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1. INTRODUCTION

Let E'= A*(k) be the affine plane over an algebraically closed field k of characteristic zero. All schemes
considered will be quasi-projective over k. Let H, denote the Hilbert scheme Hilb™(E) parametrizing
zero-dimensional subschemes S C F of total length n. By definition such subschemes S are in one-to-one
correspondence with ideals I C kfz,y] such that dimy k[z,y]/I = n. The (closed) points of H, will be
referred to by their corresponding ideals 1.

If 5 C E'is zero-dimensional we can assign to each point P € S a multiplicity, defined as the length of
the local ring Qg p. Tor I(S) € H,, these multiplicities sum to n, and taking each point with its multiplicity
gives an n-element multiset, or unordered n-tuple, of points in E, which can be identified with a point of
1" /Sy, where Sy is the symmetric group permuting the factors of £7,

The map 7 associating with I(.S) the underlying multiset of S is a projective morphism

7: Hy — E™/S,,
called the Chow morphism.
The isospectral Hilbert scheme X,, is defined to be the reduced fiber product

X, En
| |
H, —— E"/S,.

Note that the scheme-theoretic product here.is not reduced; X, is its underlying reduced subscheme. A
(closed) point of X,, C H, x E™ is a pair (I(S),(P1,...,P,)), where P, through P, are the points of
S, each repeated with its multiplicity in S, in some order. The term isospectral alludes to the fact that
the coordinates of the points F; are the joint eigenvalues of the operators of multiplication by « and y on
ke, y]/1(S).

In an earlier paper [MSRI] (M. Haiman, Macdonald polynomials and geometry, New Perspectives in
Geometric Combinatorics, MSRI Publications 37 (1999) 207-254) we obtained the following results.

Theorem 1. The isospectral Hilbert scheme X, is Cohen-Macaulay if and only if the n! conjecture of Garsia
and the author holds for all partitions p of n.
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Theorem 2. The C'ohen-Macaulay property of X, implies the Macdonald positivity conjecture, namely, that
the Macdonald-Kostka coefficients Ka,(q,1) are polynomials with non-negative integer coefficients.

In fact it tnplies the conjecture of Garsia and the author that the coefficient of ¢"t* in fx”,\u(q,t) =
1" R (g, 1/1) is the multiplicity of the irreducible character y* in the character of the (h, k)-graded

component of the doubly graded S, module Dy, the space of all derivatives of the polynomial A, figuring
in the n! conjecture.

Theorem 3. Let J,, C k[ey. y1,... . 7n, Yn] denole the ideal generated by all S, -alternating polynomials in
kix.y]. where S, acts by ox; = o) OYi = Yo(i)- Assume that for all n and m, JI' is a free module over
Kyl =kl cyn]. Then X, s Cohen-Macaulay for all n.

In section 2 we prove this freeness hypothesis for J.
Since we are using the result, we must rectify an omission in the proof of the implication (X,, Cohen-
Macaulay) = (n! conjecture) in [MSRI]. This is done in section 3.

2. FREENESS RESULTS

The freeness result for the ideals JJ* will be derived from corresponding results for certain subspace
arrangements in E™ x E* which we now define.

We denote the coordinates on E™ x E' by 1,91, ..., &n, Yn,a1,b1,...,a;,b;, s0 E" x E' = Spec R, where
R = k[x.y,a.b]. We write [n] for the set of integers {1,2,...,n}. Given a function f: [l] — [n], let
W; C E" x E' be the linear affine subspace defined by the equations a; = Ty, bi = Yy for all ¢ € [1].
Note that Iy is the graph of a linear map #;: B — E' determined by f.

The union of the subspaces Wy over all f: [I] — [n] will be called a polygraph and denoted Z((n'),0).

More generally, given a subset 1" C [I] we define Wy p to be the subspace of W; defined by the equations
a; = sy, bi = ypay forall i € [1],

2.1
(2.1) a; =a; foralle,jel.

Equivalently. 13 7 is the graph of the restriction of m; to the subspace of E™ defined by the equations

Ty = wpy forall i, j € T Since the coordinates y remain independent on Wy r, the coordinate ring of
W s a free ky] module.
Given a sequence (v, ..., ) of integers 0 < v; < n, we define the scheme Z(v,T) C E® x E' to be the

union of the subspaces Wy p over all f: [{] — [n] satisfying the conditions:
f@) <wv; forallie[l],
FG) £ f(j) fori<j,ieT,jgT.

It may happen that no f satisfies these conditions (e.g. if »; = 0 for some ¢), in which case Z(v,T) is empty.
If I = 0, the empty function f satisfies (2.2) vacuously, and Z(0,0) = E™. Note that the notation Z((n'),0)
for polygraphs is consistent with the definition of Z(v, 7). When we want to specify n and [ explicitly we
write Z(n.{. v.T) instead of Z(v,T).

The ring R = k[x,y,a,b]is doubly graded by degrees (7, s) in the variables {x,a} and {y, b} respectively.
These degrees will be referred to as x-degree and y-degree. The ideals of Wy r and therefore of Z(v, T are
doubly homogeneous. Moreover, for these ideals I, R/I is a finitely generated module over k[x,y], and
hence each of its x-degree homogeneous components (R/I)(, -y is a finitely generated k[y] module, graded
by y-degree. Throughout, we will make use of the principle that the theory of finitely generated graded k[y]
modules may be applied to the rings R/I via their x-homogeneous components.

o
(S
[N

Theorem 4. The coordinate ring R/I(Z(v, 1)) of Z(v,T) is a free k[y] module if v; = n for alli @ T. In
particular this holds for the polygraph Z((n'),0).
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We believe the theorem should hold without the proviso on v, though we need it for the inductive proof
given here. Before proving Theorem 4 we show how it implies the freeness hypothesis for J*, and hence the
n! and Macdonald positivity conjectures.

I

Theorem 5. Assume the coordinate ring of the polygraph Z((n'),0) is a free k[y] module for all . Then
the wdeal J)' C k[x,y] is a free kly] module for all m.

Proof. ¥ix m and take [ = mn. Let G = ST be the cartesian product of m symmetric groups S,, acting on
17 E™ by permuting the factors of £™" within m consecutive blocks of length n. Thus each element
o € (i fixes the coordinates x,y, and for each d = 0,... ,m — 1 permutes the coordinate pairs (@gnti,ban4i)
for i = 1,...,n among themselves.

Let I C R be the ideal of Z((n'),0). Clearly [ is a G-invariant ideal. We claim that the space (R/I)¢
of G-alternating elements of /I is isomorphic to J* as a k[y] module. Since (R/I)¢ is a direct summand
of R/ it is a free k[y] module. (It is elementary that finitely generated graded projective k[y] modules are
free.)

Let ¢ : 8 — k[x,y] be the ring homomorphism mapping agn4s, ban4: to x;,y;, and x,y to themselves.
By definition, J7' is generated as a k[x,y] module by products A;--- A, of m alternating polynomials.
Therefore ¢ maps R surjectively onto J™.

Let p be an arbitrary element of R¢. Since p is G-alternating, p vanishes on Wy if f(dn+1) = f(dn+j) for
any #,j € [n] with i # j. Thus the regular function defined by p on Z((n'),0) is determined by its restriction
to those W, with the property that for each d = 0,...,m — 1, the sequence f(dn +1),..., f(dn +n) is a
permutation of n. Furthermore, since all such Wy are conjugate by elements of G, p is determined by its
restriction to Wy, where fo(dn +7) = 7. But Wj, is defined by the equations agn4i = @4, ban4i = y; for all
d, i, so the restriction of p to Wy, is given by ¢(p). This shows that p vanishes on Z((n'),®) if and only if
¢(p) = 0, that is, the kernel of the map ¢ : R® — J* is I N R¢, and hence (R/I)¢ = R¢/I¢ = J™. O

The proof of Theorem 4 will be given following a number of lemmas.
We first record certain elementary algebraic facts concerning k[y] modules M. The first of these hold for
arbitrary M. not necessarily graded or finitely generated.

(1) Given an exact sequence

0—>]W;>N—‘rp—~>0,

with M and P free, N is free. If B; and B, are free module bases of M and P, respectively, and
BS C N maps bijectively on B, then ¢(B1)U B) is a free module basis of N.

(2) Let M be the quasi-coherent sheaf on Spec k[y] associated to M. If U C Spec k[y] is an open set whose
complement has codimension d, and M has a free resolution

0~ Fy —=F,_1— - —=F—=M-=—=0

of length k& < d, the canonical map M — H°(U, M) is injective.

The remaining facts hold for finitely generated graded k[y] modules. We write depth M for depth,, M,
where m = (y) is the homogeneous maximal ideal. The zero module has infinite depth.

(3) We have depth M = n if and only if M is free.
{4) Given an exact sequence
0—M—N—P—0,
we have have depth M > min(depth N, 1 + depth P). In particular if N is free and depth P > n — 1,
then M is free.
{(5) I M is free over a subring ky;,,...,y;.] then depth M > k.
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(6) Let I denote a maximal ideal of k[y], i.e., a closed point of Spec k[y]. The integer dim; M/PM is
constant for all P in a dense open set, and is maximized for P = (y). If the maximum value is equal
1o the generic value, then M is free.

Throughout we denote by I7 the open subset of Spec k[y], or more generally of Spec R/I, on which at most
two of the coordinates y; coincide. More precisely for 1 < p < ¢ < n, we define Upq to be the complement of

the closed union
U v -u),
i<y
{t.7}#1{p.q}
and {7 to be the union Up<q Upq. The complement of U is the union of the subspaces V(y; — Ui, Yk — W)

where i, j, k, [ are distinct and V(y; — Y ¥ — Yx) where ¢, j, k are distinct. In particular it has codimension
2.

Lemma 2.1. Let M be a torsion-free k[y] module and let B be a subset of M. Assume that forall P U,
Mp 15 a free k[y]lp module with basis B. Then M is a free k[y] module with basis B.

Proof. Let I” be a free k[y] module with basis {e; : b € B}, and let ¢: F — M be the homomorphism defined
by &(cy) = b for all b € B. By hypothesis the induced homomorphism ¢: F— M of quasi-coherent sheaves
on Spec k[y] restricts to an isomorphism on U.

IT's is in the kernel of ¢ the corresponding section 5 € F(U/) is zero. Then s is zero because F' is free and
hence torsion-free. This shows ¢ is injective.

(viven any clement t € M let { € ]\ZI(U) be the corresponding section, and let o = qz_l(tN) € F(U) Y
denotes the complement of U, the local cohomology module H{.(F) is zero, since F is free, k[y] is Cohen-
Macaulay, and codimY = 2. This implies that the canonical map F — HO(U, F) 18 surjective, so o = § for
some s € I Then ¢(s) — t induces the zero section on U, and since M is torsion-free, ¢(s) = t. This shows
& 18 surjective, |
Lemma 2.2. Let R be a k[y] algebra, 1,J C R ideals, and f C R an arbitrary element. Assume that

(1 ) R/ is a torsion-free k[y] module,

(2) /T ([) and R/J are frec k[y] modules, and

(3) VU + ()Nl =V(J)NU scheme-theoretically, i.e., we have I + ()= J locally on U.
Then I +(f)=J. and R/I ts a free k[y] module.

Proof. Since R/J is free, the canonical map R/J — HY(U,(R/J)") is injective. With (3) this implies
I+(f)C.J.
Lot By and By be free k[y] module bases of R/J and R/I : (f), respectively. From the exact sequence

(2.3) 0= R/T:(f) = R/T— R/L+(f) =0,

we see thal for P € U, (R/I)p is free with basis By U fB;. By Lemma 2.1 this implies that R/ is free.
Iln (\a(l sequence (2.3) 1s now a free resolution of R/I + (f). Hence the canonical map R/I + (f) —
HO(U(R/T+(f))7) is injective, which implies J C T+ (f) and therefore J = I+ (f), by hypothesis (3). [

tn the application of Lemma 2.2 we will always have J = /T + (f), though this is not necessary to the

proof.

Lemma 2.3. Let M be a graded kly] module, and let I,J, K C M be homogeneous submodules. Assume
that

(1) M/I.M/J and M/K are finitely generated,
(2) M/1 and M/J are fre(
(3) depth M/N >n—1, and
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(4) we have I +.J = K locally on U.
Then [ +.J =K and M/INJ is a free k[y] module.
Proof. Since depth M/K > n — 1, the canonical map M/K C H°(U,(M/K)") is injective. Together with
(4), this implies [ +J C K.
From the exact sequence
0—=K/I—=M/IT—-M/K—0

we see that /1 is a free k[y] module. We have further exact sequences

(2.4) 0—=M/INJ M/ I®&M/J]—M/I+J—0
and
(2.5) 0—UI+N/I=J/INJ —-M/INJ — M/J —0.

Let By and By be free module bases of K//I and M/J, respectively. Localizing (2.5) at P € U and using
(I +J)p = Kp, we see that By U By is a free module basis of (M/I N J)p. Since M/I and M/J are
torsion-free, so is M/IN.J. By Lemma 2.1, M/IN.J is free. Then (2.4) is a free resolution of M/I +.J, which
implies that the canonical map M/I + J — H%(U,(M/I + J)7) is injective. By (4) this implies K C I + J,
hence [+ = I O

Lemma 2.3 will be applied with M an x-degree homogeneous component of R, and I,J, K the cor-
responding components of doubly homogeneous ideals, where R/I, R/J and R/K are finitely generated
k[x,y] modules, so (1) holds.

In the next Lemma and in the proofs of results to follow we will need to consider subschemes similar to
Z(v,T) but defined by equations in subsets of the variables x,y, a, b. For this we need some further notation.

Let N C [n] and L C [{] be given. Let the elements of N and L in increasing order be

N={h<jo< - <ju} L={i<ir< -<ip}
We define a linear morphism Yz E” x E'— E"Y x EV by
1/']\7,[1(‘1‘1)3/1) R 1$n)yn)a17b1) R aalabl) = (xj17yj1$ s al’j"/ayjn/;ail;biu e ,aill)bjll)'

Fquivalently, the underlying ring homomorphism wgv,h R’ — R is given by 1/’§v,L(l'k) = zj,, wx]i\f,L(yk) = Yins
U’B\"L(uk) = (Liky (Z"ii\,r'\L(bk) = bikv Where R/ = k[$17y11 e )mn'5 yn’; ala bl: A ,Cl[l, bl’]-

We denote by I(n,{,v,T) C R the ideal of Z(v,T'), abbreviating this to I(v, T) when n and [ are under-
stood. With N, L as above we set

I(N, LV, T = IRY(Z (' U v T') = Ry (10, 1,0, T")).

Note that [(N.L,v',T") is generated by polynomials in the variables z;,y; for j € N and a;,b; for i € L
only. Let Y € E™ x E' be a linear subspace on which these variables are independent coordinates. Then it
is clear that the subscheme v5! (Z(v/,T")) NY defined by the ideal I(N, L, ', T") + I(Y) is reduced and

somorphic to the product
Z(n" U, v, T x A,

where A is a linear affine space. It follows that if R'/I(n/,I' v/, T") is a free k[y1, ..., yn] module, then
RJIN, LV T+ I(Y) is a free k[y'] module for any set of coordinates y’ C y independent on Y.

Lemma 2.4. Wath U,y and Wy r as defined earlier, we have

(1) Upg OWyp 0 Wor = 0 unless f7H({p,q}) = 97" ({p,q}) and f(i) = g(3) for all i ¢ f~'({p,q}). In
particular, all Wy p containing a given point P € Uy, have a common value of L = f~1({p,q}) and
/l == HM\L .
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(2) Fir a subset L = {iy < -+ < 4y} C[l] and a function h: [{|\ L — [n]\ {p, q} satisfying (2.2) for
mdices i,j @ L. Let Z be the union of the irreducible components Wyr C Z(n,l,v,T) for which
1 {p.g}) =L and flipne = h. Then with N = {p, q}, we have Z = w;,}L(Z(Q,l’,V’,T’)) NY, where
=i 1N {p, g} T" =1{j :4; € T}, and Y is the affine subspace defined by the equations

Wi = Tpeiy, bi = yny  for 1@ L, xpey =wmpgy for 4,je€T\L,
and. f TN L # 0,
Tpy=ar for 1€ T\ L,
where s an arbitrary element of TN L.

Proof. (1) 1f for some i we have f(i) # g(¢) and {f(?),9(#)} # {p,q}, then Uy "Wrpr "Wy = 0, since
Wer SV~ i) Wor CVI(bi — yg0)), and V(ys) — Ygqi)) N Upg = . The condition that for all : € [I],
either [(i) = ¢(i) or {f(i),9(:)} = {p,q} is equivalent to the condition that f~'({p,q}) = ¢~ *({p,q}) and
£y = gi) for all i & F~'({p, q}).

(2) Let f satisfy f='({p,q}) = L and f(i) = h(i) for all i € L. Given the assumed conditions on h, the
condition that f(i) < y; for all i € [I] is equivalent to f'(i) < v/ for all i € L, where

£ = 1, f(l') ="

21 f(l) =q.
The condition that f(i) # f(j) for i < j, ¢ € T, j ¢ T holds if and only if it holds for ¢,7 € L, since in
all other cases it is implied by the assumed conditions on f and h. Therefore, if we define g: [I'] — [2] by

gly) = J'{i;), we see that W, o C Z(2,1',v',T") if and only if Wy C Z(v,T).

Since Wy = 15>RV}L(I/’I'91T) NY we have 7 = 1/);,‘1L(Z(2, v, T"))NY, set-theoretically. The coordinates
X Yy 2y, gy and a; by for i € L are independent on Y, so wj}}L(Z(Z, UV, T))NY is scheme-theoretically
reduced. O

Corvollary 2.5. lor each scheme Z of the form specified in Lemma 2.4 (2), if R'JI(2,U',V',T") is a free
k[yy, ya]l module then R/I(Z) is a free k[y] module.

For I = 0, Z(r.T) is tautologically equal to E". For [ > 0, Z(v,0) = Z(v,{l}). To analyze the schemes
Z(v. T, therefore, we may assume without loss of generality that T # . With this assumption we let ¢;
denote the least element of T'.

Lemma 2.6. For n = 2, of Z(2,1,v,T) is not empty, there is a subset L C [I} such that i1s) 1 induces an
isomorphisin of Z(2,1,v.T) onto some Z(v',T') = Z(2,U, (Qll), [t', 1)) or onto Z(v',T"Y N V(ay — x1) or
2. TNV (g —xy). (The reduced intersection is meant here, but in any event the next lemma shows that
the scheme-theoretic intersection is reduced).

Proof. 1f [ = 0 the result is trivial. Otherwise we can assume T # 0, and let ¢; be the least element of T'. If
T # [{]. let 51 be the greatest element of [{]\ T. Otherwise, for simplicity of notation, let s; = 0.

For all 7 in the (possibly empty) interval [t; + 1,s1], and for all components Wrr C Z(v,T), f(t1)
determines and is determined by f(é). For ¢ € T this follows because f(7) # f(¢t1) and n = 2. In particular,
sy >t fs1) £ f(t1). But then for i € T, f(7) # f(s1), so f(i) = f(t1).

Conversely, if we choose f(i) € 1,2 arbitrarily for indices 7 & [t; + 1, s1], and then define f(i) for i €
[ty+1,5,] by the rule f(i) = f(t1)if and only ifi € T, then f automatically satisfies the condition f(7) # f(J)
foralli< j,ceT,j&T, since for any such i,j we must have t; <i < j < s;.

If v, = 0 for some i, Z (v, T) is empty. If there are indices ¢,§ € [t1,s1] withi e T, j € T, and v; = vj = 1,
Z{r,T) 15 again empty. We need only consider the remaining cases.

Let L = {i; < - - < iy} be the set of indices i ¢ [t1, s1] such that v; = 2, together with ¢; provided that
v, =2for all 7 € [ty,5]. Let f': L — [2] be arbitrary. By the analysis above, since f(¢) must equal 1 for
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indices such that v; = 1, there is a unique f: [{] — [2] such that f(¢) = f'(i) for ¢ € L and W;r C Z(v,T).
Every component Wy C Z(v,T) arises this way.

Let T"={j 4 € T'}. Since [t +1,51]N L =0, T is a final segment [t', '] of [I'] (we take t’ = ' + 1 if
T" = ). If we define g: [I'] — [2] by ¢(j) = f(4;), then Y1), maps Wy p isomorphically onto W, 7/, or, if
ty € L and T" # 0, onto W, 7 N V(ay — ;) or Wy pr N V(ay — £3). Which of the latter we get depends
on the value of f(t;), which is fixed when t; ¢ L. This shows that Y, maps Z(v,T) isomorphically onto
Z((2").T") or its intersection with Viay — x1) or V(apy — z3). O
Lemma 2.7, The wdeal I of Z(2,1,(2"),[t,1]) is generated by the following elements:

(1) (ai =21, b; — i )(a; — &2, b; — ya2) for each i € [I],

(2) a; —a; fori,j €[t,1].
(3) the determinants

1 a; bi
det |1 a; bj
1Tz

fori,jell]. kel2].
Moreover the deals I + (ay — 21) and I + (a; — x2) are radical, i.e. the scheme-theoretic intersection of
202,125, [t, ) with V(a, — 1) or V(a; — 24) 1s reduced.

Proof. 1t is clear that the specified generators do vanish on Z((2'),[t,{]). The determinants vanish because
two of the rows must be equal. The vanishing of generators (1)-(2) is already enough to define Z((2'),[t,{])
set-theoretically. Let J be the ideal generated by the elements (1)-(3). We have V(J) = Z((2'),[t,])
set-theoretically.

We claim that R/J is generated as a k[y1, y2, z1] module by the images of monomials of the form
(2.6) 23bi, -+ -bi,aj, - aj,,
where 1) < -+~ <l < j1 < - - js, Js <tif s#0,and d=01if r £ 0.

To sec this we order the monomials in R/(y1,yz2, 1) = k[z2, a, b] lexicographically, with the ordering of
variables wy < ay < --- < a; < by < --- < b. Reducing the given generators modulo (y1, y2, 1) we obtain

polynomials with the following leading terms. From the generators (1) we get a?, a;b;, and b? for all 4, and
also wob; (which belongs to (ai, b;)(a; — 22,b;)). From the determinants

1 a; bz
det |1 a; b;| =aib; —a;b; (mod (y1,y2,21))
Iz oy

we get a;b; for i < j. From generators (2) we get a; for i > {. The only monomials not divisible by any of
these leading terms are those of the form (2.6).

The ideal I is doubly homogeneous. For any closed point P = (y; — v, y2 — ) € Spec k[y], the coordinate
ring of the fiber of Z((2"), [t,1]) over P is graded by x-degree. For o # 3, the components W of Z((2"),[t,1])
have disjoint fibers over P. There are 2! of them, of which 2! (those with f(t) = f(t+1) = --- = f(I))
project isomorphically onto Spec k21, z5] and the rest onto the subspace V(z; — z2). It follows that the
Hilbert series of the fiber over a generic point P is equal to

1
1—yq
The ideal ./ is also doubly homogeneous, and since it is contained in I, the Hilbert series of R/J + (y1, y2)
must be coeflicientwise greater than or equal to H(g).

Let B be the set of monomials «{m, where m is of the form (2.6) and e is arbitrary. Then B spans
R/T+ (y1.y2) as a vector space over k. The generating function enumerating elements of B by their degree

ot 1 t
H(q):2m+(21—2)
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in the variables x, a is equal to H(g). This implies that B is a basis of R/J + (y1,92), that J + (y1,¥2) =
I+ (y1,y2). and that R/I is a free k[yi,ys] module with basis B. Since B generates R/J as a k[y1, ys]
module, the canonical surjection R/J — R/I is injective, and I = J.

The case of I + (a; — x1) or I + (a; — z3) is handled similarly. The extra generator allows us to impose
the extra restriction j; <t if s # 0 on the monomials in (2.6). The Hilbert series of a generic fiber of the
reduced intersection Z((2'),[t,{]) NV (a; — &) becomes

1 1
(1—4g)° 1—¢
stnce we have vy = wy on Wy r NV (a; —zp) unless f(t) = f(t+1) = --- = f(I) = k. The generating function
for the restricted monomial basis By is equal to H;(g) and the rest of the argument proceeds as before. [

Hi(q) =271 + (2" 27

Corollary 2.8. Forn =2, R/I(2,1,v,T) is a free k[y1, y2] module for all v and T

Proof. Tor v = (2'), T = [t,[] this follows from the proof of Lemma 2.7, and all other cases reduce to these
by Lemma 2.4, |

Corollavy 2.9. Forn =2 the ideal of Z(v,T) is generated by 1, if Z(v,T) is empty, or else by the elements
Ly aj =y, by —yy, forv; =1,

(2) a4+ a; —(er 4 @a). bi+ b5 — (y1 +y2), fori<j ic€T,jgT,

(3) (i =y by —y1)(ai — x2,bi — ya) forv; = 2,

4) @ —aj fori.jeT, and

(9) the determinants in Lemma 2.7 (3).

Proof. Let Y C E? x E' be the affine subspace defined by (1)-(2). With L,I' 1 as in the proof of Lemma
2.6, the map o) 1 is an isomorphism of ¥ onto E? x E' | and the proof of Lemma 2.6 shows that Z(v,T) =

U‘[‘,_,]]_L(Z) NY, where Z is equal to Z((‘ZII), [t',I']), or to its intersection with V(ay — z1) or V(ay — zg) if

& Land 1"y L # 0. The images under 1/)?2] 1, of the generators given by Lemma 2.7 for I((2"), [t/,1']) are

among (3)-(5). In the case t; ¢ L, T'N L # (), the image of the extra generator a; — &1 or a; — x5 reduces
to zero modulo (1)-(2) and (4).

This shows that the ideal generated by (1)-(5) contains I(r, T), and the reverse containment is clear. [

The next two lemmas provide reductions that we will use to prove Theorem 4 by induction. As above we
consider only Z(v. T') for I > 0 and T' # 0, and let t; denote the least element of T.

Lemma 2.10. Assume {1 > 1. Let 0v = (vo,...,v,v1) and 0T = {t ~ 1 : t € T}. If R/I(6v,6T) and
R/1(0v. 0170 {l}) are free k[y] modules, then so is R/I(v,T).

Lemma 2.11. Assume 1) =1, v1 >0, and v; > vy for all i @ T. Let S = {1 €T\{1}: s > 1n}. Suppose
that R'/1(n" I' V', T") is a free k[y1,... ,yn] module in the following cases:

(' =n =00 =W -1 o), TN =T,

y 2,

(2) Jor each subset " C S, with L = [N\ (S'U{1}) ={i, < --- < iy}, the case n’ = n— 1,1 = |L|,

T =Aji; €T}, and v/ = (v;,, ..., 1v3), where
];:_ k'_l ikaV17
Tk otherwise;

(3) Jor each subset " C S, with L =[]\ 5" = {iy < -+ <ip}, the case '’ =n — 1, I = IL|, T'={j - L:
g e TN Ul v = (vig, - iy, i)
Then R/I(w.T) is a free kly] module.
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Proof of Lemma £.10. By analogy with the definition of #v and 6T in the statement of the lemma, define
0: E" x Y — " x E' to be the “cyclage” automorphism

O(X,y,al,bl,.” ,a;,b;) = (X,y,ag,bz,... ,Cl[,b[,al,bl),

Let [ = 1(v,T).
Set theoretically, we have

) OV(I + (a1 —ay,)y = Z(0v, 0T U {i})
) OV(I:(ar —ay,)) = Z(0v,67T).

Equation (2.7) is obvious. For (2.8) observe that the components Wyr C Z(v,T) on which a; — a;,
does not vanish identically are those with f(1) # f(t) for all t € T. Applying # to these gives exactly the
components of Z(fr,§T). Equation (2.8) holds scheme-theoretically, since for a radical ideal I, T : J is
always radical.

We claim that (2.7) holds scheme-theoretically, locally on U. If Z(8v, 0T U {{}) is empty there is nothing
to prove. Otherwise fix a point P € Uy, N Z(6v,07 U {{}). By Lemma 2.4 (1), all components W;erun C
Z(0v,0T U {l}) containing P have a common value of L = f~!({p,q}) and h = f| . The same holds for
the components Wy g = Wy, o7 = 8W, p of 8Z(v, T'). These components correspond to the same functions
J i both cases. Now let Z be the union of the components Wy eruqny for these f and let Z; be the union of
the corresponding components Wy g7, so Z(0v, 6T U {1}) is locally equal to Z and 6Z(v,T) is locally equal
to Zy. We are to show that Z = Z; 0N V(a; — a¢,_1) scheme-theoretically.

Now we apply Lemma 2.4 (2) to Z and Z;. More accurately, for Z; we apply Lemma 2.4 (2) to 67! 7,
which is locally isomorphic to Z(v,T), and then apply 6 to the result. This yields Z = w;,’lL(Z’) NY and
Z = 'd’;v}L(Zi) NY1, where N = {p,q}, Z' = ¥n (Z), Z{ = Yn,L(Z1), Y is defined as in Lemma 2.4 (2)
with 07U {l} in place of T, and Y] is defined similarly but with 87" in place of 7.

For { ¢ L. we have Y = Y1 NV (a; — a;;—1), as can be seen from the defining equations of Y and Y; by
considering the cases t; —1 € L and t; — 1 € L separately, and taking the arbitrary element ¢ in Lemma
24 (2) to be 1} — | in the case t; —1 € L. Forl € L and 6T NL =, since BTU{IPHNL = {I},Y is
defined by the equations of Y] together with a; = zp(i) for i € 8T, which is equivalent to a; = a;,_1, and
we again have Y = Y1 NV (a; — a;,—1). In these cases, ¥y (W or) = Y, L(Wyeruqy) for all relevant f, so
v £(Z) = ¥n (Z1). As the identities 7 = 1/);,’1L(Z’) Ny, zZ; = ¢;,1L(Z{) N Y7 hold scheme-theoretically, so
therefore does Z = 71 NV (a; — aq,_1).

For{e L and 07T N L # B we have Y = Y7 by inspection. Note that i = [ in this case. Let t = 7, be an
arbitrary element of 0TV L. On Z; we have a; = ay,- identically, so Z1 NV (ej—ay,—1) = Z1NV (g —ar) =
lfr“v;,‘lL(Zf N V(ap —a;))NY, all intersections being scheme-theoretic.

It remains to prove that the scheme-theoretic intersection ¥y r(Z1) N V{ay — ay) is reduced. But
YL (Zy) = 022,10, T") for a suitably defined " and 77 with 1 € 7', ¢’ € 0’T’, where #' is the cyclage au-
tomorphism of E*x V. Using Corollary 2.9 we see that ¢ Z(2, I/, 1/, TNV (ar—ay) = Z(2,1,6',6/T"U{l'})
scheme-theoretically.

By hypothesis, IR/I(0v,0T U {l}) and R/I(fv,0T) are free k[y] modules. Since we have shown that
(2.7) holds scheme-theoretically on U, we may apply Lemma 2.2, with the present I, f = a; — a;,, and

I'+ (a1 — ay,), to conclude that (2.7) holds scheme-theoretically everywhere, and R/I is a free k[y]
module. : ]

o
-1

g
(2.

o

Proof of Lemma 2.11. Let Z; denote the union of the components Wy C Z(v,T) for which f(1) = v; and
let Za be the union of those for which f(1) < v, (either may possibly be empty). Then Zs = Z(v',T), where
v'=(vi = 1,vs,... . 1), and therefore R/I(Z5) is a free k[y] module by hypothesis (1).

since | € T, we have f(j) # vi for all j ¢ T, for all components Wy C Z;. Thus the set S contains
all indices s # 1 which we could possibly have f(s) = v;. To analyze Z; we further classify its components
W according to the subset f=1({v1}) = S’ U {1}, where S C S.
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Let the elements of S be {s1,s2,...,5;}, fix a subset S’ C S, and define the ideal

(2.9) I'= ](Zl)+/:(b51 -‘y'/1)+/:(b52 - yl/1)+/: "'+/:(b3k —yh)’

where at each step we apply the ideal-theoretic operation +(bs, — y,,) if s; € 57, or : (bs, — yy, ), otherwise.
Also define

[(/) = [(Zl) : H (bs _yV1)+ Z(bs _yVl)
SES\S' seS’

and

Ii:\/[(zl)“}’Z(bs_ym) : H (bs = yu,).

ses’ seS\S’

We have 1)) C I' C I1, by the general relation (I : J)+ K C (I + K) : J valid for arbitrary ideals I, J, K.

Note that on Z; we have identically a; = #,, for all t € T, since 1 € T, and every component Wyt C 7,
has f(1) = vy. Given any such component Wy p, let g: [l] — [n] agree with f except on indices s € S’. For
these set g(s) = v1. The defining equations (2.1) of W, 7 hold also on W; 1, except for those of the form
be = yu, for s € . Therefore we have

(2.10) Wi OV (b — ) C Wy
SES’

We also have g(i) < v; for all i by the definition of S, and g(i) # g(j) for i < j, i € T, j € T, since
9(j) = f(j) # vi, and either g(i) = f(i) # f(j) or g(i) = v1. Therefore W, r is a component of Z;.
Morcover Wy and W, 7 are the graphs of the maps 7¢, m,: E® — E', restricted respectively to the
subspaces V(x; —x; 12,5 € f(T)) and V(x; — x; : 4,5 € g(T)). Since v; € f(T') we have g(T) C f(T) and
Vi(vi —aj i g€ f(T) € V(es —x; 14,5 € g(T)). It follows that the projection of Wy on the coordinates
x,y and a;, b; for ¢ ¢ S’ is contained in that of W, p.

The containment (2.10) implies that Z; N V(2 ses/(bs = yu,)) is, set-theoretically, the union of those
components Wy C Z; with f(s) = vy for all s € S’. Since b, — y,, vanishes on Wy if and only if
J(s) = vy, it follows that V(I]) is the union of those components W;r C Z; with f='({w1}) = S’ U {1}.
Note that 7} = \/E by construction. Similarly, I(Z;) : HseS\S'(bs — ¥y, ) is the ideal of the union of those
components Wy p C Z; with f(s) # vy for s € S\ 5",

Now let p € I be arbitrary, and let ¢ be the polynomial resulting from the substitutions (a; = z,,, bs —
Yo, » 5 € 5)in p. We have ¢ — p € I} (recall that a; — z,, € I(Z;) for all s € T), hence ¢ € 1], ie., ¢
vanishes on W, ¢ C Zy if g7 ' ({r1}) = S U {1}. Since ¢ does not depend on a;, b; for i € S’ it follows from
the remarks after (2.10) that ¢ vanishes on every Wy p C 7 satisfying f(s) # v for all s € S\ S, since the
g corresponding to such an f has g=}({r1}) = S’ U {1}. This proves ¢ € I(Z;) : Hses\s'(bs — Yy, ) and hence
p € 1. We have now proved I] C I}, and hence I}, = I' = I;.

Given f satisfying f~1({v1}) = S’ U {1}, the condition for W; r to be a component of Z; is merely that
(2.2) should hold for indices ¢, j € S” U {1}. The conditions hold automatically for other indices because for
i€ S"U{l} and j ¢ T we have f(i) = v1 # f(j). Set N =[]\ {mi}, L=[0\ (S U{l}) = {iL <---<ir},
and let ', 7" be as in hypothesis (2) of the lemma. We then have I' = I(N, L,v', T") + I(Y) where

AT £ 0,

0 otherwise,

ay — Ty

(2.11) I(Y):(as—r,,l,bs—yl,l:sES’U{l})+{

with t = ¢; for an arbirtrary j € 7. Set-theoretically, this is clear, and 1/);,1L(Z(n - LUV, THNY is
scheme-theoretically reduced because the coordinates z;,y; for j € N and a;, b; for ¢ € L are independent
on Y. Since all the y coordinates are independent on Y we further have that R/I’ is a free k[y] module.
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I'or any ideal I € R and element f € R we have the exact sequence

0= R/L:(f) - R/ — R/T+(f) =0,

in which the middle term is a free k[y] module if the outer terms are. Iterating this and using the freeness
of R/I’ for every S C S we deduce that R/I(Z) is a free k[y] module.
Now let .J = I(Zy) + [(Z2). Since Z(v,T) = Z1 U Zy we have the exact sequence

(2.12) O—»R/I(V,T)—rR/I(Zl)EBR/I(Zz)-—MR/J—*O.

We might hope to apply Lemma 2.3 at this point, but an obstacle to doing this is that V(J) = Z; N 7 is
not scheme-theoretically reduced. To evade this difficulty we consider the ideals

J' = ‘]+/:(b31 _y‘/x)+/: +/:(b8k - yV1)’
where again we apply +(bs, — yy,) if 8, € S, or : (bs, — 3, ), otherwise, with S’ C S as before. We will show
that R/J" is a free k[y’] module, where y’ = y \ {y,, }. Since this holds for all S/, R/J is then a free k[y']

module, which implies that R/I{v, T) is a free k[y] module, by (2.12).
Let Z3 be the union of the subspaces Wy NV (2, — a1, s, — b1) over functions f: [{] — [n] satisfying

F71{r1}) =S (in particular vy # 1),
(2.13) fli)y <y for all i € []], and

f@) # 1) fori<j, i€ T\(S'U{1}),j ¢ T.
Let k' = I(Z3) C R be the ideal of Zs.

Given the condition f~1({v1}) = S’, the remaining conditions in (2.13) are equivalent to their apparently
weaker variants in which the indices 7 and j which appear are restricted to [I]\ S’. This is the case because
for i € 5" we have f(i) = v < vy, and j & T implies j € S’. Note that the conditions (2.13) do not include
J(L)# f(j)forjgT.

Set No= [n]J\{m}, L = [\ S = {i < - < i}, v/ = (Vig,...,vi,,¥i,), T" = {j =1 :4; €
TAN{1}} U {l'}. Note that this use of L, v/, T" differs from our preceding one, and that we now have 1 € L,
so iy, = 1. Let §/: En~' x E' — E"=1 x E' be the cyclage automorphism 6'(x,y,a1,b1,...,ap,by) =
(x.y.as.bo, ... ap,bp,ay,by). Then we have

Zs =Py (07 Z(n — 1,1/, T))NY,

where Y is defined by the equations a; = z,,,bs = y,, for s € S’ U {1}.

The coordinates x;,y; for j € N and a;, b; for i € L are independent, and in fact are a basis of coordinates
on Y, which implies that Z3 is isomorphic to Z(n — 1,1',v',7"). By hypothesis (3) of the lemma it follows
that /K is a free k[y’] module.

We will next show that V(I')N ZoNU = V(J')NU = Zz N U, scheme-theoretically. It then follows from
Lemma 2.3 that I'4+I(Z2) = K. In particular V(') Z5 is reduced and equal to the closure of its intersection
with (7. It is clear that I’ + I(Z9) C J', so V(J') is contained (scheme-theoretically) in V(I') N Z3. Since
these subschemes agree on U it follows that J' = I' + I(Z2) = K, and R/J’ is a free k[y’] module, as was to
be shown.

Now fix p < ¢ and a point P € Up,. By Lemma 2.4 all spaces W} r containing P have a common value
of L= f"*({p.q}) and h = fline- Fix L and A, and let Y C E™ x E' be the affine subspace defined by the
equations

Tp = Tq,Up =Yg

a; =&y, b =y, forie L,

a; = Tp(iy, bi = yn(sy for i € L, and
.’Eh(i):.’L‘q fOI‘ZET\L

(2 14

For all f such that f='({p,¢}) = L and flgr = h we have from the definition of Wy that W;r NV (2, —
dg. Y — Yy) = Y. provided TN L # .
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On every component Wy r NV (z,, —ai,y,, — b1) of Z3 we have z,, = Ti(1), Yo = Ys(1), With f(1) < vy.
Such a component is disjoint from U, unless we have p = f(1), ¢ = vy. In particular Z5 is locally empty
at Prunless ¢ = vy and 1 € L. On Z; we have identically a; = z,,, by = Yu,, and every component
Wrr C© Z2 has f(1) < vi. Hence Z; N Zy is also locally empty at P unless g=wviand 1 € L, as is
V(Y C V(YN Zy C Zy O Zy. Therefore we may assume without loss of generality that ¢ = 11 and 1 € L.
I particular, 71 L £ 0.

Locally, every component Wy p NV (z,, —ayi, y,, —by) of Z3 has f(1) = p, so WirNV(ey, —ai,y,, —b1) =
Wrr N V(ay — 2. yp — yg) =Y. This shows that locally at P, Z3 is either empty or equal to ¥ (scheme-
theoretically, since Z3 is reduced).

Only one possible component W, C V(I’) could contain P, since g must satisfy g(i) = h(3) for i ¢ L,
while for 7 € L we must have g(i) = v; = gfori € U {1} and g(i) = pfori g S’ U {1}. In particular
g(1) = ¢. so we have , —ay,y, — by € Ip. Every component Wt C Z, containing P must have f(1) = p,
since | € L and f(1) # v1 = q. Therefore we have z, — a1, y, — a1 € I(Z2)p. It follows that V(I'YNZyis
locally contained (scheme-theoretically) in Y, since we have Wer NV(z, —zg,yp — y,) = Y for the unique
possible local component W, r of V(I'). Since every W; 1 containing P also contains Y, V(I'YN Z5 is locally
either empty or equal to Y. In particular it is locally reduced.

Let f:[I] — [n] satisfy (2.13), and define f’ to agree with f, except f/(1) = vy. Since f~1({rx1}) = $' C T,
we have f'(j) = f(j) # vy for j € T, and therefore f'(i) # f'(j) foralli < j, i € T, j ¢ T. We clearly also
have f'(i) < w; for all i, so Wy p C Z;. Since ()"t ({m}) = S" U {1}, we have Wi p C V(1I'). Moreover,
Wier OV, —ai, g, — b1) € Wy . This shows that Z3 C V(I') (not just locally at P, but everywhere).
Hence il V(I') is locally empty at P then so are Z3 and V(J') C V(I"), and we have V(I')NZy = V(J') = Z3
locally, as desired.

If V(I") is not locally empty at P, the function g giving the unique local component Wyr CV(I') must
satisfy g~ ({1 }) = 5" U {1}, so we must have §’ C L. Also, g must satisfy (2.2). Conversely, il g satisfies
these conditions then we do have W, C V(I’), and hence locally Y C V(I'). Now define f to agree with
g except set f(z) = pforalli € TN L, and set f(j) = 11 = q for all j € L\ T. Note that we still have
I~'dp.¢}) =L and flipz = h. Since g(¢) < v; for all i, we have v; > p for all i € L, and by the hypothesis
of the lemma we have v; > vy = ¢ for all i ¢ T. Therefore f(i) < v; for all i. Suppose i < j,i€T,j ¢ T. If
1.g & L.then f(i) = g(1) # g(j) = f(j). If i,j € L, then f(i) = p, f(j) = ¢. If one of i, j belongs to L and
the other does not, then f(i) # f(j) a fortiori. Thus Wir C Zy,s0Y C Zy. Hence V(I'YN Zy = Y locally
at P.

Now, still assuming V(1") locally non-empty, consider a new f defined to agree with ¢ except for f(1) =p.
Then f satisfies (2.13), so Wyr NV (2, — a1,y,, — b)) C Z3, and hence Z3 = Y locally at P. In particular
we have VI(I') N Zy = Z3 locally at P in every case. (It may still be that Y itself is locally empty at P, but
there is no harm in vhis).

[t remains to prove that Y C V(J') locally at P in the case where we have locally V(I')NZy = Zs = Y.
[n other words we are to prove (locally) that

(2.15) HZ1) + W Za) +/:(bs, —yuy )+ - 4+ (bsy, — ) CIY),

where we may assume that ¢ = vy, S"U{1} C L, and g as defined above satisfies (2.2).
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Let Y1 C E™ x E' be the non-reduced subscheme whose ideal is generated by the following elements:

Lp — TgyYp — Yq,

a; — &, foree L,
b; — by for i € S/,
(2.16) (b; — y,)* forie LN(SU{IH\S,
' bi — g forie LNT\(SU{1}),
by + b1 — 2y, forie L\T,
a; — Th(i), bi — Yny for i ¢ L, and
Th(iy — 24 forieT\ L.

Let ¥ = Y] 4 (b; —y,). Note that generators of Y are given by (2.16) with S U {1} replaced by S. Since the
linear forms in the variables y, b that appear, possibly squared, in (2.16) are independent, we have

(2.17) vy : I s—w)=10V)
s€LN(5\5")

For s ¢ L we have b, — y, & I(Y), which implies
(2.18) V)« T s = w) = 1Y),

s€S\L
since 7(Y') is prime. Combining (2.17) and (2.18), and recalling that 5" C L, we obtain

1vy « JI s —w) = 1(Y).

sES\ S
The left-hand side of (2.15) is contained in I(Z1)+1(Z2)+ 3¢50 (bs =y, : [Le 5150 (bs —¥u,), 50 to establish
(2.15) it suffices to prove

[(Zy)+ 1(Zo) + _ (bs —yg) C I(Y).
seS!

A the last summand on the left-hand side is contained in I(Y') by definition, we only have to prove I(Z1)+
H(Zs) C 1Y),

By Lemma 2.4, part (2), Z(v, T) is locally equal to the union Z of those components Wy C Z(v,T) with
S dpoq}) = L and flppr = h. The ideal of Z is given by
(2.19) (7)) = I(N,L,U/,T’) + (a; — l’h(i),bi — Yn(i) ¢ ¢ L)+ (xh(i) —ay:1€T\ L),
where N = {p,¢}. and if L = {i1 < --- < i}, we have vj = [[r;,] N {p,q}} and T' =
Since f(1) € {p.q} for all components W;r C Z, we also have locally I(Z,) = I(Z) :
(Z4) = I{Z) : (by — y,). Hence to prove I(Z1),1(Z2) C I(Y) it suffices to prove I(7)
TON) (b —yy) = 1Y) 5 (hy =) = I(Y).

By definition we have a; — xp), b0 — yn() € I(YA}) fori @ L, and zp) — a1 € I(Yl) for i € T\ L (note
ap — x4 € I(Y1) because 1 € L). Thus we only have to show I(N,L,v',T") C I(Y1). By the definition of
I(N.L.v', T") this reduces to showing that I(2,!',2',7") C I, where

(2.20) 1= (2 — @2,y —yo2) + Z (a; —x2) + Z (b —b1) + Z (bj — y2)*

{] : i]' € T}
(b - yp) and
C I(Y1), since

el i;€S i €(SU{I}\ S’
+ > (b —y)+ Y (b + b —2y).
i; €T\(Su{1}) i;€T

Note that if vf = 1, so v, < ¢, we must have i; € T\ (S U {1}) and therefore b; —y € I (here we again
use the hypothesis v; > vy for i € 7). If j < k are such that i; € T, iy ¢ T, then the function g giving the
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uuique local component Wy p C V(1) satisfies g(é;), 9(1) # g(ix) and therefore g(i;) = g(1) = ¢, s0 i; € 5"
Hence I contains by — by, by + b — 2y, and consequently bj + bx — 2yo. For all j, we have (b; — y»)? € I.
To sce this in the cases i; € 5" or i; € T where it is not obvious, note that we have (b; — y2)? € I and
by —y» = x£(by — y2) (mod f). Having made these observations, we now easily see that the generators of
[(2.0'.v'.T") given by Corollary 2.9 belong to I. O

Proof of Theorem {. Without loss of generality we may assume [ > 0, T # (), and let ¢; be the least element
ol 1" 'The proof is by double induction on ¢; and |v|, where |v| = v + -+ 1.

[f1; > 1 the result follows by induction using Lemma 2.10. Note that the cases which must be assumed
for Lemma 2.10 to apply have the same value of |v|, smaller t;, and retain the hypothesis v; = n for i gT.

If 4y = 1. the result is trivial if vy = 0, since then Z(v,T) is empty, and otherwise follows by induction
from Lemma 2.11. The hypothesis v; > vy for ¢ ¢ T' required by Lemma 2.11 holds because we are assuming
vi = nfor i ¢ T. Note that all cases which must be assumed for Lemma 2.11 to apply have smaller |v|, since
vi < viowith strict inequality for v, These cases also retain the hypothesis v} = n’ for i ¢ T". O

(iiven the intricacy of the proofs, the reader might reasonably question whether some small point might
not have been overlooked which would invalidate the reduction given by Lemma 2.10 or 2.11. Some “ex-
perimental” reassurance can be given on this score. Let H, r(g,t) denote the doubly graded Hilbert series
whose coefficient of 1"¢* is the dimension of (R/I(v, T))(r,s), 1-€., t keeps track of x-degree and ¢ keeps track
ol y-degree.

The Hilbert series Hy, p(q,1) depends on n, but its “numerator” H,p(g,t) = (1 =¢)"(1 =t)"H, r(q,1)
depends only on v and T'. Since R/I(v,T) is a finitely generated k[x,y] module, H, 7(g,t) is a polynomial.
From the inductive proof of Theorem 4 we can extract the following recursive procedure for computing
H, p(q,1).

) Wi=0, ”://,’1‘ = 1. Otherwise assume { > 0.

) I vi = 0 for some i, H) p = 0. Otherwise assume v; > 0 for all 4.

) For T'=0, H] , = H 1y Assume T # 0 and let t; be the least element of T'.
)W > 1, 1), p = tHy, o7 + Hél/,GTU{I}’ where v, 8T are as in Lemma 2.10.

) It =1,

(1

(2

(3

(4

(H

Hir=Hiy e r+ 2 VA=) HY g = (1= t)(1 = @) H 7o),
SICS

where S'is as in Lemma 2.11, v/, 7" are given by Lemma 2.11 (2), v”,T" are given by Lemma 2.11 (3),

and ¢ = 1 if TV # . otherwise ¢ = (.
The definition of H,1) 9(q,t) as the Hilbert series of the polygraph Z((n'), #) is symmetric in ¢, ¢, although
the recurrence for computing it is not. If the induction were not valid it would seem most improbable that

the recurrence should give symmetric results for Hntyp(q,t). We have verified this symmetry by computer
for all n,l with n 4+ 17 < 10.

3. A CORRECTION To [MSRI]

We adopt the notation and terminology of [MSRI]. All equation and theorem numbers below refer to
[MSRI]. In [MSRI] we took the ground field to be C, and accordingly we do so here. The results are valid
over any algebraically closed field k of characteristic zero, as these are the only properties of C we use.

The following sentence occurs in the paragraph preceding Theorem 4.5 (page 226).

Conversely, if X, is flat over Hilb"(C?) at I, then B®" and B®"/J are both locally free,

which implies that 7 is locally free and ¢ is a homomorphism of vector bundles.
Unfortunately the conclusion that ¢ is a homomorphism of vector bundles, i.e., that ¢ induces maps of
constant rank on the fibers, does not follow. This conclusion is used to deduce the n! conjecture if X,
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15 Colien-Macaulay, and again later, in the proof of Lemma 6.18. The set of points where ¢ is locally a
homomorphism of vector bundles is open and T-invariant. By the remarks following Proposition 4.4, this
set contains [, if the n! conjecture holds for p. Below we prove directly that if X, is Cohen-Macaulay,
the n! conjecture holds for all partitions u of n. It then follows from Lemma 6.7 that ¢ is a vector bundle
homomorphism everywhere, justifying our subsequent uses of this conclusion.

Assume now that X, is Cohen-Macaulay. We first show that X,, is Gorenstein. We cannot use Lemma 6.18
for this, since its proof depends on the faulty proof of Theorem 4.5, but we can give a correct alternate proof.
Let P = 0.0y, . the image of the sheaf homomorphism ¢: B®" — (B®")* @ (O(1). Since we are assuming
Ay Cohen-Macaulay, P is locally free. Let W C H,, be an open set on which the map ¢ is a homomorphism
of vector bundles. By the definition of ¢, the pairing B®? @ B®" — O(1) given by multiplication followed
by alternation induces a non-degenerate pairing P @ P — O(1) and thus an isomorphism P* = P @ O(—1)
on W.

The n! conjecture holds for 4 = (n) and p = (17), where it reduces to the well-known theorem that
the Vandermonde determinant in n variables has n! linearly independent partial derivatives. Every ideal
m the open set W, (see the proof of Lemma 6.11) has Ii»y in the closure of its T orbit, so ¢ is locally a
homomorphism of vector bundles on W,,. This also holds on on Wy, for similar reasons.

Now, W, i1s the Ellingsrud-Stromme cell C(1ny. There is a unique cell C{2,1n-2) of codimension 1, and its
intersection with ¥, is non-empty. Hence the complement of W = W, U Wy has codimension at least 2. For
any locally free sheaf /7 on a normal scheme H and any open set W whose complement Z has codimension
at least 2, we have j.I" = F, where j: W — H is the open embedding. This follows from the Serre criterion
for normality and the exact sequence for local cohomology sheaves

0=HY(F)—F — j.F —HLF)=0.

Applying this to the open set W = W, UW, C H, and the locally free sheaves P* and P ® O(-1), which
are isomorphic on W, we have P* = P @ O(—1) globally. This implies X,, is Gorenstein with dualizing sheaf
«w =2 ((=1), by the last part of the proof of Lemma 6.18.

Since Hy, is non-singular, the maximal ideal of the point I, 1s generated by a regular sequence, and the
scheme-theoretic fiber of X,, over I, is therefore a local complete intersection in X,, and hence Gorenstein
also. The coordinate ring of the fiber is B®"(1,)/J(1,). By Proposition 4.4, this ring is R = ([x,y]/J,
where .J is a doubly homogeneous S, -invariant ideal contained in Ju.

Every non-constant homogeneous S, -invariant polynomial in C[x, y] belongs to J, because the function it
defines on X, is pulled back from a function on H,, which vanishes at I,. Thus the only S,, invariants in R are
constants. The socle of the Gorenstein graded ring R is a 1-dimensional S,, module, which must therefore
afford the alternating representation. The ideals I,(x;,y;) are contained in J because R is a quotient of
B27(1,). Hence the alternating polynomials Ap belong to J, except for A, It follows that the image of
A, in R spans soc(R).

If J, properly contains J, then soc(R) C J,/J, contradicting the fact that A, ¢ J,. Hence J, =J. Since
we are assuming .Y, is Cohen-Macaulay and therefore flat over H,,, each scheme-theoretic fiber has length
nl. In particular dimg R, = dimy R = n!, establishing the n! conjecture for p.
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