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Abstract

Constructibility of simplicial complexes is a notion weaker than shella-
bility. It is known that shellable pseudomanifolds are homeomorphic to
balls or spheres but simplicial complexes homeomorphic to balls or spheres
need not be shellable in general. Constructible pseudomanifolds are also
homeomorphic to balls or spheres, but the existence of non-constructible
balls was not known. Here in this paper we study the constructibility of
some non-shellable balls and show that some of them are not constructible,
either. Moreover, we give a necessary and sufficient condition for the con-
structibility of 3-dimensional simplicial balls all of whose vertices are on
the boundary.

1 Introduction

>

In the study of combinatorics of complexes, shellability has played an important
role since Bruggesser and Mani showed the shellability of convex polytopes [4].
One of the most famous applications is the proof of the Upper Bound Theorem
for convex polytopes by McMullen [8]. Though shellability has nice properties,
such as the fact that a shellable pseudomanifold is always homeomorphic to
a ball or a sphere, it is in general a very difficult problem to show whether a
complex in interest is shellable or not. The problem is that a complex which is
homeomorphic to a ball or a sphere is not always shellable, which is shown by
several authors [1], [7], [11], [13, Lect. 8], and [14].

The notion of constructibility is known as a weaker one than that of shella-
bility. This notion for simplicial complexes appears in [2], [5], and [10]. Asin the
case of shellability, constructible pseudomanifolds are always balls or spheres.
So it is natural to ask whether the converse is true or not, i.e., whether there
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exist simplicial balls which are not constructible. As is mentioned in [2], con-
structibility is strictly weaker than shellability, so it may be thought that every
simplicial complex which is homeomorphic to a ball or a sphere is at least con-
structible. So in Section 3 and Section 5 we study whether the known examples
of non-shellable balls are constructible or not, and show that some of them are
not constructible.

In Section 4, we study some operations for simplicial balls which preserve
constructibility, and by using these operations, we give a necessary and sufficient
condition for the constructibility of 3-dimensional simplicial balls all of whose
vertices are on the boundary. This result gives an efficient algorithm to test the
constructibility for complexes in this class.

2 Preliminaries

In this section, we review some terminology on simplicial complexes and the
definition of constructibility.

A simplicial complez C is a finite set of simplices ¢ in some Euclidean space
such that (i) if 0 € C, then all the faces of o (including the empty set) are
contained in C, and (ii) if 0,0’ € C, then 0N o' is a face of hoth ¢ and ¢'. The
underlying space ||C|| of a simplicial complex C is the set U,eco. The simplices
in a simplicial complex are called faces. The empty s¢t is considered to be a
(—1)-dimensional face. 0-dimensional faces are vertices, 1-dimensional faces are
edges, and the maximal faces (concerning the inclusion relation) of a simplicial
complex are facets of C. The dimension of a simplicial complex is the maximum
dimension of its facets. If all the facets have the same dimension, the simplicial
complex is called pure.

A d-dimensional pure simplicial complex is strongly connected if for any 2
of its facets F' and F’, there is a sequence of facets F = F\, Fy,...,Fy, = F'
such that F; and Fi;; have a common face of dimension d — 1, for 1 < i <
k — 1. A pseudomanifold is a d-dimensional pure strongly connected simplicial
complex in which each (d—1)-dimensional face belongs to at most 2 facets. The
boundary complex JC' of a pseudomanifold C is a subcomplex generated by the

(d — 1)-dimensional faces belonging to only one facet. The interior Co' is the set
ICl - |8C||. A pseudomanifold whose underlying space is homeomorphic to a
ball or a sphere is also called a ball or a sphere, respectively. A d-dimensional
ball and a d-dimensional sphere are called a d-ball and a d-sphere.

For the definition of shellability, see [3], [13, Ch. 8] etc. As is mentioned in
[2], constructibility is strictly weaker than shellability. Constructibility appears
in [2], [5] and [10]. It is defined recursively as follows.

Definition 1. A pure d-dimensional simplicial complex ¢ is said to be con-
structible if

(i) C is a simplex, or

(ii) there exist d-dimensional constructible subcomplexes ', and Cs such that

C = Cy UC; and that C; N Cs is a (d — 1)-dimensional constructible
complex.

It is known that constructible pseudomanifolds are homcomorphic to balls
or spheres ([2, Th. 11.4]) as same as the case of shellability. Counterexamples
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Figure 1: Furch’s “knotted hole ball”

to the converse, i.e., the existence of non-constructible balls will be shown in
Section 3 and Section 5.

3 Some examples of non-shellable balls

To explore whether there are non-constructible balls or not, it is a shortcut to
study whether known examples of non-shellable balls are constructible or not.

Example 1. Ziegler {14, Sec. 4] made an example of a non-shellable simplicial
3-ball which has 10 vertices and 21 facets. The ball has all its vertices on the
boundary. This ball has vertices {1,2,...,9,0} and faccts:

a: 1234  b: 1256 f: 1569 k: 2560 p: 3678 s: 4578
c: 2367 g 1629 1. 2670  q: 3248  t: 4137
d: 3478 h: 1249 m: 2730 r: 3268 u: 4157
e: 4185 1 1489 n: 2310 ’
i+ 1859 o: 2150

In the paper, he gave a way to realize this complex in & by attributing coor-
dinates to each vertex. This complex is indeed non-shellable, but we can divide
this complex into two 3-balls C; and C., where C} is a complex induced by the
facets {d,p,q,r,s,t,u} and Cs is a complex induced by the other facets. Here,
both Cy and Cj are shellable. Because cvery 2-ball is known to be shellable,
C1 N Cy is also shellable. So this complex is constructible.

Example 2. Next example is “Furch’s knotted hole ball”. This is a pile of
cubes with a plugged knotted hole as Figure 1 and each cube is triangulated so
that the edges of the cubes are also the cdges of the triangulation. This object
appears in [1] and [14] as an example of a non-shellable ball. The critical fact
for the proof of its non-shellability is that it contains a non-trivial knot which
is made up of one edge in the interior of the ball (an edgc of the plug cube) and
an arc on its boundary. In the following theorem, we show that this knot also
causes non-constructibility. The idea of the proof given here is essentially the
same as the proof of its non-shellability.

Theorem 1. Let C be a triangulated 3-ball which has o tame knot K such that



K is a non-trivial knot in C' and is contained in OC racept one edge
<]
e of C contained in C. (K need not be a subcompler of C.)

Then C is not constructible.

Proof. First note that each arc in 9C joining two endpoint of e always produces
the same type of knot.

Let C be constructible. Then C can be divided into two constructible balls
A and B, where AN B is a 2-ball. Without loss of generality, we can assume
that A contains the edge e. One can get a knot K’ in A by joining two ends
of e by an arc in A N OC. The observation above shows that K’ has the same
type as K. If e is on 0A, then the whole knot, K’ is embedded in S§2, which is
impossible. So e must be in the interior of A, and K’ satistics the condition of
the statement.

Because A is constructible again, it can be divided into two constructible
3-balls, and one of them has a knot of the same typc as K with the same
property. Continuing this process, we finally reach at the situation that the ball
is divided into two simplices, which is a contradiction Because there is no knot
of the property in a simplex. O

4 'Testing constructibility of 3-balls

As is shown in Theorem 1, there exist non-constructible balls, so we want to
test whether a given ball is constructible or not. Here in this section, we show
a necessary and sufficient condition for the constructibility of simplicial 3-balls
all of whose vertices are on the boundary.

First, in the following two lemmas, we give two opcrations for simplicial
3-balls which preserve constructibility.

Lemma 1. Let a simplicial 3-ball C have a 2-simplex I’ whose 3 edges are all
on the boundary and T itself is in the interior of C, so C can be divided into
two 3-balls Cy and Cy such that C1 N Cy = T. Then C is constructible if and
only if both of C1 and Cy are constructible.

Proof. Obvious. O

Lemma 2. Let a simplicial 3-ball C' have a 2-simples: I cxactly 2 of whose
edges e; and ey are on the boundary and the remaining cdge 5 is in the interior
of C, and let C' be a simplicial complex made by splitting (' along this 2-simplex
T as Figure 2. Then C is constructible if and only if C' is constructible.

Proof. Let us assume that C' is constructible. Then ' nust be divided into
two constructible balls C] and Cj5. The constructibility of €' can be easily shown
by dividing C into C; and Cs such that Cy and C], Cs and C4 have the same
sets of facets and using an induction on the size.

The converse can be also shown in the same way. The only difficulty arises
when C is divided into C; and C, such that €, N Cy docs not contain T but
contains e3. In this case, the constructibility of C’ can be shown as follows.
Assume that C can be divided into two constructible balls ', and Cs such that
C: contains T. Here the constructible 3-ball C| contains I whose 3 edges are
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Figure 2: Split along T

all on the boundary of Cy, so if we divide C; into Cy; and C)» by T, by Lemma
1, both C11 and Ci3 are constructible. On the other hand. the 2-ball C; N Cy
contains eg in the interior and both ends of eg on the boundary, so this ball is
divided by es3 into 2-balls (Cy N Cy) N Cy1 and (C1 N Cy) N Cia. Now we can
join Cz and Ci1 by (C1 N C2) N Chi, and then add €y, by (C; N C2) N Cya.
The resulting complex is exactly the same as C’, and is constructible by the
construction.

O

Now let a simplicial 3-ball C' have all its vertices on the boundary. We
successively transform C as follows: if there is a 2-simplex T' whose 3 edges
are on the boundary, then divide the ball into two balls Ly T, and if there is a
2-simplex T exactly 2 of whose edges are on the boundary, then split along T'.
If at last we reach the situation that the complex is divided into a disjoint set
of 3-simplices, we conclude that the original complex (' is constructible. The
converse is shown in the following lemma. g

Lemma 3. Let a simplicial 3-ball C has all its vertices on the boundary. If some
successive operations described above get stuck, then C is ot constructible.

Proof. When these operations get stuck, we have a situplicial 3-ball ¢! whose
2-simplices are only of the following three types: (a)whole the faces are on the
boundary (b)only 1 vertex and 1 edge is on the boundary {¢)only 3 vertices are
on the boundary. Let us assume that ¢’ is constructible. Then it can be divided
into two 3-balls whose interscction is a 2-ball . Now because D meets 8C'
only with 0D, D must be consist of the 2-simplices of type (b) and (c), which
is impossible. [}

Now we have shown the following theorem which gives a necessary and suf-
ficient condition for the constructibility of simplicial 3-halls whose vertices are
all on the boundary.

Theorem 2. Let a simplicial 3-ball C has all its vertices on the boundary. Do
successive operations such that:

(i) if there is a 2-simplex T whose 3 edges are on ihe boundary, then
divide the ball into two 3-balls by T, and

(i) if there is a 2-simplex T cxactly 2 of whose edges are on the
boundary, then split along T.

Then we have C divided into a disjoint set of 3-simplices if and only if the
ortginal ball C 1s constructible.
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Figure 3: A ball with 2 rooms

Remark. The algorithm given in the theorem can be reduced to the following
form:

(1)Mark the edges which are on the boundary.

(2)Repeat: If just 2 edges on a 2-face are marked, then mark the third edge.
(3)All the edges are marked if and only if the ball is constrnetible.

By a careful treatment, the testing can be done in O(f) time, where f is the
number of facets. Using the Euler-Poincaré equation, [ can be estimated to be
O(v?), where v is the number of vertices, so the time hound is O(v?). Thus in
this special case, the testing problem of constructibility is polynomially solv-
able. Currently, it is not known whether the problem in general is polynomially
solvable or not.

5 Some more examples

Example 3. Before Ziegler’s non-shellable ball was found, the smallest number
of vertices for non-shellable balls was 14, given by Rudin [9] (with 41 facets)
and Griinbaum (with 29 faccts). These two balls also Liave wll their vertices on
the boundary. The lists of facets of these balls arve given i [5]. By a computer
calculation using the result of the previous section, both of these balls were
shown to be constructible.

Example 4. Another example of a non-shellable ball is “13ing’s house with 2
rooms”(1]. This is a house with 2 rooms as Figure 3, the walls are made out
of one layer of cubes, one enters to the lower Hoor through a tunnel from the
roof and to the upper floor through a tunnel from below. After constructing
such an object C' with cubes, we triangulate the cubes as [ollows. Let us order
the vertices as follows. First list such vertices » that there is a cube D such
that v is a connected component of DNAC. (The vertices on the inside corners
of C.) Next list the vertices which is not listed vet and is on an edge that is
a connected component of D N JC, for some culie D. T.ast list the remainder.
Then we triangulate each 2-face such that the first verteox in the list is contained
in the added diagonal. Finally we triangulate cach cube into six simplices by
taking cones from the first vertex to the six triangles contained in the 2-faces
of the cube which do not contain the vertex. (This triangulation is a “pulling
triangulation”, made by pulling the vertices in the listed ovder. The concept
“pulling” is described in [6, Scc 14.2].)



In this systematic triangulation, we can see that cach facet intersects with
0C in a disconnected set, and this is the reason why C'is not shellable. Moreover,
we can also see that there is no triangle in the interior of ¢ such that 2 or 3 of
its edges are on &C. So by Theorem 2, C' is not constructible either. (Because
all of the vertices of C' are on 0C, the condition for Theorem 2 is satisfied.)

Remark. There is a typo in the list of Griinbawn’s ball v "|. The ninth facet
“1 7 8 9" must be “1 7 8 10”. This typo was found during the computer
calculation, and was checked by Prof. Dr. Zicgler and Prof. Dr. Griinbaum.
Prof. Dr. Griinbaum taught mec a set of coordinates fur the vertices as follows
in order to realize the ball in R*. (In the following. the unine of the vertices are
the same as the ones used in [5].)
Vertices:
1=(0,1,-1), 2=(1,0,1), 3=(0,1,1). 1
5—0—,JL 6=1(0,-1,-1), 7=(0,0.5,-0.3), 8=
= (0,0.5,1), 10 =(05,0,—1), 1 5 )1
13 = (- 0.5,0,0.3), 14 = (0,-0.5,-0.3).
Facets:
{1,2,3,7}, {1,2,4,8},

{1,2,7,8},  {1.3,5,7).  '1,4,8,10},
{1,5,6,13}, {1,5,7,13}, {1,6,11,13}, {1,7.8,10}. {1,7,11,13},
{2,3,7,9}, {2,4,6,8}, {2,5.6,14}, {2,5.12,11), {2,6,8,14},
{2,7,8,9}, {2,8,12,14}, {3, 3 7,9Y,  {4.6,8,10)  15.6,13,14},
{5,7,9,13}, {5,12,13,14}, {6,8.10,14}, {67}1,15.11}. 17,8,9,13},
{7,8,10,14}, {7,8,13,14}, {7,11,13,14}, {8.12,13. 1 1}.
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