted since for simple knots such as
a single trefoil or the sum of two trefoils, Lickorish’s technique fails and can-
not determine whether the corresponding triangulated spheres are shellable
or not. ,

Constructibility, a concept from combinatorial topology [14] that can
be viewed as a relaxation of shellability, appears in different combinatorial
contexts in [2], [5], [9], and [13]. In [8], two classes of non-constructible tri-
angulations of 3-balls were identified, but the existence of non-constructible
triangulations of spheres was left open. This problem dates back at least
to the 1978 survey of Danaraj & Klee [5, Sect. 4]. Here we answer this
question:

Theorem 1. If a 3-ball or 3-sphere contains any knotted triangle, then it
s not constructible.

In particular, the above-mentioned triangulations of 3-spheres considered by
Lickorish, where some triangle forms a trefoil or the sum of two trefoil knots,
are non-shellable.

We will also show that the existence of a non-trivial knot consisting of
4 or 5 edges has “bad effects” on the decomposition properties of a trian-
gulated 3-sphere. The results and examples provided in this paper may be
summarized in the following remarkable hierarchy.

Theorem 2. A 3-ball with a knotted spanning arc consisting of
at most 2 edges s not constructible,
{ 3 edges can be shellable, but not verter decomposable,
4 edges can be vertex decomposable.
A 3-sphere or 3-ball with a knot consisting of
at most 3 edges is not constructible,
{ 4 or 5 edges can be shellable, but not vertez decomposable,
6 edges can be vertex decomposable.

2 Definitions and Notation

A simplicial complez is a finite set C' of simplices (the faces of C) in some
Euclidean space R* satisfying that (i) if ¢ € C then all the faces of o are
members of C, and (ii) if 0,7 € C then 0 N7 is a face of both ¢ and 7. The



0-dimensional simplices in C are the vertices, the 1-dimensional simplices
are the edges of C. The inclusion-maximal faces are called facets. The
dimension of C' is the largest dimension of a facet. A d-complez is short
for a d-dimensional simplicial complex. If all the facets of C' have the same
dimension, then C is pure. For a set of simplices C' C C, the simplicial
complex C’ consists of the simplices in C’ together with all their faces. The
union |C| of the simplices of C is called the underlying space of C. If |C)|
is homeomorphic to a manifold M, then C is a triangulation of M. If C
is a triangulation of a d-ball or of a d-sphere, respectively, then C will be
simply called a d-ball or a d-sphere. For any triangulation C' of a manifold,
the boundary complez OC is the collection of all simplices of C' which lie in
the boundary of the manifold. A d-dimensional pure simplicial complex is
strongly connected if for any two of its facets F' and F’, there is a sequence
of facets F' = F1, Fy, ..., F, = F' such that F; N F;, is a face of dimension
d—1,for1 <i < k-1 If ad-dimensional pure simplicial complex is
strongly connected and each (d — 1)-dimensional face belongs to at most two
facets, then it is called a pseudomanifold. Every triangulation of a connected
manifold is a pseudomanifold. :

A pure d-complex_is shellable if its facets can be ordered Fy, Fy,...,F; so
that (Uf;ll F;) N Fj is a pure (d — 1)-complex for 2 < j < ¢. This ordering
of the facets is called a shelling.

Constructibility of pure simplicial complexes is defined recursively as follows:
(i) Every simplex (i. e., a complex with one single facet) is constructible.

(ii) A d-complex C' which is not a simplex is constructible if and only if
it can be written as C' = C; U C, where C and Cs are constructible
d-complexes and C1 N C; is a constructible (d — 1)-complex.

If we restrict this definition such that C; must be a simplex, then we get a

characterization of shellability; thus constructibility is a relaxation of shella-
bility.

For a simplicial complex C and a face 0, starc o is the simplicial complex
that contains all faces of facets of C' that contain ¢, and linkc o is the
subcomplex of those simplices of starc o that do not intersect o. For a
simplex o and a vertex v € o, the join v % o is a simplex whose vertices are
those of o plus the extra vertex v. The join v * C of a complex C with a
new vertex v is defined such that v+ C = {v*7 : 7 € C}. The deletion C\v
is the subcomplex of C formed by all the faces of C that do not contain the
vertex v.

A pure d-complex C is vertex decomposable if it is a simplex or there is a
vertex z such that

(i) linkc z is (d — 1)-dimensional and vertex decomposable, and
(ii) C\z is d-dimensional and vertex decomposable.



The vertex x is called a shedding vertez. Vertex decomposable simpli-

cial complexes were introduced and shown to be shellable by Provan &
Billera [12].

For a 3-ball, a spanning arc is a tame arc contained in the interior of the
ball except for its two endpoints lying on the boundary. It can be shown that
when joining the two endpoints by a second tame arc that is contained in the
boundary of the ball, we always get a knot of the same type. So we can say
that a spanning arc is knotted if the spanning arc together with any added
arc contained in the boundary forms a non-trivial knot embedded in the 3-
ball. In fact, the same is also true if the relative interior of the spanning arc
is not fully contained in the interior of the ball, provided that the spanning
arc is contained in the ball and the added arc does not intersect with it. So
in this paper we require of a spanning arc only that it is contained in the ball
and that both ends of it are on the boundary, and allow for the case that
some parts of the relative interior of the spanning arc are on the boundary.

3 Non-constructible 3-balls and 3-spheres

In the following, we use the simple fact that if all the (d—1)-dimensional faces

of a constructible d-complex C' are contained in at most two facets, then C

must be a d-ball or a d-sphere [14] [2, Th. 11.4]. 'Since pseudomanifolds

satisfy the condition, we get that every constructible pseudomanifold is a

d-ball or a d-sphere, and that

o if C is a constructible d-sphere, then the complexes C; and Cy in the
definition of constructibility are constructible d-balls and C; N Cy is a
constructible (d — 1)-sphere, and

o if C is a constructible d-ball, then C; and Cy are constructible d-balls
and C1 N Cy is a constructible (d — 1)-ball.

Lemma 3. If a triangulation C of a 3-ball has a knotted spanning arc
which consists of at most two edges of C, then C is not constructible.

C

This lemma is the crucial new observation of this paper. It extends a lemma,
from (8], namely that if a triangulation C of a 3-ball has a knotted spanning
arc which consists of just one edge of C, then C is not constructible.

The fact that a ball C with a knotted spanning arc consisting of just
one edge cannot be shellable is old, and can be traced back to Furch’s 1924
paper [7] [15]. Furthermore, such balls exist:



Lemma 4. (Furch [7]) Triangulations C of the 3-dimensional ball B3 with
a knotted spanning arc that consists of a single edge of C exist.

Namely, balls with a knotted spanning edge are obtained from any
“finely” triangulated ball by removing tetrahedra along a knotted curve,
that is, by “drilling a knotted hole” [7] [15].

From any such ball with a knotted spanning edge one obtains triangu-
lated 3-spheres that have a knot that consists of only three edges — a knotted

triangle, as needed below — by adding a cone over the boundary, that is,
by forming C' U (v * 0C) [11].

Proof of Lemma 3. We show by induction on the number of facets of C that
in a constructible triangulation C of a 3-ball, a spanning arc that consists of
only two edges ab and bc cannot be knotted. (We may assume that the arc
in question has exactly two edges, since an arc consisting of a single edge
can be extended by an edge on the boundary. Recall for this that we allow
parts of spanning arcs to lie in the boundary of the ball.)

If C is a single simplex (tetrahedron), then the arc cannot be knotted.
Otherwise C' decomposes into two constructible complexes C; and Cs as in
the definition of constructibility; both C; and Cy are triangulated 3-balls.
There are two cases to consider.

Case 1: The two edges ab and bc are both contained in C;. They form a
spanning arc ab-bc of C7, which by induction cannot be knotted.

Case 2: One edge ab is contained in C; and the other one bc is contained
in CQ.

C1 N
C;

a z
x
p

C is constructible, so by induction ab is an unknotted spanning arc
of C] .

Let p be a point on dC' N (Cy N Cs),

y an arc from b to p contained in C; N Cy,

2 an arc from a to p contained in 8C; N OC, and

z an arc from ¢ to p contained in 6C, N 8C.

Then z and y together form an arc in dC, which joins a and b. Because
ab is an unknotted spanning arc of Cj, the closed arc ab-byp-pza is a
trivial knot, that is, it bounds a 2-ball. (Here we may assume that
the arc byp is the only part of the 2-ball that is contained in 9C5.)



Similarly bc-czp-pyb is a trivial knot that bounds a 2-ball. The union
of the two 2-balls is again a 2-ball, and it proves that the knot ab-be-
czp-pza, and hence the spanning arc ab-be, are not knotted. |

The existence of a knotted spanning arc with k edges, for any k > 3, does
not assure non-constructibility in general. The proof technique of Lemma 3
breaks down for £ = 3: Our figure shows a situation where a 3-ball contains
a knotted spanning arc with k = 3 edges, but neither C; nor Cs necessarily
contains a knotted spanning arc with less than 4 edges.

C

o Cy

In fact, we can construct a shellable 3-ball with a knotted spanning arc with
3 edges as follows.

Example 5. (A shellable 3-ball with a knotted spanning arc consisting of
3 edges.) Let C; be a pile of 6 X 6 X 1 cubes in which each cube is split into
6 tetrahedra. Then C' = C1 U (b* (gray faces)) = C1 U(bx F1)U (bx Fo)U---

is a shellable 3-ball because Cj is shellable, and the arc ab-bc-cd is a knotted
spanning arc of the 3-ball as is indicated in the upper figures.

C =(pile of cubes) U(bx F1) U (bx FR) U ---

Now we can show the following result, which includes Theorem 1.



Theorem 6. In a constructible 3-ball or 3-sphere, every knot that consists
of three edges and three vertices (a “triangle”) is trivial.

Proof. We use Lemma 3 and induction on the number of facets. The case
of a simplex C is clear. Otherwise the complex C can be divided into two
constructible complexes Cy and Cy. As noted in the beginning of this section,
both € and C3 must be 3-balls. If one of them contains all the three edges
of a triangle s, then s is trivial by induction. If not, then one of them,
say C1, has two edges ab and bc of s, and the other one Cy has the third
edge ca of k. Now ab-bc is a spanning arc of C; and ca is a spanning arc of
Cy. Take an arc z in C; N Cy from a to c¢. (This arc exists since C; NCy is a
2-ball or 2-sphere.) Both spanning arcs are not knotted by Lemma 3, that
is, the closed curves ab-be-cza and ca-azc both bound 2-balls. These 2-balls
intersect in the curve azc, and hence their union is a 2-ball bounded by the
triangle ab-bc-cza; that is, the knot x is trivial. a

Corollary 7. If a triangulation of a 3-sphere contains any knotted triangle,
then it is not shellable.

Remark. Lickorish’s result was that if a triangulation C of a 3-sphere con-
tains a complicated knotted triangle, then C\o is not collapsible for any
facet o of C, and the non-shellability of C' was a corollary to this state-
ment. The property “C\o is not collapsible for any facet o” is stronger
than non-shellability, and to get this Lickorish needed the condition that
the knot must be complicated enough (specifically, the fundamental group
of the complement of the knot may have no presentation with less than 4
generators), which is not needed here.

The number of edges of knots in Theorem 6 is best possible, as is shown
in the following example.

Example 8. (A shellable 3-ball and 3-sphere with a knot consisting of
4 edges.)

This example arises in the same line of construction as Example 5. Let C}
be a pile of 8 x 6 X 1 cubes in which each cube is split into 6 tetrahedra as
before. Then the 3-ball Cy = C; U (b* (slashed faces)) U (d* (gray faces)) has
a knot ab-bc-cd-da. This knot ab-be-cd-da is not trivial because ab-be-cd is a
non-trivial knotted spanning arc. (It makes a trefoil knot.) Its shellability
is easily seen as in Example 5. To get a 3-sphere with a knot consisting
of 4 edges, we have only to take a cone over the boundary of Cs, that is,
C := Cy U (v * 0C3). The shelling of C; can be trivially extended to that of
C because 0C; is shellable since it is a 2-sphere.



4 Removing a facet from a 3-sphere

The following result reduces the constructibility question from 3-spheres to
3-balls. It leads to a different proof of Theorem 6 from Lemma 3, where
we remove from a 3-sphere any facet that contains an edge of the “knotted
triangle.” No similar result for the case of shellable 3-spheres seems to be
available. (For a shellable 3-sphere, is every facet the last facet of some
shelling?)

Theorem 9. Let C be a triangulation of a 3-sphere and o any facet of C.
Then C' is constructible if and only if C\o is constructible.

Proof. The “if” part is trivial, so we show the “only if” part. Let C be
constructible. Then by definition there are two constructible 3-balls C; and
Cy such that C; U Cy = C is a constructible 2-sphere. We may assume that
o is contained in Cy. If Cy = 7, then we are done. Otherwise Cy is the
union of two constructible 3-balls Cy; and Chg that satisfy the conditions
for constructibility. We may assume that Ca; contains o. We define Cj :=
C1 UCy; and C} := Cyy. Then

(i) Cj is a constructible 3-ball by definition.

(i) C} NCY = 8C, = 8Cy is constructible because it is a 2-sphere.
1110 2

(iif) Cf = Cy U Cy1, where both C; and Cs; are constructible 3-balls by
definition. Their intersection C; N Cy = 0Cs1\(Cay N Cy2) is a con-
structible 2-ball, since removal of a 2-ball from a 2-sphere always leaves




a 2-ball, and all 2-balls are constructible. Thus C] is a constructible
3-ball.

So C] and Cj instead of Cy and C satisfy the definition of constructibility.
Continuing this argument, the number of facets of C, is reduced until G,
has only the one facet o, showing that C\o is constructible. O

5 Non-constructible d-spheres

The following lemma will produce non-constructible triangulations of the

d-sphere for all d > 3. (An analogous lemma is well-known in the case of
shellability.)

Lemma 10. Alllinks of a constructible simplicial complex are constructible.

Proof. Let C be a constructible simplicial complex and 7 a face of C. We
use an induction on the number of facets of C. The case of a simplex C is
trivial, so we write C as a union of two constructible complexes C; and Cj.
If 7 is contained in only one of C and Cy, say in Ci, then linke 7 = linkg, 7
is constructible by induction. If 7 is contained in C; N Oy, then

(i) (linke 7) N Cy = linke, 7 =: L1,

(i) (linke 7) N Cy = linke, 7 =: Lo,
(iii) Ly N Ly = (linke, 7) N (linke, 7) = linke, e, 7, and
(iV) Ly ULy = linke 7.

These observations imply by induction that links 7 is constructible. J

Corollary 11. All d-spheres S%, d > 3, have non-constructible triangula-
tions.

Proof. Let C be a non-constructible triangulation of a (d—1)-sphere, and let
v1 and vg be two vertices not contained in C. Then (v; *C)U(ve*xC)UC (the
suspension XC of C) is a triangulation of the d-sphere. It is not constructible
by Lemma, 10, since linksc v, = C. |

Remark. The double suspension Y2H¢ of any homology d-sphere H¢ is
homeomorphic to S4+2, according to Edwards [6] [4]. Danaraj & Klee [5]
pointed out that for H?¢ % §¢ this yields examples of non-shellable spheres
because ©2H? is not a PL sphere (not all links are spheres), while all
shellable spheres are PL. This observation is also valid for constructibil-
ity because constructible d-spheres are PL as is shown in [14]. Thus Ed-
wards’theorem assures the existence of non-constructible triangulations of

d-spheres for d > 5, and Theorem 6 improves this to d > 3 and also to PL
cases.



6 Khnots and vertex decomposability

In Example 5 we constructed an example of shellable 3-ball which has a
knotted spanning arc with 3 edges. The example, however, is not vertex
decomposable. This can be observed directly from the figure, but we prove
a more general fact: no 3-ball with a knotted spanning arc that consists of
only three edges is vertex decomposable.

Lemma 12. If a 3-ball C has a knotted spanning arc consisting of at most
3 edges, then C is not vertex decomposable.

Proof. First we observe that if z is a shedding vertex of a vertex decom-
posable d-ball, then z lies in the boundary. Furthermore, every vertex y
adjacent to z is either in the interior of C, or the edge zy is contained in
the boundary of C. This is because the deletion C\& must be a 3-ball, and
the link of z is a 2-ball.

Again we use induction on the number of facets. If the spanning arc is
made of 1 or 2 edges, then it is not knotted by Lemma 3. So we can assume
that the spanning arc is made of 3 edges, where the first and last edge do
not lie in the boundary of the ball. Thus if the arc is ab-be-cd, the edges
ab and cd lie in the interior of C. In particular, b and ¢ are not shedding
vertices.

The vertex a also cannot be a shedding vertex: otherwise be-cd is a 2-edge
knotted spanning arc in the 3-ball C\a (to verify this we use an argument
as in the proof of Lemma 3), and thus C\a is not constructible (not even
shellable) by Lemma 3. Similarly d cannot be a shedding vertex.

Thus z must be taken to be different from {a,b,c,d}. In this case,
however, C'\z has a knotted spanning arc with 3 edges and has a smaller
number of facets than C, contradicting the induction hypothesis. O

The number of edges in the knotted spanning arc “3” is best possible,
because there are vertex decomposable 3-balls that have a knotted spanning
arc with 4 edges.

Example 13. (A vertex decomposable 3-ball with a knotted spanning arc
made of 4 edges.) ”

In the figure of Example 5, C' = C} U (v  (gray faces)), where v is a newly
introduced vertex, has a knotted spanning arc ab-bv-vc-cd with 4 edges.
This 3-ball C” is vertex decomposable. (One can take v as the first shedding
vertex.)

As in the case of constructibility in Section 3, from Lemma 12 we get a
result for knots in vertex decomposable 3-spheres resp. 3-balls.

Theorem 14. If a 3-sphere or a 3-ball C has a knot which consists of at
most 5 edges, then C is not vertex decomposable.

10



Proof. We use Lemma 12 and induction on the number of facets.

If C is a simplex, the statement obviously holds. Let C be vertex decom-
posable, let z be a shedding vertex of C and let x be a knot with at most
5 edges. If z is a vertex of x, then C'\z has a knotted spanning arc with
at most 3 edges, contradicting to Lemma 12. Otherwise C\z has a knot &
with at most 5 edges, contradicting to the induction hypothesis. O

The number of edges in this theorem is again best possible, as is shown
in the following example.

Example 15. (A vertex decomposable 3-ball and 3-sphere with a knot con-
sisting of 6 edges.)

In the figure of Example 8, C) = C; U (v (slashed faces)) U (w* (gray faces),
where v and w are newly introduced vertices, has a knot ab-bv-vc-cd-dw-
wa with 6 edges, and this 3-ball is vertex decomposable. From this 3-ball,
we can construct a vertex decomposable 3-sphere by taking a cone over its
boundary, namely, C' = C} U (u * 9C}).

Thus we have established the complete hierarchy of Theorem 2.
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