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Notes I: Symmetric functions

1.1. Fundamental definitions.

We denote by Ap the algebra of symmetric functions in infinitely many variables z =
212 Za. ..., with coefficients in a ring R (typically R = Z or Q).

I this set-up “symmetric functions” are not actually functions, but formal power series in
the variables z. By definition a formal power series f is a function assigning to each (finite)
monomial in the z's a coefficient in R. We denote the coefficient of a monomial z” in f by
[]zv. and write f formally as the infinite sum

(1) f:ZCl,ZV,

where ¢, = [

2 -

The sum of two formal series is given by coefficient-wise addition. The product is given by
the usual rule for multiplication of series, which is well-defined since there are only a finite
number of contributions to a given term in the product.

More generally, if we have series {f;} such that each monomial z” occurs with non-zero
cocfficient in only finitely many of them, the infinite sum Y, f; is well-defined. If, in addition,
all but finitely many of the f; have constant term 1, the infinite product []; f is well-defined.

Note that the formal sum expression for f in (1) is a valid infinite sum.

A formal series f as above is symmetric if similar monomials have equal coefficient in f.
Monomials z“ and z* are similar if they may be obtained from one another by permuting
the variables. that is, if they have the same multiset of exponents.

Abusing terminology, we call f a symmetric polynomial if only a finite number of similarity
classes of monomials have non-zero coefficient in f. Otherwise we will specifically refer to f
as a svmmetric infinite series. We say f is homogeneous of degree n if only terms of degree
n occur with non-zero coefficient in f. Clearly a symmetric infinite series is a polynomial in
our sense if and only if its (non-zero) terms have bounded degree.

One may regard the symmetric functions as series that are invariant for the action of an
infinite symmetric group S., permuting the variables. By S., we might mean the group of
all (infinite) permutations of the variables, or its subgroup of permutations fixing all but
finitelv many variables. Which group we choose makes no difference as far as symmetric
functions are concerned.

To recover the classical symmetric polynomials in finitely many variables zy, ... , z; (which
are honest polynomials), we may specialize the remaining variables z; to zero. The special-
ization of f is simply obtained by deleting all terms of f involving any of the variables we
are zeroing.

1.2. Partitions.
A partition of n is a multiset of positive integers, or parts, whose sum is n. By convention
we always write the parts in decreasing order:

)\:(/\122/\[)

[t is often convenient to admit into the notation some “parts” of zero at the end, so that a

sequence as above of length [ can stand for any partition with [ or fewer parts.
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The diagram of a partition is an array of cells in N x N, with ); cells in the i-th row, as
for example
[ I ]
A=(4,2.2); D\ = o o
o o o o
The conjugate partition X is defined by setting A; equal to the number of parts > 7 in A, so
that the diagram of A’ is the transpose of the diagram of .
The partitions of n are partially ordered by dominance, defined by

A<u iff A4+ X <pp 4o+ for all k.

Forv < jlet Bijh = (A, ... N +1,...,0 —1,..., ). This sequence may or may not
be a partition, but in any case it clearly satisfies the defining condition for R;;A > A in
dominance order. When R;; A is a partition, its diagram differs from that of ) by the transfer

of a cell from row j down to row 7. In class we proved the following characterization of
dominance.

Proposition: The dominance order on partitions of n is the transitive closure of the
relation A — v if v = R;; A for some ¢ < j.

Corollary: We have A < g if and only if M > /.
1.3. The monomial basis.

Lvery similarity class of monomials z¥ contains a unique monomial z* in which the expo-
nent sequence A is a partition [of n = (degree of z*)]. The monomial symmetric functions
are detined by

my = E z”, where z" ranges over monomials similar to z*.

Irom the definition it is clear that every symmetric polynomial f is a unique R-linear com-
bination of monomial symmetric functions, which we may also state as follows.
Proposition: The monomial symmetric functions m, form a basis of Ap as a free R-
module. More precisely, {m, : [A] = n} is an R-basis of the submodule Ag) of symmetric
functions homogeneous of degree n. In particular Ag) is free of rank equal to the number of

partitions of n.

In finitely many variables, it is easy to see that we have the following variant, where {())
denotes the number of parts of .

Proposition: The monomial symmetric functions {my : {(A) < [} form an R-basis of
Ar(zio.. o =), while all my with [(X) > [ specialize to zero.

1.4. Elementary symmetric functions.
We define the h-th elementary symmetric function to be

€ = 7’n(1k).

This is the sum of all products of k distinct variables z;.
For a partition A we sef

Ch =€), """ €.



Proposition: We have

€x = my + g iy
29N

for some integers c,,,.

Proof: The coefficient of m, in the expansion by monomials of e, is the same as the
coefficient e[, (this principle holds for expansion of any symmetric function by monomials).
This is the number of ways to realize z¥ as a product of products zs,, where for a set of
indices S = {sy,...,s;}, zg denotes z,, - -- z,,, and we require |S;] = A\;. Representing the
sets 5; by rows ol a zero-one matrix, we see that c,, is the number of such matrices M with
row-sums A and column-sums v.

Now for M having fixed row-sums, denoting the column-sums by Z;, we can simultaneously
maximize iy 4 - - - 4+ 1 for all & by the “rolling-ball” process: tilt the matrix to the left and
roll the ones into the left-most positions in each row. This done, we will have & = \’. Hence
if e\, # 0 we have v < N, with equality for a unique matrix M, so that cyy = 1.

Corollary: The elementary symmetric functions ey form an R-basis of Ag. Equivalently,
Ag is isomorphic to the polynomial ring Rlei, eq,...], i.e., the elementary symmetric func-
tions e, are algebraically independent.

Since X has at most [ parts iff the parts of A are at most [, we have the following variant
in [ variables, known as the fundamental theorem of symmetric functions.

Corollary: Ag(z,...,z) is isomorphic to R[ey,... ,¢].

1.5. Complete homogeneous symmetric functions.
We define the k-th complete homogeneous symmetric function to be

hk = Z my.
A=k

This is the sum of all monomials of degree k in the variables z. As with the elementary
svinmetric functions we define

hy=hy - hay

-
We will show presently that these form a basis of Ag; this result is not as easy as for the

elementary symmetric functions. For now we note that by reasoning similar to that for e,
we can obtain the following.

Proposition: Let hy = > c\,m,. Then ¢\, is the number of non-negative integer
matrices with row sums A and column-sums v. In particular, ¢\, = ¢,\.

1.6. Schur functions.
For the moment, we work with a fixed finite number of variables z,,... , z;, and take R to
be Z. Let o be a partition with distinct parts

a=(ar > - >a).
(Here we allow a; = 0 so a could have [ or [ — 1 parts). The smallest such partition is

§=(—1,0-2,...,1,0),



A
and we may clearly put
a=X+9,

where A is an arbitrary partition with at most [ parts.
We define

@ ay
20 2
aw(zy,...,z;) =det | : = Z e(w)w(z*),
z2t o weS;

where ¢(w) denotes the sign of the permutation w. We require o to have distinct parts so
that «, will not be zero. Note that a, is alternating, i.e., it changes sign when we exchange
two variables z; and z;, since this exchanges two rows of the determinant.

Since a, vanishes upon setting z; = z;, it must be divisible by

(2) [IG—=.
i<y

In particular, this is true of as. But both as and the above product have degree (;), SO

a; must be a constant multiple of (2). By considering the coefficient of z° we see that the
constant 1s 1. so we have the Vandermonde identity

as = H(Zi - z;).
i<y
Now for anyv A with [(X) <, both ay,s and as are alternating, and hence the “bialternant”
sy(z) = axys/as

15 a symmetric polynomial in zy,...,z. These symmetric polynomials are the Schur func-
tions. (The definition, which predates Schur, is Jacobi’s).

Lemma: Ior [(A) <[ we have
Ao (2100 ,20,0) = (20 - z)angs, (2150 5 20).

Proof: Write out the two determinants and check that the result follows by elementary
properties of determinants.

Corollary: For [(A) <1 we have s\(z1,...,2,0) = sx(z1,...,2), where the first Schur
function is as defined in [ + 1 variables and the second is as defined in [ variables.

Corollary: Let s\(z) = >, Ky,mu(z). Then the integers K, do not depend on the
number of variables [. provided only that we take it large enough for sy to be defined.

[n infinitely many variables, and over any coefficient ring R, we now define the Schur

functions sy by the formula
S\ = E Kyamy,,
"

where the A'y, are as in the corollary. Then we automatically have that the specialization of
sy to [ variables, for [ > [()), agrees with the bialternant formula. The specialization of s,
to fewer than [(A) variables, let us note, is zero. To see this, observe that in the bialternant
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formuda for sy in [ = {(A) variables, we have «; > 0 for all 7, so if we specialize any further
variable to zcro, the determinant in the the numerator will have a zero row and will vanish.

There is a simple procedure for expressing any symmetric polynomial f in terms of Schur
functions. Namely, specialize f to [ variables, where [ is large enough (/ at least the degree of
1 will do). multiply f by as, and extract the coefficient of z*+®, which is also the coeflicient
of arys in asf and hence the coefficient of sy in f. Note that, at least over Z or any ring
7 in which 2 is not a zero-divisor, the ayys’s form a “monomial” basis of the alternating
polynomials just as the my’s do for the symmetric polynomials.

Over Z. this shows in particular that every m, is a Z-linear combination of Schur functions
(of the same degree), and therefore, for each n, the square integer matrix [K,] with rows
and columns indexed by partitions A, u of n is invertible. This implies the following result,
for any coefficient ring R.

Proposition: The Schur functions sy form an R-basis of Ag.

1.7. Power-sums.
We define the k-th power-sum symmetric function to be

kaM(k):sz.

As with the elementary and complete homogeneous symmetric functions, we define
Px=DPx P

Proposition: We have

Py = E UpTTY,

v> A

with way = [, !, where A = (17,272 .. ).

Proof: By considering the monomials that could appear in the product py, - - - py, we see
immediately that w,, = 0 unless A\ refines v, that is, the parts of A can be obtained by
further partitioning the parts of v. It is not hard to see that if A refines v then also A < v
in the dominance order.

The formula for uyy, the coefficient of z* in p,, is straightforward.

We now assume that our ground ring R contains Q, so that we have division by non-zero
integers, and the triangular matrix [uy,] is invertible.

Corollary: Over R containing Q, the power-sums p) form a basis of Agr, and we have
Ar Z Rlpr.pa, ...

1.8. Plethystic substitution.

Assume Q@ C R. Then by Corollary 1.7, if F is an R-algebra, and fi, f2,... € F are
arbitrary, we may define a unique R-algebra homomorphism Arp — F mapping the k-th
power-sum pg to fi, for all k.

Specifically, we take F to be the algebra of formal Laurent series with coefficients in R, in
an alphabet of variables, or letters, ay,as,.... (In practice the letters will be denoted z;, y;,
q. t. etc. rather than a;.) Now given A € F, we define

eva: Ap = F



G
by the rule

eVA (pk) = A‘a,‘»——&af?

that is, the image of py is the result of replacing each letter by its k-th power in A. Note
that we can perfectly well define this on Ap, not just on Ag, which will be useful later on.
Here the symmetric function variables z are necessarily not part of the alphabet of letters,
otherwise it would make no sense to speak of Ap.

Definition: The plethystic substitution of A into f is ev4(f), henceforth denoted f[A].

Here is the simplest, but most important, example of this construction. Let X = z1+ 25+
--. where @), x5.... are letters. Then by definition, pp[X] = Xlpisar = pr(T1,29,...) =

pr(X). Since plethystic substitution is an algebra homomorphism it immediately follows that
for all /€ A we have

f1X] = f(x), when X =2, + a5+ ---.

Here X" may be a finite or infinite sum of letters. This means we are now free to forget about
our original variables z: we may view Ag purely formally, and recover symmetric functions
i actual variables x through the plethystic substitution of their formal sum X.

For clarity, let me repeat the set-up here. We first fix a ground ring R and an alphabet
of Tetters, denoting by F the algebra of formal Laurent series in the letters. We form the
algebra of symmetric functions Ay in formal variables z which are not part of the alphabet
of letters. Immediately and forever, however, we forget about the variables z, viewing Ap
purely formally as F[p;, ps,...]. To recover an actual symmetric function f(x) in letters x,
we take the plethystic evaluation f[X], where here and throughout, X will always stand for
the formal sum ay + g+ -+ .

More generally. if A = {; 41,4 -+ is a sum of monomials in the letters, each with coeflicient
L. then f[A] = f(ti.t2,...). Note that if A is a series with positive integer coefficients, we
can treat it as a sum of monomials with coeflicient 1 by repeating terms as many times as
their coefficients indicate, e.g., fl(z +y)?] = fla? + 2zy + y?] = f(2?, 2y, 2y, v?).

One caution must be observed with plethystic substitution: since the letters have a dis-
tinguished role. it is generally not permissible to substitute for them inside the plethystic
bracket. Thus if f is homogeneous of degree n it is true that f[tX] = t"f[X], where t is a
letter, but NOT true that f[—X] = (—1)"f[X]. This happens because the evaluation map
evy is defined in terms of replacing letters by their k-th powers, but it makes no sense to
“replace —1 by its k-th power.” However the substitution of a monomial in the letters for
a letter in a plethystic identity IS permissible, since this operation is compatible with the
definition of cv 4.

Because we defined plethystic substitution using power-sums, we have assumed to this
point that our coeflicient ring R contains Q. For series A with integer coefficients , however,
possible to define the plethystic substitution f[A] for f € Ay over an arbitrary ground ring
R, as we shall sce below.

1.9. Plethystic identities.
[ we take X = 2y + x5 4 ---, where x is infinite, then the pi[X] = px(x) are algebraically
mdependent. It follows that any plethystic equation in X which holds for X = 2y 4-z5+-- -,
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holds identically. The same principle may be applied with more than one formal alphabet

R S
Example: From the definition of the elementary symmetric functions it is easy to see that
ez, e,y ) = Y ez ey, v, )
k+l=n
where here and elsewhere we adopt the convention that eg = 1. This proves the plethystic
identity
(3) e[X +Y]= ) ex[X]e[Y],
k+l=n
for arbitrary X, Y. By similar reasoning we have the identity

(1) hal X +Y]= ) hy[X]h
k+i=n

1.10. The “Cauchy kernel” Q.
It is useful for many purposes to define the symmetric infinite series

Q=)
n>0

with the convention that hg = 1.

The identity (4) implies the following identity.

Proposition: Q[X + Y] = Q[X]Q[Y].

This immediately leads to some interesting formulas. To begin with, for a single letter «,
we have h,[x] = h,(2) = 2", so

1

1—z

Qz] =

Then by the multiplicative property, with X = 2, + 25 + - -+ as usual, we have

=0 =TT

Now using Q[X]Q[—X] = 1, we have

Q- x] = [0 = 20) = S (1) ent).
Here the last sum is easily seen to be equal to the product, by inspection. Comparing
homogencous components in each degree n we obtain the plethystic identity

(5) = X] = (1) ealX],
and hence also
(6) en[—=X] = (=1)"ha[X].

Note that X is not a letter—it is arbitrary, so it is correct to substitute —X for X in (5) to
get (6).



Combining (6) with (3), we have

(7 e X =Y]= ) (=D)ex[X]m[Y].
k+l=n

This formula allows us to evaluate e,[A] for any A with integer coefficients, without reference
to the definition of plethysm in terms of power sums. We simply write A as X — Y where
X and Y have positive integer coefficients, repeat terms as necessary to obtain sums of
monomials with coefficient 1, and evaluate using (7).

Since Ag = Rler.eg,...], we can define f[A] for A with integer coefficients, over any
cocllicient ring K.

Another application of {1 is to express the complete homogeneous symmetric functions h,
m terms of the power-sums. For this, take X = a7 + a5 + -+ as always, so

(H)(}::II 1—}$i

1
= exp(z log )

1_‘$i
— e at )
exp(Y_ p[X]/k)
= [ exp(pelX]/k)

k>0

= H Z pe[ X7 /rlk"

k>0 r>0

= ZP/\[X]/ZAa

where if A = (171,272, ..., we define z, = [1, 7!k, Hence in particular we have
h, = Z pr/za-
[Al=n

The quantity =y has an interesting combinatorial interpretation: it is the number of elements
m the symmetric group .S, commuting with any given permutation w whose cycle type (the
partition given by the lengths of its disjoint cyles) is A. The significance of this point will
appear later on.

1.11. The involution w.
Since Ap = Rley, ey,...], there is a unique endomorphism

w: Ap — Ar defined by wey = hy.

(Cantion: w is defined on the algebra of symmetric functions in infinitely many variables
but is not compatible with specialization to finitely many variables, since the latter makes
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¢, = 0 for k > [, but does not make hy = 0.) By virtue of (6), for symmetric functions
homogeneous of degree n, we have

wfIX] = (=1)"f=X].

Thus w is essentially plethystic substitution of —X for X, up to a sign depending on the
degree. In particular we immediately see that

i.c..w is an involution. In particular, w is an isomorphism, which yields the following result.
Proposition: The complete homogeneous symmetric functions ) form an E-basis of Ag.

1.12. First Cauchy formula and Hall inner product.
Asusual, let X = 4294+, Y =y, +y2+---. Then we have the first Cauchy identity

QXY = H _1_

1 —zy;
i Y

= H > arha[Y]
= > x'h[Y]

V13V,

=Y maX]h[Y].
A
By symmetry we also have

AXY] = 3 hXIma[Y],

which is another version of the fact we observed earlier, that the matrix giving the expansion
of the h\ by the g, is symmetric.

Definition: The Hall inner product (—, —) is the R-bilinear form on Ag uniquely defined
by requiring

<h,\7 mu> - 5>\u7

i.¢.. we make the monomial symmetric functions and the complete homogeneous symmetric
lunetions into dual bases.

According to this definition, the coefficient of m, in the monomial expansion of any f is
given by (hy, f). In particular,

(hy,h,) = cyyy where hy = Zcmmu.

m

Since ¢y, = ¢,,. the inner product (—, —) is symmetric.



Proposition: Taking X = z; + 25 + -+, and considering the Hall inner product with
respect to symmetric functions in x, we have the identity

(Q[AX], f(x)) = f[A].

Proof. Both sides are linear in f so it suffices to verify the identity for f = m,. Then the
left hand side is the coefficient of hy[X] in Q[AX], which is m,[A] by the Cauchy identity.
Indecd. the Proposition can be viewed as a basis-free formulation of the Cauchy identity, as
is made more precise by the following important corollary.

Corollary: Let {uy} be a homogeneous R-basis of Ag. Then {v,} is the Hall-dual basis
if and only if we have the Cauchy identity

QXY] =) un[X]oa[V].
A

Proof: The R-basis {uy} has a unique dual basis {v,\}, since the Hall inner product is
non-degenerate on each homogeneous component Ag), which is a finitely generated free R-
module. There is also a unique expansion of Q[XY] in terms of the u, with some coefficients
wy[Y]. Thus the “if” and “only if” are both equivalent to the identity vy = w,. By the
previous Proposition, va[Y] = (Q[XY], va[X])x = wy[Y].

Corollary: We have the identity

{g[X]Q[AX] fX])x = (g[X], fIA + X])x.

[n other words the operator of multiplication by Q[AX] is Hall-adjoint to the plethystic shift
operator sending f[X] to f[A+ X].

Proof. Here we use another handy plethystic trick. Since both sides are linear in 9l X1,
it is sufficient to verify the identity with g[X] = Q[BX], where B is arbitrary, since by the
Cauchy formula, Q[BX] is a linear combination of the symmetric function basis elements
nma[X] with coefficients hi[B] that are themselves linearly independent for general B (say,
B=0b+b,+---).

Now hy Proposition 1.12 we have
(UBNIQAX]. X)) = (Q[(A + B)X], [[X]) = [[A + B] = (QBX], f[A + X]).

1.13. Raising operators for Schur functions.
In [ variables @y,... ,z;, using the Vandermonde identity, we may write the bialternant
formula for the Schur function s, as

sy (x) = 2wes, e(w)w(x )
) Hiq(fm — ;)

The denominator is alternating, so we can account for the sign ¢(w) by bringing it inside the
sunt to get

A+S A

(3 =3 ﬁ;%—ﬂ =2 e

wE S, wWES;

Here we have divided numerator and denominator by x° to obtain the last formula.
Now let S;_; be the subgroup of S; consisting of permutations that fix 1. We can isolate
the role of the first part Ay of X by organizing the terms in (8) according to cosets of S,
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containing w. Note that the elements v of a given right coset are those with a given value
of v(1) = k. The sum with w ranging only over S;_; is equal to

AL
xy

w1 - ey fan )

where v = (Ay, Ay,... ). Operating on this with a coset representative v such that v(1) = k&,
and summing over cosets, that is, over k, gives the total sum in the form

M
Ly,

zk: Hj;ék(l — /)

Here we have conveniently used the plethystic notation in terms of X = z; + - + z; for the
Schur function s, in the variables x with z; omitted.

The interesting aspect of the above formula appears when we compare it with the following
partial fraction expansion for Q[zX], where X = z; +--- 4 2; as above, and we treat Q[zX]
as a function of z:

I !
. 1 Z 1 1
(10 Q[Z)\]:Hl—zxiz 1 —zay I —x;

—.
=1 k=1 itk il

(9) sa(x) = 5, [ X — ).

To fully exploit the resemblance between the terms above with those of (9), consider the
following simple identity, valid for any polynomial or formal power series f(z) in z whose
terms involve only non-negative powers z™.

Lemma:
]
1 — zu

fz7h)

o=y FU (e = D w2 = flu),

n>0 n>0

Here the vertical bar denotes the taking of a coefficient, and the statement of the Lemma
contains its proof, since the last equation is essentially the definition of f(u). More generally,
we have for r > ()

1 —1 zuf(z—l)

as can easily be seen by replacing f(z) with 2" f(z) in the Lemma. Now summing this over
w=ry....,r; and using (10) yields the plethystic identity

2T = urf(u)7

l

r

Lk
kz:; H]‘;&k(l - zj/xk)

valid when X' = &y 4 --- 4 x;. Note that the substitution of z, for 27! inside the plethystic
bracket is permissible, since both are letters.

JIX = =X =

f[X - xk]a

Definition: The raising operator B, is the coefficient of z” in the plethystic operator B(z)
defined by



Later we will see g-analogs of these raising operators in connection with Hall-Littlewood
polynomials--the ¢ versions are known as Jing’s vertex operators. For now, our calculations
above prove the raising operator formulas

sA[X] = Bay s, [ X,

and hence
S/\[X] = B,\lB,\2 T B,\l(l).

Siice we derived the formulas for a finite but arbirtrarily number of variables X = 214 - -+,
they are actually valid as plethystic identities; in particular they are valid in infinitely many
variables.

The operators I3, do not commute, but there is a commutation formula, which is of interest
to derive. Introducing separate dummy variables u, v we have

B(u)B(v)f = B(u)f[X — v Qv X]
= fIX —u' =0 TQu(X — v H)]QuX]
= Q[—v/u]fIX —u' = v Q(u + v)X].
Since Q[—v/u]l = (1 —v/u), as v and v are letters, we have
uB(u)B(v)f = (u—v)f[X —u™' —v7')Q[(u+ v)X].
Now the right-hand side changes sign if we exchange u and v, giving the identity
ubB(u)B(v) = —vB(v)B(u).

1o extract information about the operators B,, we may compare coeffecients on each side.
Doing this with the coefficient of u"T1v**! yields the commutation relation

ll | ) BTBH—I = '—BSB,«_}_]».
[n particular. taking » = s we have
(lz) B,~Br+1 — 0

The commutation relations may be used to express any product of the operators B, as
plus-or-minus such a product with the indices decreasing, or zero. In particular this gives
a definition for s, when v s an integer sequence that is not a partition, as plus-or-minus
a Schur function. or zero. You can easily verify that this definition agrees with what the
bialternant formula would suggest for s, as it should, since we did not actually use the fact
that A was a partition in deriving the raising operator formula from the bialternant formula.

1.14. Cauchy formula.

Let Y =y 4+ -+ + yi. We may write s,[X] = By, -+ B),(1) as

sa[X] = B(y) - B(yi)ly.
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Now it is an easy exercise to evaluate the above operator product, much as we did for
B{u)B(e) in 1.13, to obtain

s\ [X] = QIXYIQ= Y yi/uilly»

= Y[ = wi/yly
- Q[XY}H(y@' = Yi)lyss.

Now recall that the coefficient of s,[Y] in any symmetric function f[¥7]is found by multiplying
YT by as(y) and extracting the coefficient of y**9. In view of this the above identity reads

QXY= s\[X]s\[Y].
A

Of course if we obtain this with Y = y; 4+ --- + y,, for a fixed /, the sum only ranges over
terms with [(A) <[, all others having s,[Y] = 0. However, [ was arbitrary, so the identity is
valid as a plethystic idenitity, with the sum ranging over all A\. This is the Cauchy formula
for Schur functions. By 1.12, it has the following consequence.

Proposition: The Schur functions form an orthonormal basis of Ag with respect to the
Hall inner product (—, —).

1.15. Pieri formulas.

We may derive expressions for elementary and complete homogeneous symmetric functions
in terms of Schur functions from formulas known as Pieri formulas for the multiplication
ol a Schur function by ey or hy. Viewing Q[+uX] as a generating function for elementary
or homogeneous symmetric functions, we can obtain the Pieri formulas from commutation
formulas for the raising operator generating function B(z) with the operator of multiplication
by Q[+uX]. We begin with Q[—uX], which is the easier case.

We have

B(2)Q—uX]f = Q—u(X — 27 H)f[X — 27110z X]
= /=10 —uX]B(:)/,
Q-uX]B(z) = (1 —u/z)B(2)Q[-uX]

as an operator identity, where Q[—uX] stands for the operator of multiplication by itself.
Taking the coefficient of (—~u)*z" yields the operator identity

(13) e B, = (Brek + BT-}-Iek‘—l)'

We'll need an auxilliary result to properly handle Bg:

BoQll— uX] = Qu/=]0f—uX]QzX] |0 = ——

1 —uz-1

QuX|Q[—2zX]],0.
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Now by Lemma 113, the last expression is equal to Q[uX]Q[—uX] = 1, so we have

Bu(es) = {1 k=0

0 otherwise.

Combining this with (13) for r = 0, f = 1 we see by induction on & that
Bf(l) = €.

Now let us use (13) to compute egsy[X]. Applying (13) repeatedly to move the e; to the
right we obtain

Cik[}f\l s B/\z(]) = Z BVI e Bl’l(ek—j) = Z B"l T BVle—j(1)7

where v/ ranges over all integer sequences obtained from A by increasing some (or none, or
all) of the parts by 1, and j is the number of parts so increased.

By (12), any terms in the above sum for which (v, 1¥=7) is not a partition will vanish. This
leaves one term for each partition p = (v, 1¥77) obtainable from A by Increasing some parts
by 1 and adding some parts of 1 at the end (effectively increasing extraneous parts of zero to
I). Such a partition is said to differ from A by the addition of a vertical k-strip (k being the
size). a terminology whose significance in terms of partition diagrams is apparent. Denoting
the condition that s is A plus a vertical k-strip by p/A € Vi, we may express our first Pieri
formula as follows.

Proposition:

(= E Sp-

ufAeVy

Ior the second Pieri formula we rearrange our previous operator identity to read
1

UuX]B(z) = = 7

B(z)uX],

obtaining

k
hiB, = B.yjh;.

=0
Note also that hy = Bg(1), directly from the definition of By. Hence
/IL"Qf\[‘\'} = h’/ﬂ?BM "'Bf\z(l) = Z B/\1+jl "'B/\z+szJ'1+1(1)'
S+t =k

As we have seen. each term on the right is plus-or-minus a Schur function, or zero. I claim
there is perfect cancellation of all terms with some index 7 such that Xi+7: > X—1. Consider
such a term and let 7 be the greatest such index. Compare

By Byisitiic B 1

By Brgi—1 Ba i o 1
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The second term has A\j+7;,—1 > \;_; and \j_y +Ji_1 +1 > A s0 Aitgi—1=A_1+7_,, say,
and A\i_y + 721 + 1 = XA, + 7. Written this way the second term also satisfies \; + Ji> Ao,
with 7 the greatest such index, and the same construction applied to it returns us to the first
term. Thus terms of this type pair off with opposite sign, except when A\; + j; = Ai_1 + 1, in
which case the term is zero.

The surviving terms have A +j = u, where p is A plus a horizontal k-strip (conjugate
concept to vertical k-strip). This gives the second Pieri formula.

Proposition:

hisy = E W

u/NEH

Note that either Pieri formula completely determines every sy, by providing an inductive
rule for expressing the e\’s (respectively the h)’s) in terms of Schur functions. From the
conjugate symmetry between the two formulas we obtain the following corollary.

Corollary: We have wsy = sy, or s,[-X] = (—1)M|3A/[X].

Another corollary, this one to the second Pieri rule, is the combinatorial formula for the
Kostka coefficients Ky, giving Schur functions in terms of monomials. Recall the adjunction
formula (f[X + A],g) = (f,Q[AX]g) from 1.10. In particular, taking A = u a single letter,

and comparing coefficients of u*, we have

<f[‘X + u]ag>|uk = <f7 hkg>'

(This is a plethystically disguised version of the dual-basis relationship between the m,’s
and fi\’s.) By the second Pieri formula,

<$l’[X + u]v 3/\>|uk = <Sl/7 hk‘s/\>
is L. if /A is a horizontal k-strip, and zero otherwise. In other words,
IESTED SIS o
\: v/AeH,

[terating this, we see that the coefficient of u® in s,[u; + -+ + w] is equal to the number
of sequences

0=XCAYC...CAD =1 such that A\D/X-D e H foralli=1,...,L

Filling in the difference diagram between A=Y and A with i’s, we get a filling of the
diagram of v with xy 1's, k2 2’s, and so on, with non-decreasing rows and columns, in which
the horizontal strip condition on the positions of each ¢ means that columns increase strictly.
Such a filling is a column strict Young tableau of shape v and content .

Corollary: The Kostka coefficient K, given by the expansion
Sy = Z [\"Aum“
wu

15 eqnal to the number of column-strict Young tableaux of shape A and content u.
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It also follows that the number of column-strict Young tableaux is symmetric with respect
to permutations of the content vector k. Erercise: prove this directly and combinatorially
by considering what happens for adjacent transpositions in .

1.16. Jacobi-Trudi formula.

Consider the problem of expanding Schur functions in terms of the complete homogeneous
symmetric functions h,. By Hall duality, the coefficient of h, in s, is given by

<$/\7mu>7

which 1s also the coefficient of s\ in m,. We find the latter by the usual device for Schur
function expansions to be

M, Ag)rts = Z (1), |xr+o—u(s)

wWES;
1 if xME-wl) g xn
=D clw) -
0 otherwise.
wESl

This implies the Jacobi-Trudi identity, given as follows.

Proposition:

h)\l h)\1+1 h)\1+2

ha,-1 hy, Aoyt
Sy = Z €(u7)h/\+5_w(5) = det ’ : f+
wWES;

ha-1 hy,
with the convention that hg = 1 and h_, = 0 for —k negative.

The format of the Jacobi-Trudi matrix on the right is: Ay,,. .. , h, on the diagonal, indices
changing by I from column to column within each row. Here [ can be any integer greater
than or equal to the number of parts of \. Applying w gives the analog for elementary
svimmetric functions.

Corollary:

€A Ca+l €42

€1 €\, Exp+1
Sy = det .

Ex—1 €y
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Notes II: Representation theory.

2.1. Group representation basics.
A (complex) matriz representation of a group G is a homomorphism

p: G — GL,(C)

from (& to the group of n x n invertible complex matrices. A (complex) linear representation
ol (' is a homomorphism

p: G — End(V)

where V' is a finite-dimensional vector space over C. Of course every matrix representation
induces a linear representation on V' = C", and conversely, choosing a basis in a linear
representation on V' induces a matrix representation.

Matrix representations p, p" are similar if there is a matrix A such that p'(g) = A~ !p(g)A
for all g € (7. Similar matrix representation induce isomorphic linear representations; con-
versely, isomorphic linear representations with arbitrary bases, or the same linear represen-
tation with two choices of basis, induce similar matrix representations.

The space V' of a linear representation, with its G-action given by p, is also called a G-
module. When p is understood from context we often write gv instead of p(g)v, for g € G
and v € V.

A submodule of V' is a subspace W C V such that ¢gW C W for all ¢ € G. We say
that 17 is irreducible if its only submodules are 0 and V' itself. We say that V is completely
reducible if every submodule of V' is a direct summand of V| which implies V is a direct sum
of irreducible modules.

When the group (7 is G'L,,(C) or a subgroup thereof, we will chiefly be concerned with
polynomial representations, in which the entries of the representing matrix p(g) are polyno-
mials in the entries of the matrix ¢ € GL,. As an algebraic variety, GL, is by definition the
open set in the affine n? dimensional space of n x n matrices defined by the non-vanishing
of the polynomial det g. Therefore the globally defined regular functions on GL,, are gener-
ated by the polynomials in the entries of g and the multiplicative inverse of the determinant
(det ¢)~". If the entries of p(g) are regular functions of the entries of g, we say that p is a
rational representation.

Note that det: g — det(g) is itself a 1-dimensional matrix representation of GL,, and it
follows that if p is a rational representation so is (det)* @ p, where the latter is defined by
g — (det g)*p(g), for any integer k. Since the regular functions on ¢ have denominator a
power of det g it follows that for every rational representation p, the representation (det)*® p
is polynomial, for k sufficiently large. In other words, every rational representation has the
form (det)* % p for some polynomial representation p and integer k. Thus the theories of
polynomial representations and of rational representations are essentially interchangeable.

Frample: The symmetric group S, acts on V = C* by permuting the basis vectors
¢1.... .¢,. The vector v = ey 4+ -+ 4 ¢, is invariant, so its span W = Cv is a 1-dimensional
submodule of V', on which S, acts by the trivial representation. If we set W' = {3 a;e; :

ay + -+ a, = 0}, then W’ is also a submodule, spanned by the vectors e; — €i+1, and
1
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Vo= W . 7. This exhibits V as a direct sum of two irreducible submodules. FEzercise:
prove W is irreducible.

Lrample: Tet 3 C (GLy be the subgroup of upper triangular 2 x 2 matrics. We have the
definimg representation of B on V= C?, in which each matrix in B is represented by itself.

Since
Ty IS I
0 T9 0 - 0]’
the subspace W spanned by the basis vector e; = Ll)} 1s a submodule, on which B acts
through the homomorphism sending [%1 f] to [z1]. There is a quotient module V/W, on
2

which B acts via the homomorphism sending [161 j} to [x2], but there is no submodule
' 2
W7’ such that V. =W & W’ so V is not completely reducible.
Theorem: Every complex representation of a finite group ' is completely reducible.

This theorem also holds over any field whose characteristic does not divide the order of
(i. Erercisc: find an example of a non-completely reducible representation of a finite group
(< over a field of prime characteristic dividing |G].

Theorem: Every rational representation of G' = G L, is completely reducible.

This theorem holds more generally for rational representations of semi-simple algebraic
groups and for continuous representations of semi-simple Lie groups. For more on this,
consult. a textbook on Lie groups and Lie algebras.

Faeample: The defining representation of GIL, on V = C" is obviously a polynomial
representation. It is irreducible since for any non-zero vector v, we can find group elements
¢: such that the vectors g;v span V.

Lxample: As we have seen, the homomorphism sending ¢ € GL, to [detg] defines a 1-
dimensional matrix representation of G'L,, the determinant representation. Clearly it is a
polynomial representation, and irreducible because 1-dimensional.

Fz'amplr' V& V' is a polynomial representation. A basis of V ® V is given by the elements
¢ (e, where ep.... e, is the usual basis of V. Then g(e;®¢€;) = ge;@ge; = 37, i gingyrjen @
Cir wlu(h sh()m hat the entries of the matrix representing g on V@V are products Gi1idj' 5
so this is a polynomial representation. Ezercise: show that V@V = A’V & 52V is a
decomposition of V & V' into irreducibles, where A*V and S?V are the second exterior and
syinmetric powers of V' respectively (this will be easy later on).

Frample: (7L, acts on the dual space V* via the homorphism sending g to (¢7*)T. Thisis a
rational but not a polynomial representation. The representation (det V)@ V* is polynomial,
since the entries of (det g)(g~1)? are polynomials in the entries of g.

2.2. Characters.

[l p and p" are similar matrix representations of G, p'(g) = A~1p(g)A, for some A, then
clearly we have trp’(g) = trp(g). In particular, given a linear representation p: G — GL(V),
the trace of p(g) in a corresponding matrix representation is independent of choice of basis,
and equal to its value in any isomorphic representation W.
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Definition: The function x": G — C sending g to the trace of its representing matrix is
the character of the representation V.

Proposition: Characters are class functions, that is, they are constant on conjugacy
classes of (/.
Proof: 11 ¢" = h='gh then p(g') = p(h)~'p(g)p(h), so the matrices p(g') and p(g) have the

same trace.

The following two properties of characters are easy to verify by analyzing the structure of
the matrix of a direct sum or tensor product of two linear maps.

Proposition: We have
VEW VW
(more generally, vV = Y/ +x" for any submodule W C V, even if not a direct summand),
and
e VW

IFor a finite group (7, the group algebra CG is the vector space of formal linear combinations
of elements of (7 (with basis ), and multiplication defined by extending the multiplication
in G linearly. Then G acts on CG by left multiplication, yielding a representation of (7,

called the regular representation. The basic facts about finite group representations are
suminarized in the following theorem.

Theorem: Let (¢ be a finite group. Then every irreducible representation V,, of G' occurs
as a submodule of the regular representation CG, and in fact CG is the direct sum over all
« of x*(1) = dimV,, copies of V,. In particular there are only finitely many isomorphism
classes of irreducible G modules. Moreover their characters form a basis of the space of class
functions, so the number of non-isomorphic irreducibles is equal to the number of conjugacy
classes in (.

The character of a representation of an infinite group G is well-defined, in particular, we
can speak of the character of a polynomial representation of GL,. Note that the character
is itsell a polynomial in the entries of g. The diagonalizable elements of G'L,, form a dense
set, so \" is determined by its values on diagonalizable elements g, and hence, since it is a
class function, by its values on the diagonal elements. Denoting by 7(x) the diagonal matrix

with diagonal entries @, ..., z,, XV(T(X)) is a polynomial in x. We will denote it simply by
\' (x) and refer to this polynomial as the character of V.
Note that for any permutation w € Sn, T(Tw(),---,Zw(x)) is conjugate to 7(x) by a

permutation matrix in G'L,. This implies that xV(x) is a symmetric polynomial in x.

Note also that the character of detg is z;---z, = e,(x). The character of the rational
representation (det g)* is (2 ---2,)*, where k may be any integer. Thus the characters of
the rational representations of G'L,, are rational functions of the form (z; - - - z,)* f(x), where
J 1s @ symmetric polynomial. In other words they are symmetric Laurent polynomials in x.
These characters make sense literally, not just formally, since the z;’s are the eigenvalues of
¢, and these are non-zero as g is invertible.
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2.3. Schur’s Lemma.

Lemma: If V and W are irreducible G-modules, and ¢: V — W is a G-module ho-
morphism (a linear map that commutes with the G actions), then either ¢ = 0 or ¢ is an
isomorphism.

Proof: Assume ¢ # 0. Then the kernel of ¢ is a submodule of V, not equal to V, and
since Vs irreducible, ker(¢) = 0. Similarly the image of ¢ is a submodule of W, not equal
to 0. and since W' is irreducible, im(¢) = W. This shows ¢ is injective and surjective, hence
an 1isomorphism.

Corollary: If 1" is irreducible then the space of G-module homomorphisms Homg(V, V)
is I-dimensional, i.e., every ¢: V' — V' is a scalar multiple of the identity map.

Proof: Given ¢: V' — V let @ be an eigenvalue of ¢. Then ¢ — aly is singular, hence not
an isomorphism, hence zero by Schur’s Lemma. Note the corollary uses the fact that C is
algebraically closed, so that ¢ must have an eigenvalue o € C.

2.4. Polynomial representations of G'L,,.

For the moment we fix G = G'L,,. We denote by B the Borel subgroup of upper triangular
matrices, by N the unipotent radical of B consisting of upper triangular matrices with 1’s on
the diagonal. and by T the torus of diagonal matrices in G. Note that T = (C*)" is indeed
an algebraic torus group. We also write B~ and N~ for the lower-triangular analogs of B
and N, the opposite Borel subgroup and its unipotent radical.

The elements of T" will be denoted 7(xy,...,x,), as in 2.2. Thus our convention for
representing a character of g as a function x(z),...,2,) amounts to evaluating x on the
torus T

The torus group 7' is itself semi-simple (it’s a product of copies of GL;), so any G module
" is completely reducible as a 7' module. One can show that the polynomial representations
of T"are simply the one-dimensional representations Cy, in which 7(x) acts as multiplication
by x*. Here A is a sequence of non-negative integers (A, ..., An). The rational representation
are the same except that the A; are any integers, possibly negative. Complete reducibility
as a I' module then means that V decomposes as a direct sum of weight spaces V), whose
elements v € V) are simultaneous eigenvectors for all 7(x) € T', with eigenvalue x*. Weights
for which A is a partition are called dominant.

Proposition: The character " (x) is equal to

AV =) (dim Va)x,
A
I particular the character of any representation of G L, has non-negative integer coefficients.
Proof: The trace of 7(x) on V is the sum of its eigenvalues, counted with multiplicities.
Since the weight spaces are by definition the eigenspaces, y' contains the term x* with
coefficient equal 1o the dimension of the corresponding weight space V.

Note that the Proposition implies that when A" = w(A) is a permutation of A, we have
dimVy = dim V\. This can also be seen directly, as the permutation matrix of w carries V3
imto V.

Since (7L, is an open subset of the affine space of all n x n matrices M, (C), its tangent
space at 1is just that of M, (C), and can itself be identified with M, (C). In this context it
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is usually denoted gl rather than M, (C). The group structure of GL, is reflected in a Lie
algebra structure on gl,, which will not concern us for now.
(iiven a polynomial representation

n?

p: G — GL(V),
since p(1) = 1y, the differential of p is a linear map of tangent spaces
dp: gl, = gl(V).
We can compute it explicitly from its definition
o1
dp(a) = lim—(p(1 + ea) — p(1)),
e—0 €
or from either of the equivalent and more convenient formulas

d d
dp(a) = Ep(l +ta)|i=o = Et'ﬂeXP(taHt:O-

Lemma (A):

exp(t dp(a)) = p(exp(ta)).
Proof: Let g = exp(ta). Note that g;gy = gi++. Therefore,
d d d
ap(gt)‘iZto = ap(gto)p(gt—fo)h:to = p(gto)%p(\gt)lizo = p(gt,)dp(a).

This shows that p(g,) satisfies the first-order differential equation and initial condition

%p(gz) = plgr)dp(a);  p(g0) =1,

which characterize exp(t dp(a)).

Lemma (B): If v € Vi is a weight vector, then dp(E;;)v € Vg,,» is a weight vector
of weight R;;\, where FE;; is the unit matrix with a 1 in row ¢ and column j, and zeroes
elsewhere.

Proof: We have

; d
p(T(x))dp(Esj)v = EP(T(X) exp(tFi;))vli=o
d ZT;
= Ep(exp(tx—jEij)T(X))Uh:m

since 7(x) Ey7(x)7! = (2;/2;) Eyj. Since v has weight A, the above is equal to

x; . d
7/)(9«\’})(t—_Eij))X’\Ult:O = XR”'\ZJ,’{P(GXP(tEij))U|t:o = x" dp( Eij)v.

:I:J

Corollary: If A is a partition, maximal in dominance order among the weights of V', then
every weight vector v € Vi is N-invariant, ¢.e., Vi C VN,

Proof: Matrices of the form exp(tF;;) generate N. By Lemma 2.4 (A), we have
plexp(tE;))v = exp(tdp(E;;))v = v, since dp(E;j)v = 0, as the weight space Vg, \ is zero by
maximality.



Let us remark that since 7' normalizes N, the space of N invariants V¥ is a T submodule
of 1. and hence is itself the direct sum of its weight spaces ViV,

Corollary: Every non-zero representation of G has V" s 0. Hence dim V" =1 implies
Vs rreducible.

Proof: The first part is clear, since there is some maximal non-zero weight space. If
b= W& W were a direct sum of non-zero submodules, then each would contribute to VN,
giving dim V¥ > 1.

2.5. The flag variety.
Definition: A (complete) flag F in V = C" is a sequence of subspaces 0 C F}, C F, C
- C Ly CVLowith dim F; = 4.

Recall that the i-dimensional subspaces W C V form a projective variety, the Grassmann
variety C5(V). (Sometimes we will denote it instead by G"*(V), when we want to view it
as parametrizing the n — 7 dimensional quotient spaces V/W of V.)

For k <[, the locus in Gy x G consisting of pairs (Wk, W) such that W, C W is a closed
subvariety, i.e., containment is a closed condition. It follows that the complete flags in V
can be represented as a closed subvariety X of the product of Grassmann varieties,

X CGV) X x Gy (V).

Now (i = GFL(V) acts (algebraically) on X, with ¢ € G mapping the flag F' to the flag ¢F
defined by (g1'); = g(F;). Consider the standard flag E:

Ei = {61,... ,6,‘},

where ¢.... e, is the usual basis of unit coordinate vectors in V = C*. We have glb; = F;
if and only if the first 7 columns of the matrix ¢ have non-zero entries only in the first rows,
that is, iff g is block upper-triangular, with diagonal blocks of sizes i x i and (n —1) X (n —1).
We have g2 = E iff this holds for all ¢, that is, the matrix g is upper-triangular. This shows
that the stabilizer of £ is B.

Givenany flag /. we can choose a compatible basis f1,... , f, such that {fi,..., f;} spans
Fi for all 7, by simply taking f; to be any element of F; not in F;_;. Then the element ge G
carring ¢; to f; for all » has gl/ = F. Thus the G orbit of the standard flag F is the whole
flag varicty N. In particular, X is irreducible, since it is the image of the irreducible variety
G by the morphism mapping ¢ to gF.

Since (7 acts transitively on X and B is the stabilizer of the flag £ € X, we can identify X
with the space of cosets (// B, where a coset gB corresponds to the flag ¢F, a correspondence
that does not depend on the choice of coset representative. In this way G/B is given the
structure of a projective variety.

(For any closed subgroup B of an algebraic group (i, there is a canonical way to make
(:/ B into an algebraic variety, but usually it will not be a projective variety. Note that G
itself here is an affine, not a projective variety.)

We will have something to say later about the construction of homogeneous coordinates
for (//B. For now, we work out local coordinates in a neighborhood of the standard flag E,
or the coset 1B. Recall the following result of matrix algebra.



7

Proposition: Every n x n matrix can be written in the form LPDU, where U € N is
upper uni-triangular, L. € N~ is lower uni-triangular, P is a permutation matrix, and D is
a diagonal matrix.

In the language of G/B this says that every coset gB is contained in N~ wB for some
permutation w, and thus every flag belongs to N~wkE for some w. Consider the morphism

¢: N~ = G[B; o¢lg) =gkE.

This morphism is obviously equivariant with respect to left multiplication by elements of
N7 in particular its fibers over all points of its image are isomorphic. We have ¢~'({E}) =
N™NB = {l}.so ¢ is injective, and therefore, since ¢/ B is non-singular, ¢ is an isomorphism
onto its image N~ F. Thus N™F is an affine cell of dimension dim N7 = (; .

To make this explicit, observe that for n € N~, nFE is the flag F' with F; spanned by the

vectors ney, ..., ne;, that is, by the first 7 columns of the matrix
1 e 00T
a21 1
= laz azy 1

dpy Qpz ... 1

The entries of this matrix thus serve as local coordinates on N~ F. Using this description,
moreover. one can show (exercise) that a flag F' belongs to N~ F if and only if, for all ¢, with
Wi =Cleigr,... ,en}, we have F;+ W; = C*, or equivalently, F;NW; = 0. Now for any fixed
space W, the condition F; N W # 0 is a closed condition on the Grassmannian G;(C"), so
our conditions on F' are open conditions, and N~ F is an open affine cell in the flag variety.

By symmetry, for any g € G, the set g N~ F is an open affine neighborhood of gF, so this
provides us with a covering of the flag variety by open affines, which are actually affine cells.

2.6. The Borel-Weil construction.

Let W be a rational representation of the Borel subgroup B C G = GL,,. We are going
to describe a canonical procedure for constructing an algebraic vector bundle G xg W on
(//B, with an equivariant (G action, whose fiber at the standard flag £ (corresponding to
the coset 1B € (¢/B) is W.

First we review terminology. A wvector bundle of rank r over a space X is a space E,
together with a map 7m: £ — X, and a structure of r-dimensional vector space on each fiber
of 7. In particular, € x X, with 7 the projection on X, is a vector bundle, called the trivial
bundle over X. In general we require every vector bundle to be locally trivial. This means
that every point of X has an open neighborhood U such that 7: 771 (U) — U is isomorphic
to a trivial bundle. Here isomorphism has the meaning you would expect: n: £/ — X and
7' I — X are isomorphic if there is a map a: £ — E’ such that 7’ oo = 7, and « induces
a linear isomorphism on each fiber.

The meaning of the term “vector bundle” depends on the category in which we work. Thus
il we require that £ should be a topological space, and that the map 7 and the trivializing
jsomorphisms should be continuous, we have defined topological vector bundles. For our
purposes we will work with algebraic vector bundles. Thus X should be a complex algebraic
variety. as should F, and we regard C as affine r space. The map 7 and the trivializing
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isomorphisms should be morphisms, that is, they have to be given by regular functions in
local coordinates. and of course the trivializing isomorphisms should be isomorphisms of
algebraic varieties.

[ should point out that the concept of algebraic vector bundle is distinct from and more
rigid than that of topological vector bundle. There exist topological vector bundles which
cannot be given an algebraic structure, and topological isomorphisms between algebraically
non-isomorphic vector bundles.

Definition: Given a B-module W, the space G x g W is the orbit space (G xW)/B, where
I3 acts on G x W by b(g,w) = (gb~!,bw). There is a canonical map 7: G xg W — G/B
given by (g, w) — ¢gB.

Proposition: For any g € G, the map ¢,: W — G x5 W sending w to B(g,w) is a
bijection from W™ onto the fiber of 7 over the point gB € G/B. Moreover, for any other
g = gb € gB. the map (,5;1 0 ¢gr: W — W is p(b), where p is the given representation of B
on W

Proof: Since (g, w) = gB, ¢, does map W to the fiber over gB, and indeed surjectively
outo it. since w is arbitrary. Now let ¢’ = gb. I claim that for all w, w’ = b~ w is the unique
clement such that ¢, (w') = ¢,(w). This establishes both that ¢g 1s injective (take b = 1)
and the “moreover”™ part of the proposition.

For the claim, suppose B(¢',w’) = B(g,w). The element b such that ¢’ = gb is unique, so
the only representation of (¢',w’) as element of B(g,w) is as (gb, b~'w). This says exactly
that ' = b~ 1w.

Now we assign the fibers of 7: G'xg W — (/B vector space structures via their bijections
o, with W. By the Proposition, since cﬁ;l 0 ¢ is linear, this assignment is independent of
the choice of g.

We want to verify this structure makes G x g W into an algebraic vector bundle, that is,
we have algebraic local trivializations. Since everything is G-equivariant it is enough to do
this on the open set N™F € G/B. The space 7" '(N~E) consists of the orbits B(n,w),
where n € N7 and w € W. Since ¢ is injective, the pairs (n,w) are a system of orbit
representatives, i.e., their orbits are distinct. This gives an isomorphism of ¢~ (N™F) with
N7 x W = N™E x W, which preserves the linear structure we assigned to the factors. This
shows that ( xg W is an algebraic vector bundle, and that it trivializes over N~ E (and
hence also over g N~ £ for every g € G).

The Borel-Weil construction actually sets up an equivalence between B-modules and G-
equivariant vector bundles over /B, as given by the following proposition, whose proof 1
leave as an cxercise.

Proposition: Let A4 be a G-equivariant algebraic vector bundle over G/B, that is, a
vector bundle with an algebraic action of G that commutes with the map 7: 4 — G/ B,
and such that each g carries the fiber over a flag F linearly onto the fiber over gF. Then
A = (/ xg W, where W is the fiber of A over the B-fixed point F = 1B, viewed as a
B-module.

Lizercise: Show that if W is originally a G-module, with the G action restricted to B,
then G <y W is isomorphic to the trivial bundle (G/B) x W, with the obvious equivariant
(i action on the latter.
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To avoid confusion we’ll use a different notation for the algebraic vector bundle G xg W
itself (viewed as an algebraic variety), and its sheaf of sections, a locally free sheaf of O-
modules on (7/B. The latter we denote by E(W).

Proposition: The space of global sections H(G/B, E(W)) is a rational representation
of 4.

Proof: It’s finite-dimensional because (/B is projective. Since E(W) is an algebraic vector
bundle, i acts algebraically on its space of sections, so it’s a rational representation.

Let us remark that the higher sheaf cohomology groups of E(W) are also rational G-
modules, and that H° can perfectly well be zero, even if W is not.

2.7. Line bundles.

A rank-1 vector bundle is called a line bundle. By the correspondence in 2.7, the equivari-
ant line bundles on (7/ B correspond to 1-dimensional representations of B.

Proposition: Every 1-dimensional rational representation of B is of the form C,, where
A is a weight. and B acts on C, through the homomorphism B — T' with kernel IV, mapping
cach upper-triangular matrix to its diagonal part, and T acts by 7(x)v = x"v.

Proof: If W is 1-dimensional then it has only one weight space W = W). Hence N acts
trivially on W, by the corollary to Lemma 2.4(B), while 7" acts according to the weight, by

definition. As B is the semi-direct product of 7" and N, the result follows.
For reasons that will appear shortly, we denote by Ly the line bundle
L)\ =G XB (Cwo Ay

where wy € S, is the permutation reversing the indices: wo(i) = n + 1 — i. The sheaf of
sections of Ly is the locally free sheaf

E(Cyya)-

Now let us recall how the Grassmann variety G(V') is embedded in projective space. A
point of (7x(V) is a k-dimensional subspace W C V, and the k-th exterior power of the latter,
/\A' 117, is a l-dimensional subspace of /\k V. By definition the projective space P(/\k V) is
the variety Gl(/\k V') of such 1-dimensional subspaces, so the map W /\kW defines a
map Gr(V) = P(A" V). This is the Plicker embedding.

In concrete terms the Pliicker embedding assigns W the homogeneous coordinates given
by the & x k& minors of any k x n matrix with row space W (the ratios of these minors being
independent, of the choice of basis for W). To see this note that, if e;,... ,e, is a basis of
V.and v(.... v is a basis of W, then the coordinates of vy A -+ A vy in terms of the basis
{ei) Aoo- ANeg iy < -+ < i} are given precisely by the minors of the matrix with rows v;.

Recall that the standard ample sheaf O(1) on projective space P(U) is dual to the sheaf
ol sections of the tautological line bundle L, whose fiber over a l-dimensional subspace
S eP(l), S Cl,is S itself. Bach linear coordinate function & on U gives rise by restriction
to a linear functional on each fiber S, and so to a global section of the dual bundle to L,
or a global section of O(1). By multiplication, polynomials homogeneous of degree d in the
coordinates on {7 give rise to global sections of the d-th tensor power O(d) of O(1). This
egives the ring homomorphism, which is actually an isomorphism, identifying the coordinate
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ring ol {7, which is also the homogeneous coordinate ring of P(U), with the graded ring of

global scctions
P # (), 0(d)).

d>0

[n particular, the sheaves O(d) have plenty of non-zero global sections—enough that their
vanishing loci can distinguish between any distinct closed subschemes of P(U), whence the
term “ample.”

Restricting O(1) from P(A*(V)) to G1(V), as embedded by the Pliicker embedding, it
becomes the dual to the sheaf of sections of the highest exterior power /\ W of the tauto-

logical bundle W on Gy (V'), whose fiber at a point W is W itself. We can summarize this
as follows:

Proposition: The ample bundle O(1) induced on G(V) by the Pliicker embedding is
the dual of the A-th exterior power of the tautological bundle.

For our purposes, it will be more natural to formulate this in terms of G4(V) = Gy(V),
where d = n—k. The relevant bundle on G4(V) is the tautological quotient bundle with fiber
V/W at W, a rank d vector bundle. Exterior multlphcatlon NWeNWVIW) = \"V 2C
identifies /\ (V/W) with the dual space of /\ W. This identification is canonical except for
the choice of a non-zero basis vector in A"V, which does not depend on W. Thus A* (VIW)
is tsomorphic to the dual bundle of /\]C W.

Corollary: The ample bundle O(1) induced on G*(V ) by the Plicker embedding is
isomorphic to the d-th exterior power of the tautological quotient bundle.

Corollary: Let () be the tautological quotient bundle on the ﬂag variety (G/B whose
fiber at a flag /" is V/F,_4. Then its highest exterior power My = /\ ()4 is isomorphic to
Of1). pulled back from the Grassmann variety G¢, through the embedding of G/B in the
product of Grassmann varieties. In particular, Md has non-zero global sections, and any
tensor product M{' .- @ M"7" with all e > 0 is very ample on G/B, i.e., it is the

n—1

restriction of O(1) for some projective embedding of G/B.

Note that we could have also constructed My as the highest exterior power of the dual of
the tautological subspace bundle S,_; with fiber F,_, at F'. This gives the same line bundle
with a different (+ action, because G does not act trivially on A" V. Erercise: show that
N~ s, )™ 18 equivariantly isomorphic to (det)~! @ My, where det is the trivial line bundle
(i/B x C. with (i acting by the determinant representation on C, or det = Ly, 1) in
our notation for equivariant line bundles.

As () is clearly G-equivariant, it must be L, = G' x g Cup » for some weight A. To find this
weight, we need only inspect the B action (or just the T action) on the fiber of @) at the
standard flag, corresponding to the coset 1B. This fiber is A*(V/En—-q). It is spanned by
the single vector e,_441 A -+~ Ae,, on which T acts with weight woA = (0,...,0,1,...,1),
with d ones and 1 — d zeroes. Therefore we have the following result.

Prop0s1t10n The G-equivariant line bundle A? Q4 on G/ B is isomorphic to L), where
Ad =21+ +eg=(1,...,1,0,...,0) corresponds to the partition (19).
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We remark that in a homogeneous polynomial representation of degree d of G5, the scalar
matrices ¢ must act as scalars t2/. Equivalently, every weight space Vi has |A| = d. Similar
considerations apply to B and T'. The defining representation V of GG is clearly homogeneous
of degree 1. The equivariant bundle @4 corresponds to the B-module V/FE,_;—mnote that
E, 4 is a B-submodule of V', so this makes sense. This is again homogeneous of degree 1,
and its d-th exterior power is homogeneous of degree d. Thus we should expect, as we have
Just seen, that A for the corresponding line bundle L) should be a partition of d.

Corollary: For every partition A, the space of global sections H°(G/ B, L)) is non-zero.
Proof: livery such Ly is a tensor product Ly} @---® L", where in fact y is the conjugate
partition A'. Since L, = My, it has a non-zero global section.

We have seen that L . 1) is the determinant representation of G on the trivial bundle. By
tensoring with L'(A'1 ..... \y» for any integer k, we see that the Corollary also applies for A of the
form partition plus (k,... , k), that is, for A any non-increasing integer sequence. Shifting A
by (k.... k) has the effect of tensoring H°(G/B, L)) by the k-th power of the determinant

representation.
2.8. Irreducibile representations.

Theorem: The representation of G on H°(G/ B, L) is irreducible whenever it is non-zero.

Proof: By Corollary 2.4, there is an N-invariant section in H°(G/B, L,). Equally well,
by symmetry, there is an N~ -invariant section o. Then o is determined on all of N™FE by
its value in the fiber over the standard flag £. Since N™F is open, it is dense, and thus o
is determined completely by its value in the fiber over E. In particular, since this fiber is
[-dimensional, any two N~ -invariant sections in H°(G/B, L,) are scalar multiples of each
other. Again by Corollary 2.4 (with N~ in place of N) this implies that H°(G/B, L)) is

irreducible.

Now let V' be an arbitrary irreducible rational representation of G and let A be a maximal
weight, that is, A is a partition plus (k,...,k) for some integer k, and the partition in
question 1s maximal in dominance order. Then as we have seen, V' contains a non-zero N-
invariant weight vector v € Vy. Let W = Cv be the span of v. Then W is a 1-dimensional
B-submodle of V', since N fixes v, and v is a weight vector for T'. Hence we can construct
the Tine bundle L, on G/B as G xg W.

There is a morphism ¢ of algebraic varieties from G xg W to V given by

B(g,tv) — tgv.

T'his is well-defined since a general element of B(g,v) has the form (gb™!, bv). Its image is
the union of {0} and the G orbit of v in V.

The map ¢ is linear in the scalar {. Hence if @ € V* is a linear functional on V, then the
composite a o ¢ is linear on each fiber of the line bundle G xg W, that is, it represents a
global section of the dual bundle L_,, .

[n particular. by taking a basis of weight vectors including v in V', and its dual basis (also
ol weight vectors) in V*, we can choose « of weight —A, with a(v) # 0. Then obviously
the section ¢ = cv oo € IG/B, L_,,,) is non-zero. This shows that the map from V* to
HY(G/ B L_,,,\) sending a to « o ¢ is non-zero, and it is clearly linear and G-equivariant.
Since V* and HY(G/ B, L_,,\) are both irreducible, this map is an isomorphism, by Schur’s
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Lemma. Furthermore, —wo) is a maximal weight (indeed, the unique maximal weight, by
irreducibility and Corollary 2.4) of V*. Of course, since V was arbitrary, so is V*, so we
have proved the following fundamental theorem of Borel and Weil.

Theorem: Lvery irreducible rational representation V of GL, is isomorphic to
H(G/B. Ly). where X is the unique maximal weight of V.

Corollary: The irreducible representations V* with highest weight A are non-isomorphic
for distinct .
Proof: Immediate from the uniqueness of \.

Corollary: A rational G module V is irreducible if and only if dim VN = 1.

Proof: We have already seen the “if”. For the only if, use the Borel-Weil theorem and the
fact shown in the proof of the previous theorem, that H°(G/B, L) has a unique N-invariant
vector. up to a scalar multiple.



