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of a subset of “octagons”I itroduced by [And60).

ABSTRACT OF THE DISSERTATION

Magic square subclasses as linear Diophantine systems
by

Ezra Q. Halleck
Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Adriano M. Garsia, Chair

The solution space of a system of linear homogeneous equations with integer coefficients
over the integers is a Z-module. Geometricallyl' the solutions form a latticel' the itegral
points in a subspace of Q". Magic squares are n X n matrices with equal row and column
sums; a basis consists of a subset of the permutation matrices. Pandiagonal squares or P-

squares are magic squares with equal broken diagonal sums; we show that a basis consists

Requiring the solutions of a system of equations to be nonnegative as well as integral
carns the modifier Diophantine. Geometricallyl' sub a Diophantine set consists of the in-
tegral points of a pointed convex polyhedral cone: the intersection of the non-Diophantine
lattice of integer solutions with the n-dimensional generalization of the nonnegative octant.

Take each solution of a Diophantine set & = (ay, as, ..., a,) and form the monomial
z% = 2{1z3? ... z%". The formal power series in n variables formed by summing all such
monomials is a rational function [Sta86' Section 4.6].

The solutions appearing in the denominators of a generating function are eztreme

or completely fundamental solutions. There is a one-to-one correspondence between these

solutions and the extreme rays emanating from the pomt of the cone.

For magic squaresI’ the extreme solutlons are then x n permutation matrices’ but
the generating function of solutions is unknown in full generality. For, P_sqjlaieégu_emg

the extreme points are unknown. Our computer investigations have yielded the extreme

et it i S e

ponlts for pandugpnal %ystems forall n <7.
Our investigation has included ()ther Diophantine sets of matricesl' including W-

squares, We have the generating function for one subclass of P-squaresT the linear span

xil

o
i
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of cyclic matrices.

To decompose a matrix from a magic square subclassI’ extract as large a copy as
possible of JT' the matrix of 1’s. The residue is a square on the boundary of the cone. V&
decompose the boundary by looking at a cross section polytope.

The ability to immediately move to the boundary is related to the fact that the

associated Diophantine ring is Gorenstein.

xiil



Chapter 1

Linear homogeneous Diophantine

systems and polyhedral cones

1.1 Linear homogeneous Diophantine systems

The solutions of an equation or inequality in n variables are sequences of length n
or n-tuples. The ith element in the sequence is known as the ith component. The adjective
Diophantine is applied to any relation if the solution space is restricted to n-tuples with
nonnegative, integer components. We are interested in linear homogeneous Diophantine
equ:xﬁ&zs (m;g;ﬂi\txies) and nonstrict inequalities (Diophantine inequalities).
Proposition 1.1.1. Systems of Diophantine equalities and inequalities are enumeratively

equivalent.

Proof. ‘Transform the inequality to an equality by placing a new variablel' theslack vari-
ablel’ on the side whih is smaller. For instancel’ gien 3z +4y > 22T itroduce the variable
w to get 3z + 4y = 22 + w. Enumerate the solutions to this equality and then ignore the
w component of these solutions.

Converselyl' gien an equalityl' ve can replace it with a pair of inequalitiesI’ e.g.T’

3z + 4y = 22 4 Sw is equivalent to

3z +4y > 22+ bw
3z +4y <224 5w.



Definition 1.1.2. A linear homogeneous Diophantine system (Diophantine system) is
a Diophantine system of equations and/or nonstrict inequalities whose coefficients are

integers.

We do not exclude from consideration an equation or inequality with rational coefficientsT

just multiply by a common denominator.

Remark 1.1.3. Given a Diophantine system Az = (OI' the set of solutionsTET forms a
(commutative) monoid (semigroup with identity) under the operation of component-wise

addition. (0,0,....0) serves as the identity element.
S —

1.2 The Cone of Solutions

The solutions to a Diophantine system form a pointed convex polyhedral conel
the point or epez being the origin. We can project a cone onto the linear space that it
spans. For examplel’ the solutions for 4 + y = 22T lie in 3-spacel’ but span a 2-dimensional

subspace (Figure 1.1).

Figure 1.1: cone ab associated with 4z + y = 2z.

More preciselyl’ the solutions are the inegral points inside the conel’ as illustrated
in Figure 1.2. For nonhomogeneous systemsI’ the solution space is the Minkwski sum of
a cone and a polytope [Zie95T p.28].

Given a vector jI' the set of nonnegatie scalar multiples of j that are integral points

rayJ = (QtTj nZ").



@(174T4)
(0T4T2)

o(2I'2T'5)

Figure 1.2: Solutions of 4z 4+ y = 2z as integral points in a cone.

Figure 1.3: Two rays: A and J. Only A is extreme.



In Figure 1.3T 3 J = {(0,0,0),(1,2,3),(2,4,6),(3,6,9),...} is associated with
J =1(2,4,6)and ray A = {(0,0,0),(0,2,1),(0,4,2),(0,6,4),...} is with a = (0,4,2). More
generallyl' gien a set of points ST the set of finite nonnegatie combinations of elements

from 5 that are integral points is the positive hull

pos § = {Z/\jaj €Z"|a; €85, X\, €QT,|J| < 0}
Jj€J

Given a cone E1' ry B is eztreme if none of the nonzero elements in B can be expressed as a
nonnegative combination of elements not in BT i.e.I' iB Npos(F\B) = {0}. In Figure 1.3T
ray A is extreme-—any solution not in the ray has a nonzero first coordinate—but ray J

is not extreme—(1,2,3) = (0,2,1)+ (1,0,2). We will often refer to a cone by naming its

extreme rays or points on the raysl' e.g.I' the coneb of Figure 1.1.

The elements of a minimal generating set for the monoid are fundamental solutions.

As one travels from the origin along an extreme rayl' the first itegral point encountered

is a completely fundamental solution. The set of completely fundamental solutions are

notl in generall’ all the fundametnl solutions. A finite number of additional solutions that

are nonnegative rational (but not integral) combinations of the completely fundamental

solutions may also be needed. For examplel’ the completely fundamerttal solutions of z +

y = 2z are (2,0,1)and (0,2, 1)T but a generating set must also include (1,1,1) (Figure 1.4).

A minimal generating set is finite and unique [Sta86 Section 4.6].

(0T4r'2)

o(1T312)

_ l2rar)
0r2T1) ,  o(3ril2)

o(1I'1I'1) T2)

Figure 1.4: Cone of solutions for z + y = 2z.



1.3 The triangulation of a cone into simplexes

The solution space of z + y = 2 + w spans a 3-dimensional subspace of R* and a

representation of its associated cone is drawn in Figure 1.5. A simplicial conel’ orsimplez

/
/

lccoririro)

—

A(1TOT 110 D(OT1T0T1)

Figure 1.5: Cone associated with z +y = z 4+ w.

for shortl is a cone spanned ly independent vectors Ay, ..., A,. In Figure 1.5I' coneA BCT
and ray D are both simplexesI’ but coneABCD is not a simplex (A4 D = B + C).

Definition 1.3.1. A triangulation I' of a cone C is a set of simplicial cones {o;} such

that:
1. ;o = C.
2. If 0 € I then every face of ¢ is in I'.
3. lfo:I'o; € I'T theno; Noj is a coxr;mon face of o; and o;.

For z 4y = z + wl' v can divide the cone at the plane formed by the rays B and
. The division results in two 3-dimensional cones: ABC and BCD. The triangulation

I' is the set of these two conesT together with all their faces:

I'={0,A4,B,C,D,AB, AC,BC,CD, ABC, BCD}.



1.4 The polytope associated with a cone

In the cone of Figure 1.5T" there are 4 extreme rars. Take any plane which cuts
through the conel intersecting each of the extreme rays at a positive distance from the
origin. The intersection of the plane and the cone is the cross section polytope. In our
examplel’ define the cutting plane ly requiring the sum of the components to be equal
to 2I' then the cross section polytope is a polygon with wertices a(1,0,1,0)I'5(1,0,0,1)T
¢(0,1,1,0) and d(0,1,0,1). Note that dim cone ABCD = 3 and dim quad abed = 2T i.e.l
the dimension of the cross section polytope is one less than the cone. For another examplel’
the cone of z + y + z = v+ w is 4-dimensionall' but its polytope is a polyhedron—a prism
with triangular base. In Figure 1.6I' the commas hae been dropped from the points for

display purposes. For instancel' ertex 01010 refers to the point (0,1,0,1,0).

00101

10010

01010

Figure 1.6: Cross section of the cone associated with z + y + 2 = v 4+ w.

The original cone is the positive hull of its cross section polytopel e.g.T’

cone ABC D = pos quad abcd.

1.5 The generating function of solutions

One way to combinatorially decompose a Diophantine system with solution set
I is to list or enumerate the solutions as a sum of monomials. The monomial of a
solution a = (a1, a9, ...,a,) is 2% = 1M 22% - - .1,%. Replacing each solution in E with
its monomiall’ thegenerating function

E(z)=) a"

a€E



Forz4+y=z+wl
={(0,0,0,0)I (10,1,0)I' (10,0, 1)I" (91,1,0)L' (91,0,1) (20,1, 1)I...}

and hencel'E(z) = 1+ 2123 + 2124 + T223 + Toxg + T1%C324 + -+ .
E(z)is a rational function [Sta86T Theorem 4.6.11]. Tw approaches for finding the
rational function will be presented. Formal power series methods are used in the Elliott-

MacMahon algonthm[’ for whibh a dlscussmn and proof are given in Chapter 3. The

polytopal method ‘will e Tlustrated presently with our examples. For a more complete
presentation see [Sta861" section 4.6].

For 4z+y = 2z (Figure 1.1)T" the cone is a simplex with generating set the completely
fundamental elements a = (0,2,1) and b = (1,0, 2). Any solution is a uniquel’ nonnegatiel

integer combination of a and b. Hencel’

E(w) — Z pmatnd _ Z (wa)m(zb)n

(m,n)ENxN (m,n)eNxN
0
= Z (.’L‘Qzﬁl)m(E1$32)n = Z 5112 I] 2(211133
(m,n)eENxN m=0
1 1 1

T1- 29227 1 — 21252 - (1-2z%)(1 - zb)
The generating function for a simplex ET with generating set the completely fundameral
solutions ay,asg,...,a,l is

1

E(x) = (1—2*)(1 = 2%2) (1 —zom)’

Il there are fundamental solutions in addition to the completely fundamental onesT' there

is a nontrivial numeratorl’ e.g.I' the generating function fox + y = 2z (Figure 1.4) is

1 + L1T2T3
(1 — $22$1)(1 — x1213)'

The monomials which appear are the integral points in the fundamental domain defined

E(z)=

by the completely fundamental solutionsI' a half open parallelogram in this case. (A
fundamental domain tiles the solution space with no overlap.)

For a non-simplicial examplel’ the cone ofz + y = z 4+ w has its cross section
triangulated in Figure 1.7. Let the simplex F; = cone abel’ the simplex#; = cone bed and
the simplex F3 = cone be.

If we add the generating functions for E; and E,T the solutions in their itersection

are counted twice. Since the intersection is precisely the simplex F3I' an appropriate



b
Figure 1.7: Triangulation of a cross section of pos ABCD.

subtraction compensates for the duplication.

E(X) = El(X) + EQ(X) - Eg(x)
1 1 1
Tl T =) —2)(1-29) (=)=

Substitute z% = 2,230z = 2,240z = 2923 and 2% = 29247 and simplif’ to get

_ 1- T1ToT3T4
- (1 — 1'11'3)(1 — 11{134)(1 — Zng)(l — $2£E4).

In generall’ form the poset of the wrious simplexes of a triangulation T' ordered by

E(z) (1.5.1)

inclusion and adjoin a 1. By Mobius inversion [Sta86T p.225]

E(z)= - (o, 1)Es(x). (1.5.2)

o€l

et d be the dimension of £ and let I' be the simplexes on the boundary of ET then ly
[Sta86l" p.224|T

s 1) = (—=1)d-dim(@)+1if 5 ¢ T\QT (153
0 if o € OT.
The poset of our example is sketched in Figure 1.8. The only simplexes not on the
boundary are £y = cone ABCT'Fy = cone BC D and E3 = cone BC. The Mobius function
for the poset from an adjoined top element 1 is calculated using the formula of (1.5.3).
For examplel’

/L(Elv i) — (_1‘)d—dim(E1)+1 — (_1)3——3+1 - _1.

Similarlyl ju( Eg, 1) = =1Tu(E3,1) = 1 and other values are 0 (Figure 1.9). Substituting



abc bcd

Figure 1.8: Poset of triangulation for z + y = z + w.

Figure 1.9: The Mobius function p(z,1) for the poset of z + y = z + w.



into (1.5.2)0

%!
—_
8
~—
Il

- Z/L(Uv i)EU(x)

cel

= 3w DE()

gel\ar
~p( B, 1) E1(x) = p( Ea, 1) Ea(x) = p( B3, 1) Ea(x)
Ei(x) + Ea(x) — Es(x),

f
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Chapter 2

The Diophantine ring

2.1 Introduction

Given kI a field of haracteristic O and ET the set of solutions to a Diophadine
System[ let 5, = {a € E : deg(a) = n}, where the degree of a solution is the sum of the

components in the solution.
1. The Diophantine Ring associated with F is
R=k[z":a€ F]
2. The set of monomials of R is M(R) = {z®:a € E}. (M(R) is a vector space basis
of R.)
3. The set of monomials of degree n is M,(R) = {2 : a € F,}.
4. The nth homogeneous subspace of R is H,(R) = subspace of R spanned by M,(R).

The number of variables is finite. Hencel dim(H,(R)) = |M,(R)| is finite. ThusI' the
Hilbert series of R

Fr(t) =Y t" dim(Ha(R))

neN

Is an element of the formal power series ring k[[t]]. FRr(t) is the specialization of E(z)

FR(t) = E(z)|r1—>t,...,xm—»t-

11
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Using (1.5.1)I" the Hilbert series forz + y = 2z + w is

1-— T1Z2oT3T4

Fr(t) =
) (1= z1z3)(1 = 2124)(1 = 22w3)(1 — 2224) |4, oy 4
o=t (2.1.1)
= o 1.

2.2 Basic systems and Cohen-Macaulay rings

A finitely generatedI’ graded ring R is Cohen-Macaulay if there exists a set of
homogeneous polynomials B = {m,...,7;61,...,0,,} such that every P € R can be

uniquely expressed as

P = an (01,....0n) 5 P €klzr,...,Tm)

B is called a basic system. Each 7; is a separator and each §; is a generator.

The ring R associated with a system of hnear homogeneous onphantme equatlons /
is known to be Cohen Macaulay, the proof is non-constructive and uses deep tools of
algebraic geometry. An algorlthm for constructing a basic system for a particular R

would constitute a combinatorial proof that R is Cohen-Macaulay. For the Diophantine

ring RT" there is a candidate for a natural set of generators. Our task is to construct an
accompanying set of separators and show that together[’ they form a basic system.

We use our running example to introduce the natural candidates for generators
and a construction of accompanying separators. Recall that the completely fundamental
solutions are

a=(1,0,1,0) b=(1,0,0,1)
c=(0,1,1,0) d=(0,1,0,1).
To simplify notationI' we change variables
Y1 =2 = z123 Y2 = b = T1T4

_ ed
Y3 = ¢ = z3x3 Yg = T = T9T4

and define a new ring R = k[y1,-..,ya). The sole relation a +d = b+ ¢ = (1,1,1,1)

becomes y1y4 = 2931 so

k= k[yla Y2, y3,y4]/(y1y4 - y2y3)-
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Using (2.1.1)T the Hilbert series is

1—ut 1—¢2

Fp(t) = Fr(u)lyz—e = A=)l , 0=t

(2.2.2)

Relabel the simplex poset arising from a triangulation I' (Figure 1.8) using the variables of

R—replace a with y,Tb with y,T etc— producing monomials organized ly rank (Figure 2.1).

¥
4
Figure 2.1: Rank row monomials for z + y = z + w.
Our natural set of generators are the sums of the monomials for each rank:
Vi=y1+Y2+yst s
V2 = Y1Y2 + 11Ys + Y23 + Y2¥s + Y3Us
V3 = Y19293 + Y2Y3Ya-
Definition 2.2.1. A set of homogeneous polynomials {6;,6,,...,0,} is a homogeneous

system of parameters (h.s.o.p.) for R if

1. R has Krull dimension m;
2. R/(01,02,...,0,) is a finite dimensional vector space.

For a Diophantine ringl’ the Krull dimension is the same as the dimension of the

cone.
Proposition 2.2.2. The following are equivalent:
1. R is Cohen-Macaulay;

2. there ezists a system of parameters {01, ...,0,,} such that

. Frye,..em(t) _ Y-
Frlt) = (1—1d). .. (1—tdm) (di = deg(00));
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3. for all system of parameters {6y,...,0,},

F 4
Ty (4= o))

FR(t) =
See [Gar80T' pp.232-233] for a proof.

Corollary 2.2.3. Given a h.s.o.p. {61,...,0n,} for a Cohen-Macaulay ring R, the set
{11, me} is a k-basis for R/ (61, ...,0m) iff {m,....06;01,...,00) is basic.

Using a computer algebra systemI sub as MacaulayI' ve find thatD for our running
examplel' the rank monomial sums {1, %2,13} are indeed a system of parameters and

that [;ﬁ/(¢'x,¢'2,wa)(t) =1+ 3t + 42 + 3t3 + t*. Hencel’

Fipnmn)) 14364482 438 444
(-1 -2)1-13) ~ (1-)(1-2)(1 - )
_ _(A+pi+e+e) (2.2.3)
S (-1 -2)(1-8) o
1+1 1—¢2
-0 (1— )" = Fp(?)

(the last equality from (2.2.2)) and by Proposition 2.2.2T the ringR of our running example
is Cohen-Macaulay.
In Section 2.4T" ve will give a proof of the Cohen-Macaulayness for this examplel’

independent of the computer data.

2.3 Accompanying separators for r +y =2 +w

The first barycentric subdivision on a triangulated solution space proceeds in 2

steps.

. Tor each simplex of the triangulationI' the barycetter is marked with a point and

labeled with the simplex (Figure 2.2).

2. A new simplex in the subdivision corresponds to a chain in the lattice of simplexes
for the original triangulation. For instancel' poit a is contained in edgeac; {a,ac}
is an edge in the barycentric subdivision. Likewisel’ poita C edgeac C faceabe;

{a,ac,abe} is a face in the subdivision (Figure 2.3).

A shelling of a simplicial complex is a linear ordering of the maximal simplexes so

that the intersection of a simplex F; with the previous simplexes is nonempty and is a



ac

abc

ab

be

b

cd

bed

bd

Figure 2.2: Simplex barycenters for a triangulation.

Figure 2.3: New simplexes in the first barycentric subdivision.

b
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stage in a shelling of the boundary complex of F; [Zie95T" Definition 8.1]. In particularl
the intersection must be connected and pure d — 1-dimensional. In Figure 2.3T w have
labeled the new faces with the numbers 1 to 12 to indicate a shelling. As the shelling
procecdsl” adjoin a maximal simplexi and collect the vertices needed to avoid any overlap
with the previous simplexes into a set F;. For instance when simplex 4 is adjoinedl’ the
edge {ac,abc} is already in the existing union of simplexes; the vertex opposite this edge
is ¢. Hencel'#y = {c}. When simplex 6 is adjoinedI' the edges{c,abc} and {bc,abc} are
already in the existing union of simplexes; the vertices opposite these edges are be and c.

Hencel Iy = {c,bc}. The F; are displayed in Table 2.1.

Simplex | Lists of Vertices F; | Separator &,
1 0 1
2 ac Y193
3 b Y2
4 c Y3
5 be Y2Y3
6 ¢, be y3(y2y3)
7 bed Y2Y3Ys
8 c,bed Y3(Y2y3ya)
9 bd Y2Ya
10 cd Y3
11 d Ya
12 d,cd Ya(y3ya)

Table 2.1: For each simplexT lists of ertices F; and associated monomial.

If mon($) = monomial associated with ST for eah simplex I let
8 = H (monS), egl
SeF;

b6 = (mon ¢)(mon be) = y3(y2y3) = Yay3” (see Table 2.1).

In the case of the triangulation of a simplexI' the monomialsé; resulting from a shelling
coincide with the descent monomials of its associated poset. We borrow the name from

this case and call the é; descent monomials. The set of descent monomialsT DMT is our
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candidate for the set of separatorsI’ whihT ly Corollary 2.2.3T can be established ly showing
that DM is a k-basis for E/(¢1,¢2,¢3). For the running examplel' ve have grouped the

descent monomials by degree in Table 2.2.

Degree Monomials # of Monomials

0 1 1

1 Y2, Y3, Y4 3
2 Y1Y3, Y2Y3, Y2Y4, Y3¥a 4
3 y2y3®, ysya®, Yaysya 3
4 y2y32y4 1

Table 2.2: Descent monomials for the square grouped by degree.

Let CM be the k-basis given by Macaulay. Recall that if C is a set of monomials’
then C,, = {z € C : degz = m}. For each nI' ve show that the monomials in DM, are
triangularly related to the monomials of C M,,. Note that all calculations are done modulo

the ideal (41,2, ¥s). For degrees 0 and 1 the sets are identical:

DMO = CMO - {l}
DMy = CMy = {y2,Y3, Ya}-

For degree 2I' the transition matrix between sets is

CM,

Y3Ys  Y2Ya 3/42 3/32

Ysya | 1

DM; | yaya| O 1

Yays | -1 -1 -1

nys| O 1 1 -1

e.g.[' line 3 results because

Yoz = —Y3Ys — Y2Ya — ya®  mod (Y1, P, 13).



18

For degree 3I' the transition matrix is

CM;
Y3ya®  y2us’ Y32ys
Y3ys® 1
DMs | yaysys | —1 -1
yays® | 0 1 -1

For degree AT DMy = {y2y32ys}TC My = {y3%y4*} and

v2ysiys = —y3*ya® mod (1, ¥z, ¥3).

In each case the transition matrices are invertible. Hencel' the descet monomials

are a k-basis for R/(wl, g, 13) and {61, ...,812; %1, 99, 13} is basic.

2.4 The Stanley-Reisner ring of the poset and a transfer of
identities
Recall the poset of the triangulation I' (Figure 1.8). For the Diophantine ring R
or rather the isomorphic ring RY wriables correspond to each vertex of the cross section
polytope. Fach simplex becomes a product of variables. In contrastI’ here ve create a new
variable for each simplexI’ indexing to facilitate a ring homomorphism to the Diophatine

ringl’ e.g.I" the simplexube replaced in Figure 2.1 with y,y2y3 is replaced with zq53 (Fig-

ure 2.4). Variables z, and z; are comparable if the indices a and b are comparable in the

x
234

2%

L7\

Figure 2.4: Variables of the Stanley-Reisner ring of the poset for ¢ +y = z + w.

face latticel” i.e.I" ift is contained in bT or vice ersa. The Stanley-Reisner ring of a poset
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SR =k[zy,T2,...,2,)/J
where J = (z;z; | z; incomparable to z;). For the running examplel'

SR = k[ml, ceasTgy T2y .5,234,2123, 1'234]/.] (244)

J = (2129, 2123, T1T4, T1T93, T1Z24, 1734, £1T 934, T2T3, ToTq, L2T135- - - z123110234)-
(2.4.5)

SR is known to be Cohen-Macaulay. The rank row monomial sums

=21+ 224+ 23+ 24
0y = 219 + 13 + Tog + T2a + T34

3 = ZT193 + Toaq

are a set of generators and the descent monomials (Table 2.3) are an accompanying set

t | Face Products F; | § R-Separators ¢; fZ—Separators b;
1 1 1 1

2 ac 13 Y193
3 b : Zo Y2

4 c T3 Y3

5 be T23 Yays3
6 ¢, be 323 Y2y3®
7 bed T234 Y2Y3Ya
8 ¢,bed T3T34 Y2y3 s
9 bd T24 Y2Ya
10 cd T34 Y3Ya
11 d T4 Ya
12 d,cd T4T3g Y3Ya?

Table 2.3: Face lists and separators from the two rings.

of separators [Gar80T p.250]. Included in the cited material is an algorithm for expanding
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SR monomials in terms of the basic system; some expansions of degree 3 monomials are

T193 = b3 — Zpa4
T 1713 = T13bh — T30y + T3z + 23401 — T4T34

.’L'13 = 012(01 — Ty — I3 — 1‘4).
Define the map

¢:SR— R

.

€S
and extend so that ¢ is a ring homomorphism. For example ¢(z27123) = ¢(z2)¢(T123) =

y2(y19293). In particularl' the knovn generators are mapped to the proposed generators

and the known separators to the proposed separators:
o0 = b Be) = &

We transfer the expansions from SR to R by means of ¢. Error terms are introducedl’
but we order the monomials so that error terms for each monomial are monomials which
occur earlier in the ordering. Such an ordering is transfer permitting.

For the nth homogeneous subspacel' form the error matrixA, by defining a;; to
be the coefficient of the monomial j in the error terms for monomial 7. An ordering is
transfer permitting if A, is lower triangular with zeros on the diagonal for every n.

Order the degree 3 monomials as in Figure 2.5. The abscissa of a pair of tableaux
is the shape of the part of the monomial in y; and y4. The ordinate is the shape of the

part of the monomial in y; and y3. We demonstrate with 2 expansions.

1. At the top shape is y1y2ys.

In SRTz193 = 03 — z934;

in RTy192y3 = 13 — yaysya.

The transfer of the expansion from SR involves no error.
2. I'rom a shape later in the order is y32y4.

In SRTz3234 = 3467 — T4734;

from expansion in SR error

in RUys%ys = ysyat1 — ya(y3va) — y293> — Y2y3vs.
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) yzy 3 Eh:'

)/12)’2 yy2
172
2 2
H:] y1y3 Yy EE
2 13
\/2)/4 y2y
2 22 4
Y yly,| €—

Figure 2.5: Ordering of deg(3) monomials from z 4+ y = z + w.

The monomial y3%y, is marked with an arrow in Figure 2.5. The error terms are

circled and are of shapes which occur earlier in the order.

A similar ordering holds for degrees OT' 1T 2 and 4. TisT in RT' all monomials of degree
4 or less can be expressed in terms of {6,...,812; %1, %9, ¥3}. Macaulay indicates that
only monomials of deg(4) or less are in a k-basis. We can conclude that {61,...,612} is
a k-basis for R/(wl, g, %3) independent of a direct comparison with the k-basis given by

Macaulay. We are closer to our goal.
Proposition 2.4.1. A spanning set B = {¢1,...,&¢;01,...,0m} is basic for R if and only
if

5 pdes()
FR(t) = (1 - tdli. ] (1 — td"‘) (dz = deg(HZ)) (246)

See [Gar80T' p.232| for a proof.

We have shown that (2.4.6) is fulfilled in (2.2.3). Once shown that our proposed
basic system spans all monomialsI’ not just those of degree 4 or lessT" Proposition 2.4.1 gias
us our goal.

For the degree 5 monomialsI' transfer the expansions from SR as before. The
monomials of degree 5 can not be ordered so that the matrix of the error terms is lower

triangular with zeros on the diagonal (see Figure 2.6). Howeverl if we divide the error
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H
sl

—

m
O
o
o
o

*
*
*

o

Figure 2.6: Matrix of error terms for the deg(5) monomials of z + y = z 4+ w.

terms into two parts—the part which is 0 mod (41,72, ¥3) and the part which is not—

then the monomials can be ordered so that the matrix of the latter is lower triangular

with zeros on the diagonal (see Figure 2.7). Let z be a degree 5 monomial and let < be

mb | dH | B |
[Ia] 0 0 0 0

0 0 0 0
EB] . 0 0 0
[:' 0 * * 0

Iigure 2.7: Matrix of error terms mod (7, 93, %3) for the deg(5) monomials.

the ordering on degree 5 monomials. We assume that all monomials preceding z can be

expanded in terms of the basic set.

error terms of z = g a;z; + E CHH
J

zi<z
a; is an element of k. v; is a polynomial of degree less than 5 and hencel' can be expanded
in terms of the basic system. By the induction assumption on the order of the monomialsI’
z; can be expanded. ThusT'z can be expanded in terms of the basic setl’ whihi completes

the induction step. As a consequencel’ since no separators hae degree more than 4T all

degree 5 monomials are 0 mod (1, %2, ¥3).
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For n > 5T ve induct on the degree of the polynomiall' assuming all polynomials
of lower degree can be expanded and all homogeneous polynomials of one degree less are
0 mod (41,13,%3). We can start with just a monomial. A degree n monomial z can
be written as y;» where v is a monomial of degree n — 1. By assumption['v = Zj ;T
where p; is a polynomial and deg(p;) < n — 1. Multiplying the expression for v by y,T
7 = yiv = 3. yipjy; where deg(y;p;) < 1+ (n — 1) = n. By hypothesisT y;p; can be
expanded. ThusI'z can be expanded in terms of the basic set and is 0 mod (41, %2, ¥3)T
completing the induction step.

We have fulfilled our earlier promise of showing that R is Cohen-Macaulay inde-
pendent of the data about a k-basis given by Macaulayl' or een the data that {1y, 19, ¥3}

is a system of parameters.



Chapter 3

The Elliott-MacMahon algorithm

3.1 The crude generating function G(x, \)

The Elliott-MacMahon algorithm (EMA) is a straightforward but computationally
ineflicient way to produce the generating function of solutions E(x). Elliott treated the
one equation case and informally proved its termination [EN03]. MacMahon extended
the algorithm to Diophantine systems of equations and inequalities [Mac60I' ¥1.2T Section
VI]. We present the algorithm for equations. The algorithm for inequalities requires only
obvious modifications.

Given a system of equationsI’ Ay = OI" whereA is an [ by n matrixT" form the formal

power series in the variables x, A = z1,...,7,,A1,..., A
& 1 - 1
G X, A = =
( ) 1_[1 1-—)\10’11A2a21"'/\mg’mj$j 1_[1 1—/\‘4]33]'
j= i=

where A; is the jth column of A. G(x, ) is known as the crude generating function for

the system of equations.

Example 3.1.1. For 3z = y 4+ 5z which we rewrite as 3z — y — 52 = O’

1
(1= X32)(1 - A"1ly)(1 - A-52)

G(x,A) =

Example 3.1.2. For the system

T=y+w
z+y+z="2v,
1

G(x,A) = (1 =Aye)(1— A71yy)(1 — v2)(1 =y~ 20)(1 — A" tw)’

24
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where A = (A, 7).

Proposition 3.1.3.

E(x) = G(x,)|x=0

: 1 1 1
Glx,A) = (1—/\A1w1) (1—/\A2z2) "'(1—/\A"zn)

= Y (Vi) (A2ag)2 - (Mng,, )or

Proof.

beN"
— Z Ab1A1+b2A2+“'+bnAnxb — Z AAbxb
beN" beN"

Restricting to the A-free partTx® will be in the new expression if and only if Ab=0 O

3.2 The key identity and the ternary tree structure

The identity

1 1 1 1

(er e ] (e Rt ) (321

is the basis of the algorithm.
We first consider the case of one equation which engenders one auxiliary variable A.
The algorithm will extract the part of the crude generating function which is A-free. Let E
be the multiset of nonzero exponents of A\TEY the positive exponents and E~ the negative
exponents. The algorithm has a ternary tree structure. At each nodel' the mltiset E
determines whether the node is an endpoint or whether there is a branching. We display

the 4 cases and the actions taken in Table 3.1. Note from the table that a branching

type E* E- endpoint action
1 empty empty yes leave the expression as is
2 empty non-empty yes set the factors with A to 1
3 non-empty empty yes set the factors with A to 1
1 non-empty | non-empty no apply partial expansion

Table 3.1: Cases and actions to be taken at one node.

occurs iff both ET and E~ are non-empty.
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Let M and m be the maximum and minimum of ET respectiely (or one of them if

it has several). Apply (3.2.1) to the expression

’
g N O
“\‘k‘* J\\I\J T\(g\\,;&_f/, Ml
WV . ﬂ( ¢ (1= #AM)(1 — xam)
AU R
c;\ 5 #U > and separate into the three terms:
R S 1 1 —1
L - (1 =« AM+mY(] 4 AM) (1 — *AM+m)(1 — xxm) (1 — +AM+m)
M ‘
\ 3 G\( . Combining what had remained of the original expression with each of these three expres-

sionsI” ve have three new problems that are ‘simpler’ in a way that we explain in the proof
of the algorithm’s termination. Apply the decision Table 3.1 to each of the three new
expressions. When the tree has been completedT' the expressions from all the endpoirns
are summed to form the final expression. Some of the endpoints may be just a constant. If
the system has [ equationsI” there will bel auxiliary variables: {A1,...,A;}. The algorithm
proceeds by first extracting the part which is A;-freel' then the part whih is Ay-freel etc.

For Example 3.1.1T' the crude generating function G(x,A) = 1/((1 — A3z)(1 —
A7ly)(1 = A7%2)). The multiset E = {~5,—1,3} and the max/min elements M = 3T
m = —5. Applying (3.2.1)T

1 1 1 1
= -1
(I=232)(1—A"%2) (1-A2zz) ((1 — A3z) + (1-A-3z2) )
The 3 children are

node Ej’ E; endpoint action
2 {3} {-2,-1} no apply (3.2.1)
30 | {} | {-5,-2,-1} yes set the factors with A to 1
31 | {} {-2,-1} yes set the factors with A to 1

The node numbers refer to the node labels of the ternary tree displayed in Figure 3.1. The
numbering reflects the order in which the nodes are created by a depth first implementation
of the algorithm. In Figure 3.2 the nodes of the tree are labeled ly the multisetT" alloving
for the reader to follow the algorithm directly on the tree. If the multiset is emptyl' the
node is labeled with a zero.

Applying (3.2.1) to the first child (a; = 3Tb; = —2)T

1 1 1 1
(1= 23z)(1 - A—2zz2) - (1- Az?2) ((1 — A3z) + (1-X"2z) 1)
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Figure 3.1: Tree with nodes numbered as they are created.

Figure 3.2: Tree with nodes labeled by the exponent multiset.

27
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Its children (grandchildren of the original expression) are

node Efz Ef; endpoint action
3 | {1,3}! {-1} no apply (3.2.1)
16 {1} | {-2,-1} no apply (3.2.1)
26 {1} {-1} no apply (3.2.1)
Combining the expressions corresponding to each endpoint and simplifying gives
1 1 1

E(x)

T 2102 | Q@)1 —e%yz) (1= a%g7)
3.3 Termination and an upper bound for a single equation

Theorem 3.3.1. The Elliott-MacMahon algorithm terminates in a finite number of steps.

Proof. Let E be multiset of exponents of A in the formal power series G(x,A). We show
how the multisets E; for the children ¢ =1I 2 and 3 are ‘simpler’ than the one for the
parent.

In the third pairl' M and m are replaced with M + ml’ ielEs = EU{M +
m}\{M,m}. The total number of exponents has decreased by 1. Since the algorithm has
terminated if there is only 1 exponentI' ve can induct on the size of E and ignore this
term.

Since the first 2 children are symmetrical casesT it suffices to examine just the first

child. Let a(M),...,a(1) be the index of the multiset E*T i.e.

Et={M,M,... M\M~1,M—1,...,M—1,...,1,1,...,1}.
~ N et
a(M) a(M-1) «(1)

Similarlyl’ let3(m), ...5(—1) be the index of the multiset E~. E; is identical to EI' except
that M + m has replaced m. It may lie in either the multiset E*T the mltiset E~ or
it may be 0. In the last casel’ we can again apply induction on the number of nonzero

exponents. Since M + m lies strictly between M and mI
L. Awl = MFm1 Z m.
2. ay(M) = a(M) and f1(m) < B(m).

In Elliott’s wordsI' there is “a dimimtion ... of absolute value of a numerically greatest
negative” exponentI’ “without ary compensating increase at the other end of the scale.”

[E103]" p.351]
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Pile the exponents on a number linel lile bricksI' placing them in their namesak

spots. Figure 3.3 will help us visualize the process. One bulldozer from the left and one

Hﬂ/\ﬂ

|-5|-4|-3| 2 o[ 1] 2] 3]

Figure 3.3: Birth of a term 2 child in the EM-algorithm.

bulldozer from the right are at work. If term 1 of (3.2.1) is calledl’ the bulldozer on the
left chips the top brick and pushes it into the interior. If term 2 is calledT the bulldozer on
the right does a similar job. If term 3 is calledI" both bulldozers vork but the bricks collide
in the airl’ merging ito one brick which again lands in the interior. In this casel’ ve can
apply induction on the number of bricks. The machines always hit the top brickl’ making
it fly somewhere strictly between the two extreme walls. The origin should be thought of
as a bottomless pit. (If a brick is hit onto OT it falls and is neer heard from again). The
work is completed when all the bricks are pushed onto one side of the pit or into it.

Let’s get an upper bound on the number of times that a particular brick can be
hit. When the brick is hitT' the spot where it lands is eliminated from where it can go in
the future. If a brick is on one of the extreme wallsT' there area — 1 positive spotsT'—b — 1
negative spots and 1 zero spot to which it can landT'a — b — 1 spots altogether. Hencel
the brick can be moved a total of @ — b — 1 times. A brick not on an extreme wall has an

even smaller upper bound of movesI hence ve get

Lemma 3.3.2. If A and B are the multisets of positive and negative ezponents of X in the
crude generating function, then an upper bound on the depth of our tree is (|A|+|B|)(a —
b — 1), where a =maz(A) and b =min(B).

For the example 3z = y 4 5z of the last sectionI' the depth has an upper bound of
(14+2)3+5-1)=21.
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If a ternary tree has depth nI' then an upper bound on the mmber of nodes is
143+3%2+.-- 43" = (3" —1)/2.
Hencel” an upper bound on the mmber of steps in our algorithm is
3UAIHIBN(a-b-1)+1 /9 (3.3.2)
]

(3.3.2) gives an upper bound on the steps of 3%2/2 for Example 3.1.1; in contrastT there
are only 29 nodes in Figure 3.1. A great improvement on the upper bound can be made

by making a more careful analysis of the depth of the tree.



Chapter 4

Some subclasses of magic squares

4.1

Diirer’s magic square

Joseph Leo Koerner argues that Albrecht Diirer articulates in “Melencolia I” (Fig-

ure 4.1) a pivotal moment in the history of subjectivity (and I might addI' of sciencel largely

alchemy at the time). “The Renaissance abstracted inwardness as an inherent quality of

creative genius”[Koe96]. Some objects in the engraving are tools used by Melancholy;

others are achievements of her work. Among the latter is the square

6 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

This square has many properties.

1.

The entries are nonnegative integers.

. Any row—e.g.I' 16T 3T 2 and 13—or column—e.g.I' 16I" 5I"' 9 and 4—sums to 34.

. The main primary diagonal—161" 10I' 7 and 1-— and thenain secondary diagonal

—41" 6I" 11 and 13—sum to 34.

. The entries of the square are {1,2,...,16}.

With the center as origin:

(a) entries that are symmetrically located—e.g.I' 2 and 151" 4 and 13—sum to 17;

31



Figure 4.1: Albrecht Durer’s Melencolia
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(b) the entries in each quadrant—e.g.T' 16T 3T 10 and 5—sum to 34.

6. If we concatenate the middle 2 entries in the bottom rowI ve get 1514T the date of
the engraving. S W AR AT

N A square satisfying properties 1 and 2 is magic. ‘A magic square which satisfies

property 3 is acecreational magic sqﬁ;;e o‘rn‘}:?'-.é(ju‘dfml/Property 4 earns the modifier
classic or “normal”. Matrices having property 5(a) are anti-symmetricl’ or “symmetric”.
Property 5(b) is generalized in Section 4.4.

Property 6 is typical of recreational uses of the subject. For another recreational

curiosityl’
67 1 43
13 37 61
31 73 7

is the 3 x 3 R-square with smallest index whose entries are prime (allowing 1 to be prime).
The 1212 square found in [BJ76T p. 35]is the smallest R-square with the first consecutive
primes as entries.

Much of the recreational literature consists of procedures for constructing examples

of squares with specified size and properties. For instancel' to construct Diter’s squarel’

begin with

1 2 3 4
5. 7 8
6 (4.1.1)
9 10 11 12
13 14 15 16

(4.1.1) has equal main primary and secondary sums and is anti-symmetric. Reversing the
entries in each of the 2 main diagonals preserves these properties and picks up equal row

and column sums tooI iTel’ the resulting square has properties 1-5.

16 2 3 13
5 11 10 8

(4.1.2)
9 7 6 12

4 14 15 1

FENGE
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Switching the 2 middle columns of (4.1.2) does not affect the first 5 properties. The
result is Diirer’s square. See [BJ76T pp. 6-7] for an extension of this procedure to ay n a
multiple of 4.

In contrast to procedures like the one just illustrated which produce examples of

subclasses]” ve would like to enumerate or combinatorially decompose the set of all squares

that have a particular set of properties. In particularl’ ve are interested in the set of squares
which satisfy properties which translate directly to a system of linear homogeneous equa-

tions like{(1-3 and 5. As an asidel’ ve may on occasion address the problem of enumerating

squares with a particular set of entriesI" e.g.T' the firsw? natural nwmnbers.

4.2 Magic squares: conventions and dimension

Let A be a n x n matrix. n is the order.

Index the entries using the set {0,...,n~1} instead of the usual {1,...,n}li.e.]A =
||LL1]|1:LJ_=1O Indexing in this number theoretic way facilitates the discussion surrounding
various properties of and operations on the squares.

Index the rows of A from top to bottom and the columns from left to right. We
put a hat on the symbols in the case of setsI' reserving the synbol without the hat for the

sum of the elements in the respective set.

n—1
Ri(A)={ax;|1=0,...,n—1} Ri(A) =) " ax
—
n—1
Ce(A) = {ax|i=0,...,n—-1} Ce(A) = ap
=0

A is magic if
Ro(A) = R1(A) = -+ = Rp_1(A) = Co(A) = C1(A) = - -+ = Cprmy (A).

The common sum is the indez. The entries may come from the set of rationalsI'Q; the set
of integersI'Z; or the set of nonnegative integersI'Z2%. We use 3 type faces to indicate the

sets of such magic squares:

entries name | entries name I entries name

Q M, | Z M, | Z2° M,.
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For examplel'M,, is the set of magic squares of order n with entries in Q. We indicate a
restriction to matrices with a particular index by putting in a second index. For instancel’
My, 0 is the set of magic squares of order n and index 0 with entries in Z.

Let J be the square with all entries 1T then
M, =M,o8QJ. (4.2.3)

Lemma 4.2.1. M, o can be defined directly as the set of n X n matrices with rational

entries which satisfy

Proof. The only equation in the definition of magic which is not in (4.2.4) is Cy(4) = 0.
From the row sum equationsI’ the sum of all the ertries in the matrix is 0. From the other
column sum equationsI' the sum of all the eriries in the columns 1 through n — 1 is 0.

Subtracting these 2 equationsI’ ve get that the sum of the elements in column 0 must also

be 0. |

Proposition 4.2.2. The 2(n—1)+1 column and row sum equations of (4.2.4) are inde-

pendent from each other. As a consequence,
dmM,p=n*-2n-1)+1)=(n-1> and dmM, =(n-1)?+1

Proof. Consider the equations in (4.2.4) to be linear functionals on the space of n X n
matrices. Concatenate the rows of each linear functional to get a single vector. Reorder
the entries so that the 0th row and then the remainder of the 0th column are first. Form
a matrix by laying down as rows the linear functionals so orderedT’ hoosing first the Oth
row suml then the column sumsI' and finally the rest of the w sums; the resulting matrix

is upper triangular with 1’s on the diagonal. O

The theory of linear homogeneous Diophantine equationsT sktched in Chapter 1T tells us
that M, is a discrete polyhedral cone. Define the dimension of a cone to be the dimension

of the linear span of the vectors found in the cone.
Proposition 4.2.3. dimM,, = dim M,,

Proof. Clearlyl' dimM,, < dim M,,. Let

B = {J,’l)l,’l)g,...,’l)m},
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be any basis of M,, which respects the direct sum of (4.2.3). It suffices to produce a new

basisT
! ! ! 1
B = {J,v},v5,...,0,},

all whose elements are in M,,. The components of each vector v; are rational numbers.
Clear denominators by multiplying by the LCD of all the entries. To each of these now
integer vectorsl' add a large enough multiple of J to get nonnegative entries. The resulting

set of vectors together with J is the desired B’'. O
As a consequence of Proposition 4.2.2 and Proposition 4.2.3T ve get
Corollary 4.2.4.

dimM, = (n—1)*+1

For any orderI’ the magics are a linear conbination of permutation matrices. Hencel'
the product of any two magic squares is also magic.

Any of the sets of magic squares is invariant under cycling of the rows and/or
columns. Any subclass which is closed under such cycling is torus invariant. The sets of
R-squares are not torus invariant. In what remains of this chapterl' ve introduce 2 other
torus invariant subclasses' P-squares and W-squares. The intersection of these latter 2
subclasses]’ the most-perfect pandiagonal magic squaresl’ is the only magic subclass for

which its classic squares have been enumerated [0B98].

4.3 Torus lines and pandiagonal (P-)squares

Fundamental to our discussion is the torus linel’ also knavn as a “broken” or “wrap-

ping” line. The 2 most important torus lines are

o A primary diagonal is the set of entries formed by starting at any entry of the square
and moving at a —45° angle with the horizontall' wrapping around the square upon
reaching an edge. If the starting entry is any (¢, ¢) entryI the set is the main primary

diagonal already encountered. The primary diagonal with start (1I'2) whose erries
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are numbered in the order that they are visited is

05000
00100
00020
0 00O03
4 00 00

® A secondary diagonal is the set of entries formed by starting at any entry of the
square and moving at a +45° angle with the horizontal. If the starting point is any

(i,m — 1 — @) entryl the set is the main secondary diagonal. In

0
0
0
0
1

o o o = O

1 0
0 0
0 0
0 1
0 0

(=B e B = R ==

the entries with a 1 form a secondary diagonal.

Howeverl the angle with the horizorttal does not have to be £45°. For example a row is a
torus line which makes a 0° angle with the horizontal. The nonzero entries of the square
below form the line which starts at (0I'0) and proceeds ly going down one and over 2. The

angle with the horizontal is — arctan 1 ~ —26.57°.

0

2
(4.3.5)

0

4

o o o o

0
0
0
0

e B =

We can view lines from various perspectives. Glue together the top and bottom
edges and the left and right edges of the square to form a torus. A line is just the
entries which lie in a “straight” line of the torus. Equivalentlyl' add copies of the original
square and lay them down so that edges are adjacent to the original square. Extend this
indefinitely. Start at any entry and proceed in a straight line. Require the image of the
same entry to eventually be encountered again. A line is just the set of entries picked up
until this repetition occurs.

The lines encountered so far pick up a full set of # entries from the squarel’ something

that in fact always happens.
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Proposition 4.3.1. A line of an n X n square has n entries.

Proof. By an appropriate torus translationI' ve may assume that the line starts at (0,0).
A line terminates when it travels for the first time a multiple of 7 units in each directionl’
say (r.s). The line must have traveled through any fraction of (r,s) which is integral. If
we divide (r,s) by nl' ve obtain a second point on the line since not both 7/n and s/n are
divisible by n. In factI’ divide ly the entire ged(r, s) to get the point (a, ). In our traversel’
from (0,0)I" @, b) is the first point encountered. All subsequent points are the multiples
of this first point. For the line to terminate after m stepsI'ma =, mb =,, 0. Since a and b

have no prime factors in commonI'n must divide m. O

In Chapter 11T ve will study lines like (4.3.5) in more depth. For nowT we restrict to the
rowsIl’ columns and+45° diagonals.

To reference specific diagonals of a squarel' ve index them from left to right starting
with the upper left entry. As with rows and columnsI' ve put a hat on the symbols in
the case of setsI' reserving the synbol without the hat for the sum of the elements in the

respective set.

n—1
Fe(A)={aip4i]i=0,...,n—1} Fi(A) = Zai,k+z’

J=0

n—1

Sk(A) ={aig-i|i=0,...,n -1} Sk(A) =) " aik—i

1=0
For examplel" ifA has order 5T the erries of the kth secondary diagonal gk(A) correspond

to the entries labeled k& in

01 2 3 4
12 3 40
23 401
3 4 01 2
4 01 2 3

A magic square is pandiagonal if all its primary and secondary diagonal sums are

equall’ or directl}’ an X n matrix is a pandiagonal square or P-square if
RO:"':Rn—l:CO:"':Cn—l:FO:"': n—l:SO:"':Sn——l- (436)

The sets of P-squares of order n with specified matrix entries are



39

entries name | entries name | entries name

Q P. | z B, | 22 2,

Call an element of P, ¢ a zero-square or z-square.

As with magic squaresI’ ve have the direct sum decomposition

P,=P.o®QJ. (4.3.7)

I'or an example of this direct sum decompositionT

16 3 13 2 15 11 9 13 1111
5 10 8 11| 117 3 T 5| 171 11 1
A= = _ e + — :B+mJ,
4 15 1 14| 29 13 158 11| 2{1 1 1 1
9 6 12 7 1 5 7 3 111 1

where m = I = (ind A)/n. B = L1 B'T whereB' is an integral matrix. Note how entries

of B’ that are on a diagonal 2 units apart are oppositesI' a propery which holds only for

z-squares of order 4.

Lemma 4.3.2. P, o can be defined directly as the set of n X n mairices with rational

entries which satisfy
Ry=-=Rp1=Ci=-=Chaa=h==F_1=8==5_=0 (43.8)
Proof is identical to that of Lemma 4.2.1.

Theorem 4.3.3. The 2(n—1)+ 1 column and row sum equations of (4.3.8) are indepen-
dent from each other and from the diagonal sums. The 2(n — 1) primary and secondary

diagonal sum equations are
1. independent for n odd,
2. have ezactly one dependence for n even.

As a consequence,

n—2)2 -1 ifn is odd,
dim P, = ( ) /

(n — 2)? if nis even.
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Proof. To find relations among the equations of (4.3.8)I' though of as linear functionalsl’
set

n—

1 n—1 n—1 n-—1
Z r Ry + Z ¢;Ci + Z fiF; + ZS,‘SZ‘ = 0. (4.3.9)
=1 =1

=0 =1
and solve for the coefficients r;, ¢;, f; and s;. We prove for general n but use n = 3 to

illustrate. Writing out (4.3.9) as a system of equationsT’

1110000 0 0]
000111000
000000T1 11
010010010
rg T, T2 €1 ¢ ft fo sy s2/|0 01 00 1 0 0 1|=0
010001100
001100010
010100001
006101010 0

Multiply on the right by (1,0...,0)! to get rp = 0. Every functional corresponding to a
diagonal or column picks off exactly one element from each row; multiply on the right by
(~1,...,-1,1,...,1,0,...,0)

N —’

g —
n n

to get n(—rg + r1) = 0 which implies r; = 0.

1110000 0 0f[-1 -3
00011100 0|1 3
0000001 1 1|1 0
0100100101 0
001001100 1{|1]|=]0],
01000110 0|]|1 0
001100010[]0 0
01010000 T1[][o0 0
001010100 |0] |o0]

What was done for the 0th and 1st rows can be done for the Oth and ith rows. Hence

r; = 0 for all 1.
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Our system is now reduced to columns and diagonalsT' e.g.T

0100100 1 0
001001001
B LIRS B R O
001100010
010100001
00101010 0

lemporarily augment the system by putting in the 0th column and a new variable col’

which we can set to 0 at any timel to get

(10010010 0
010010010
001001001
co ¢ ¢ fi fo sp s/ |01 0 00 1 10 0fl=0
001100010
01 01000TUO0 1
00101010 0

We can perform the same series of operations as we did for the rows to show that ¢; = 0

for all i e.g.I" mitiply on right by

(-1,1,0,...,0,-1,1,0,...,0,...)
N’ ]
n—2 n—2
to get n(—cg + ¢1) = 0 which implies ¢; = 0.

If » is oddI there is a transformation of the matrices whit preserves pandiagonality
and switches rows and columns with the diagonals (see Theorem 6.1.1)T" shaving that the
fi» s; = 0 for all ¢. For the rest of the proofT assumen is even. We produce a relation and
show that there are no further ones.

Consider the locations of the entries of our matrix to be squares of a checkerboard
with upper left hand square black. We account for the white squares in two waysI' ly

summing the odd primary diagonals and the odd secondary diagonals;
Fid Bt ot Fpy =851+ 83+ 481 or Y F-S=0. (4.3.10)
1 odd
It remains to show that {Fy, F3,...F,_1,51,52,...5,-1} is independent. To keep the

calculations symmetricl' ve leave in the F7 and its coefficient f;I" whih we can at any
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timel” set to 0. Let us explicitly write out the linear combination of functionals of (4.3.90r

only keeping track of the entries that we need.

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00 -~ 00 00 --- 00
o+ R .
0 0 0 1 10 0 0
10 0 0 0 1 0 0
* *
00 -~ 0 1 ;
_ *
10 00 f"l ;
01 -« 0 0 " e
_+.fn_1 . . ) . . = : * : (4.3.11)
00 -~ 00 f’ ;2
0 0 10 : !
* 0
01 0 0 0 0 0 0
10 0 0 01 0 0
00 .- 0 1 10 - 00
N I ) D
0 0 0 0 0 0 0 0
0 0 00 0 0 0 0
* *
0 0 0 1
81 *
00 10
52 81
00 --- 0 0
+ Sy _ = : . (4.3.12)
. Sp—-3 Sn—4
01 0 0
Sn—2 Sn~3
10 0 0
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Sum (4.3.11) and (4.3.12) to get

* *
Jrn-1+ 51 *
Jn—2 + 82 Jn—3 + 81

* : . (4.3.13)
fa+ sn-3 fo+ Sn—y
f2+ sn—2 Ji+ Sn-3

:

Remembering that the matrix has been set to zerol' use thes’s in the nonboxed entries to
connect the f’s. From the first columnI's,_3 = —f3. From the last columnl's,_3 = —fi.
Hencel' fi = f3. After n — 4 more of these crisscrosses between the first and last columnsT

we get two strings of equalities involving {f1,..., fu_1}-

fi=fa=fi=-  fa=fa=fe=--. (4.3.14)

I'rom the boxed entries]” ve get

0= fa= foven- (4.3.15)

Recall that we can set fi = OI' then foqq also is 0. Substituting 0 for all f; in (4.3.13) and

remembering that the matrix is equal to the zero matrix gives s; = 0 for all s. |
Proposition 4.3.4. dim P, = dim P,

Proof is again identical to that of the corresponding result for magic squaresI' Proposi-
tion 4.2.3.

As a consequence of Theorem 4.3.3 and Proposition 4.3.4T ve get

Corollary 4.3.5.

dim P (n — 2)? if n is odd, e
im®P, = .
(n - 2)2 +1 ifn is even.

- e
. —

In the recreational spiritT coﬁldﬂﬁlug_e“r_ Eﬂé?&iﬁzﬁéd the classic magic square in his
engraving with a classic pandiagonal square keeping the 15 and 14 where they are? We

answer this question in Section 8.9.



44

4.4 W-squares and semidiagonals

The material in this sectionl' in particular Proposition 4.4.5T is largely based on
[Miil97a]. A block is a 2 X 2 submatrix of adjacent elements. An n X n magic square A is
a W-square if all blocks sum to indw (A) = 4ind(A)/n. The sets of W-squares of order n

with specified matrix entries are

entries name 1 entries name l entries name

Q W, | z @, 22 W,

As usuall’ ve have the direct sum decomposition
W, =W, 08QJ (4.4.16)
and a proposition identical to Proposition 4.2.3.
Proposition 4.4.1. dim'W,, = dim'W,,
Proposition 4.4.2. Nontrivial W -squares are of even order only.

Proof. Suppose the order n is odd. Alternately add and subtract the successive blocks of
the first two columns to get 2(agp + ap1) = indw(A). Using torus translationsI’ ve get the
semi-blocks ag; 4+ @g ;41 = indw /2 for ¢ = 0,...,n. Taking an alternating sum of these

serai-blocksT ve get 2agp = indw /2. O

A W-square is completely determined by row 0 and the middle n — 2 elements of column
0. Lquivalentlyl' aW-square with index 0 is completely determined by the first n — 1
elements of row 0 and the middle n — 2 elements of column 0. We claim thatT in factT’

these entries can be arbitrarily chosen.

Proposition 4.4.3. For n even,
dimW, o =2n -3 or equivalently, dim W, = dimW, = 2n — 2.

Proof. It suffices to show that a square chosen with arbitrary entries in the determining
set above can be filled out to be a W-square. Use the row 0 equation to get the last
entry in row 0I' and the column 0 equation to get the last eriry in column 0. Use the block
equations to fill out the rest of the matrix. We are left to check that the defining equations
not used in filling out the matrix are satisfied. The blocks used to fill out the matrix are

precisely the non-wrapping ones. Taking specific alternating sums of the non-wrapping
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block equations gives the blocks which involve wrapping. Taking the sum of every other
of the top blocks results in the sum of the rows 0 and 1. Since the elements of row 0 sum
to OF' then so does rov 1I' ditto for column 1. The other rovs and columns are gotten by

repeating the above in rows 1 and 2 and columns 1 and 2T etc. O

Let’s investigate 2 x 2 submatrices of W-squares not taken from adjacent rows and/or

columns. Using 1 instead of —1 for display purposesT’

0011 0 000 0011
00 11 B 0 011 _ 0 000 - 0
0 000 0 011 0 01
0 0 0O 0 00O 0 000
Combining 2 such relations of 4 elements gives us
0 110 0011 0101
R ] B ]
01 10 0011 0101
0000 0000 0 0 00

Taking similar combinations of blocksT ve get

Lemma 4.4.4. The 2 x 2 submatriz of a W-square formed by taking the intersection of

the pair of rows iy,1y with the pair of columns j1, jo, has as relation among its entries

relation I 11— mod 2 | 73 — j, mod 2
Gy gyt iy gy Giy gy + Qig gy = indw 1 1
@iy gy @iy gy — Giygy — Qi =0 0 1
Qgy 5 = Qi o — Qipjp + Gig gy = 0 1 0
Qg gy = Giy jp + Qig jy — Big,jy = 0 0 0.
For k=0,1and /= 0,...,n — 1T the primary and secondarysemidiagonals are
Pl = E a;; and sk = E ;55
1=k, j=nl+1 1=k, j=pl—1

respectively. For an order 6 examplel’

P13 =

o O B O O O
o o o o o o
— 0 0 o o O
o O O O o o
O O O e O
o O O o o o
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The use of the words primary and secondary in the names is justified by

Pi=poj+m,; and S;=s0;+s1;

I'or examplel’

001000 0 01 000D 000 0©O0TUO
0001 00O 0 00 0O0TOD 000100
000010 000010 000 O0O0TO
P2 - = +
000 0O01 0 000O0O0TO 0 00 0O01
10 0000 100000 0 00 0O0O
010000 00 0O0O0OTO 01 00©0TO0
=Po2*t P12

The sum of the entries in row 0 with second index even is

E=app+av2+ -+ agn-z,

and with second index odd is
O =ag1+ao3+ -+ aop-1-

Similarlyl’ the sum the eniries in column 0 with first index even is
E'=ago+ agp+ -+ an-2yp,

and with first index odd is
O'=aj0+azp+ -+ an_10-

Proposition 4.4.5. Let A be a W-square with order n = 2m and indw(A) = t. Ife, e, ez

are even and 0,01, 09 are odd, then

t .
Perer = Ser,er = &+ E7 — mago;

— — t .

Peo = Se,o = E—-0'+ mago;

—_ — t .

Doe = So,e = O—-FE'+ mago;

¢
DPoj,00 = Soq,0p = -0 -0+ m(t - {100)~

In particular, the sums of the entries for 2 semidiagonals are equal provided that their

indices have the same parity, i.e.,

ifi=k and j =3 1, then p;; = pry = sij = S -



47

Corollary 4.4.6. Given a W-square A, the primary and secondary diagonal sums with

indices of the same parity are equal, i.e.,
PFo=Py = =P g="5=5=" =82
Ph=P=--=P_1=8=58=-=5_1.
In particular, if Py = Py, then A is also a P-square.
Proof. Applying Lemma 4.4.4T ve get

—ago + ag; + o 1I'j even;

ago — ag; + a; 1 0ddT'j even;
D (4.4.18)

ago + ao; — o 1 evenl'j odd;

t —apo — ag; — a;p t1'j odd.

To finish the propositionI' replace eah of the summands in the semidiagonals with the

expressions (4.4.18). |



Chapter 5

P-squares as a vector space

5.1 Operators and z-square identities

Recall that P, is the set of P-squares with rational entries and order n. P,q
restricts further to P-squares with index 0. Call an element of P, a zero-square or
z-square.

Given a matrix with entry a;;I" inroduce the commuting operators RT'C":
Raj; = aipyj, Cay = aijq.

Andress [And60] used R, C to develop a series of z-square identities. For a fixed order nT’

the column sum equalities translate as
[nlrai; = (1+ R+ R*+ R®+ -+ R V)ay; = 0;
[7], is known as the g-analog of n. The primary diagonal sum equalities are
[n]RCaij = (1 + RC + R2C? + R3C3 LR R"_IC”_I)aij =0.

Subtracting the former displayed equation from the latter and factoringl’ we obtain

(R(C = 1)+ R¥(C* = 1)+ -+ R (C™ ! = 1))ay;
=R(C—-1)(1+R1+C)+ R*1+C+CH+---
+ R4+ CH -+ C"*Na; =0 (5.1.1)

Multiply both sides by B! to drop RT the first factor. Call the last factor@. Applying

the factor ' — 1 to a; firstI' ve see that (Ja;; has no column dependence.

48
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Lemma 5.1.1. If an operator U is constant along any direction in which a matriz has

line sums 0, then it is the 0 operator.

Proof. We will treat the case of the column direction. Any other case is proved analogously.

If Ua;; has no column dependencel’ sum oer the column index:

n—1 n—1
nla;; = ZUaik = UZa,-k =0
k=0 k=0

Applying the lemma to QI we get
Proposition 5.1.2. As an operator on z-squares,
L+ RA+CO)+ R* A+ CH+CH+ -+ RP2(14+C+ - +C" Y =0. (5.1.2)

Alternativelyl' ve present an identity as a matrix]' whib[' when dotted with az-

squarel’ yields 0. Andress [And6Q@ p.145] called (5.1.2) thetriangle identity:

100 -~ 00
110 -~ 00

T - 111 -+ 00 —0
tr 11 -+ 10
000 .- 00

Subtracting the transpose of (5.1.2) from (5.1.2)" ve get

T,-(T)'= Y  RC- > RC=0

-1<j<i<n—1 —1<i<j<n~1
or pictorially
06 11 -~ 10
1 01 10
1 10 T0
(5.1.3)
111 0 0




Define the square By = 3 o, .p RC'T eg.l

11 100
11 1 00
11 100
0 0 0 00
0 0 0 00

Tor illustration purposesI’ fixn = 61 then

By

S O = e =
[ R R e

Define the lower hook

and the upper hook

eg.l’

=R e =]
[en RN = I «n B oo B e )]

[ R B S T

o o= o o o O

O O ks e =

o o= o O o O

00 1
00 1
00 0
and By =
00 0
00 0
00 0
k , k-1 )
Lp=) RIC°+) RFCI
i=1 i=1
Uy, = L},
00 0
00 0
0 0 0
and U; =
00 0
0 0 0
00 0

Lemma 5.1.3. L, - U;=(R-C)B;,i=1,...,n-2.

[en e B e BN e

o o o o o =

o o o o o o

o o © o = =

o O O o o o

o o o o o O

o o O O o o

o O o o o O

o O O o o o

o O o o o O
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Proof. Tnstead of a formal proofl’ a couple of examples will demonstrate the pattern.

0 0 0 00 01 1 10

1 1 00 01 1 10
RB y— CB,_y = - B

11 -+ 100 01 1 10

11 1 0 0 0 0 0 0 0

0 0 0 00 0 0 0 00

—_
o
o
—l
o

_ Do . B = Lyy = Upos.

10 010

11 1 0 0

00 0 0 O

In the case of n = 6T
0 00O O0OOTO 011100
1 110 00 011100
1 11000 01 1100
RB; — CB3 = -

1 11000 0 00 0CO0TO
000 0O0TD O 0 00 0O0OTO
0 000 00O 0 000 OO
0 TTTIOoO
100 I 00
100100

- = L3 — Us.
111 000
0 00 0O0TDO
000 000D

Returning to (5.1.3)T

To— Ty =Y (RCY(Ln-2-2i — Un-z-2:) = 3 (RCY(R — C)Bn—s—3i
>0 >0
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= (R=C) Y (RCYBooszi = 0,

i>0
the second equality a consequence of Lemma 5.1.3. We see that
Q=) (RC)Bn_y s
>0

has no dependence along a secondary diagonal. By Lemma 5.1.1TQ = 0.

Proposition 5.1.4. As an operator on z-squares,
> (RCYBy—g-2; = 0. (5.1.4)
i>0
(5.1.4) is the square pyramid identity]’ a name fully appreciated upon glancing at

the n = 7 case:

1111100
1222100
1232100
1222100|=0 (5.1.5)
1111100
0000GO0TO0 O
00000TO0 0

The square pyramid identity is actually part of a family of identitiesT whih Andress
[And60T" p.150] calls complemertary squares and which we call complementary pyramids.
The kth square pyramid of order n is
$Pin =Y (RC)'Bj_a:.
i>0
Using this notationl’ (5.1.4) sas sP,_3, = 0. To get the second member of the familyl’
{ranslate and rotate the triangle T, so that its right angle is in the upper left corner and

subtract from sP,_3 . For n = 7T we get

0000O0OTFO
0111000
0121100
0112100
0011100
1000000
000 0O0O0TUO
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Adding the diagonal S,_5 and translating 1 unit up and 1 unit to the leftl’ ve get for
n="70

1111000
1221000
1221000
111 1000[|=0 (5.1.6)
000 O0OO0OTODO
0000O0T10O
000 0O0O0ODO
Ior general I the result is
Proposition 5.1.5. As an operator on z-squares,
> (RC) Bps_z: + (RC)*2 = 0. (5.1.7)

>0
Define the kth complementary pyramids of order n to be the block matrix
.SP]CJc

Py =
3Pn—2—k,n—2—k

0
Using this notationI" (5.1.4) sys ¢P,_2, = 0 and (5.1.7) says ¢Pp_3, = 0.
Proposition 5.1.6. As an operator on z-squares, the complementary pyramids
¢Prn =0,
fork=n-2,n-3,..., ["—'2]

Proof. Define Ji; to be the matrix of 1’s of size ¥ x [. Induct on k& down by 2 from n — 2
and n — 3; the base cases being Proposition 5.1.4 and Proposition 5.1.5T respectiely. For

ecase of presentationl’ ve set | = n — 2 — k. Start with
sPg

cPrpn =

1

sP;
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and subtract the first k rows of 1’s

0 0 0
0 sPy_o O —Jk 142
0 0 0

sP

Add the last [ + 2 columns of 1’s

8P

P9
and complete the induction step by translating one unit up and one unit to left. O

For » oddI' there is one additional idettity. Define a flip f over the Oth column
fF(R,C) = F(R,C™'). Start with the triangle 7}, and move the (0,0)th entry of the

matrix to the center. Using the n = 7 case to illustratel’

1001111
0 000O0O0TOD
0 00O0O0O0TD
Tr=]10 00 1 00 0
0001100
0001110
0001111

Translate T, v = %52 units up and to the right one unit: R™*CT,. Multiply by (1-1Ar

i.e.I' subtract the negatie of its flipI' to get

R™“CT, — fR™“CT, = (1 - f)R™“CT, = 0. (5.1.8)
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Again turning to the n = 7 caseTR™2CT; — fR™2CTy =

0 00O0O0O0OOUO 0 000O0OOCGTO 0 000O0OTO0ODTDO
0000100 0 100 00 00T 0100
0000110 0110000 01 T0T110
000011 1f-}J1211000O0|=(TTTo0T1171
1000111 1110001 0T T0110
1100111 1110011 0010100
00 0O0O0GO0O 00 00O0O0TOD 0 00 0 O0O0TO

(5.1.9)
"The result is a filled isosceles right triangle with the hypotenuse taking up the middle n—2
entries of column 11" together with the negatie of its flip. Define the right elbow

k
Ey = Ex(R,C)=C*+ ) (R+ R™Y)C*
i=1

and its flip over the Oth columnI the left elbaw
fEr = Ex(R,C7Y).

For n = 51

Ey = 1 and fEy; =] 1

0 01 1 00
In terms of elbowsT (5.1.9) is
(1= FUC(Eq + Ey + Ep)).

The diamond with side length & is

Dy = Z RiCY.
—k<i—j i<k

Yor n = 50

Dy

Il
—_
— =
[ T S S
e
—
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Lemma 5.1.7.

(€ = C™NDg = (1= f)C(Fi+ Bxor)) = C(Ex + Exoy) — C™NfEx + fEpoa).

Proof. A diamond minus an identical diamond shifted 2 units to the left results in two
right elbows from the original diamond and two left elbows from the shifted diamond.
We illustrate with n = 9Tk = 3T not displging the first and last rowsT since they are
identically zero. C D3 — C~1D5 =

000001 O0TOD0TPO 0001 O0O0O0TO0TPO
0000 1T 1100 001 1100O0TO0
0001 11110 011111000
060111111 1§{-f111111100
000111110 0111 1100TUO0
000011100 0011 10O0TGO0TGO
000 0O0T1O0TUO0OTO 0001 O0O0O0TU0TO O

000TO0T10U0TUO0

0 01T1T01100

01T 1000110

=1 1T00000T11],

0T 1000110

001 101100

000TO01000

which as claimed is C(Es + Eq) — C™YfF3 + fEs). O

Continuing with (5.1.8)I" setk = 252 to get

(1= RTCT, = (11— fYC(Ex+ Er—1 + Ex—g + - -+ + Eq))
=1 = NC(Ex + Ep-1))+ (1 = FUC(Eg—2 + Ex—3)) + -
=(C-C DL+ (C-C YD+ (C—C V)Dg_g + - -

=(C=C™ ) Dy+4 Dyeg+ Dr_sa+---); (5.1.10)
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the third equality uses Lemma 5.1.7. Define the diamond step pyramid to be
dsPrn = Dg+ Dg_g 4+ Dg_g+ - .

To illustratel’ ve select £ =4 and n = 9;

000010000
000111000
0 01121100
01122 2110
dsPig=Ds+Da+Do= 1112 2 3 2 2 1 1
011222110
001121100
000111000
000010000
Since T, = 0I' (5.1.10) sas
(C = C)dsPyn = 0, fork:n;3, (5.1.11)

or in wordsl'dsPy ,I" as an operator onz-squaresl' is constart for alternate entries in the

column direction.

Lemma 5.1.8. Given an operator ) on a matriz M of order n odd. If Q) is constant for -«

alternating entries in a direction for which M has line sums 0, then @ is the 0 operator.

Proof. Since repeatedly collecting every other entry eventually wraps around the matrix
to engulf every entry in the linel'@ is in fact constant for all entries in the given direction;

apply Lemma 5.1.1. O
Applying Lemma 5.1.8 to (5.1.11)I ve get

n—

Proposition 5.1.9. Forn odd, k = TB, the diamond step pyramid
dSPk’n =0

as an operator on z-squares.
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For n = TT'k = 2I" Proposition 5.1.9 translates as

0
1
111
dsP7=10 1 1 2 110 |=0
111
1
0

5.2 The rings R, R and the octagonal matrix

Define the rings
R=12Z[R,C]/(R"—1,C"—1) and R=Q|[R,C)/(R"-1,C" - 1).

Since R™ — 1 is not irreduciblel’ B (E) is not an integral domain. There is a vector space

(Z-module) isomorphism between (integral) n X n matrices and elements of R (E) The

n—1

map taking a matrix A = [la;;||;, into the polynomial is

n—1
A(R,C)= Y a;R'CY.

1,j=0

We recover the matrix A by applying A(R,C) as an operator to the unit matriz

100 0
00 0
u= 00 o |,
000 -0

i.e.l' A(R,C)u = A. The image of a (integral) z-square of order n is a (integral) z-
polynomial of order n (a z-square is integral if and only if the corresponding 2-polynomial

is integral ).
Proposition 5.2.1. The (integral) z-polynomials of order n form an ideal in R (R).

Proof. The product of a (integral) polynomial P(R,C) and a (integral) z-polynomial
A(R,C) correspondsI’ in the realm of matricesI' to a (itegral) linear combination of trans-

lates of a z-square A. Since the set of (integral) z-squares is invariant under translationl’
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cach of the translates will also be a (integral) z-square. Since the (integral) z-squares form

a vector space (Z-module)I" this (itegral) combination is itself a (integral) z-square. [

The octagonal matriz or octagon

—
[

0

has rotational symmetry and “dihedral antisymmetry”I' meaning that a flip oer one of
the verticall' horizontal or diagonal axes placed in the center of the nonzero part of the
matrix results in the negative of the original. Divide the octagon into pairs of opposite

sides. The polynomial of the horizontal pieces of the octagon is
1T
(R,C)=(C-C*)(1-R* =(1-C)(1-R)C+ RC + R*C).
11
The vertical pieces are the negative of the transpose of the horizontal pieces; the polyno-

mial of the vertical pieces is obtained from that of the horizontal pieces by switching R

and C and taking the negative:
(1-C)1- R)(—R - RC — RC?).

Adding the polynomials of the horizontal and vertical pieces and taking out the 2 common

factorsT ve get
(1-C)(1 - R)(C — R+ R*C — RC?),
which factors further to give us
o(R,C)=(1-C)1- R)(C - R)(1— RC). (5.2.12)

In Table 5.1I' ve list the 7 non-identity dihedral operationsI’ the corresponding operations
on the polynomials and the effect of the operations applied to o' modulo appropriate

translations. We demonstrate with the horizontal flip.
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I Operation | Image of R | Image of C | Result |

Z rotation C R7! 0

T rotation R c-! 0

37” rotation c-1 R 0
vertical flip R c-1 -0
horizontal flip R™! C -0
primary diagonal flip C R -0
secondary diagonal flip c-t R™! -0

Table 5.1: Dihedral operations on the octagon.

ol R7L,C)=(1-C)1-R)C-R)(1-RC).
Multiply by R® to get (1 — C)(R - 1)(CR~ 1)(R - C). 3 sign changes are required to
return to o( R, C).
Proposition 5.2.2. 4 integral z-polynomial A(R,C) is
1. divisible by (1 — R)(1 - C);
2. divisible in R by the product of any 2 of the 4 factors of o(R,C)
(a) if n odd,
(b) except (R — C)(1— RC) if n even.

Corollary 5.2.3. A z-polynomial A(R,C) is divisible by any single factor of o(R,C) in
the ring R.

We will see in Section 5.4 that A(R,C) s in fact divisible in R by the entire o(R,C).

Proof. Define the column generating function

n~1
Aj(R) = a; R
1=0
Since A has equal column sumsT
n—1
A;(1)= ai; =0. (5.2.13)
=0

Grouping the terms in the polynomial according to powers of CT

A(R, C) = AO(R)l + Al(R)C + -+ An_l(R)Cn_l.



61
Setting B = 1 and using (5.2.13)[

A(LC)= A1+ A(V)C + -+ A (1O

=0(1)+0(C)+---+0(C™ ) = 0.

Hencel' 1- R divides A(R,C). By the symmetry of R and CT 1~ C also divides A(R, C).

Working with the polynomial in R corresponds to working with the matrix on the
torus; the matrix A can be deformed by translating sections » units in the horizontal
direction and/or » units in the vertical direction. If the resulting configuration has lines
unbroken in a particular directionI’ then the wriation of A(R,C) corresponding to this
configuration is divisible by the factor corresponding to this direction. For examplel' ve

claim that the configuration

Qoo 4do1 ag,n-1
(455 I a1,n-1 a1,0
Ap~1,n—1 On-10 *°° Gp-1,n-2

is divisible by both 1 — € and by 1 — RC.

n—1 n—1
A(R,C) = Z ai’i+jRiCi+j = Z ai,z‘+j(RC)iCj, (5.2.14)
1,7=0 1,7=0

where the indices of a are calculated modulo n. Setting R = C 7T ve get
n—1 ) n—1 )
A(C—l,C) = Z(aoj +a1145+--+ an_lyn_lﬂ‘)C’J = ZPJ‘(A)C],

where P;(A) is the sum of the entries in the jth primary diagonal of A. Since A has
primary diagonal sums 0I'P;(A) = 0T'Yj and hencelA(C~!,C) = 0. ThusT' 1— RC divides
this A(R,C). Setting C =1 in (5.2.14) ve get

n—1 [n-1 n—1
AR, )= (Z am-ﬂ-) R =) " (Ry(A)) R,
=0 7=0 =0

where R;(A) is the sum of the entries in the ith row of A. Since A has row sums 0T

R;(A) = 0I'Vi and hencel'A(R, 1) = 0. ThusT 1- C divides this same A(R,C).
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The only remaining case which is not analogous to the 2 cases already covered

is the divisibility by (R — C)(1 — RC) in the case n is oddT" whih is proved using the

configuration
ag,n-1
Ap—2,1 ce Ap—1,n—-3
an—1,0 ttt Op-_1p—-1 an—1,n-2 -
o1 e aQ,n-3
Ap—2,n—1

Note that the indices of adjacent diagonals differ by 2I' but sincen is oddT all diagonals

eventually occurl’ e.g.I' the secondary diagonals arel’ from left to righ

{Sn—17 517 S37 .- '7Sn—27 SO) 527 - - ',Sn—S}’

5.3 Octagonal matrices as a spanning set of P,
Denote a translate of the octagon o as
_ prog-1
o; = R'C?'o.

and call any such matrix an octagonal matriz or an octagon.

In this section we will show that any z-polynomial is divisible by the octagonal
polynomial o(R,C). As a byproductI’ the octagonal matrices will be shovn to span P, ol
the set of z-squares. All results of this section have been taken from the Mathematics
Magazine article [And60]T" written ty Andress in 1960. Todayl’ a computer algebra system
can be used to easily program his algorithm.

A particular instance of Proposition 5.2.1T ve rephrase Theorem 4 of [And60] as

Proposition 5.3.1. Given any polynomial P(R,C), the product of P and the octagonal
polynomial o( R, C) is a z-polynomial.

Andress provided a converse of Proposition 5.3.1. To get itI' Andress divides az-

polynomial A(R,C) by each factor of o( R, C')I" one at a timeI clearly choosing a particular
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quotient at each step which is itself the polynomial of a z-square. Call any such quotient
& z-square quotient. More specificallyl' Andress taks any quotient by one of the factorsT
which we know to exist by Corollary 5.2.3T and uses it to produce another quotiert that is
a polynomial multiple of the original polynomial A(R,C). By Proposition 5.2.1T this new
quotient is a z-polynomial.

Recall the already introduced g analog of n
[l =1+q+¢"+---+¢* .
Let B(R,(') be any quotient of A(R,C) by 1 — R. If
B'(R,C)=(1- n_l[n]R)B(R,C').
then

(1- R)B'(R,C)=(1- R)B(R,C)—n""(1 — R)[n]gB(R,C)

= A(R,C)—n"'(1 - R")B(R,C) = A(R,C);

the last equality holds since we are working in R. Hencel' B'(R,C) is also a quotient of
A(R,C) by 1 - R. Since [n]; = nl’

(1-nY[n]g) = f(R)(1 - R),
for some polynomial f. In [And60T (24)]I' Andress gis an incorrect expression for f(z);
it should instead be
fley=(n-D+(n—-2)z+---+2" %) /n. (5.3.15)
Putting together some of the previously displayed equationsl’

A(R,C)/(1-R)= B'(R,C)= (1 -n"[n]g)B(R,C)

= f(R)(1 - R)B(R,C) = f(R)A(R,C),

which is a z-polynomial by Proposition 5.2.1. We have found a z-square quotient. Likewisel’
FIC)A(R,C) is a z-square quotient of A(R,C)by 1 - C.
Substituting e = RC into (5.2.14)" ve get

n—1
A(R,C) =Y aii4j(RC)YCI = A'(a,C),
1,7=0
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where A’(1,C') = 0. As when we divided by 1 — RT
A(R.C)/(1 = RC) = A(e,C)/(1 - 0) = f(a) A'(0,C) = f(RC)A(R, C);

we conclude that f(RC)A(R,C)is a z-square quotient of A(R,C) by 1 — RC.

Using another massage on the torus of the z-square AT

ag,n-1 ago o Ggn-2
b
an-21 *** Qpn_2.,n-1 Gp—_20
an-1,0 Gpn-11 " GQp-1n-1
let &« = R/C to get
n—1
~ 1 / ’
A(R,C)= " ay;-i(R/C)CI = A(e, C),
1,j=0

where A'(1,C) = 0. Hencel
A(R,C)/(1- R/C) = A(e,C)/(1 ~ a) = f(a)A'(a,C) = J(R/C)A(R, C),
or equivalentlyl
A(R,C)/(C - R) = C71f(R/C)A(R,C).

Since the degree of f is n—2T ve produce a polynomial by multiplying by C™ (in detaill since
we are working in the ring RT ve can add to the above polynomial the C™ — 1 multiple
of itself). We conclude that C"1f(R/C)A(R,C) is a polynomial z-square quotient of
A(R,C) by C — R. We have shown

Proposition 5.3.2. Given a z-square A and f(z) defined by (5.3.15), let
A"(R,C) = C" f(R)f(C)f(RC) f(R/C)A(R,C)

then A"(R,C) is a particular quotient in the ring R of A(R,C) by o(R,C), which is itself

a z-polynomial.

A(R,C) = A"(R,C)o(R,C) means that any z-square can be written as a @ linear

combination of octagons.
Corollary 5.3.3. The octagons of order n span P, o, the space of z-squares of order n.

In Proposition 5.4.1' ve improve on this corollary by showing that we can work

over Z.
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5.4 A Z-module baSis of octagons for 3,
Select the n — 3 x n — 1 upper left block of octagonal matrices
0, ={0;10<i<n-4,0<j<n-2}
and define

0y, n odd;

0, =
O, U{on-3n-1} n even.

Proposition 5.4.1. O, is a Z-module basis for P, o, the set of integral z-squares.
Corollary 5.4.2. Any integral z-polynomial A(R,C) is divisible by o in R.

Proof. By Theorem 4.3.3T

n—=22—-1=(n—-1}n—-3) ifnoddl
dim Z, = dim V,, = ( ) ( i )

(n=2)2=(n-1)(n-3)+1 ifn even.
Hencel'O,, has the proper cardinality. To show independence and integralityl’ the result is
almost immediate for n odd. For n evenl the result will depend on an iricate induction.

n

Given any matrix A = ||ag]|; _01 define the subset of entries written as a vector

A={a;|0<i<n—-4,0<j<n—2}
and

A n odd;
Al =

AU {an-3n-1} n even.

Assume n odd. Extract the subset O’ from each octagon OeQ, and lay it down
as the row of a matrixI' then the resulting matrix D,, is upper triangular with 1’s down
the main diagonal. Suppose that we have decomposed a z-square A in terms of O,T
rel' A = Op.vl' wherev is the vector of coeflicients of the octagonal matrices in the
decomposition. If we focus on the pivot entriesI’ thenv.D, = A’. To obtain vI" apply D!
to A’ on the right. The triangularity with 1’s on the diagonal for D, means that D! is

integral. Hencel' the coeflicients of the decomposition are integrall' and the proof in the



case n odd is complete. We demonstrate the decomposition with

12

—i]

6

1 12
A=|4 10
2

10 6

o © A w O

11
11

2
5
7

=]l Ol oo oYy =3
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(5.4.16)

Ixtract the 2 X 4 upper right submatrix from each matrix in Os and lay it down as a row

of

<o

Ds

Il

o O O O o O =
o O o o o o = o
o O o O o =

o o o o = H oo o

o

[ A =

[o= e R e I =R B e R ]

[ B ) B = B S S e B e B

e e = R == R = Y B = e

Extract the 2 x 4 upper right submatrix from (5.4.16) and multiply on the right by D5_1

to get

(=6,0,11,7,12,3,—11, —5).

o o o O O o o
o O o o o O o=
S O O O O = P
[~ B - N N e e

Hencel" theZ-module decomposition of (5.4.16) is

2 6 0 11 7 171
1 12 3 11 5 0 0
4 10 4 2 8|=-12]0 0
3 2 9 5 9 11
10 6 8 7 1 0 0

[ B e R e e B el N == e}

[ R I =)

[ B e B e o == =

o o o o o

fon B S T Y e T o N B

(=R

e = = =)

= (—6,-6,5,12,-6,2,9,10).

- 18

O O e | O

o [ I == T e B oy

o = o o

o O o O

o O o o O
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00110 000 1T 0 00O0TO
01T 001 10100 1 1T000
-1810 1 00 T|-7{T 0 1 0 o0—-10f00 101
00110 0 00T 00T1TO0°1
0 00 0O 0 00 0O 11000
6 0000 00000 0 0000
01 100 001710 000 1T
-16]1T 00 1 0}—-8f0 1T 00 1|-1f10To00
10010 01001 10100
01 100 00110 00011

In terms of polynomialsl’
A(R,C)=C"1(~12 - 18C — 18C? — 7C® — 10R — 16 RC — 8RC? — LRC®)o(R, C).

Assume n even. To finish the proofl it suffices to shov that |D,]| = 1. The rest of

the proof would then follow exactly as it did for n odd. D, is almost upper triangular:

1 =* ¥ X

0 1 * %
D, =

0 0 1 %

10 01

Define D to be the (n — 1)(n — 3) x (n — 1)(» — 3) upper right submatrix of D,. To
evaluate |Dy|I" expand along the last rov: |D,| =1 — |DZ|. If we can show that |D}| = 0T

then we will have shown that |D,| = 1 as desired. We proceed by induction on n.

1101

01 11
D, =

0010

1 0 0 1

and hencel”

101
Di=111 1

0 1 0
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If vg = (1,1, 1)T thenvy.D} = 0. ThusI' D} has a nontrivial column null-spacel’ completing
the base case.

Inductively define a vector v,T represeried as a n — 3 x n — 1 matrixI" in terms of an
already defined vector v,_;. To do sol first augmert v,_; with 0’s around the boundary

and denote it with 9,,_»T e.g.]

00000
4= 01 110
00000

Nextl' define the ector w, to be the n — 3 x n — 1 matrix of rows of 1's alternating with

rows of 0’s[" e.g.T’

1111111
0000O0OD0DTO
wg=111 11111
00 00O0ODOTO
1111111

LastI' define the ector y, to be the n — 3 x n — 1 matrix with 0’s except for the last rowl

which is 1’s alternating with 0’s indented from the right and left 2 unitsT" egl

Y8 =

oo O o o
o O o o O

0 00
0 0O
0 00
0 0 0
1 01

o o o o o
(== R en I en BN en 2N =)

Putting the pieces togetherl recursiely define

Un = Un—2 + Wp + Yn.

For examplel’

1111111

11111 00111110
=10 1 1 1 0], w=1[112 2 2 1 1
11 2 11 0112110
1121211
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and

V10 =

e e e e
N k= DN = N = e
N = W NN = =
e e e i
[l =R - N =

1
1
2
1
2
1
2

= T = T O S e
— NN NN —m e
— N NN N —

We claim that v, is a nontrivial vector in the column null-space of Dx.

The image of one of the vectors v,I'w, and 7, dotted with O!, can be written as
a n X n matrixl' theimage matriz. D} is a matrix which is a selection of columns of or.
Hencel' the image of one of the ectors v,I'w, and 3,I" dotted with D} is a selection of
entries from the image matrix. Call these entries pivot images. The location of the pivot

images are marked with * for n = 4 in

and for n = 6 in

The induction assumption means that Vn-Dy = 01 i.e.I¥,.0! is 0 for the n — 3 x n — 1
pivot images.

Due to the antisymmetric nature of the octagons and the vertical symmetry of v, I
1.0}, is antisymmetric. Hencel' ve can focus on the left side of the image matricesI' an
observation that simplifies the proof.

The stamp of a unit vector is the set of locations of the images of the dot product

of this unit vector with O/, and is contained in the 4 x 4 square 1 unit to the leftI’ 2
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units to the right and 3 units down from the namesake location. The stamp of a vector
is the union of the stamps of each nonzero component of the vector. We now work in the
“n 4+ 2”7 environment to complete the induction step. v, has no stamp in the top row.
Using the induction assumptionl’ ve claim that ¥,.0; ., is in addition 0 for the block of

size n — 3 X n — 2 horizontally centered and 1 unit down from the top. For examplel’

0 00O0O0O0COOD
01 0000TO0O
11000011
wop- |t oo 00T
11111111
1110071T1TT1
01011010
000O0O0O0O0OUO

In the “n” environmentl' the images in this blok only came from octagons with indices
above and to their left. There is no wrap around contribution to these entries. In contrastl’
the images in the 2nd columnI i.e.T column 1Tewe in column 0 in the “n” environment
and hence had wrap around contributions from the octagons with column index n — 2.
Wn42.07, 1o is the sum of the first % even-indexed rows of octagons less the n 4 1st
octagon in each of these rows. Since the octagons with row index 2¢ sum to 0"
21

!
Wnt2:0ppg = — Z 02in41-
1=0

Since the octagons with column index n + 1 sum to 0T
n_y

!
Wni2-Op o = Op it + Z 02i41,n+1-
1=0

07, ., does not include these octagons in its row spacel’ but ve can temporarily put them in
and work with O, instead. From the above expansionI’ the augmented version of w427

wy oI could then be written as the matrix with 0’s alternating with 1’s in the righmost

column and 0’s elsewhere plus a 1 in the n, n + 1 spot.

Lemma 5.4.3. The dot product of a column (row) of 1’s alternating with 0’s with O}, is
the vertical (horizontal) checkerboard pattern of 4 adjacent columns (rows) of alternating

I's and —17s. FEach “square” in the checkerboard has width 2 and height 1 (width1 and
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height 2). We illusirate in the row case:

1 11
111
111
D1

In the case of rows, the checkerboard starts in the namesake row and extends down. In
the case of columns, the checkerboard starts 1 unit to the left of the namesake column and
extends to the right. In both cases, the plus signs are in sync with the locations of the 1’s

in the preimage.

We demonstrate the checkerboard with ws. w} is essentially a vector of alternating
(’s and 1’s in column n + 1T with the 1’s in the odd indexed rovs. The location of a 1 in

the n,n + | spot destroys the pattern in the first and last 2 rows.

—_ O =

—_ = <

—_— O

— = o =

—

wg.Ols = ngg =

—
—
—

[ |
o — =
o o o O o o o <&

o O © OO O o o o
o O O O O o o O
o O O o o o o O

= e |

The stamp of y,42 is in the last 4 rows of which only the fourth to last rowI rov n — 2
has pivot images in its stamp.

To complete the induction step and show that
Uny2.Dyy =0,
it suffices to showl for the piwt imagesI’ that
L. in columns 0 and 1T rovs 1 to nI',.0; |, is the opposite of w,42.0}, ., ;
2. in row n — 1I' columns 2 to§ + 11%,.0;, ., is the opposite of yn42.07 5.

The top and bottom few entries of a column and the leftmost and rightmost few entries
of a row are endpoints. Ounly the first 2 nonzero columns of %, have a stamp in the first

2 columns of v,.07,,,. The second column of v, is a column of 1’sI' whih we know to be
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0T except near the endpoitts. The first column of 7, is an alternating column of 1’s and
by Lemma 5.4.3T has an image in column’s 0 and 1 of alternating horizottal pairs of 1’s
and —1’sI' except near the endpoitts. The horizontal pairs of 1’s are in the odd-indexed
rowsl' precisely the opposite ofwy12.0; 5. At the endpointsI' a quik check shows that
they match up there tool atleast for the piwt images and the image (n—1,0)I" whikI' due
to the antisymmetryl’ gies us the result for the pivot image (n — 1,7+ 1).

The last 3 nonzero rows of of ¥,, are the only part of 7, which has a stamp in row
n — 1. If we subtract off rows of 1’s and almost rows of 1’sI' the defects of whih only

impact near the end of the rowI ve are left with an alternating pattern of 1’s and 0’s:

000O0D0T1O01
0 0001O0T10
00010101

If we throw in y,421" it adds a new rov to the above pattern:

o o o O

000 1
0 00 0
0 01 1
010 0

[ =

0 0
1 1
0 0
1 1
The progressively indented nature of this pattern going up is a result of the additions
of Y42l Yl Yn—2 and yn—4 in the recursive definition of v,43. By Lemma 5.4.3T the
contribution to the row n — 2 of ¥,.0;,, from the first row of alternating 1’s will cancel

with the contribution from that of the 3rd row. The 2nd and 4th row contributions also

will cancell’ lewing another easy check near the endpoints. a
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Pandiagonal symmetries

6.1 Definition and theorem

A pandiagonal symmetry is a permutation of the entries in a square which preserves
the set of columnsI” rovsI' primary and secondary diagonalsI’ thoughof as one big set. For
a particular orderl’ there my be other symmetries which preserve the set of P-squares. In
factI' in Section 8.2T" wpresent additional symmetries for order 4.

An affine transformation on the mairiz coordinates sends

i ai+bj+i0] m BO] a b
) . . =Q]. : h =
L]H[Cl+dJ+Jo QLT 0 Where § ¢ d

The transformation is linear when the affine partT(ig, jo)I' is 0. When the linear part is the
identityl’ the transformation is atorus translation 7940 790 is a row translation. 0% is
a column translation. The group of torus translations is a direct product of the row and
column translations.

An example of a linear transformation is

oll-|o 5 C-1

(J preserves the rowsI rewerses the columns 1,...,n—1 and switches the primary diagonals

0,1,...,n — 1 with the secondary diagonals 0,n — 1,...,1 as illustrated below.

01 2 3 0 2 1
3 01 2 3 2 10
=
2 301 21 0 3
1 0 1 0 3 2

73
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Theorem 6.1.1. Any pandiagonal symmetry is an affine transformation with the linear

part taken from the following list:

for any n

a 0 a 0 0 « 0 «
) ) ; : ged(a,n) =1 (6.1.1)
a 0 -« a 0 —a 0
additionally, for n odd
[04 a @ —« « [0% —Q o
, , , : ged(a,n) =1 (6.1.2)
o —o 81 (84 - « « o

Recall the Euler phi functionl’
@(n)=#{i]|0<i<n-1and ged(i,n)=1}.
Corollary 6.1.2.

: 8o(n)n?  for n odd,
#{pandiagonal symmetries} =

4p(n)n®  for n even.

The additional operations for the odd P-squares are the ones which switch the rows
and columns with the primary and secondary diagonals.

BelowD" ve give a proof that the affine transformations listed in Theorem 6.1.1
are precisely the affine transformations on the indices which are pandiagonal symmetries.
‘The more tedious proof that these are in fact all the pandiagonal symmetries is given in

Section 6.2.

Partial proof of Theorem 6.1.1. Call each element in the the set of columnsT ravsT primary
diagonals and secondary diagonals a line. Qur goal is to determine which affine transfor-
mations send each line to some other line. The torus translations 7%+ clearly preserve
the set of lines. Restrict to the linear part. Linear transformationsl ly their naturel send
sets of parallel lines to other sets of parallel linel’ e.g.I' a linear transformation can send
the rows to columnsI’ but can not send one of the rovs to a column and another row to a

diagonal. We use the following symbols for the kinds of lines:

| columns | [ rows — | primary diagonals \ | secondary diagonals / |
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Let us first examinel for eah kind of linel’ what is required for it to be mapped to another
kind of line.

From | Slope of | is [y] and Q[}] = [*]

NE

image of | | slope of image | consequence
| o] e=0
- 4 0=
\ ] a=c
/ [44] a=-c

From — Slope of — is [(1)] and Q[(l)] = [b]

- d ’
image of — | slope of image | consequence
| o d=0
- ( =0

\ H b=d
/ [—11] b= —d

From \ Slope of \ is [ﬂ and Q[ﬂ = [“+b].

ct+d
image of \ | slope of image consequence
| B ¢=—d
- H «= b
\ E) dtb=ctd
/ (4] a+b+c+d=0

From / Slope of / is [_11] and Q[tl)] = [Z:g]

image of / | slope of image | consequence

| B c=d
- i a=b
\ [1] a+d=b+c

/ [_11] atc=b+d
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To \ From | - \ /

| c=0 d=0 c=—-d c=d

- a=0 b=0 a=—b a=>b

\ a=-c b=4d a+b=c+d a+d=b+c
/ a=—-¢c b=—-d a+b+c+d=0 at+c=b+d

Table 6.1: Requirements for one type of line to be mapped to another.

We summarize the above investigation as Table 6.1.
From the 4! = 24 possibilitiesI' corresponding to the perrmtations of the 4 types of

linesl’ the mmber can be cut down to 8 with the following lemma.

Lemma 6.1.3. In a linear transformation of the matriz indices, the rows and columns
are either sent to the rows and columns as a set or to the diagonals, i.e., if we place the
rows and columns as opposite vertices of a square with the 2 types of diagonals occupying
the other vertices, then the possible permutations correspond at most to the dihedral action

on this square.

Proof of Lemma. Let us see what happens when we switchT for example— and \I' keping
the other 2 types of lines fixed. From Table 6.1T¢ = 0T'b = dT'a = ~band a + ¢ = b+ dT
which implies that 6 = d = —al’ and & = 0. In addition @ must be invertible. Hencel’

Q= {[: - I and ged-a®,n) = 1T whid is equivalent to requiring that ged(a,n) = 1.
~a

This is a contradiction unless n = 3T" but as we will see in Proposition 7.2.1T" there are no

nontrivial P-squares of degree 3.

While the other cases could be treated similarlyl’ ve give a geometric explanation
that covers all the cases. If the rows and columns are sent to lets say the rows and primary
diagonalsI’ then the primary diagonalsI' using the parallelogram rulel’ are séito the lines
which are at a 22.5 degrees below the horizontal. Such lines are not among the 4 types in

our setl’ except in the casen = 31" where they are the secondary diagonals. Since notrivial

pandiagonal squares occur only for n > 3T ve can safely assume that n > 3. O

We use 1 line notation to denote permutationsI’ e.g.F-\|/ refers to the permutation |—\/ +

=\I/-

| —\/ From Table 6.1T¢c = 0Td = 0la+b=—c+ d and a + ¢ = b+ dI’ whih implies that
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b=c=0I ande = d. Hencel’

Q= :
0

a

2

where a® is invertible mod nl i.e.l' gedf?, n) = 1T whik is equivalent to requiring

that ged(a,n) = 1.

|-=/\ ¢=0Tb=0la+b+c+d=0and a+d=>b+cl whih implies that b6 = ¢ = O and
a = —d. Hencel’

Q= )
0 —a

2

where —a® is invertible mod nTI i.e.I' gcdfa®,n) = 1T whik again is equivalent to

requiring that ged(a,n) = 1.

~\/ a=0Td=0Ta+b=c+dand a+c=b+dl' whih implies that « = d = 0T and
b = c. Hencel'

0 b
Q= )
b 0

where —b? is invertible mod nl i.e.l’ ged(;n) = 1.
/N a=0Td=0Ta+b+c+d=0and a+d = b+ cl' whih implies that a = d = OT and
b = —c¢. Hencel'

0 b
b 0

where 5% is invertible mod nI i.e.l’ ged(,n) = 1.

\/|= ¢= —dla = bl'a = ¢ and & = —dI’ whih implies that a = b = ¢ = —d. Hencel'

where —2a? is invertible mod nl i.e.l' gedf,n) = 1 and n is odd.
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\/—|a=c'b=—dl'a = —b and ¢ = dI' whih implies that a = —b = ¢ = d. Hencel'

a —a
Q= :l I' where 22 is invertible mod n[ i.e.l’ gcdf,n) = 1 and n is odd.

a [#1

/\|— o= —cI'b=dl'e = —d and @ = b I whid implies that a = b = —¢ = d. Hencel’

where 2a? is invertible mod nl i.e.l gedf,n) = 1 and 7 is odd.

/A\—=] a=—cl'b=dla= —b and ¢ = d T whih implies that a = —b = —c = —d. Hencel'

where —2a? is invertible mod nl i.e.T gedf,n) = 1 and n is odd.

6.2 Completion of proof for Theorem 6.1.1

We first look at transformations that still take types of lines to types of lines. There
are 24 permutations of the 4 types of lines. We use the 8 permutations for n odd and 4
permutations for n even of Theorem 6.1.1 to carve the 24 permutations into orbits. The
following table lists the orbits for n odd as rows. For n evenl' eah of the orbits is divided

in 2. This division is indicated by the double vertical line.

=N =N =N =N = [N =T A= A=
N=/ |1/ = NN =N = | N =7 N[ =N
=N =N N = =N =N =N N =

We need only look at one representative from each of the orbits.

| =\/ The most general permutation of M = my; to (M) such that = : |- — |- is
m(M) = my(y)r(j) for some (i), 7(j) € Sy. The condition that 7 :\ — \ is

Jw € Sy such that Vi, jT o(7) — 7(j) = w(i — 7). (6.2.3)
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Specialize (6.2.3)[" ly replacing ¢ and j:

i J resulting condition
k 0 olk) — 1(0) =wk)

E+1 1 ok+1)—- 7(1) =uw(k) (6.2.4)
0 k o(0) — 7(k) =w(-k)

1 k+1  o(1l) —7k+1)=w(-k).
The first 2 rows of (6.2.4) imply
o(k+1) = o(k) + (7(1) - 7(0)).
If we begin with £ = 0 and iteratel’ ve get
o(k)=0(0)+ k(r(1) — 7(0)) (6.2.5)

Similarlyl’ the last 2 rovs of (6.2.4) imply

(k) = 7(0) + k(o(1) — o(0)). (6.2.6)

(6.2.5) and (6.2.6) together imply that « is in fact an affine transformation on the

indices of the square.

all remaining orbits for n even We take care of n even for the rest of the chart with

the following lemma.

Lemma 6.2.1. If 7 is e permutation of the entries of M, of size n even, which

carries lines to lines, then the images of the diagonals must also be diagonals.

Proof. Recall that we can divide an even length square up into black and white
squares like a checkerboard. Diagonals are either completely black or completely
white. A primary diagonal and a secondary diagonal have either 0 or 2 entries in
commonl' depending on whether their respectie colors are different or are the same.

More formallyI" the system of equations
t—j=a
t+j7=20b
has 2 solutions in common if ¢ and b have the same parity and 0 solutions if they

have different parity. 7 is a bijective map; the images of these 2 diagonals must also

have 0 or 2 entries in commonl forcing them to also be diagonals. g
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Hencel' for the remainder of this section]' @ may assume n is odd. In particularl

only 2 orbits remain.

I\ =/ The most general permutation of M = m;; to m(M) such that 7 : |/ — |- is
T(M) = my(i45)7(;) for some o(7),7(j) € S,. The additional condition that 7 : —
\ is '
Jw € 5, such that Vi, 5T o(i + j) + 7(j) = w(i). (6.2.7)

Specialize (6.2.7)[" ly replacing ¢ and j:

) j resulting condition

k 0 olk) + 7(0) =w(k)

k 1 ok+1)+ (1) =w(k)

k+1 -1  ok) +7(-1)=wk+1).

The first 2 rows of (6.2.8) imply

(6.2.8)

olk+1)—o(k)=7(0)-7(1),
whichI" as beforel” implies that is affine. Similarlyl' the first and third rovs of (6.2.8)
imply

wk+1)—w(k)=1(-1) - 7(0)
and w is affine.

The affineness of o and w together imply the affineness of 7. The affineness of ¢ and

7 in turn imply the affineness of .

/ —\| The most general permutation of M = m;; to 7(M) such that 7 : —/ > —| is
T(M) = mg(i)r(i4;) for some o(é), 7(j) € 5. The additional condition that 7 : | — /
is

Jw € 5, such that Vi, jT o(i) + 7(i + j) = w(j). (6.2.9)
Specialize (6.2.9)[" ly replacing ¢ and j:
? 7 resulting condition
0 k o(0) + 7(k) =w(k)
1 k o(l) +7(k+1) =wk)
-1 k+1 o(-D+ (k) =wlk+1).

(6.2.10)
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The first 2 rows of (6.2.10) imply
m(k+1)—7(k) = o(0) — o(1),

Le.I'r is affine. Similarlyl' the first and third rovs of (6.2.10) imply
w(k + 1) —w(k) = o(-1) — o(0)

and w is affine.

The affineness of 7 and w together imply the affineness of ¢. The affineness of ¢ and

7 in turn imply the affineness of 7.

We lastly need to consider the possibility of mapping parallel lines to nonparallel
lines orl" in the language of the previous section]' mapping 2 lines of the sameype to 2
lines of different types. If n is oddI' o nonparallel lines meet in exactly one entry. Hencel
for n oddl’ sub a mapping would mean mapping 2n entries to 2n — 1 entriesI' coniradicting
the bijective nature of gp. For n evenl’ Lemma 6.2.1 has the corollary that rovs and
columns are mapped to rows and columns. If 2 tows are mapped to a row and columnl ve
would again have 2n entries mapping to 2n — 1 entries. Hencel' ve have |- — |- or —|.
Moreoverl if a nonparallel map existsI' @can composel if it is the latter]’ with one of the
known maps which switch rows and columnsI' resulting in nonparallel map whik sends
|~ + |—. Hencel' ve assume that rows are mapped to rows and columns are mapped to
columns.

A rowl” whid alternates in colorT is set to a row. Hencel the set of primary diag-
onals are sent to a set of diagonalsT half of whih are black and half are white. Moreoverl’
in this imagel’ the diagonals of one color must be of the same typel since otherwise there
would be an intersectionI’ violating the bijectiviy. For obvious reasonsI’ one ¥pe of di-
agonal changes color iff the other does too. Let us list out the possibilities then use the
existing symmetry to reduce the number of cases we need to consider. Let \T\I'/T/ stand
for the white and black primary diagonalsI' and white and bla& secondary diagonalsI' re-
spectively. There are 3 independent decisions each with 2 choices to be made. Firstl’ the
black primaries can be mapped to primaries or secondaries. SecondI’ the white primaries
can be mapped to primaries or secondaries. Thirdl' ve decide whether there is a color

swap or not. The images of the secondaries will be forced. To tabulatel'\\// may be
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mapped to

N ARNYZARVZANAVIA
ANYAYAAARZANFZAN

The first 2 entries in the first row and the last 2 entries in the second row do not involve

sending parallels to nonparallels so we eliminate them from our consideration. By com-
posing with a torus translation we can reduce to the case where there is no color swap.
Iinallyl’ a reflection oer the line z = 0 switches primary and secondary diagonals. Hence
we necd only consider the case \\// is mapped to \//\. Recall that we are requiring
|- to map to |—. Hencel'r is of the form (M) = MT whereni; ; = Mo () ;)] for some
o,7 € §,. Let white have the 0,0 location.

The condition \ is mapped to \ implies that

Jw € S(0,2,..,n—2} such that Vi, j i — j evenl'o(z) — 7(j) = w(i — j). (6.2.11)
Liet £ be an even number. Specialize (6.2.11) by replacing ¢ and j:

resulting condition

J
k 0 olk) — 7(0) =wk)
k+2 2 ok+2)—- 1(2) =uwk)
0 k a(0) — (k) =w(-k)
2 kE+2  o(2) —71(k+2)=w(-k).

The first 2 rows imply

o(k+2)—o(k)=1(2) — r(0) Ly
Similarlyl" the last 2 ravs imply 7(k + 2) — r(k) = 0(2) — 0(0). Set k = 0 to get
#(2) - 0(0) = a. (6.2.12)

If we begin with k& = 0 and iteratel’ v get

o(2m)=0(0)+ma and 7(2m)=7(0)+ ma.
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Let k£ be an odd number. Specialize (6.2.11) by replacing 7 and j:

1 J resulting condition

k 1 ok) — 1) =wk-1)
k+2 3 ok+2)—- 13) =wk-1)

1 k o(1) - 7(k) =w(l-k)

3 k42 o3) —-rk+2)=w(l-k)

The first 2 rows imply o(k 4 2) — o(k) = 7(3) — 7(1). Define b = 7(3) — 7(1). The last
2 rows imply (k4 2) — 7(k) = 0(3) — o(1). Setting k = 1I' ve get that o(3) —o(1) = b
also. Begin with £ = 1 and iterate to get

og2m+1)=0(1)+mb and 7(2m+1)=71(1)+ mb.
The condition \ is mapped to / implies that
dr € S(13,...n-1) such that Vi, j i 4+ j oddl'o(2) — 7(j) = 7(i + 7). (6.2.13)
Let k£ be an even number. Specialize (6.2.13) by replacing ¢ and j:

1 J resulting condition
k3 ok) —7r3)=m(k+3)
E+2 1 olk+2)—71(1)=n(k+3).

Subtracting the rowsl'o(k 4+ 2) — o(k) = 7(1) — 7(3) = —b. Setting k = 0 and comparing
with (6.2.12)I" ve get that a = —b. We summarize our findings as:

o(2m) = o(0) + ma T(2m) = 7(0) + ma (6.2.14)
o(2m+ 1) =o(1l) — ma T(2m + 1) = 7(1) — ma.

We plug the expressions of (6.2.14) into the definition for w found in (6.2.11).

o(0) — r(0) + i—?a i,7 even;

wli = §) = o(i) - 7(j) = (6.2.15)

o(1l)—1(1) - i—;la 1,7 odd.
These 2 definitions must be equivalent. Specializing to ¢+ — 7 = 0" ve get

a(0) — r(0) = o(1) — 7(1). (6.2.16)
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We also plug (6.2.14) into the definitions for 7 found in (6.2.13).

' =imly | even;
i ) = oli) 4 r(g) = { T T IO T doddlS even, (6:2.17)

o(0)+ (1) + %‘—la i evenl'j odd.

These 2 definitions must be equivalent. Specializing to i — j = 1T ve get

o(1)+ 7(0) —a = o(0) + 7(1). (6.2.18)
Rearranging (6.2.18)T

a+o(0)—7(0) = o(1) — 7(1)

and subtracting (6.2.16)I' ve obtain a = OI' whih shows that the permutations w and =
defined by (6.2.11) and (6.2.13) can not exist. Hencel' for ary nI' no map exists whih
sends lines to lines and 2 parallel lines to nonparallel lines. This completes the proof for

Theorem 6.1.1.
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Order 3 squares

7.1 Magic squares of order 3 and cyclic squares

Given the coefficient matrix C' of a linear system of equationsl” only certain sets of
columns may be used as pivoting columns to row reduce C. If C is of rank rI these sets
are precisely those corresponding to nonzero r x 7 subdeterminants D. A set of variables
S which corresponds to the complement of one of these sets of columns is a determining
set. IfT" in additionID = £1I'S is a monic determining set: any integer solution to the
system can be expressed as an integer combination of the variables in .

Recall that M, is the set of magic squares of order n with nonnegative integer

entries. The entries not marked x are a monic determining set for Ms:

a z b
c Tl
z e

Proposition 7.1.1. Every magic square of order 3 may be written in the form

a d+e—c b
b+e—c c a+d—-cl. (7.1.1)
d a+b—rc e

Proof. Using the dihedral symmetryTl it suffices to find an expression for the 0T'1th ety

in terms of the claimed determining set. Such an expression follows immediately from the

85
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Y relation

1 01 1 11 0T 0
10 1|=j1 1 1|=|0 1 0|=0
1 01 000 1 01

]

A cyclic square of order n has a start a and a step b. In the Oth rowl place a 1 in
the ath column and 0’s elsewhere. In the 1st rowl place a 1 in thea + bth column. In the

2nd rowl place a 1 in thea + 2bth column. In the ith rowI place a 1 in thea + ibth column.
Cl = |IX(J =n a + ib)F72, (7.1.2)

Corollary 7.1.2. Every magic square of order 3 with vanishing 1,1th entry may be written

in the form

a d+e b
b+e 0 a+t+d
d a+b e

In other words these matrices are arbitrary nonnegative integral linear combinations of the

following 4 cyclic matrices,

010 001

Ci=|0o 0 1, Ci=|1 0 o}

1 00 0 1 0
(7.1.3)

100 010

Cé=lo 0 1, Ci=[1 0

010 00 1

As a resull,

) 1
o 2 exEm - xepa - xepn -y

Let a cycle be a full set of cyclics of the same stepl’ e.g. {CITCITC}}. Notice that

CIPCITCETCEY is a maximal set of cyclics which does not contain a cycle.
116l lglCy
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Recall that J is the matrix with all entries 1. Any A € M3 may be decomposed

into two magics
A =min(A)J + (A - min(A)J) = min(A)J + A°, (7.1.5)

where A° has a zero entry in say the i, jth location. Let 7 = 7*~1/~1T thenr~! moves the 0
entry to the 1I'1th position. Using Corollary 7.1.2T" decompose ~!(A°) into a nonnegative
integer combination of C{TC3TC2T andC?. Applying 7 to both sides gives a decomposition

for A°.

Proposition 7.1.3. The set of cyclic matrices of a given step is invariant under the group

of torus translations.

Proof. Set the order to m. Applying the column translation 7% to CI' is equiulent to
adding & to the start ol i.e.T

rOK(CE) = Chy

To analyze row translationsI' ve introduce new notation. The row sequence of a
cyclic is the ordered list recording the columns of the nonzero entries as one descends the

matrix by row. For the cyclic C®T the sequence is
(a,b+a,b(2)+a,...,b(n—1)+ a).

If the sequence of A is (ag,ay,...,a,-1)T then

Tk’O(A) = (Qeky Ggy - - oy B0y Gy - - +y Bf—1),
where the subscript is as usual calculated modulo n. For our particular sequencel’
ROC) = (W(=k) + a,b(=k+ 1)+ a,...,a,b+ a,...,b(—k — 1) + a))
= Cg(—k)+a'
|

To a zero in the ¢, jth positionl’ there is a unique set of 4 cyclicsI" 2 of step 1 and 2 of step
21" called an admissible set. There are 9 sub sets. Converselyl’ there are(g) (g) = 9 sets of

cyclics that do not contain a cycle. Hencel' ly the pigeonhole principlel’

Lemma 7.1.4. The 9 admissible {-tuples are precisely the J-tuples of cyclics that do not

contain a cycle.
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This places us in a position to prove our basic result.
Theorem 7.1.5. Every magic square A € Mz may be uniquely written as

where j is an arbitrary integer > 0 and ag, a1, ag, by, by, and by are integers > 0 subject

to the condition that

0= apa1dg = bgblbg (717)
or equivalently
2
1 1
X(4)= ( ] ;
A;V:fs 1= X(J) i=1 (1 - X(CO))(l - X(Cl))

X(G3) X(CHX(C3)
(= X)) - X T - X(C))(1— X(C;‘))) . (7.1.8)

In particular, the generating function for the indez is

+

N

Zti“‘“‘— 1 142422
TToe\-0F )

i

/ :
/ ) 7 / SRV &
L ey vl
(A +t41Y) |
-0

Proof of Theorem. (7.1.6) and (7.1.7) follow from what has béen said. We derive (7.1.8)
geometrically. (7.1.6) and (7.1.7) imply that A° is the direct product of 2 conesI’ eah of
whose cross sections is a triangle with the interior removed. Let UVW be one of these
triangles. To perform a shelling of the boundary of cone UVWT pik any of the integral

points on the cone UV arbitrarily. Hence

1
(1=-X(U)(1-X(V))

To avoid an overlapl the itegral points chosen from UW must have a positive W compo-
nentl’

X(w)
(1-XW)(1-XW))

SimilarlyI" the itegral points chosen from VW must have positive V and W components’

X(V)X(W)
(1-X(V))(1 - X(W))
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Let A4 be the simplex of dimension d. The cross section of Mz is the dual of the
direct product Ag x Ag. The Schlegel diagram of Ay x AT with 9 ertices and 6 facetsI is
easy o sketch. Begin with 3 triangles in parallell’ the middle one smaller than the outer 2

(Figure 7.1). Finish by connecting the corresponding vertices of the triangles (Figure 7.2).

Figure 7.1: 3 triangles in parallel.

For the dual of Ay x AT Ay x A2)*T begin with 2 linkd triangles (Figure 7.3).
Complete by constructing edges between each of the vertices of one of the triangles with all

the vertices of the other trianglel’ i.e.I' form the complete graph on 6ertices (Figure 7.4).

The 6 vertices correspond to the 6 cyclicsI' the 9 facets eah correspond to an entry
of the matrix set equal to 0. Each facet is a tetrahedron with an admissible set as vertices.
One remarkable thing about this polytope is that it is neighborlyl' meaning that all pairs
of vertices are connected with an edgel’ et it is not a simplex. This phenomenon does not

occur in dimension 3.
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Figure 7.2: Schlegel diagram for Ay x Aj.

Figure 7.3: 2 linked triangles.
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Figure 7.4: Schlegel diagram for (Az x Ag)*.

7.2 P-squares of orders 2 and 3 and reduction of order

Given a permutation o = (09,01,...,0,-1) € Sy, = S{0,...n—1}1 its matrix is

. -1
m(o) = |Ix(7 = o)} ;=0
It is well known that any magic square may be written uniquely as a nonnegative integral

linear combination of permutation matricesI i.e.I’

A= Z asm(c). (7.2.9)

0E€ESh

I'or order 31" this fact is a consequence of Theorem 7.1.5.

We can view (7.2.9) as a change of variables. Any {a,} by definition translates into
a matrix with equal row and column sums. To solve the Diophantine systemI'{a,} needs
to satisfy equations gotten by substituting (7.2.9) into the equal diagonal sum equations.
The number of equations is reduced by a factor of 2" and for orders 2 and 3T the mmber
of variables also is reduced. If we lexicographically order the permutationsI’ then for order

2 matricesI” ve get

ap az

az @
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Equal diagonals means a; = a,T i.e.T’

A:al
11

For order 3T

a1 +ay asz+ag as+ ag
A= laz+as a1t+as az+ay|- (7.2.10)

a4 +ae az+as a;+as

Ilqual primary diagonals means
3a1 4+ az + a3 + ag = 3aq + az + a3 + ag = 3as + az + as + as,
forcing ay = a4 = a5. Similarlyl' equal secondary diagonal sums forcesa, = a3 = ag and

a1+a2 a2+a1 a1+a2 1 11 1 11
A= a2 +ay a1+ay az+ay | =a1 |1 1 1|+a2ll1 1 1
1 11 1 11

ay+ax az+a; ap+ap

A trivial square is a multiple of JT' the matrix with all ertries 1.
Proposition 7.2.1. There are only irivial P-squares of orders 2 and 3.

Given a matrix A of order n = mql define thereduction of A to order mI' to be
A= ||b”||;nj;10 where

n-—-1

bij = Z Xk =m 1 and I =, jag.
k=0

Proposition 7.2.2. If A is a P-square of order n = mgq, then A |,, is also pandiagonal.

Proof. Note that

n—1

R(B) =) x(u = t)Ry(A) = qR.(A).

k=0
Since the row sums of A are equal then so are the row sums of B. By the symmetry of
the constructionl” the same is true for column sums.
For the primary diagonal sumsI’ ve need to be clever in how we order the indices.

Note that b, s is the sum of aj; whose indices are listed in the matrix formed as follows.
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Multiply m times the Cartesian product of {0,...,q — 1} with itselfT then add ¢,s) to

each entry. The result is

T, 8 T, M4 8 r(g—1)m+s
m+.7‘,5 m+r,.m+s m-l-r,(q‘—l)m-i—s (7.2.11)
(g—Um+r,s (¢g—1)m+r,m+s - (g=1)m+r(g—1)m+s
Reorder by listing as rows the primary diagonals of (7.2.11) to get
T, 8 m+r,m+s - (g—1)m+7r(g—1)m+s
r,m.+s m-l—r,.2m+s (q—1)7-n+7‘,5 (7.2.12)
ng-Umts  mrs o (g-Dm+r(g-2m+s

Returning to the primary diagonal sumsI' use (7.2.12) withr replaced with ¢ and s with
1+t to get

m—1
Fy(B) = Z biiye
7::0
m=—1

= Z Qi (i4t) T Cmpimt(i+t) T F Cg=1)mti,(g—1)m+(i+t)
=0

1 Gt (itt) T Cmi2mt(i+e) T 0 F Cgm1)mi,(i41)

T @i (g-1)ym+(i+t) T Cmti (i+t) T F Cg=1)m+i,(g=2)m+(i+1)

m—1

= Z @it (t) T Cmiympit () T - - T G(g—1)m+i,(g=1)m+i+(t)
=0

T G it (mt) T Cmtimbit(mat) T Og=1)mts,(g=1)mi+(m+1)

T @it ((g=1)m+t) T Cmtimtbit((g=1)m+t) T - -

t (g-1ym+i,(g-1)m+i+((g=1)m+1)
and summing each row over i’
= F(A) + Fnst(A) + -+ Flg_iymye(A) = ¢Fi(A).

since the primary diagonal sums of A are equall' then so are those ofB.
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The reduction construction is symmetric and hence does not affect the symmetry

between the 2 types of diagonals. So the secondary diagonal sums are also equal. ]
Corollary 7.2.3. 1. If A € Pyy with q odd, then ind A is even.

2. If A € Py, with q not divisible by 3, then ind A is divisible by 3.
Proof. Since m is 2 or 3I' Proposition 7.2.1 implies that B = A |,, must be trivial.
gind A = ind B = ¢mI't an integer. ¢ is not divisible by mI'm primel’ implies indA is
divisible by m (m is prime). O

7.3 R-magic squares of order 3 and the cross-polytope

Let R, be the set of R-magic matrices of order n with nonnegative entries. Since
the 6 cyclics (=6 permutation matrices) generate the space of magic squaresI’ ve use as
starting point (7.2.10) and set the main primary diagonal sum equal to the first row sum

to get

3a; taz + a3 +ag = a; +az + az + ag + as + ag, iel

2@1 = a4 + as. (7313)
Setting the main secondary diagonal sum equal to the first row sumI’

a1+ a4 + as + 3ag = ay + az + a3 + ag + a5 + ag, iel

2a6 = as + as. (7.3.14)

Multiplying (7.2.10) by 2 and substituting in (7.3.13) and (7.3.14)T ve get

2a; + a4 + as 2a3 + 204 2a5 + az + a3
24 = 2a3 + 2as5 a9 + az + a4 + as 2a9 + 2a4
\2a4 + a; + as 2a3 + 2as 2a3 + a4 + as

2 01 0 2 1 1 20 1 2

=az0 1 2|+a32 1 0{+ag0 1 2|+as2 1 0

1 2 0 1 0 2 2 01 0 2 1
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Define these new matrices to be B,C, D and F respectively. Dividing by 2T
ag as ay as
A=—=B+ —C+ —D + =E.
2 + 2 + 2 + 2

B,C, D and FE are not independent: B+ C =D+ E = 2J. Focusing on the 0T'2th enry
forces a3 4 a3 to be evenI similarlyay + as must be even. Converselyl ifag + a3 and a4 + as
are evenl’ thenA is integral.

As in the case of the pandiagonals of order 4 and the magics of order 3T extract
a multiple of the trivial leaving A°. This time we need not examine where is the zero.
Neither both ay and a3 are presentl’ nor bothas and as. Hencel'ag['agl'ay and as are all

even. There are no other conditions. We have proven

RN

{ -

Theorem 7.3.1. Let z e
2 0 1 02 1 1 20 10 2 /
B=l0 1 2, C=2 10, D=012 eand E=(2 1 0} |
120 10 2 2 0 1 02 1
|
Then every R-magic square A € R3 may be uniquely written as ll
!

A=3J4+bB+cC+dD+eF, (7.3.15)

where j is an arbitrary integer > 0 and b, ¢, d, and e are integers > 0 subject to the

condilion that

0=be=de (7.3.16)

or equivalently

i 1 ! X(C) 1 X(E)
2. X = 1% (1 ~X(B) T 12 X(C)) (1 “xXD) "1 X(E)) - (7:3.17)

A€ER;

In particular, the generating function for the index is

ZtindA_ 1 1+£3)?
T1-t3\1-1

AeR,

B (1—{—t3)2
ES m

Corollary 7.3.2. There is a one to one correspondence between

1. R-magic squares of order 3, whose minimal entry is in the 0, 1th location;



96

2. squares of order 3 whose rows and columns are arithmetic progressions.

Proof. Any R-magic square which satisfies condition 1 will be an arbitrary combination
of JTB and E. The entries are as follows:
m+2b+e m m+ b+ 2e

m + 2e m+b+te m + 2b

m+b m 4+ 2b+ 2e m+e
To get the square of arithmetic progressionsI’ rearrange the terms.

m m+b m + 2b
m+e m+bt+e m+2b+e
m+2e m+b+2e m+2b+2¢

The cross section of the cone P
CS.(P)={A€P|ind(4d)=c}.

Since B,C,D,FE and J all have index 3T they all lie onC53(R3). Note that J is the
midpoint of BC and also of DE. Subtract J from B and D:

1 10 01 1
B-J=|T 0o 1, D-J=|T 0 1| (7.3.18)
01 1 110

A regqular d-cross-polytope is the convex hull of the d pairs of points on d orthogonal lines
intersecting in a common point O which are a distance D from O. The 2 and 3-cross-
polytopes are the square and octahedronI respectiely.

Since the inner product (B — J, D — J) = 0T the cross sectionC'§3(R3) is a 2-cross-
polytopel’ with cetter J and with B and CI'D and E at opposite corners.

Finding a R-magic square of order 3 with distinct entries which are perfect squares
is one of Richard Guy’s unsolved problems [Guy94]. In [Rob96]T John Robertson uses the
equivalence of Corollary 7.3.2 to connect this unsolved problem to the existence of some
triples of rational right triangles which is in turn connected to a condition on elliptic curves
of the form y? = z® — n?zT" wheren is the geometric mean of the legs of a Pythagorean
triple.

Unlike the magicsI' theR-magic squares are not closed under matrix multiplication.

Howeverl” wn den Essen [vdE90]T using the Cyley-Hamilton theoremI’ has shovn that the

odd powers of order 3 magics are magic.



Chapter 8 . L

‘\:\’ L, -
P-squares of order 4 -, .\
N
/N
8.1 Strongly magic squares /

Padmakumar [Pad97)] calls a R-square which is also a W-square a strongly magic

square. We shall show thatl' in the casen = 4T the nofions of strongly magic and pandi-
j

»

Proposition 8.1.1. Let A be a 4 X 4 square. A is strongly magic iff A is pandiagonal,

agonal are equivalent.

Proof. Suppose that A is strongly magic. To show that A is pandiagonall’ ly symmetryl’

it suffices to show that the entries in the diagonals labeled 1 and 2 each sum to the index.

o 2 1 o
o o 2 1
1 o o 2
21 o0 o

We take care of diagonal 1 quickly. The entries marked with 1 in the matrix below

correspond to a pair of blocks.

= = =
- =)
(ST S WA
o © H =

97
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Subtract off the principal secondary diagonal to get

o o= O O

0
0
0
1

o o o =
[l =]

which is precisely the diagonal 1. Note how the matrix is shorthand for the linear functional
which operates by dot product on AT though of as a vector.
Adding (4.4.17) and the principal secondary diagonall’ ve get

0
0
0
0

o = O =
- o o O

0
0
1
0

= o o O
o O = O
(= e = =]

1
0
0
0

o o o O
o — O —
o O = O
[ B

which is precisely the 2nd diagonal we needed to showl finishing the forvard direction of
the proposition.

To show P-squares of order 4 are strongly magicl’ recall that ary of the sets of
P-squares is torus invariant. Hencel it suffices to shov that just one of the blocks sums
to the index. Take the first 2 rows and columns and subtract a matrix which is the sum

of the principal secondary diagonal and the 2nd primary diagonal.

— = NN

2
2
1
1

i e = I =]
_ = O O
o O N

2
2
0
0

[ R R
o O o O
oo o ©

1
1
0
0

o O = =
o O =

Divide by 2 to get the desired identity. O

8.2 Identities and strongly magic symmetries

Call a 2 x 2 submatrix of A which is made of nonadjacent entries an antiblock. In
section 7.2T" ve defined the reduction of a P-square A |5: each entry consists of the sum
of the entries of an antiblock of A. If the index of A is IT thenA |, is the I multiple of
the trivial by Proposition 7.2.1. Hencel’
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Lemma 8.2.1. Given a P-square of order /, the entries of an antiblock sum to the indez,

e.g.,

= O e O

0
1
0
1

o o o O

0
0
0
0
If we combine this lemma with the last part of Lemma 4.4.4T ve get

Lemma 8.2.2. Any 2 entries of an order 4 P-square, both indices of which differ by 2,
sum to 1= 1/2, e.g.,

o O o O

0
0
0
0

= o o O

0
1
0
0

Call any 2 such entries a diagonal jump. From Corollary 4.4.6T it follavs that Lemma 8.2.2

characterizes when a W-square of order 4 is a P-square:

Proposition 8.2.3. An order { W-square is a P-square iff the entries of any diagonal

Jump sum to 1.

The W-square definition gives us 16 new sets of 4 elements which sum to the index—the
blocks—and Lemma 8.2.1 give us 4 sets with the same property—the antiblocks.

We define a new symmetry which maps the rows to a set of 8 blocksT" and the
columns to the other 8 blocks. Together with the pandiagonal symmetriesI’ this additional
symmetry generates a group of symmetries which has the pandiagonal symmetries as an
index 3 subgroup. Send row Ry to the block in the upper left cornerl’ rov Ry to the lower

left cornerI'Ry to the lower right corner and R to the upper right corner:

a b ¢ a b n m
e d ¢ o
LS PN P (8:2.1)
107 k1 h g k 1
m n o p e f 7 1

Note that diagonals 1311“153FSO and S are mapped to the antiblocks.
The second iteration of this map produces a representative of another nontrivial

coset for the factor group of all the symmetries modulo the pandiagonal symmetries.
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An alternate representative of this second nontrivial coset is a similar mapping to 8.2.1.

Images of rows Ro and Ry are the samel but the images of ravs fZl and Rs are switchedl

i.e.T' Ry is mapped to the upper right corner and Rs is mapped to the lower left corner:

a b ¢
e [ g
i i k
m n oo

s < T

I = a9

b f e

h
€9 (8.2.2)
o k I

Now the secondary diagonals $1T 83 and the and the primary diagonals Py and P are

mapped to the antiblocks. Any symmetry which is not pandiagonal is strongly magic.

Let G*® be the group of all symmetriesI' i.e.I' the union of the pandiagonal and

strongly magic symmetries. We claim that G°T' with cardinaliy 3 X 4¢(4) x 16 = 384T

contains all possible symmetries. As proofl’ w independently show in Section 8.9 that

there are exactly 384 classical P-squares of order 4.

Let G§ be the subgroup of G® of index 16 and order 24 which leaves the 0I'0 ety

fixed.

8.3 Labelings of 4-cubes

Miller [M1il97b] has given a geometric interpretation of the symmetries. Label the

16 vertices of a 4-cube so that each of the 2-faces sums to the same number. Such a labeled

4-cube will be called a W4-cube.

Proposition 8.3.1. W/-cubes are in one-to-one correspondence with W -squares of order

4.

Proof. The correspondence can be represented as the matrix

0000
0001
1001
1000

The entry 1011T for examplel’ is shorthand for the

0100
0101
1101
1100

0110
0111
1111
1110

0010
0011
1011
1010

coordinate (1I'0T'1T'1). If the coordinates
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Y 0
g
Y
c
U
Z .
p J
X
m 7T
® f
b
Figure 8.1: Labeled 4-cube (based on Miiller [Miil97b])
4-sets in square plane in 4-cube for corresponding faces
rows XY
columns Uz
blocks alel'iTk X7
with bIdT'jT! YZ
upper-left elgI'mlo UX
corners  fI'AT'nIp Uy

Table 8.1: 4-sets in square and plane of 4-cube for corresponding faces.

are UI'XTY and ZI' the same correspondence is represered by

a b ¢
e [ g
i j k
m n o p

and the 4-cube of Figure 8.3.
In Table 8.1T" ve show the correspondence between the blocksI' ravs and columns of

the square and the faces parallel to the (;) = 6 planes of the 4-cube. O

Figure 8.3 demonstrates how movement around the square corresponds to movement on

the 4-cube. The direction of the arrows corresponds to traveling in the positive direction
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\A)/

i1 g1
ASOAT
Sl I
\A\\\\

Figure 8.2: Tiling of squa e with 4-cube.
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parallel to the axis indicated by the label. Horizontal travel entails alternately moving
parallel to the X-axis and the Y-axis. Vertical travel entails alternately moving parallel
to the Z-axis and the U-axis. Moving in the block with upper-left corner the 0I'0-enry
entails alternately moving parallel to the X -axis and the Z-axisI' etc.

The correspondence between 4-cubes and squares of order 4 can also be shown
geometrically. In Figure 8.3I' ve present a Schlegel diagram of the 4-cubel' consisting of
an inner 3-cube connected vertex to correspounding vertex with an identically positioned

outer 3-cube. The XTY and Z-axes are as the usual ones in both inner and outer cubes.

Figure 8.3: A Schlegel diagram of the 4-cube

The U-axis corresponds to traveling from the inner cube to the outer cube. In Figure 8.4
we place a torus into the Schlegel diagram. To make the edge map clearl’ v present in
Figure 8.5 a sequence of images showing the transformation of a partitioned torus into the
Schlegel diagram of the 4-cube. The faces parallel to the XY -plane correspond to circles
which demonstrate that a filled torus is not homotopic to a pointl i.e.T’ big circles around
the topl’ the outsidel’ the inside and bottom of the torus. In the squarel’ these are the 4

rows. The faces parallel to the U Z-plane correspond to 4 circles each of which cuts the
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Figure 8.4: Inserting a torus into the 4-cube.



105

& &
&

Figure 8.5: Transforming the arcs of a partitioned torus into the edges of a 4-cube.
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tube part of the torus. In the squarel’ these are the 4 columns. The other 16 faces of the
4-cube correspond to faces of the partitioned torus. In the squarel these are the 16 bloks.
A diagonal jump corresponds to a pair of antipodally located points in the 4-cube.
Following Proposition 8.2.31" v define P4-cubes to be W4-cubes whose antipodal vertices
sum to 1 = I/2. If we fix the vertex labeled al' and situate the 4 coordinate axes therel’

then the 24 permutations of these axes correspond to elements of G§.

8.4 Bicyclics

Recall the definition of a cyclic square (7.1.2). In this chapter' ve work primarily
with cyclics of step 2; let C, = C2. The 4 cyclics of step 2 are

10 00 01 00

0 010 0 0 0 1
CO - ) Cl = »

10 0 0 0 100

0010 0 0 01

(8.4.3)

0 010 0 001

1 0 00 0100
CZ - ) C3 -

0 010 0 001

1 000 0100

Notice that none of these cyclics is pandiagonal. By their constructionl’ cyclic squares of

any step have equal row sums. Howeverl’ more is true for these particular cyclics.

Proposition 8.4.1. The step 2 cyclics of order 4, listed in (8.4.3), have equal primary

and secondary diagonal sums.

Proof. A primary diagonal may be defined by
Fe(A)={aij|j=ak+i}.

Making the substitutions and eliminating jT'

Fr(Cr) = Z x(7=ak+i)x(§ =4 1+ 2)
1,]3_ \
=S xktizgl+2)= > x(i=ak-1).

,5=0 1,3=0
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For a given k£ and [T' the last equiulence is true for exactly one 7. Hencel' the primary

diagonal sums are equal.

A secondary diagonal may be defined by

Hence

Sk(C)

I

3

Se(A)={ay|j=sak—i}.

Do x(=ak—i)x(j =4 1+ 20)

1,7=0

3

3

S ox(k—iz=gl42i)= x(i=4l-k).

4,j=0

t,j=0

Hencel” the secondary diagonal sums are equal as vell.

O

Note that if 2 matrices have the same pandiagonal propertyl’ sub as equal row sumsT then

the sum also has that same property. Hencel' to find aP-square of order 4TI it suffices to

sum 2 cyclics so that the sum has equal column sums.

A glance at the cyclics shows that if the start is evenI' then the sum of the erries

in an even column is 2 and the sum of the entries in an odd column is 0. Likewisel if the

start is oddl’ then the sum of the entries in an odd column is 2 and the sum of the entries

in an even column is 0. Hence by summing a cyclic with an even start with a cyclic with

an odd startI’ the result is aP-square. We record this discussion as

Proposition 8.4.2. Ife is an even number and o is an odd number, then

Be,o =Ce.+ C,

is pandiagonal of index 2. B., is a bicyclic of order 4.

For examplel’

Ce+ (3=

= o = O

0
0
0
0

1
0
1
0

o o o O

oo o O

0
1
0
1

0
0
0
0

[an R =

-0 = O

0
1
0
1

1
0
1
0

c = o R

The cyclics of a particular step are invariant under the torus translations by Proposi-

tion 7.1.31" an easy consequence of whid is

Corollary 8.4.3. The set of bicyclics of a fized step is invariant under torus translations.
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The transpose of a cyclic C, is the teyclic *C,. The transpose of a bicyclic B, is

the thicyclic ' B,. The tcyclics and tbicyclics of a fixed step are also invariant under torus

translations.

8.5 A determining set and decomposition of P,

Mark each of the entries in the union of the 0th rowT columnI’ primary and secondary

diagonals with an z and the remaining 4 entries with o.

3]
8
=2
5]

8
8
<
8

8
o
=2
<

r r 0

The set consisting of agp and the 4 entries marked with o is monic determining.

Proposition 8.5.1. The five elements ago, as3, a21, asz and ayz form a monic determin-
ing set. If

Gpo = @, 423 = a, A1 = b, azz = ¢ and ay3 = d,

then every P-square in Py may be written in the form

« b+c+d-2a a+b—a a+c+d-2a
a+b+d-—2a at+c—« d b4+c—« (8.5.4)
c+d—a b a+b+c+d-3a a
a+b+c—2a a+d—a c b+d—a

Corollary 8.5.2. Every P-square in P4 with vanishing 0,0th entry may be written in the

Jorm

0 b+c+d a+b atc+d

b+d d b
arbte et e (8.5.5)
c+d b a+b+c+d a
a+b+c a+d c b+d

In other words these pandiagonals are arbitrary nonnegative integral linear combinations
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of the following four matrices, where A stands for the transpose of A,

0 011 0110
1 100 1 0 01
B2,3 - y B2,1 = 9
0 011 0110
1100 1 0 0 1
(8.5.6)
0101 01 01
. 01 01 . 1 010
Ba3 = , Bay=
1 010 1 010
1 010 01 0 1
In particular,
, 1 1 1 1
X(A) = . 8.5.7
2 A X By I - X (B 1= X(ag) = X(Bay) &%)

A€Py 5.t agp=0

The matrices are the bicyclics and transpose bicyclics defined in Section 8.4.

Lemma 8.5.3. Let (,) stand for the usual dot product. Given any steps b,c such that
be — 1 1is invertible (in particular, when b = ¢ = 2 and n = 4), the cyclics, teyclics,
bicyclics and tbicyclics have the following inner products:

0 for jo # o

n for jo = iog;

b by
1.(C;.Cl) =
2. (C;’O,thO) =1 for any jo and ig;
3. (Bf,s,Bgyu) = nx(r = u) + nx{s = v);
4. (Bf}s,tBiyv) =4 for any r,5,u,v.
Proof. Part 1. is true for any b and n. For Part 2.T sole simultaneously
j =n jO + bi
i =00+ ij
which implies
bi—3j=n~Jo
it cf =p —io.
T'he determinant of the system is bc — 1. Hencel for aty b, ¢ such that be — 1 is invertiblel’

there is a unique solution for ¢ and 5T i.e.I' a unique location WhenC]l»’o and tC’fo are both
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1. To get Parts 3. and 4.I' expand the bicyclics ito cyclicsI' use the lineariy of the dot
productl’ and apply Rrts 1. and 2. of the lemma. ]

Proof of Corollary. Set e = 0 in (8.5.4) to get (8.5.5). Decompose (8.5.5) by extracting
the coeflicients of al'bl'c and d. Then this subset of P4 is the nonnegative integral linear

span of L{,BQB, Bgyl, tB2,3, tBZ,l}- Let

B ={B33,B21,'B23,'Ba1}
D = {By3— By1,B21 — Bos,"'Baz— "Bo1," By — Bos}-

Using Lemma 8.5.3T
(B23— Bo1,'B23) = (B2, Bas) — (Boa,'Ba3) =4—-4=0
and
(B23— Bop, Bay) = (B2, B21) = (Bog, Ban) = (44 0) = (0+4) = 0.

The other dot products are similar. We can conclude that an appropriate scalar multiple
of D is a dual basis to B. In particularl' v get the independence of the 4 matrices of BT’
which implies (8.5.7). |

Recall the 8 symmetry operations defined in Section 6.1. Note that
0 -1} o] [~1
1 0 1] " Lo]
Hencel’ agg is in the same orbit as ag;. Via similar hand calculations or a computer

program] label the orbits of the ertries under the linear symmetries sequentially as they

appear from top to bottoml left to righl’ to get

1 2 3 2
2 4 5 4
3 5 6 5
2 4 5 4

Note that the claimed determining set is the union of the orbits marked 1 and 5. If we
add the strongly magic symmetriesI’ then the orbits 3 and 4 are conbined into one larger

orbit.



111

8.6 Proof of Proposition 8.5.1

Our strategy for proving Proposition 8.5.1 is to use as tools the lemmas from

Section 8.2 and express the pivot elements in terms of the determining set.

Proof. For the momentI let’s add: = 5 ind A to our set of determining entries. The entries

divided up into orbits under all symmetries which fix the 0F'Oth eiry are

LW B W

2 3
3 4
4 5
3 4

N W N

Use Lemma 8.2.2 to get the entries for the 2nd and 5th orbits:

To get the entries for the 3rd orbit use either a block or a generalized diagonal. For

instancel’ foragy use Ry and for a; ; use the block in the upper left corner.

o 1—a at+b—-a 1—b

1—c¢ at+c—a d b+c—a
c+d-—-a b 1—-Q a

1—d a+d—a c b4+d—a

'To get an expression for :I" use atry row or column with « appearing only once. For instancel’

the 3rd column gives a + b+ ¢+ d — 2a + 1 = [ = 21. Subtracting ¢ from both sides gives
1=a+b+c+d-—2a.

Substituting this expression for 2 back into the previous matrix gives (8.5.4). Alternativelyl’
we could have gotten expressions for just one representative from orbits 2 and 3 and applied

the symmetries to get the other entries of the orbits. For examplel’

aovgza—l—b—a

= az3+ az1 — aopo-
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0 1
Apply the matrix to the indices to get
10

G20 =032+ Q12 — Ao

=c+d- a.

8.7 Admissible sets and the generating function

Designate the 4-tuple of 2 bicyclics and 2 tbicyclics which is the image of (8.5.6)
under 7%/ as the i, jth admissible 4-tuple.

The proof of Proposition 7.1.3 contains the seeds for a calculation of the admissibles.
A column translation of j adds j to the start of a cyclic. A row translation of 7 adds 27 to
the start. Hence the start increases by 2i + j.

To get the 2 bicyclics associated with i, 7T appropriately combine the cyclics with
starts taken from adding 27 4 j to the set {1,2,3}. To get a compact displayl’ ve show the

complementI i.e.I' the start whit is not allowed.

(== I - ]

1
3
1
3

o N O N
— W = W

2

For examplel' the 2 bicyclics associated with the 0T'1th etry are those that do not have
the cyclic with start 1T namely Bo 3 and By 5.

The 0I'0th eriry of the matrix of (8.5.5) is the only entry which is identically 0.
The 2 bicyclics associated with 4, j are precisely those which have a 0 in the i, jth entry.
Flach z, jth admissible has only the i, jth entry where all its constituents are 0. Hencel the
16 adinissibles are distinct.

Recall that
1111

1111
1111
1111
Define the opposite of a bicyclic B,y to be Bgi = J = Bop. Note that B =

Bo—2p-2-
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Lemma 8.7.1. The 16 admissible 4-tuples are precisely the {-tuples which do nol have

any opposites.

Proof. The admissibles have a common zero. The opposites do not. Hencel' the admissibles
are contained in the set of 4-tuples with no opposites. There are (3)4 = 16 4-tuples with

no opposites. By the pigeonhole principlel’ the wo sets are the same. a

To deal with the most general P-squares in P4I" ve need some notation. Let min(A)

denote the minimum entry in a matrix A. This givenI' aty pandiagonal A € P, may be

decomposed as:
A =min(A)J + (A — min(A)J) = min(A4)J + A°. (8.7.8)

A° will have a zero entry in some locationT sy the i, jth location. Applying =%~
moves that entry to the 00th position. Using Proposition 8.5.1T" decomposer“"7(A°)
into a nonnegative integer combination of By 3I' B2 1I'*B; 3 and ‘Bs;. To express A° as
a nonnegative integer combination of the matrices of the i, jth admissible 4- tuplel’ apply
759 to this decomposition.

This places us in a position to prove our basic result for P-squares in Py.

Theorem 8.7.2. Every pandiagonal A € Py may be uniquely wriiten as

A=jJ+ A°,

A® = by Bo,1 + bozBo3 + 012831 + basBa s
+ c01*Bo,1 + o3’ Bos + c12"Bax + ¢23°Ba g, (8.7.9)

where 7 15 an arbitrary integer > 0 and b;;, cr are integers > 0 subject to the condition
that

0 = bo1ba3 = bosbia

(8.7.10)
= €01€23 = C03C12.
We deduce that
1 1 X(Boa) )
Z X(A) = ( + ’
AEP, 1-X(J) 1’X(B23) 1= X(Boa)
X (Bo,3) )
1- X(Bz D T T=X(Bog) (8.7.11)

(

(1 (tB2 3) 1 i(gt(?t(};o),l))

( X(tB0,3) ) ‘
1- X (*Ba1) — X(*Bo3)
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In particular, the generating function for the indez is

ZtindA__ 1 1+ 2\*
T 1ttt \1-14¢2

A€EDPy
C(1412)°
(1-22)>
Proof. The decomposition of 4° described after (8.7.8) implies that A° is an arbitrary
nonnegative linear combination of the matrices of an admissible setl’ whih by Lemma 8.7.1
is equivalent to a 4-tuple with no opposite bicyclics. Hencel' ve get the basic decomposition
of (8.7.9) including the conditions of (8.7.10). MoreoverI since A° has a zero say at i, jI
there are exactly 2 bicyclics and 2 tbicyclics which are 0 at 7,7. Since no cancellation is
possiblel’ a1y expansion of type (8.7.9) must have support a subset of the admissible set.

By Corollary 8.5.2T the expansion will be unique.
The generating function for one pair of bicyclics { B, B°P} is
X(B) X (B°P)

1-X(B) 1-X(Bepr)

+ 1.

(8.7.11) follows by noting that the configuration of one pair of opposite bicyclics is inde-

pendent from the configuration of another. W]

8.8 The cross section of the cone as a cross-polytope

Proposition 8.8.1. Let j = J/2, then CS5(P,), the cross section polytope, is a 4-
crosspolytope with center 3. FEach of the 16 facets is a tetrahedron with an admissible

set as vertices.

Proof. Subtracting 7 from each of the 4 bicyclics and 4 tbicyclics gives 4 pairs of opposite
vectors of equal length. We need to show that a vector By — j from one pair is orthogonal

to a vector Bg — 7 from another pair. Note that

(J,J)=(%a%)= %(J,J):4

(5,B1) = %(‘]a By) =4.

Hence

(B1—71,B2 —3) = (B1,B2) — (B1,7) — (B2,1) + (2,1)
= (Bl,BQ) —4—-444= (Bl,B2) -4,
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Thusl" ve have reduced the problem to showing that (By, By) = 4.
By typel’ ve mean either bicyclic or transpose bicyclic.

By and B; are of the same type Then B; and B, share exactly one subscript. Part 3
of Lemma 8.5.3 implies that (By, By) = 4.

By and B; are of different types Part 4 of Lemma 8.5.3 applies.
O

A Schlegel diagram consists of a tetrahedron fitted dually inside another tetrahedron. (See
Figure 8.6). There are 2(‘21) edges of the outer and inner tetrahedronsI’ plus 4x 3 edges

Figure 8.6: Tetrahedron dually fitted inside larger tetrahedron.

which connect vertices on the outer tetrahedron to vertices of the adjacent triangle of the
dual inner tetrahedron (see Figure 8.7). The group of symmetries for the 4-crosspolytope
is the hyperoctahedral group of order 24(4!) = 16(24) = 384. The pairs of opposite vertices

can be permuted. Sign changes correspond to switching one pair of opposite vertices. Let
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Figure 8.7: 30 of the 36 facets of the hexagonxhexagon.

us call vertices of (8.5.6) 1T 2T" 3 and 4.

0011 0110 01 01 0101
1100 1001 0101 1010
00 11 0110 1010 1010 (8.8.12)
1100 1 001 1 010 01 01
1 2 3 4

The opposites are 1[2I'3T and4. The hyperoctahedral group is generated by the
adjacent transpositions 2134T 1324 and 12431 together with a signlange 1234.

The linear pandiagonal symmetry acting on the indices with

-

switches the columns 1 and 3 of each matrix. It corresponds to the transposition 2134.

The linear pandiagonal symmetry acting on the indices with

o
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switches the rows 1 and 3 of each matrix. It corresponds to the transposition 1243.

Note that if we apply the transposition 1243 and then the 3 cycle 1342T ve get the
transposition 1324. HenceT it suffices to shov what corresponds to the 3 cycle 1342. The
strongly magic symmetry (8.2.1) acts on vertices 1I' 2I' 3 and 4 precisely in this fashion.

As you can seel the subgroup of order 24 whid involves no sign changes corresponds
precisely to the group generated by the linear pandiagonal symmetries and the strongly
magic symmetry (8.2.1).

The sign changes require the torus translations. 70,2 and then a flip over the y-axisT’
corresponds to 1234. Although that finishes a description of a generating setT’ the other
sign changes are very similar. For instancel'ry, and then a flip over the line one unit

above the y-axis corresponds to 1234.

8.9 Classical pandiagonals

A classical matrix A has entries {0,...,n% — 1}. Apply a torus translation to place
the 0 in the upper left hand corner. If n = 4T the resulting matrix is a nonnegatie linear
combination of the matrices of (8.5.6). Encode the entries of the matrix (8.5.5) with the
01 words of length 4:

0000 1110 0110 1101
1011 0101 1000 0110
1100 0010 1111 0001
0111 1001 0100 1010

(8.9.13)

The (z,7)th entry of (8.5.5) is the dot product of the (i,7)th entry of (8.9.13) with
(d,c,b,a). For instancel' the OT'1th ery of (8.5.5) is 1110.(d,c,b,a) = b + ¢ + d. No-
tice that all the binary numbers from 0 to 15 appear in (8.9.13). Hencel assigningal'dTc
and d to a permutation of the numbers 1T 2I" 4 and 8T and substituting ta (8.5.5) gives a
matrix with entries the numbers from 0 to 15.
Converselyl" let’s construct aP-square from (8.5.5) with the entries from 0 to 15.
Since al'dl'c or d are each positivel' ve must assign the 1 to aT'bl'c or dI' sy a. (8.5.5)
becomes
0 b+c+d 1+b l14+c+d
1+64d 14+¢ d b+e
c+d b 1+b+c+d 1
1+b6+¢ 14+d ¢ b+ d
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To get the 2 in the matrix we must assign it to one of the other lettersI' sy b:

0 2+4c¢c+d 3 14+c+d
3+d l1+e¢ d 24 ¢
c+d 2 3+c+d 1
3+¢c 1+d c 2+d

Similarlyl’ ve are forced to assign the 4 to one of ¢ or dI' sy cT’

0 6+d 3 5+d
3+d 5 d 6
A+d 2 T+d 1

7 14+4d 4 2+d

and the 8 to the last letterI'dT’

0 14 3 13
11 5 8 6
(8.9.14)
12 2 15 1
79 4 10

Since the set of entries of (8.5.5) is symmetric in aI'bl'c and dI" aP-square with vanishing
0T0th enry and with entries 0 to 15 must assign aI'bl'c and d with a permutation of the
numbers 1T 2I" 4 and 8.

To get a set of representatives for the orbits under the pandiagonal symmetriesl’
we study the subgroup of pandiagonal symmetries which fix the 0I'0th ertry. In general
they arc the set of matrices given by (6.1.1) which act linearly on the indices. o can be 1
or -1. The group of 8 matrices obtained by making this substitution is isomorphic to the
dihedral group d4. How does this group act on the entries which fall in the locations al'6T’
c and d of (8.5.5)?

The action is the necklace group as is illustrated with the action of the symmetries

on the order 4 classical P-square

14 3 13

[0]

11 5 [8] 6
12 [2] 15 [1]
7 9 [4] 10

from (8.9.14). The elements of the determining set are boxed. For the action of the non-

identity pandiagonal symmetries which fix the 0I'Oth entryl’ see Bble 8.2. To get distinct
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index effect on i effect on entries
operator matrix few matnx 1r2r44&8
0] 11 12 7
0 1 transposes 14 5 9 _ .
(l 0) matrix 5 T y = —z reflection
13 6 10
0] 13 3 14
10 reverses 11 6 5 . .
(0 T) last 3 cols 19 T y-axis reflection
710 9
0] 14 3 13
10 reverses 79 10 < reflecti
0 1 Jast 3 rows 19 T z-axis reflection
1 5 6
reverses @ 133 14
((1) g) last 3 rows 172 110 ) 180° rotation
& last 3 cols 5
11 6 5
reverses @ 7 12 11
0T last 3 rows 13 10 6 _ .
<T 0) & colsI" then 3 15 y = @ reflection
transposes 14 9 5
0] 7 12 11
reverses
<-g [1)) last 3 cols 149 > 90° rotation
of transpose 3 15
13 10 6
verses 0] 11 12 7
— reverses
((1) é) last 3 rows 133 ﬂ 1f 270° rotation
of transpose E
4 5 9

Table 8.2: Action of the non-identity pandiagonal symmetries which fix the 0T'Oth enry

on the order 4 classical P-square (8.9.14).
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representativesl’ we enumerate necklaces with 4 distinct beadsI' labeled 1T 2T 4 and 8. Using

one of the rotationsI’ moe the 1 bead to the a location.

b =2 2 could be assigned to b. If the bead labeled 4 has been assigned to the d locationI’
an z-axis reflection moves the 4 bead to the ¢ location while keeping the 1 and 2

beads assigned to the a and b locations fixed. Hence this case gives one necklace.

b # 2 If the 2 is assigned to the d locationl’ again use thez-axis reflection to move it to
the ¢ location while keeping the 1 assigned to the a. The 4 bead could be assigned

to either of the remaining locationsI" giving rise to 2 new distinct neklaces.

Making the appropriate substitutionsI' the folloving 3 matrices are orbit represen-

tatives:
0 14 3 13 0 14 5 11 0 14 9 7
1 5 8 6 13 3 8 6 13 3 4 10
12 2 15 1|7 10 4 15 1| |6 8 15 1
79 4 10 7 9 2 12 11 5 2 12

To get the usual classical pandiagonalsT' ve add a copy of the trivial.

Proposition 8.9.1. Up to the pandiagonal symmetries, there are 3 classical pandiagonals:

1 15 4 14 1 15 6 12 1 15 10 8
12 6 9 7 4 4 9 7 4 4 5 11
13 3 16 2| |11 5 16 2| |7 9 16 2
8 10 5 11 8 10 3 13 12 6 3 13

Note that the second two matrices are precisely the images of the strongly magic
symmetries (8.2.1) and (8.2.2) applied to the first matrix.
Returning to the question asked at the end of Section 4.3T ve would like to get

15 and 14 to be adjacent in the same row. The torus translations can not change the

adjacencyl’ though of in a torus sense.

Lemma 8.9.2. A set of coset representatives for the pandiagonal symmetries modulo the

torus translations is the 8 square symmetries.

Proof. We have the correct number. Since the set is a group and since only the identity

is a torus translationI’ the 8 symmetries mist be a set of representatives. O
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Hencel it suffices to look at the effect of the 8 square symmetries. By inspectionT’
none of these 8 symmetries applied to the 3 representatives can place 15 and 14 adjacent
in the same row.

Note howeverl" that there are adjacencies via diagonals in the 2nd and 3rd cases.

Tipping these squares 45° and using pandiagonal symmetries to move the 15 and 14 down

to the 2nd to last rowD ve get

16 16
2 3 2 3
11 13 6 7 13 10
5 8 12 9 9 12 8 5
10 1 7 6 1 11
15 14 15 14



Chapter 9

W-squares of order 4

9.1 Identities and symmetries
We need one more identity:

Lemma 9.1.1. In a W-square of order 4, the sum of the entries of any 2 horizontally or

vertically adjacent diagonal jumps is equal to the indez.

Proof. From Lemma 4.4.4T

01 10 0 0 0O 0110

0 0 0O 0 0 0O 0 00O
o + = (91.1)

01 1 0 1 1 11 1 0 0 1

0 00O 00 0O 0 000
O

Let %, denote a horizontally adjacent pair; (4,7) is the pair of coordinates for the left
element of the adjacent pair in the top 2 rowsI' e.g.T’ (9.1.1) i), 1. Similarlyl' let]i,j
denote a vertically adjacent pair; (¢,7) is the pair of coordinates for the top element of the

adjacent pair in the left 2 columnsT e.g.T

3,0 =

_ o O =
o O o O
o = = @
o O o O

There are 8 identities of each type.

122
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Figure 9.1: Antipodally identified 5-cube (based on Miller [Ml97b]).

_The symmetry group for W-squares of order 4 is larger than that for P-squares.
Wolfgané \/Iglllgr_a/[l;@?{)];i;;&;e\(lh;w the notion of a labeled 5-cube is helpful in iden-
tifying all the symmetries. Take the 4-cube of Proposition 8.3.1 and extend to another
dimension. A 5-cube has 32 verticesI" but ve need only 16 labels since we identify antipodal

vertices. Again we take the generic matrix

a b ¢
h
« 9 (9.1.2)
i ok I
m n 0 p

and map letter-to-letter to the antipodally identified 5-cube in Figure 9.1. A 5-cube is a
Wa-cube if the labels of each of the 80 2-faces have the same sum.

Proposition 9.1.2. Antipodally identified W5-cubes are in one-to-one correspondence

with W -squares.

Proof. Since the 5-cube is antipodally identified" there are in fact only 40 distinct faces.
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adjacent diagonal jumps | plane to which faces
in 5-cube are parallel
lel'| fT|mT|n UV -plane
alel'cl'g V X -plane
bI' fTdI'R VY -plane
[aT|bT|T |5 V Z-plane

Table 9.1: Correspondence between adjacent diagonal jumps and faces of the 5-cube.

The 4 rowsI' 4 columns and 16 bloks correspond to the same faces as before. The 16
adjacent diagonal jumps of Lemma 9.1.1 account for the remaining faces as listed in
Table 9.1. Instead of coordinatesI' ve refer to entries using the letters in the generic

matrix (9.1.2). € refers to the set of 4 elements e, f, 0, p:

a b ¢ d
el [f/] ¢ &
ik

mn@

|m refers to the set of 4 elements a,m, g, k:

[a] b ¢ d
e f @ h
i

n o p

O

The symmetry group of our antipodally identified 5-cube is the factor group of the full
symmetry group of the 5-cube modulo the order 2 group which switches antipodes. This
symmetry group modulo the 384 symmetries of the 4-cube has as coset representatives
the cyclic group which cycles the 5 coordinate axes with say a as the origin.

One of the entries of the matrix is the origin. 5 of the entries correspond to the
axes. The remaining entries correspond to the (g) = 10 joins of axes. Making these

substitutionsI’ ve get

0 X XY Y
Z X,Z UV Y,Z
U,z v,y V V,X
U UX V.Z UY
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With the axes alphabetically orderedI' cyclically permite the axesI' substituting ifto the
above matrix. Replace the axes and joins of axes with their corresponding lowercase letters
to get a representative of a generator for the factor group of new symmetries modulo the

384 previous symmetries:

a d h e
m p 1l 1
g [ b e
kK 7 n o

The rows correspond to the XY-plane which has been replaced by the Y Z-planel i.e.T
by the blocks with upper-left corners dT'iT'd and jI' respectielyl’ whih in turn has been
replaced with the UZ-planel i.e.l' the columns. The columns hee in turn been replaced
by the UV -planel i.e.l' the ertical pairs of diagonal jumps with uppermost upper entriesI"
mI' fI'n and el respectiely. These 4-tuples have been replaced by the V X-planel i.e.T' the
horizontal pairs of diagonal jumps with leftmost left entries al'el'c and gI' respectielyl’

which in turn have been replaced by the rows. We summarize our findings.

Proposition 9.1.3. There are atleast 2* x 5! = 1920 W -symmetries for order 4, of which
120 leave fized the 0,0th entry.

If we independently show that there are precisely this number of classical W-squares

of order 41" then ve could conclude that these are indeed all possible symmetries.

9.2 Completely fundamental elements

In addition to the 8 bicyclics anchoring the P-squaresI’ there are 2 additional bi-
cyclics and 16 new objects]’ whid I shall call tricyclicsI' although they are not the sum of
3 cyclics.

The new bicyclics are Béyz and B%,S‘ If we checkerboard the squarel’ these are the
black squares as one of the objects and the white squares as the other object. By definitionI’
the row sums of cyclics are equal. Since 1 is prime to anythingl’ the column sums are also
equal. Since every block contains exactly 2 black squares and 2 white squaresI’ all the
block sums are also equal.

A tricyclic T, is a combination of the step 2 cyclic of start ¢I'C.I' the step 2
transpose cyclic of start tI''C; plus the antiblock needed so that the sum has equal row

and column sums. A cyclic has equal row sumsl' but for step 2T only odd columns hee
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entries if the start is odd and only even columns have entries if the start is even. Likewisel’
a transpose cyclic has equal column sumsl’ but for step 2T only odd rws have entries if
the start is odd and only even rows have entries if the start is even.

Let’s name the antiblock with upper-leftmost entry ¢, j as AB; ; The following table
shows how the various ingredients are put together. As usuall'e,e;, ey are even numbers

and o, 01, 09 are odd numbers.

tricyclic || cyclic | transpose cyclic | antiblock
Tel €2 Cel tCE2 ABl,l
To,e Co tCe ABO,I
Te,o Ce tCo ABO,l
T01,02 C01 tC02 ABO,O
For examplel’
1000 1 010 0 0 0O
; 0 010 0 00O 0101
Topo = + +
1000 0 1 01 0 00O
0 010 0 00O 01 01
2010
101 11
11001
01 11
and
1 0 00 0 0 00 0 1 01
0 010 01 01 0 0 00O
Toa = + +
10 00 0 00O 01 01
0 010 101 0 0 00O
11 01
o111
Sl 1001
10 2 0

Note how tricyclics have by construction equal row and column sums. In additionI since

each of the ingredients has equal block sumsI' so do the tricyclics. ThisT

Proposition 9.2.1. Tricyclics are W -squares.
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9.3 Determining sets and an equivalent problem

There is one more dimension of freedom for W-squares of order 4 than there is for
the P-squares. Hencel' determining sets will hae 6 elements. The obvious determining

set is the hook shapel the 6 enries marked a,.. ., f:

a b ¢ d
€ * * *
f % x %

*  *x Kk k

Note that the shape is not symmetric. Use the block and column sums to fill in the rest

of the matrix:

a b ¢ d
e ctd—e a—c+e b+c—e
f a+b-f -a+c+ f at+d—f
b+ect+d—e—f —bt+e+f at+bt+d—e—f —d+e+f
1000 01 00 0 010
0 010 00 01 0111
= a _ + b + ¢
01 11 0100 0 010
0 010 1 T 10 1 0 0 0
00 01 0000 0 00O
0100 1 T 11 0 000
+ d + e + f - _
0 6 0 1 0 0 00 11 11
1011 1111 1111

Two symmetrical shapes that give similar decompositions are

a b ¢ =* a b * =
d e * * ¢c d e *
and
fox x = * [ % %
* ok ok k * k% k%

This time the decomposition is similar to but more complicated than the hook shape.

If we take the diagonally symmetric shape used in the pandiagonal decomposition
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and add the entry in the middle of the crossI’ we get

a * * %

* % b %
x ¢ d e
* * f %

Multiplying by 2 to avoid fractions and using the various identities available:

5 —a+b+ec a—b-+e —-a+b-c
a
fd—ctf | +dte—f | +dtet S
—-a+b+ec a—-b—-c 2 a—b+ec
fdte-f | +dte+f +d—e+ f
h—
aro-e % 24 %
+d—e+ f
—a—-b+c a+b—c of a+b+c
+d+e+ f +d+e—f +d—e—f
2 111 011 1 0111
T 10 1 1121 1 1T 01
= a + b +c|_
1 000 1 000 1 200
T 10 1 T 101 1101
0 1 1 1 01T 11 0111
11 0 1 1101 T 10 1
+ d + e |_ + f
102 0 1 0 0 2 1 000
1101 1101 1121

Note that in the decompositionI all the matrices are translates of one another except for the
matrix accompanying d. Beginning with a W-square A € W4I' decompose ly identifying
the minimum of all the entriesT s3 j. Let A® = A — jJ; note that A is another W-square
with atleast one entry 0. We can use a torus translation to move that 0 to the d spot.

Hencel' ve assume that the d location is 0. Setting d = 0I' the resulting matrix is:

2a —a+b+c—e+f a-btect+te—f —a+b—cte+f
—a+b+ct+e—f a-b-ct+e+f 2b a—b+c—e+ f
at+b—c—e+ f 2¢ 0 2e
—a—b+ct+e+f a+b—cte—f 2f at+b+c—e—f
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[f we divide by 2I' the resulting matrix will hae entries the 5 remaining variables plus 10
entries which consist of all 10 ways to sum 3 elements from a 5 element set and subtract
the remaining 2 elements[" dividing the final result ly 2. Remembering to take account of

the fact that we have multiplied the matrix by 2I' ve can restate the problem as follows:

Proposition 9.3.1. The decomposition of the space of W -squares with 1 entry set to 0 is
equivalent to finding 5 nonnegative integers such that each sum of 3 of the numbers minus

the other 2 is even and nonnegative.

9.4 A geometric decomposition of the solutions space

From the data given by c¢dd([FP96])I" an implemenation of the Double Description
Method of Motzkin et al.([MRTT53])I" there are 16 facetsl’ edr corresponding to one of
the entries set to 0. Once a multiple of the trivial has been extracted’ one can assume
that the solution is in one of the facets.

For ease of presentationl’ ve assume that all vertices have been scaled appropriately
so that they all lie on the same cross section of the cone. Each facet consists of 5 linearly
independent bicyclics and 5 linearly independent tricyclics. The facets of a facet consist
of 10 bipyramids formed by 3 bicyclics as base plus two tricyclics as the opposite points
of the bipyramid.

Each facet has as center the average of the 5 bicyclics or the 5 tricyclics. In additionl’
each bicyclic has a complement among the tricyclicsT' i.e.T' the bicyclics can be paired up
with the tricyclics so that the average of each pair is the center.

Let’s look at the facet corresponding to the 0I'0th enry set to 0. The center of this

facet is
0 2 1 2
2 1 11
11 2 1
21 11

From the standpoint of the OT'0 ertryl’ the 2’s are precisely in the 5 etries which correspond
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to adjacent vertices on the 5-cube. The bicyclics and transpose bicyclics in this facet are

01 10 0 011 0101 01 0 1 01 01
10 0 1 1100 1 010 0 1 0 1 1010
01 10 0011 1 010 1010 0101
10 01 1100 01 01 1 010 1010
B3, Bis ‘Bj, ‘Bis Biy
The tricyclicsI' written in the order to complement the above bicyclicsI' are
01 0 2 0 2 0 1 01 1 1 01 11 01 1 1
11 10 1 01 1 11 01 2 010 1 1 01
1011 1110 0 1 1 1 0111 1 0 2 0
1 1 10 10 11 2010 11 01 11 01
752 T12 T2 T3, Tsz

’ 1

The 2’s again appearl” from the standpoint of the 0I'0 ertryl’ in precisely the ernries corre-
sponding to the adjacent vertices on the 5-cube. Also notice that the tricyclic with a 2
in the 7, j spot is matched precisely with the bicyclic in this facet that has a 0 at the 4,7
spot.

Proposition 9.4.1. Removing the mazimal multiple of the center of a facet results in an

element on the boundary of the facet, i.e., on one of the bipyramids.

Proof. We use the facet corresponding to a 0 in the 0T'0 eriry for ease of presentation. We
claim that removing a maximal multiple of the facet’s center results in a matrix with an
additional entry that is 0. Removing such a maximal multiple could conceivably leave a
I in one or several of the 5 adjacent vertices (to the 0I'0 eriry on the cube). Supposel for
example that there is a 1 in the 0I'3 ertryl’ then the matrix st be precisely one of the 4
bicyclics or 4 tricyclics that has a 1 in this entry. This matrix has a 0 in some entry other
than the 01'0 spot. Hence our claim.

Having another 0 entry means that we are on the boundary with another facet.
What are the possibilities for the intersection of 2 facets? If the 0 entries defining each
of the facets are not adjacent vertices on the 5 cubel' then the inersection is one of the
bipyramids. If the 0 entries are adjacent on the 5-cubel’ then the itersection corresponds
to a single bicyclic. An example of the former case is the facets corresponding to the 0T'0
entry and the 0I'2 eriry being 0. The intersection of these 2 facets corresponds to the

bipyramid consisting of the 3 bicyclics *B3 ;T*B3 3 and Bj ; and the 2 tricyclics T3 and
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T1,2. An example of the latter is the facets corresponding to the 0I'0 erry and the 2I'2

entry being 0. The single element in the intersection is the bicyclic Bi3. a

For a triangulationl’ tak the bipyramids of each facet. Break each bipyramid into 2
tetrahedrons and join each of the resulting tetrahedrons with the center of the facet in
question. Already we can get a count of the maximal faces of this triangulation. There
are (i) = 10 bipyramids for each facetI’ or 20 tetrahedrons. Hencel' there are 26 16 = 320
maximal faces in this triangulation.

Once a polytope has been triangulated into simplexesI' a decomposition can be
performed using inclusion-exclusion. We get quite a messI' but ve can specialize to the
index by replacing bicyclics with ¢*T tricyclics with#3T etc. The index generating function
for one of the facets is

1422 4+483 43144385 +45+2¢0"+1°  1-204+42-282 ¢
(1= 2P0 -8)(1-5) T U (2R (l-8)

The index generating function for the entire solution space is

1+ 782 4+1583 +23t4 44015 +4916 + 5017 4+ 4948 + .- - 4 14
(T 2P(L - 2) (1 - t)(1- )
C1-3t4+ 1121082 1141 - 38544
- (-t (1-3)* (1-8) '

Since the associated ring is GorensteinT' the degree of the polynomial in the mmerator is
less than or equal to the degree of the denominator minus the degree of the center and

the numerator is a symmetric polynomial.



Chapter 10

P-squares of order 5

10.1 The key identity and matrix decomposition

To unlock the structure of order 51" the follwving single relation suffices:
Proposition 10.1.1. For all A = ||a;|| € Ps,

10000
0T000
ago + @11 = @94 + asg  or pictorially 0000 1| = 0. (10.1.1)
00000
00100

Proof. Using Proposition 5.1.5T begin with—cPs 5 and add S;:

17000 01000
11000 10000
00000]—-|00001
000T0 00010
00000 00100

|

Going from order 4 to order 5I' the mmber of pandiagonals for a given index has increasedl’
but the symmetries have increased even fasterl' greatly enhancing the scope of a1y identity.
Applying the symmetries to identity (10.1.1) gives a family of identities with which to
decompose the whole matrix. We show a few members of the family to give a feeling

for the scope of the identity. There are 8¢(5) = 32 linear transformations of the indices.

132
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Howeverl' because of they = —z symmetry of the identityl' there are only 16 distinct
images. We list 4 of them. The new identities are named for the location of the second

-1. Using this naming schemel' (10.1.1) isR1;.

linear transformation

name o identity
on indices
11000
3 9 0 0 01O
Ry [3 3] 0 00 O O0J=0
0 0 0 0O
0 0010
T07100
0 0 0 0 O
Roo E ﬂ 01 00 O0f=0
01 00O
0 00 0O
100710
41 0 00 0O
Ros [4 4]- 000 0 1|=0
00001
000 0O
T 000 1
9 9 0 01 00O
Roy 0 00 O0O0]=0
22 0 00 0O
0 0100

Applying the linear transformations on the indices' the erries break up into 3

orbits
12 2 2 2
2 233 2
23 2 2 3
2 3 2 2 3
2 23 3 2

Notice that there are 16 locations in the orbit labeled 2I' confirming our statemen earlier

about the number of identities in the family of (10.1.1). We claim that the orbits marked
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1 and 3 are a determining setl’ whose elemens we label as follows:

a 22 2 2
2 2 a b 2
2 h 2 2 ¢
2 g 2 2 d
2 2 f e 2

(10.1.1) can be rewritten as a;; = ¢+ f - . To get the expressions for the other elements
in the second orbitT' apply the linear transformations to the indices of (10.1.1) and sole

for the image of the a;;. The result is

Proposition 10.1.2. Every P-square in P can be written in the form

« b+e—a g+h—a c+d—a a+f-a
d+g—a c+ f—-a a b et+h—o /
a+b—a h d+e—a f+g-—a c . ’ @'
e+ f—-a g b+c—a at+h—a d
ct+h—a a+d-a f € b+g—a

Setting o to OI' ve get as a corollary

Corollary 10.1.3. Every P-square in P with vanishing agy entry may be uniquely written

as
0 b+e g+h c+d a+f
d+g c¢c+f a b e+h
a+b h dte ft+g ¢ (10.1.2)
e+f g b+c a+h d
c+h atd f € b+g
where {a,b,...,h} are arbitrary nonnegative integers. In other words, any such matriz is

a nonnegative integral combination of the 8 linearly independent cyclic matrices
{CIi=1,...,4;j=2,3)}, (10.1.3)
where 1 is the start and j is the step (see (7.1.2) for the definition). In particular,
4 3 1
> xW=[lll——— (10.1.4)
AEPs s.t. ago=0 i=135=2 I- X(Cf)
Proof of Corollary. For each Cff there is one edry where it is the only matrix among

(10.1.3) which contributes to the sum found in (10.1.2)I' shoving the independence of the
8 cyclic matrices Cf'T whih implies the generating function (10.1.4). a
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10.2 The generating function and geometry for P;

Recall that
11111

11111
J=(11111
11111
11111

Given A € PsI' letm = min(A) and A° = A — mJ. A° will have a zero entry somewhere
and is in P5. Using a torus translation T we can move that entry to the agg position.
Use Corollary 10.1.3 to decompose 7A°. We deduce that A° may be decomposed into a
sum of torus translates of the matrices {Cf | i =1,...,4; 7 = 2,3}. These translates
are easily identified; by Proposition 7.1.3T" the set of cyclic matrices of stepl is invariant
under torus translations. Call a set of 8 cyclics which is the image of (10.1.3) under a
torus translation admissible. Each of the 25 admissible sets corresponds to precisely those
8 cyclics which are 0 in a fixed entry of the matrix. We are ready for the basic result of

order 5 pandiagonals.

Theorem 10.2.1. Fvery P-square A € Ps may be uniquely written as

4
A=mJ+Y ¢C+diCY, (10.2.5)
1=0
where m 1s an arbitrary integer > 0 and c;, d; are integers > 0 subject to the condition

that
0= CpC1C2C3C4 =— d0d1d2d3d4. (1026)

We deduce that

1
> X(4)= 1= X(J)

AEPs
1 - X(CHX(CHX(CHX(CHX(CD)
(1= X (€)1 = X(CH)(1 = X(CPH)(1 - X(CH)(1 - X(CY))
1 - X(C)X(CHX(CHX(CHX(CF)
(1= X(CN(1 = X(CNA - X(CH)(A - X(CH)N(1 - X(C3))’

(10.2.7)
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In particular, the generating function for the indez is

R 1 12\’
1— B \(1=1p

AEPs

Ittt 24t
T -

Proof. The decomposition of A° described before the statement of the theorem implies
that A° is an arbitrary nonnegative linear combination of the matrices of an admissible
set which is equivalent to a 8-tuple with no cycles. Hencel ve get the basic decomposition
of (10.2.5) including the conditions of (10.2.6). Moreover[ since A° has a zero say at 4, jI
there are exactly 4 cyclics of step 2 and 4 cyclics of step 3 which are 0 at 7,j. Since
no cycles are presentl’ a1y expansion of type (10.2.5) must have support a subset of the
admissible set. By Corollary 10.1.3T the expansion will be unique.

Extracting the multiple of J corresponds to ﬁﬂ in the generating function.
What remainsI’A°T" has 2 independen partsI’ a non-cycle conbination of step 2 cyclics and
a non-cycle combination of step 3 cyclics. Fix a step 7 and let C; = Cf Without any

restriction]’ the generating function is

1

GFp = (1= X(Co))(1 — X(C1))(1~ X(C2))(1 - X(C3))(1—-X(Cq))

I'orcing a cyclel’ the generating function is

X (Co)X(C1)X(C2)X(C5)X(C4)

N =G0 - X))~ X ()L~ X(C)L - X(Ca)

Hencel' the generating function whih prevents any cycle is the difference

1 = X(Co)X(C1)X(Ca)X(C3)X(Cy)
(1= X (Co))(1 = X(C1))(1 = X(C2))(1 =~ X(C3))(1 - X(C4))’

GF; - GFy =

(10.2.7) follows by combining the parts coinciding with the multiple of JT' thr

non-cycle and the step 3 non-cycle.

The structure revealed by the generating function is also present
the cone. Let J = J/order. Recall that the cyclics of a fixed step ar
Hencel’

Lemma 10.2.2. The cyclics for a fized step b and or”’

the vertices of a n — 1-simplex with center j, denote
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2 cyclics of different stepsT'C® and C°T share exactly one nonzero etiry provided
the system
. . . Or - - -
] =p 2+ 2 J—Cct=, 19
has a unique solution. This is true iff the determinant of the systemI'd — ¢I" is iwertible.

Lemma 10.2.3. Given 2 cyclics of order n of different steps, C® and C¢, where b — ¢ is
invertible modulo n (for n prime, b # ¢, that is always the case), then C — J and C* —J

are orthogonal.

Proof.

(CI—J,Ck—Jy=(CI,C*) = (J,CHy = (CI, )= (J,))=1-1-1+1=0

Lemma 10.2.2 and Lemma 10.2.3 imply
Proposition 10.2.4. The cross section of Py
CS1(Ps) = (A2 - Ty x (AE—J) + J.

In other words, the C'S1(Ps) is the internal direct product of the two simplezes A2 and

A3, but where the product operation is performed with center J.

10.3 Classical pandiagonals

Let A be a classical pandiagonal with entries 0,1,...,24. Apply a torus translation
to place the 0 in the upper left hand corner. The resulting matrix is a nonnegative linear
combination of the matrices of (10.1.3). Due to how cyclics of the same and different steps
interactl’ the set of ertries of the matrix (10.1.2)is the cross product of the set {0, a,c,e,g}
with the set {0,b,d, f, h}T with the ertries of each resulting ordered pair addedI' a process

which can be expressed with polynomials:
(I+z%+z°+z8+29) 1+ dad el a2ty =14z 422+ + 224
Note that

(1+z+7:2+z3+m4)(]+w5+110+115+$20):1+z+w2—|—---—+—:1:24.
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Hencel if ve set {a,c,¢,g} equal to a permutation of {1,2,3,4} and {b,d, f,h} to a per-
mutation of {5,10,15,20} (or vice versa)l' ve will get a classical order 5 pandiagonal. For

the conversel’ ve use
Lemma 10.3.1. For any prime p,
1 14z +2%+---+ 2P is irreducible;
2. 14 2P 4+ 22 + ... 4+ 2(0=1p s irreducible.

Proof.

(m—1)(1+$+-v-+zz’—1):wp—lz(y+1)p—1

=y + (Ilj)yp‘l + (§>yp‘2+---+py
=y(y" " + G’) v (g) Y24+ p)

Zeroing in on the second factor of the last expansionI'p divides all the non-leading terms
and p? does not divide the constant term. By the Eisenstein criterionT this polynomial is
irreducible. Irreducibility is not affected by linear substitution; replace y with z — 1 to get
that 1 +z + 2% 4+ -- -+ zP~1 also is irreducible.

For the second polynomiall’ I vas unable to find a way to use the Eisenstein criterion.
InsteadI’ ve cite an elementary result from algebraic number theory [Mar77T" p.17]: letw
be a primitive mth root of unityl' thenQ[w] has degree p(m). ¢(p?) = p? — p. Hence the

second polynomial is irreducible. O
Summarizing the above discussionT" ve get

Proposition 10.3.2. A classical pandiagonal square of order 5 with vanishing 0,0 entry
is formed precisely by using (10.1.2), setting {a, c, e, g} equal to a permutation of {1,2,3,4}
and {b,d, f,h} to a permutation of {5,10,15,20} (or vice versa).

To get a set of representatives up to symmetryl’ ve study the subgroup of pandiag-
onal symmetries which fix the 0I'0th ettry. They are the set of matrices given by (6.1.1)
which act linearly on the indices. a can be 1T 2" 3 or 4. The group of 32 matrices ob-
tained acts in a complicated fashion on the entries marked a,b,...,k. A big simplification
arises by using information we already havel' namely that either{a,c,e,g} or {b,d, f, h}
is {1,2,3,4}. Hencel' ve can look at the subgroup of index 2 which fixes {a,c,e,g}. We

list in Table 10.3 the 16 elements of this subgroup and their action on the determining
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action on a,c,e,g
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action on b,d, f,h

o

(2
0

=

i

o
2.

identity

rotates to right 90°

rotates to left 90°

rotates 180°

rotates to right 90°

rotates to left 90°

rotates 180°

identity

rotates to left 90°

identity

rotates 180°

rotates to right 90°

rotates 180°

rotates to left 90°

rotates to right 90°

identity

identity

rotates to left 90°

rotates to right 90°

rotates 180°

rotates to right 90°

rotates to left 90°

identity

rotates 180°

rotates 180°

rotates to right 90°

rotates to left 90°

identity

rotates to right 90°

identity

rotates 180°

rotates to left 90°

Table 10.1: Action of pandiagonal symmetries on a classic order 5 matrix
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set]” shaving that the action of the subgroup is the cross product of the rotation group
on a,c,e, g with the rotation group on b,d, f,h. To get a set of 36 representatives up to
symmetryl seta to 1 and b to 5T thenc, e, g is an arbitrary permutation of 2,3,4and d, f,

is an arbitrary permutation of 10,15, 20.



Chapter 11

Generalized diagonals and very

magic squares

11.1 The number of generalized diagonals for a fixed order

The results of the first 3 sections of this chapter have been taken largely from
(Knu68]. A generalized diagonal is the set of entries of a square matrix of size 7 which
satisfies an equation of the form az + by =, cI' where gedg,b,n) = 1. A slope (a,b) is
legitimate if ged(a,b,n) = 1. Unless stated otherwisel a slope is assumed to be legitimate.
The GCD condition is necessary to ensure a full n elements in the set. As is customaryl’
an equation will often denote the solutions to the equation.

The n diagonals in the set
{az +by=,¢c|0<c<n—-1}

constitute the family of diagonals corresponding to and denoted by the slopé (a,b). Ac-
tually a family is not identified by a unique slope. 2 slopes determine the same family of

diagonals iff they differ by a factor which is prime to n. Call 2 such slopes equivalent. Let

¥(n) = #{families of diagonals of order n
(n) = #4 g } .
= #{inequivalent slopes} = #{legitimate slopes}/¢(n).

Proposition 11.1.1. Ifn = p’fp? ...pim, then

¥(n) = n<p11: 1) <p2pj 1) (Pn;;r 1)'

141
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Proof. Let 9'(n) = #{legitimate slopes for order n}. By (11.1.1)[L' ¥'(n) = ¢(n)e(n).

Recall that
() ()
N D2 Pm

Hencel’ we can alternatively show that
1 1
W(n) = (n(ﬂi) (1’2_“) ___(pm + )) o)
h p2 Pm
_ ofPi-1\(ri-1 P — 1
=nl=— "= - 5 .
n 25 P

Any illegitimate slope is divisible by a prime p;. There are (n/p;)? such slopes for

(11.1.2)

each prime factor p;. If -0 (n/p;)? is subtracted from n?T the total mmber of slopesI’
the slopes that are divisible by atleast 2 primes are subtracted multiple times. Hencel' ve
have to add them back. Continuing with this analysisI" called inclusion-exclusionl’ wget

d"(n)=n2—2(%)2+ Z ( n )2_,_.:;:(;)2

\<ici<m PiPi P1P2 - - -Pm

(4 0 )

O
11.2 The Fourier transform and very magic squares
Given a matrix A = ||A¢;]| of order n and a primitive nth root of unity wl' define
the Fourier transform to be a = ||aw||T" where
ap] = Z wn(ik-'_‘ﬂ)Ai]'.
0<4,5<n~-1
Proposition 11.2.1.
1 -
Ay = — Z Wil (11.2.3)

n?
0<k,i<n~1
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Proof.

k41 k+ 51 —(rk+sl
Z wktilg, = Z Wkt Z w(rk+s )A'rs

0<k,i<n—1 0<k,I<n—1 0<r,s<n—1

Z A, Z WFE=T)H(G=9)

0<r,s<n—1 0<k,i<n~1
n—1 n—1
Z A Z wk(i—r) § :wl(j—s)
0<r,s<n—1 k=0 =0

= Y An(x(r=1) (nx(s = ) = nAy;.

0<r,5<n—-1

Il

d

Given a matrix in the linear span of the generalized diagonalsI’ the transform indicates the
contribution from the various families of diagonals as follows. Let Ay = X(k’i +1'5 = c)

for some fixed constant ¢ and slope (k',1’).

ap] = Z w_(ik+jl)x(k,1: —}- l/] = C)

0<i,j<n—1
_ Z kD) _ 0 if (k,1) # d(¥,1") for all d;
|k j=c nw=% if (k1) = d(K,I"T

from which we gleam

1. The transform of a diagonal has nonzero entries precisely on the n multiples of the

slope.
2. All diagonals of a family are mapped to the same diagonal.

3. Since A +— a is reversible by Proposition 11.2.1T the information needed to sort out
the individual diagonals of a family must be encoded into this diagonal; in factT the

entries are the one dimensional discrete Fourier transform.

A very magic square is a matrix all of whose generalized diagonals sum to the same

quantityl’ called the index. V& quickly dispense with these squares.

Proposition 11.2.2. Very magic squares are trivial.
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Proof. Given a very magic matrix A with order n and index sT let §&,!) = d(k’,!")I" where

(k',1') is a legitimate slope.

= Z Wkt 4,

0<4,j<n—1

n—-1
Soe >,
c=0

{é.5|k" i+ 5=c}

n—1
=s E wde =
c=0

ns ifd =0;
0 ifd#D0.

Hencel'a reduces to the matrix with one nonzero entryl' namely the 0T0th etry with
value ns. Applying the inverse transform (11.2.3)I' the sum reduces to a single term and

Aij = s/n. O

11.3 Semi-very magic squares

A semi-very magic square (k,l) or semi-very for short is a matrixI' whose generalized

diagonals not in the family (k,!) sum to the same quantityl' called the index.

Proposition 11.3.1. For any primitive nth root of unity w, the matriz A of order n

defined by
Ay = Wikl
is semi-very (k,[).
To prove the propositionI’ ve need a variant of the Chinese Remainder Theorem:

Lemma 11.3.2. Given n = qiq2...qy, where q1, G2, ..., Gn are pairwise relatively
prime, set b, = (jf(q”) for each t then by =,, 1 (by Euler’s theorem) and b, =,, 0 for all

u #t. Having chosen such a set, given any z, t =, ., 1 < u < m, iff
T =p bizy +bozo+ -+ bmnm.
We call finding such a sum decomposing into coordinates.

Proof.
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Case 1(n = p°) Let ri + sj = c be a diagonal. Either p /r or p /s. WLOG assume

p frT thendt such that r¢ =, 1. Multiplying the equation by tI' v get an equivalent

equation i 4 s'j = ¢’. Hence we can assume 7 = 1. The sum of the entries in the

diagonal is

™
::b
I

Z Wikl — Z wle=qsye+il

i+js=nc i+js=nc +js=nc
— ka E w](l—sk)
i+75=pnc

which is O unless | = sk. If sol' §,1) = (k,sk) = k(r,s)T’ whik implies that p [k
since ged(k,l,n) = 1. Thus (r,s) = k~1(k,I)I’ whit implies that (,s) is equivalent
to (k,1).

Case 2(n = p'p5?...pem) Let ¢ = pf* and §; = Hu# gy- Using Lemma 11.3.2 to de-

compose ¢ and 7 into coordinates’

ST A= 3D Wk

ir+js=nc 1+js=nc

— Z wk(b1i1+b2i2+~~'bmim)+l(blj1+b2j2+---bmjm)

ir+js=nc

= % kil b i)
ir+js=nc

_ ki1 151 kim+1j

= Z wj C W, ™.
ir+js=pnc

In the last equalityl' v have set w, = wb. To determine the conditions on the
coordinates of 7 and jI' tak the condition ir + js =, ¢ and modulo g, to get ri, +

$Ju Zq, ¢. The converse is also true. Hencel' ve can divide the sum as follows:

S A= Y W YT himtlin (11.3.4)

ir+js=nc ri1+sj1=¢ ¢ Tim+3im=qm ¢

tif( qt)

r

To be nonzerol' ead of the sums must be nonzero. Since w; = W = w

~o(qt) ng¥tat)-1 se(qe)—1
wit = Wi T = e = (wi)% = 1.

Alsol since there are no factors ofp; in ' there is no smaller paver of w; which

equals one. Hencel'w; is a primitive g;th root of unity. Applying the result from
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case 1 for each of the sums of (11.3.4)[' 3y, I sub that (r,s) =, yu(k,!). Setting

Yy = biyr + bayz + -+ + b ym and applying Lemma 11.3.2 one last timel' ve get
(r,8) =n y(k,1).

0

Corollary 11.3.3. There are non-trivial, integral, semi-very magic squares for each order

and slope.

Proof. Each matrix of Proposition 11.3.1 is complexI' whose real part is not constait.
Adding an appropriate multiple of the trivial matrix to this real partl’ ve obtain a positivel’
reall’ norrivial solution. Thus the cone of nonnegative solutions must have a nontrivial
extreme ray. Since our system of equations has integral coefficientsI’ this extreme ry must

contain an integral solution. O



Chapter 12

Pandiagonal permutations and

cyclic squares

12.1 P-perms and a recursive algorithm

Define a sequence ¢ to be an ordered list of n elements taken from {0,...,n —
1}; the ith element specifies the column placement of the single 1 in the ith row of its

representation as a square

. -1
m(o) = [Ix(7 = 03)ll5=o-

We will often identify the squares that originate from sequences with the sequences them-

selves or vice versa. Hence['CT' the cyclic squares iiroduced in Section 7.1T are sequences.

Permutations are other examples of sequences.

Remark 12.1.1. A sequence is a permutation iff it has no duplication iff its range is the

Sfull set.

Magic squares from M, of index 1 are precisely the permutation matrices of order
n. For the permutations which are in a particular subsetT’ e.g.IW-squaresI' ve use an
appropriate prefixI' e.g.IW-permutations. Actuallyl' theW-squares are a bad example.
Since none of the extreme rays for W-squares of order 4 are permutation matricesI’ there
are no W-permutations of order 4. Since the indw(A) would have to have a non-integral
fraction of the index which is 1T neither are thereW-permutations of order more than 4.

We confine our investigation to permutations which are also P-squaresl’ i.e.TP-

permutations or P-perms for short. Let § = (0,1,...,n — 1).

147
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Proposition 12.1.2. A permutation o is pandiagonal iff both ¢ + 6 mod n and o — §

mod n are permutations.

Proof. o is primary diagonal iff

n—-1ln-1
(o)=Y Y x(G=oi)x(i=i+k)=1Vk
=0 5=0
n—1 n-1
= > xithk=o0)=1Vk <= > xlh=0;—i)=1Vk
=0 =0

iff ¢ — 6 is a permutation. Similarlyl'c is secondary diagonal iff o +6 is a permutation. O

We combine Remark 12.1.1 with Proposition 12.1.2 to compute recursively the P-perms

of a fixed order. Having constructed

005015+ 501
choose o; (if possible) as one of the values in {0,1,...,n — 1} that are different mod n
than any of the numbers
(¢t} g1 [ o s |
Uo—i 01+1—i U,’_l-{-‘(’i—l)—i
0'0+i 0'1—1+i Gi_l—(i—l)—}-’i.

Checking against the first row assures that a permutation is being created!' against the
second row assures secondary diagonalityl' and against the last rov assures primary diag-
onality.

In performing a computer searchl’ there are seeral additional measures that can
be taken. By cycling the columnsT' we can assume that the first element of the sequence
is 0. By performing a combination of dihedral operations and torus translationsI' ve
can assume that the 2nd element is between 2 and [%5%]|. We are really interested in
a representative for each orbit under the pandiagonal symmetriesI’ hence more sophisti-
cated measures are possible which take into account these symmetries. See for example
work done on 8 non-attacking queens on a chess-board [Wil85T p.36]. By Corollary 7.2.31°
there are no P-perms for orders that are singly even and for orders that are multiples
of 3 but not 9. Hencel' the orders up to 30 that a computer searh should examine are
{7,8,9,11,13,16,17,19,20,23,25,27,28,29}. A preliminary search has shown that there
are no P-perms for orders 8 and 9. For orders 7 and 11I' the only P-perms are cyclic

squares. For order 13 with o(0) = 0T there are 10 cyclic and 338 noncyclic P-perms.
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12.2 Cyclic squares and a generalized Euler ¢ function
The principal examples of P-perms are a subset of the cyclic squares.

Proposition 12.2.1. A cyclic square C? is

1. a permutation iff (b,n) = 1;

2. secondary diagonal iff (b4 1,n) =1;

3. primary diagonal iff (b—1,n)=1;

4. a P-perm iff (b,n)=(b+1,n)=(b—1,n)=1.
If condition 4 holdsI' the square is P-cyclic and b is superprime to nl' denoted (f,n) = 1.
Corollary 12.2.2. For prime p > 3, C® of order p is P-cyclic, i.e., ((b,p) = 1iff

be{2,3,...,p—2}.

Proof. Treat the cyclic square as a sequence. If (b,n) = d # 1T'b% is divisible by 7 and
the sequence will be periodic with period 7.

Converselyl" if b,n) = 1 and a + bi = a + bj for some ¢,5. Then b(: — j) =, 0.
Divide by b to get : =, j. This completes part 1.

By Proposition 12.1.2T' a sequence is secondary diagonal iff its progressie cyclic
shift to the rightT i.e.T’ its sum witl§ is a permutation. Now use part 1.

Similarlyl' a sequence is primary diagonal iff its progressie cyclic shift to the leftl’

ie.T"its difference withé is a permutation. Again use part 1. O
To facilitate additional discussion of the cyclicsI” let
Ca(b)={Clofordern|a=0,...,n—1} and C,={Cn(b)|((b,n)=1}.

Corollary 12.2.2 implies that {C,| = p(p — 3) for p prime. What is the corresponding
statement for composite n? To answer the questionl’ ve present an extension of the Euler

phi function. Given § C Z,I let
Bs(n)={b]0<b<n,(b+z,n)=1VYz €S},

and ¢g(n) = |Bs(n)|. To recover the Euler phi functionl" setS = {0}. We are interested
in g5 when § = {-1,0,1}.
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Proposition 12.2.3. For p prime,

1. ps(p)=p—1S| if p> maxS — min S;

- 0s(p®) = ps(p)pF1;

[8S)

3. ©s s multiplicative, i.e., (m,n) = 1= pg(mn) = pg(m)ps(n).

Corollary 12.2.4. Given the distinct prime powers factorization n = pf’péz ...pif‘,

ky— - ko
ps(n) = os(p1)p? es(p)p 7 . ps(p)pl?

— nS‘QS(Pl) ws(p2)  ws(pe)
n P2 Py

Proof.

For Part 1I'Bs(p) is the complement of —5 in {0,...,p — 1}.

For Part 2I'Bg(p*) = {b+cp | b € Bs(p),0 < ¢ < pF~1}.

For Part 3I' ly the Fundamental Theorem of ArithmeticT o, 3 € Z such that
ma 4+ nfB = 1. Let

B = {bma+ bt'nf mod mn|bec Bg(n),b € Bs(m)}.

We claim that B = Bg(mn).
(C) For bma + b'nf € BT andz € ST

(bma + b6'nf + z,m) = (b'nf + z,m) = (b'(1 — ma) + z,m) = (b' + z,m) = 1;

the last equality holds since b’ € Bg(m). Similarlyl’ fma + b'n8 + z,n) = 1.
Since (m,n) = 1T pma + b'nf + z,mn) = 1.
(2) Given a € Bg(mn). Let

b=pa, 0<b<n
b =pa 0<b <m.
We claim a =, bma + b'npS.
a—bma—bnf=a-bma-b(1-ma)=a-b —mb+b)e.
Since mla ~ ¥'T w get
m|(a — bma — b'ng).

Similarlyl'n|(a — bma — b'ng)T and hencelbnn|(a —bma —b'nB3)L whih completes the claim.
Given z € ST b+ z,n) = (a4 z,n){(a + z,mn) = 1. Hencel' 6 + z,n) = 1 and
b€ Bs(n). Similarlyl't’ € Bg(m). O
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Let o' = ¢y 401} By direct calculationl’ ¢/(2) = ¢/(3) = 0. For p > 3 primel ly
Proposition 12.2.31' Rurt 1T'¢'(p) = p — 3. Substituting into Corollary 12.2.4T ve get

Proposition 12.2.5. Let n = p’f‘p];? ...pf‘ be the usual prime factorization of n, then

‘() 0 if n is divisible by 2 or 3;

¢'(n) =

pPiz3pe=3 | Pe=3  perice.
1 P2 e

Corollary 12.2.6. P-cyclics ezxist for a given order n iff n is not divisible by 2 or 3.

12.3 The orbits of P-cyclics under pandiagonal symmetries

To determine the orbits of P-cyclics under pandiagonal symmetriesI' apply the
matrices (6.1.1) and (6.1.2) to the displacement vector [é] and normalize so that the

top component is 1.

_a ] 17 1

_ iq_q:a¢J

| =] ol

o ] [ o] - s
A 1 R A B

Hencel’ the orbit for the P-cyclics of step b is

b+1 b-1
L:i:

-1 b
(b, 07" k).

We next investigate when these set of steps contain duplication.

o Setting b = —bI' ve get 2b = 0 which implies b = 0 since n is odd. Howeverl' ve have

excluded b = 0 from consideration.

o Setting b = b7'T" ve get b* = 1 which implies b = +1. AgainT' ve have excluded these

values of b from consideration.

e Setting b equal to —p~1['—ZELT or%ﬁ—F ve get b2 = —1. Such b’s exist iff /=1 € Z,.
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o Setting b = %%I“ ve get b2 — 2b — 1 = 0 which implies b = 1+ /2. Such b’s exist iff
V2 € Z,.

o Setting b = —2;—% we get b% + 2b — 1 = 0 which implies b = —1 + /2. Such b’s exist

iff V2 € Z,.

We gather from our investigation that if /=1 € Z, and if b is either of these rootsI then

_ b+1 b-1 _ b+1 b—1
b=—bpt=-1_—_ - d —b=bt=—"1_ = —|
b—1 b1 " b—1 b+l

If /2 € Z,, and if b is either of these roots +1TI" then
b+l b+ 1 b1 - b-1
St e Vs o =gy

When is /—1 or v/2 € Z,,? We restrict our investigation further to n primel’ whih

by previous exclusion means n > 3 prime. Using quadratic reciprocityl’

(i):(_l)‘"z;l: 1 n=41

n -1 TLE43

and

(2) ( 1)712—1 1 T =g 177
— = (- 8 =
n —

-1 n =g 3,5

where (%) is the Legendre symbol. To summarizel’

n mod 8 | existence | n mod 8 | existence
1 vV-1R/2 5 V-1
3 neither 7 V2

We next check possible duplication among our 6 candidate b’sT'{#+/—1},+1 4+ +/2. For
odd nI'++y/~1 can not coincidel lilewise 1 ++/2 and —1 + /2. We next pair off /~1 with
1++2:

“1=3+2V2=2V2=-2=22=4=0=2.

Similarly for all other pairs which include v/—1. Finallyl' ve pair 1 £+ /2 with —1 — ++/2.

All such cases require n = 2. We can conclude

Proposition 12.3.1. Under pandiagonal symmetries, the orbits of P-cyclics of order n >
3 prime are of cardinality 8, except for at most 1 orbit of cardinality 4 and/or 1 orbit of
cardinality 2 (Table 12.1).
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mod n | # orbits of size 8 | # orbits of size 4 | # orbits of size 2
1 ”T‘g 1 1
3 nzd 0 0
5 nd 0 1
7 nZL 1 0

‘Table 12.1: The P-cyclic orbit configuration under pandiagonal symmetries for n > 3
prime.



Chapter 13

Linear span of cyclic P-squares for

prime order

13.1 Generating series for order 7

Denote by €, the nonnegative integer span of the pandiagonal cyclic matrices of
order n. From Proposition 12.2.5T" ve know that C, is empty iff n is divisible by 2 or 3.
For the momentI’ ve will restrict to the case when n is prime. One of the consequences
of Theorem 10.2.1 is that Ps = C5. This single fact is responsible for the beauty and
simplicity of our solution of the 5 case. In this sectionl' ve consider €;. The generalization
to arbitrary order will follow easily.

The pandiagonal cyclics of order 7 have steps 2I' 3T 4 and 5. & k£ = 0,...,6T let

A = |Ix( =7k + 20)|F o, Bi = |Ix(7 =7 k + 33)|I$ ,_,,

Cr = lIx(J =7 k + 48[} .o, CDi =X =7k + 50|17 -

C7 consists of all nonnegative integral linear combinations of these 28 matrices. Letting

agl’0x ¢y and dy denote generic nonnegative integer coefficientsT" v get for any matrix

154
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FeCTE=A+B+C+ DI where

ag a1 Gy G3 G4 G5 g bo b1 b2 b3 by bs bs
Qs Qg Qg A1 A2 A3 Q4 b4 b5 b6 b() b1 b2 b3
6 as a4 as e Qg a1 ag 6 b1 b2 b3 b4 b5 b6 bg

A= Z(LkAk =larayazagasagag |, B= Zkak = | bs be bo b1 b2 b3 by | »
k=0 k=0

a6 Gp a1 Gz A3 44 G5 bz b3 by bs be bo b1
G4 G5 Gg Gg 01 O3 03 be bg b1 bo b3 by bs
az a3 G4 G5 Gg Gp O] b3 by b5 bg bg by b
Co €1 €2 €3 €4 C5 Cp do d1 d2 d3 dy ds dg
€3 C4 C5 Cg Co C1 C2 dy d3 dy ds dg dy dy
6 €6 Cp €1 C2 €3 C4 C5 6 dy ds dg do dy da d3
C:ZCkck: €g €3 €4 C5C6CoCL | > D:deDk: de dp dy dy d3 dy ds
k=0 Cs Cg Cp €1 Cg €3 C4 k=0 dy dg d3 dy ds dg do
€} €2 €3 €4 C5 C6 Co ds dy ds dg dy dy ds
€4 C5 Cp Cp C1 C2 €3 ds dg do dy dy d3 dy

Of course the expansion just described is not unique; we have the relations

1111111
1111111
. . . . 1111111
S A= Bi=> Ci=Y De=J=|1111111]. (13.1.1)
1111111
1111111
1111111

To state the main result of the section we need some auxiliary facts and definitions.
To beginT let us call “admissible” aty 24**?¢ of matrices obtained by removing one element
from each of the cyclic classes. The admissible 24tuple ghtained by removing A, ByI'C;
and A, T will be denoted ty {Ax, Bg,Ci, An}°. Let us treat the matrices as vectors with
49 components. Cyclics of the same step are orthogonal with respect to the usual dot
product. The discussion preceding Lemma 10.2.3 shows that cyclics of steps b and ¢ have
dot product 1 provided that b—c is invertible modulo n. For n primel all nonzero elemeits

are invertible. We record these facts as
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Lemma 13.1.1. Let {A,} be the set of cyclics of step a and {B,} be the set of cyclics of
step b.

n ifr=s
(A, As) = ’
0 ifr#s

and provided b — ¢ is invertible modulo n,
(A;,Bs)=1 forallr,s.

Proposition 13.1.2. The matrices of an admissible set {A, By, Ci, An}¢ are linearly

independent, or equivalently, an expansion

6 6 6 6
E= Z a; A; + Z b:B; + Z cCi + Z d; D;

i=0,i#h i=0,i#k i=0,il i=0,i#m

15 unique. In fact,
{(Ai = A)/T,i # hi (B; — Bp)/T,i # k; (Ci = C1)/7,i # 1 (Di — Di)/7,i #m) (13.1.2)
is a dual basis to {Ap, By, Ci, An}C, i.e.,

a; = (A; — Ap, E)/7 bi = (B; — By, E)/7
¢e; = (C; — C, E)/7 d; = (D; = Dm, E)/7.

Proof. If {A;} and {B,} are as in Lemma 13.1.1T

1 if =1
(A Ai= Ap)[T=( -1 ifj=hk;
0 otherwise;

and for any ¢ and ;5T
(B, A; — Ap) = (Bj,Ai) — (B]',Ah) =1-1=0.

If there is a relation among {Ap, B, Ci, A }°T then taking the dot product with eah
element of (13.1.2)I" shavs that each coefficient is OT a conradiction. O

By definitionI' a matrixE € C; can be expressed in the form
6 6 6 6
E= ZaiAi+ijBj+chCk+ZdlDl (13.1.3)
=0 7=0 k=0 =0
with the coefficients a;,b;, cx, d; nonnegative integers. Because of (13.1.1)I' these coeffi-

cients are not uniquely determined by E. Howeverl' something almost as strong is true.
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Lemma 13.1.3. Within a particular step, the coefficients in the expansion (13.1.3) are

determined up to an additive constant.

Proof. Apply the dot product with A; to the expansion in (13.1.3):
6 6 6
(A,',E) = Ta; + ij + ch +Zdl'
7=0 k=0 1=0
In particularl’ when: = 0T’
6 6 6
(Ao, E)=Tao+ > bj+ > e+ dr.
=0 k=0 1=0

Subtracting (13.1.5) from (13.1.4) and dividing by 7T ve derive that

a; — ag = (E,Ai - AO)/7.

(13.1.4)

(13.1.5)

Note the use of A; — Ag introduced with (13.1.2). The same relations hold for the other

steps.
We are now in a position to establish the main result of the section.

Theorem 13.1.4. Every matriz E € C; has a unique ezpansion of the form

6 6 6 6
E=mJ+ ZaiA,' + ijB]' + chck + Zd(Dl
=0 /=0 k=0 =0

|

(13.1.6)

with a;, bj, cx, di nonnegative integers, subject to the condition that atleast one a;, one b;,

one ¢ and one d; is zero. As a consequence,
6 6
. — N Ai 1 — s X Bi
ZX(E): 1 16 i—o X (4i) - i=0 X (Bi)
1= X(I) \ Tt (1 - X(A9) i—o (1 - X(By))

< 1- I, X(C) > < 1- 1%, X(D;) )
[T, (1 - X(Cy)) o (1-X(Dy)) )"

Proof. Given an expansion (13.1.3)T set

a=min{a;|i=0,...,6}, b=min{b;|7=0,...,6},
c=min{e¢;|2=0,...,6}, d=min{d; |1=0,...,6}.

Extract copies of the trivial to get
E=(a+b+c+d)J

6
+) (ai—a)Ai +
=0

J

6 6 6
(bj - b)Bj + Z(Ck - C)Ck + Z(dl - d)Dl.
=0 k=0 =0

(13.1.7)
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The new coefficients are nonnegative yet atleast one new coefficient from each step is 0.
Hencel’ (13.1.7) demonstrates the existence of the expansion in (13.1.6)

Setting the minimal coefficients for each step to 0 fixes the constant referred to in
Lemma 13.1.3. Hencel' the resulting expansion is unique.

The generating function follows by a similar argument to that found in the proof

of Theorem 10.2.1. a

Using Lemma 10.2.2 and Lemma 10.2.3 together with the notation defined therel’

we get
Proposition 13.1.5. The cross section of C; defined by setting the indez to 1 is
CS1(Cr) = (A2 =Ty x (A3 = J) x (A2 = J) x (AS = J)+ J.

In other words, the C51(Cr) is the product of the four simplezes A2, A3, AL, A5, but

where the product operation is performed with center J.

For classical order 7 pandiagonalsI' further restrict to those in the linear span of 2
types of stepsI’ then the material in the beginning of Section 10.3 has an exact analogue.
To get a count of such pandiagonals which have the 0 in the upper left cornerl' v select
an ordered pair of steps and then a permutation of the numbers 1T 2T 3T 4I" 5 and 6 for the
first step and a permutation of 7I' 14T 21T 28T 35 and 42 for the second step. There are
4(3)(6!)? such matrices. There are 8¢(7) = 48 symmetries. Hencel there are 9(5!¥ such
pandiagonals up to symmetry. How many classical pandiagonals in €7 there are in general

is an open question.

13.2 Generating series for general prime order

The pandiagonal cyclics of order p have steps 2,3,...,p~2. For k=0,...,p— 1T
m=2,...,p—2let

AT = I =p b+ mi)|P; 1,

€, consists of all nonnegative integral linear combinations of these (p — 3)p matrices.

Letting ay m denote generic nonnegative integer coefficientsI’ v get for any matrix A € C,T

A= Z arm AT (13.2.8)
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Of course the expansion just described is not unique; we have the relationsI’ for alln, mI’

p—1
dYAp =) Ap=1J (13.2.9)
k=0 k=0

where J is the trivial matrix of all 1’s.
Call “admissible” any (p — 1)(p — 3)**P'¢ of matrices obtained by removing one
element from each of the cyclic classes. The admissible (p — 1)(p — 3)*“P*® obtained by
. -2 . -2
removing A7 , A} .. .,Azp_QF will be denoted ly {47 ,43,,..., Aip_2}c. Let us treat the
matrices as vectors with p? components.
Proposition 13.2.1. The matrices of an admissible set {A ks’ Az;i}c are lin-

early independent, or equivalently, an erpansion

p—2 . p—-1
A=>" NY" agmAT

m=2 k=0, k#km

1$ unique. In fact,

{(AZ = AR, )/p; k # km} (132.10)
¢ a dual basis to {A A%s, . .,Az;i}c, i.e.,
Akm = (A;cn - Amm7 A)/p
We are now in a position to establish the main result of the section.
Theorem 13.2.2. Every matriz A € C, has a unique ezpansion of the form

A=mJ 4+ armAT (13.2.11)

with ay m nonnegative integers, subject to the condition that atleast one ay , for each m

15 zero. As a consequence,

T (- x4y
5= v 1 (508

A€eC,

Proof. Given an expansion (13.2.8)T set
am =min{agm | k=0,...,p—1}.

Extract copies of the trivial to get

-2
A=(ag+as+ - -+ ap_2)J + (ak,m — am) AR -

m=

'B
'U
.,_‘

)
Es
Il

=]
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As for the geometryl’ using Lemma 10.2.2 and Lemma 10.2.3 together with the

notation defined therel’ ve get

Proposition 13.2.3. The cross section of C, defined by requiring the indez to be 1 is

p—2
C51(C) = [[(am - )+ J.
m=2
In other words, the C'S1(C,) is the product of the p — 3 simplezes Ag, ey Ag_z, but where

the product operation is performed with center J.

For classical order p pandiagonalsI’ further restrict to those in the linear span of 2
types of stepsI' then the material in the beginning of Section 10.3 has an exact analogue. 'B
enumerate such pandiagonals which have the 0 in the upper left cornerI" select an ordered
pair of steps and then a permutation of the numbers 1,2,...,p— 1 for the first step and a
permutation of p,2p,...,(p - 1)p for the second step. There are (p — 2)(p — 3)((p — 1)!)?
such matrices. There are 84(p) = 8(p — 1) symmetries. Hencel' there are f — 1)(p —
2)(p — 3)((p — 2)!1)?/8 such pandiagonals up to symmetry. Enumeration of all classical

randiagonals in G, is an open question.
. 3



Chapter 14

Linear span of cyclic P-squares for

prime power order

Prime powers can be decomposed with a similar approach to that of primes. For
demonstration purposesI' ve will present and sketch a proof for the solution spaces of

orders 25 and 125. Finallyl' ve will present the results for the general case.

14.1 Generating series for order 25

The pandiagonal cyclics of order 25 have steps 2I' 3T'-7T 8I" 12I' 13T 17I" 18T 22 and 23.
The sum of each of the cyclics for a particular step still equals the triviall' but there is a

finer relation.
Definition 14.1.1. The compound cyclic of step a and start r is
ME = ||x(j =5 ai + 7).

For r =0,...,4I ve get the additional relations

4 4 4
2 2 _ 7 _ — 22
Mr = E C'r+5i - E C'r+5i - = _S_ CT+5i
=0 (=0 =0

and
4 4 4
M} = ZC§+51‘ = ZC§+5,- == Zcrzisz'-
=0 =0 i=0
"The subset of cyclics which appears in a sum is a mod § subclass of cyclic matricesl e.g.T

residue 7 = 3 gives a subclass of step 7 cyclicsT{C3,CZ,...,C5,}. Call “admissible” any

161
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10 x 5 x 4Pl of matrices obtained by removing one element from each of the cyclic mod
5 subclasses. The admissible 200**P']" obtained ly removing CéO,C% e .,C’?;; , from a
list of all 250 cyclicsI" will be denoted ly

{C% ,CE ,....,C% }°.

22,07 712,17 23,4

Treating the matrices as vectors with 625 componentsI differert cyclics of the same
step are orthogonal with respect to the usual dot product. The discussion preceding
llemma 10.2.3 shows that cyclics of steps a and b have dot product 1 provided that a — b
1s invertible modulo n. ¥or n a p prime powerl all elemeits prime to p are invertible. If
@ — b is not prime to pI' then the dot product depends on the difference of the startsr — s.

When n is the square of a prime pI’ ve record the needed dot products as:

Lemma 14.1.2.

ifr=s;
(CF,C3) = d
0 ifr#s.
Fora #b,
1 ifp fa—b;

(CHCH =10 if pla — b but fr — s;
p ifpla—band|r—s.

Proposition 14.1.3. The matrices of an admissible set

{cz c?

22,07 V217"

23 c
., C

23,4

are linearly independent, or equivalently, an ezpansion

24

E= > > i oC?

a€{2,3,7,..,23} 1=0,8714,0,%0,1 1+-la e

ws unique. In fact,
{(CF=CE )/25,i# tqri=sr; 7=0,...,4; a € {2,3,7,...,23}} (14.1.1)

is a dual basis to {C* [ C?

23 c 7
i2.07 '12,17--'30' , 1€,

123,4

Cia = (Cla -C? E)/25, iE5 T.

ta,r’
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Proof. The proof follows by breaking the situation into cases and using Lemma 14.1.2.
For examplel let’s look at the casea =5 b and i =5 5. By the way we chose our candidates

for a dual basisI'i =5 1,, and using the transitivity of congruencel's =5 4, ,. Hencel'

(€5, CF = CF,)/25 = ((C3,CF) = (€3, CE,))/25 = (5 - 5)/25 = 0.

ta,r

We are now in a position to establish the main result of the section.
Theorem 14.1.4. Every matriz E € Cq5 has a unique ezpansion of the form
4 24
E=ml 4+ (meaMP+m M3 +Y S e, (14.1.2)
r=0

i=0 a€{2,3,7,...,23}

where m is an arbitrary integer > 0, and Mr2, Mr3 and ¢; o are integers > 0, such that

4 4
H My g = H Myr3 = 07
r=0 r=0

[[cia=0Vac{23,7,...,23} and r=0,...,4.

=7

We deduce that

i 1
2, X = 77

EeCys
1 - X(MEX(ME)X(MF)X (M3)X (M)
(1= X(MF)(L - X(M))(1 - X(M3))(1 - X(M$))(1 - X(M3))
1 — X(M)X(MP)X(M3)X (M3)X(M3)
(1= X(Mg)(1 - X(MP)(1 - X(M3F))(1 - X(M3))(1 - X(M3))
I1 ( L - X(C5)X(C)X(Cp) X (CE) X (Ch)
(1 = X(CE))(L = X(C))(1 - X(Cio))(1 =~ X(Cf5))(1 - X(Cgy))
1 - X(CP)X(CEX(CT)X(CTe)X(CH)
(1= X(CH)(1 = X(C))(1 = X (C))(1 - X(Ce))(1 - X(C))

a€{2,3,7,...,23}

L - X(CHX(CHX (CH)X(CR)X (Ch) ) (1413
(T=X(C)(1 - X(CEN - X(C1))(1— X(Cip))(1 = X(CE,))

In particular, the generating function for the indez is

T 1 1—25 \2 /115 \*
T2\ (1 -15) (1-1)3

A€Cr2s
B (1 —t25)(1—t5)40
- (1 _ t)250
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Proof. Extract the maximum possible copy of the trivial as possible. Take what’s left and
divide the entries based on locations congruent modulo 5. Take the minimum for each of
these sets. Compound cyclics interact like cyclics for order 5. Hencel' use Theorem 10.2.1
to decompose this compound cyclic part.

What remains is compound cyclic-free. Use Proposition 14.1.3 to decompose this

part. The generating function follows from the same reasoning as used in the proof of

Theorem 10.2.1. |

14.2 Generating series for order 125

We iterate the procedure performed with order 25. In addition to the relations
gotten from the trivial and from M? and MJ3T ve get even finer relations from N2I'N3T

NITNET... N2 forr = 0,1,...,24T where
Definition 14.2.1. The compound cyclic of step a and start r
N} =|Ix(j =25 a1 + 7).

For r =0,...,24T ve get the additional relations

4 4 4
2 } : 2 _ 27 _ 102
N = C7'+25i - Z Cr+252' - = Z Cr+25i
=0 =0 =0
4 4 4
3 _ 3 _ 28 — 103
NS = Z Cr+25i - Z C7‘+25i == z Cr+25i
=0 i=0 i=0
4 4 4
2 _ 23 _ 48 _ _ 123
N = ZCTHM = ZC7+251' -t = ZCT+251"
=0 =0 =0

The subset of cyclics which appears in a sum is a mod 25 subclass of cyclic ma-
tricesl” e.g.I" residue = 14 gives a subclass of step 32 cyclicsI' {C32,C32,... C32,}. Call
“admissible” any 50 x 25 x 4?“Pl¢ of matrices obtained by removing one element from

cach of the cyclic mod 25 subclasses. The admissible 5000%“?*T" obtained ly removing

(,7122 o (,71»22 e Cilli:; ,, [rom a list of all 6250 cyclicsI' will be denoted ly
2 2 123
{Ciz,o ’ Ci2,1 LA Ci123,24}c'

Treating the matrices as vectors with 15I'625 componentsI’ differett cyclics of the

same step are orthogonal with respect to the usual dot product. The discussion preceding
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Lemma 10.2.3 shows that cyclics of steps a and b have dot product 1 provided that a — b
is invertible modulo n. For n a p prime powerl all elemerts prime to p are invertible. If
a — b is not prime to pI' then the dot product depends on the difference of the startsr — s.

When n is the cube of a prime pI’ ve record the needed dot products as:

Lemma 14.2.2.

n ifr=s;

0 ofr#s.

(Cr,C9) =

Fora #b,

L ifpfa—b;
(8. Ch = 0 ifpla—>bbut fr—sorp*a—bbut fr—s;
p ifpla—band|r—s but p? fa—b;

p? ifp?la—b and |r — s.

Proposition 14.2.3. The matrices of an admissible set

(C2,,C2,,...,CIB 3e

12,07 712,17 " 123,24

are linearly independent, or equivalently, an ezpansion

124

E= Z Z ¢ o CF

a€{2,3,7,..4123} i=0,i#14,0 %a,1 y---sia,24

1s unique. In fact,

{(CF = C8 V/125,i# igpi=osr; 7=0,...,24; a € {2,3,7,...,123}}  (14.2.4)

is a dual basis to {C%,O’C%,l’ .. '70211222,24}6’ i.e.,
Cig = (CF — Cz-aar,E)/125, 1 =95 T.

Proof. The proof follows by breaking the situation into cases and using Lemma 14.2.2. For
examplel let’s look at the casea =55 b and ¢ =95 s. By the way we chose our candidates

for a dual basisI't =95 15, and using the transitivity of congruencel's =95 i,,,. Hencel’

(CE,C8 — €L, )/125 = ((C4,CF) - (C3,CE, ))/125 = (25 — 25)/125 = 0.

ta,r
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We are now in a position to establish the main result of the section.

Theorem 14.2.4. Every matriz E € Cy25 has a unique expansion of the form

4
E=mJ+ Z (mm‘Mf + mrngf)

=0
24 124
Z 2 3 23 Z Z a
+ (n,,-yzNT -+ nry3N7. + -4 TLT‘23N7. ) + ci’aCi 5 (1425)
ot i=0 ¢€{2,3,7,...,123}
where m is an arbitrary integer > 0, My 2, M3, Nr2, Np3, --., Nra3 and ¢; 4 are integers

> 0, subject to the condition that

4 4
H Myo2 = H My3 = 0,
r=0 r=0
4

4 4
Hn5i+r,2 = Hn52'+r,3 == Hn5i+r,23 =0,r=0,...,4
=0 1=0 =0

I[ cie=0Vae{2,3,7,...,123} and r = 0,...,24.

=o57
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We deduce that

o 1
2. 0=

E€Cr2s
1 - X(MG)X(MHX(MHX(MHX(M})
(1= X(MZ))( - X(ME)(1 - X(M3)(1- X(M2))(1 - X(M3))
1 — X(MG)X(M?)X (M) X (M3)X (M)
(1—X(Mg’))(l—X(M{”))(l—X(M,?))(l—X(M3))(1—X(Mff))
1 - X(NH)X(NE)... X(Ng)
(1= X(N§)(1 - X(N2)).. (1"X(N0))
— X(N})X(N§) ... X(N3)
(1= X(N))(1 = X(N§))...(1 - X(N}))

X(NZ)X(W) X(N34)
(1—X(N2))( - X(N9)).- (1—X(N i)
~ X(NG)X(NF) ... X (N5)
( (

(1= < DN X(NE)-- (1 - X(VE))

- X(NE)X(NG) ... X (NG
(1= X(NF)(1 = X(N))...(1- X(N3))
I1 ( 1 - X(Cg) X (Cg5) X (Cgo) X (C25) X (Coo)
(1= X(C)(A = X(C3))(1 = X(C4))(1 = X(Cg5))(1 = X(Cio))
1 - X(CF)X(Ch6) X (C8) X (CF) X (Coy)
(1= X(CEN( = X(Ce))(1 = X(Ce))(1 = X(C3e))(1 — X(Cop))

a€{2,3,7,..,123}

1 - X(C3) X (Clho) X (C74) X (C89) X (CHyy) ) '
(1= X(C30))(1 = X(Ce))(1 = X(CF))(1 = X(Cgy))(1 — X(Ctyy))

In particular, the generating function for the indez is

A 1 1_ t125 2 1- t25 50 1— t5 1250
- = () (o) (o)
Aeze;% 1 — ¢125 (1 _ t25)5 (1 - t5)5 (1 _ t)5

(1 _ t125)(1 _ t25)40(1 _ t5)1000
= (1 — 1)6250 :

(14.2.6)

Proof. Extract the maximum possible copy of the trivial as possible. Take what’s left
and divide the entries based on locations congruent modulo 5. Take the minimum for
each of these sets. M-Compound cyclics interact like cyclics for order 5. Hencel' use

Theorem 10.2.1 to decompose this M-compound cyclic part.
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Take what’s left and divide the entries based on locations congruent modulo 25.
Take the minimum for each of these sets. N-Compound cyclics interact like cyclics for
order 25. Hencel' use Theorem 14.1.4 to decompose this N-compound cyclic part.

What remains is compound cyclic-free. Use Proposition 14.2.3 to decompose this
part. The generating function follows from the same reasoning as used in the proof of

Theorem 10.2.1. O

14.3 Result for general prime power

We present notation which allow us to formalize the iterations introduced in the
previous 2 sections.

Let C(q) stand for the set of starts of cyclics of order ¢T" e.g.T
C(25) = {2,3,7,8,12,13,17, 18,22, 23}.
Let’s define the compound cyclic of step al' startr and modulus p* to be
M) = ||x(G =6 ai + 7).
Compound cyclics are defined for a € C(p*)I'r =0,...,p T andk =1,...,n - 1.

Theorem 14.3.1. Every matrizc E € Cyn has a unique ezpansion of the form

p—1 p2-1
E=mJ+ Z Zmr,a,era(P) + Z Z mr,a,2Mra(p2)
a€C(p) r=0 a€C(p?) =0
prT1-1 p"-1
o DY Meaaa MEETT) Y Y cilCE, (143.7)
a€C(pn—1) r=0 1=0 geC(n-1)

where m is an arbitrary integer > 0, m, 4k, ¢iq are integers > 0, subject to the condition

that

p*-1

H Mok =0,YaeCp*), k=1,...,n—1
=0

H Cia=0Vaec C(P") andr=0,...,p"" 1 - 1.

1=, n=17
pnl
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We deduce that

S x8)= e 11 T T

Eeepn k 1aeo(pk)r 0 1= pk=1T

z—— k= 1TX(Mia)
(1—X(M“))

4 z— pn—17 (Ca)
Il HH (1—X(C?))'

GGCP"T'O z:nlr

In particular, the generating function specialized to the indez is

Z tind A

AECn

1 1—" \P 1—t”"_1 7 1\
(i) () ()

(=) (1 - ") =ePp (1 — ey —emm )
= (1 _ t)c(p")P"

where ¢(q) = |C(q)].



Chapter 15

Linear span of cyclic P-squares for

composite order

Composite orders require more sophisticated techniques than primes and prime

powers. We present the solution space of order 35 cyclicsI' a model for the general case.

15.1 Generating series for order 35

The pandiagonal cyclics of order 35 have steps 2I' 3T 12T 171" 18T 23T 32 and 33. The
sum of each of the cyclics for a particular step still equals the triviall' but there are finer
relations.

The compound cyclic of step al’ startr and modulus 5 is
M? = [Ix(4 =5 ai + 7)|.

For the residues 7 = 0,...,4T v get some relations associated with the modulus 5 com-

pound cyclicsT
4 4 4 4
2 _ 2 _ 12 _ 17 32
M'r - ZCT‘+5i - ZC’I‘+5i - ZCT+5i - Z C'r+5i
=0 =0 1=0 =0

and

4 4 4 4
3 _ 3 _ 18 — 23 _ 33
M. = E Crysi = E Cisi = E CRsi=)_ CHs.
1=0 =0 1=0 =0

The subset of cyclics which appears in a sum is a mod 5 subclass of cyclic matricesI’ egl

residue 7 = 3 gives a subclass of step 12 cycliesI'{C3?, C3?, .. ., C32Y.

170
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The compound cyclic of step al' startr and modulus 7 is

P = lIx(7 =7 ai 4 1)l

Yor the residues » = 0,...,61 the associated relations are
6 6
3 _ 3
Z C’r+7z - Z r+7i Nr - ZCT+7‘L ZCT+7’L
1=0 =0
and

Z Cr+7z Z C7‘+7z Z C7‘+7z Z Cr+7z

The subset of cyclics which appears in a sum is a mod 7 subclass of cyclic matricesl e.g.
residue 7 = 3 gives a subclass of step 17 cyclicsT{C37,C1Z, .. ., CaTy.

For composite order nl' there is no unique way to decompose an element of £ € C,,.
Insteadl’ ve give a canonical such decomposition. Extract a multiple of the trivial by
as usual looking for the minimum of entries. NextI' extract miltiples of the modulus 5
compound cyclicsI' then the modulus 7 compound cyclics. The extracted compound-cyclics
are an admissible compound-cyclic setl’ a 2x 4 4+ 4 x 6-tuple of compound-cyclics formed
by taking the complement of a 2 + 4-tuple of compound-cyclics

{MZ, M3, N2 N2 NE N? 3.

1277713777927 77937 1 0a

Proposition 15.1.1. An admissible compound-cyclic set is independent. In fact, (M2 —
M2)[245, 1 =0,...,4, 7 # 15,0 = 2,3, (NP=Ng)/175,r =0,...,6,7 # js,a =2,...,5,
15 a dual basis to

{M2 M3 N2 N3 N4 NS}C

220 T3 T2 T3 T a0

Proof. The nonzero elements which appear in a particular row of M¢ are at the locations
{a,a+5,...,a+ 30}. The nonzero elements which appear in a particular row of NZ are
at the locations {b,b+7,...,b+ 28}. Finding the intersection of these 2 sets is equivalent

to solving the simultaneous set of equations modulo 35
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By the Chinese remainder theoremI" there is a unique solution for eah such system. Hencel’
(M, NY=35 Vrs,a,b

A modulus 5 compound-cyclic is 7 X 7 copies of an order 5 cyclic. A modulus 7 compound-

cyclic is 5 x 5 copies of an order 7 cyclic. Hencel' ve can use the results from Chapter 13

for relations within each of the modulus 5 and modulus 7 compound-cyclic parts. |
Corollary 15.1.2. The generating function for the compound-cyclic part is
1
1 — X(J)
1 - X(MGHX(MP)X(M3)X (M3)X (MF)
(1= X(ME))(1 - X(MF))(1 - X(MF))(1 - X(M))(1 - X(M))
1— X(M3)X (M7)X (M3)X (M3)X (M7)
(1= X(M)(1 = X(MP))(1 - X(M))(1 = X(MZ))(1 - X (M)
L - X(NH)X(NF) - X (VD)
(1= X(NH))(1 = X(N))---(1 = X(Ng))
1 - X(NHX(NP)--- X (N§)
(1= X (N1 = X(NP))---(1 = X(NQ))
(15.1.1)

What’s left is compound-cyclic-free. The generating function requires an operation
“¥7. Define [[;c 4 X(C:) *[Licp X(Cs) = [Licaup X (Cs)- In wordsI' the %” eliminates any
duplication.
Proposition 15.1.8. The generating function for the compound-cyclic-free part has as
numerator
I1 (1= X(CX(CE) - X(CL))

a€{2,3,12,17,18,23,32,33}
(1= X(CY)X(Cg) ... X(C51)) ... (1 = X(CHX(CG) ... X(C3y))) *

(1= X(CF)X(C7) ... X(C3))(1 = X(CT)X(C5) - .. X(C5o)) - -
(1= X(CE)X(Cis)- .- X(C34))))

and denominator
34

I1 [1(1- x(co)).

a€{2,3,12,17,18,23,32,33} r=0
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After programming the star operationI' Mathematica outputs:

Corollary 15.1.4. The generating function for the compound-cyclic-free part restricted

to cyclics of one particular step, specialized to the indez has as numerator

1— 78 -5 421410 4 354 + 10 — 140 ¢° — 70417
+1754'° + 24520 — 10421 — 455123 — 231 1% + 350126 + 455127
+5¢2 — 59512 4 112430 4 245432 — 17513 + 35134 — ¢35 =
(1= )7 (1 4+ 7t + 282 + 841> + 2101* + 455¢° + 87515 + 1515¢7
+2380¢% + 339517 4 437510 + 5040 ¢ 4 5075 1'% + 4235 ¢*3 + 2505 114
+175 1% — 2170 416 — 381517 — 423518 — 3395 +1° — 1785 ¢%°
—200 %! + 735122 4+ 840 ¢73 + 45512 1 841425 — 424 — 28%7 4 ¢%8)

and as denominator (1 — t)35.

The generating function for the entire compound-cyclic-free part specialized to the

index is the 8th power of the above. Putting the pieces togetherD

Proposition 15.1.5. The generating function for Cas, specialized to the indez, is

(1—1)%(1 =765 =547 + 21410+ 35411 4+ 1041 — 140¢15 — ... — 135)8

(1 — 35)(1 — £7)10(1 — £5)28(1 — ¢)280 :
Proof of Proposition 15.1.3. The conditions that an expression be compound-cyclic-free
in one step are independent from those of another step. Hencel' ve need only consider a

fixed step.

Within a fixed stepI’ the generating function follavs from inclusion-exclusion. Since
inclusion-exclusion involves unionl' the %” operation takes care of overlap. Note that the
“x” operation is not needed within compound-cyclics of the same type since those sets are

disjoint. O

15.2 Generating series for general composite orders

Factor the order n into a product of maximal prime powers. Take each of these
prime powers and extract the composite-cyclics modulo that prime power. The Chinese
remainder theorem shows as in the proof of Proposition 15.1.1 that the composite-cyclics

modulo one prime power are independent of the composite-cyclics modulo another. Hencel’
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the generating function for the composite-cyclic part is the product of the generating
functions for each of the composite-cyclics modulo one of the prime powers.

Since the composite-cyclics modulo a prime power are just multiple copies of cyclics
with prime power orderI” sut a generating function follows from the material of Chapter 14.

Wk

For the composite-cyclic-free partI’ use the operation betveen the products of the

cyclics in the numerator which arise from compound-cyclics of different moduli.



Chapter 16

Order 6, 7 and 8 examples

16.1 Bicyclic squares of order 2™: general facts

Since the order n is a power of 2I" all odd mmbers are prime to n.

Definition 16.1.1. Given an even start el' an odd startol' and a singly een step al

Bg,=C¢+Cy is a bicyclic.

Denote by B, the nonnegative integer span of the order n pandiagonal bicyclic and
transpose bicyclic matrices. In the next sectionl' ve present the generating function for

the bicyclic space of order 8.
Proposition 16.1.2. Bicyclics are pandiagonal.

Proof. By definitionI’ cyclics hae equal row sums. Since a — 1 and a + 1 are prime to nl’
C'? and C? are primary and secondary diagonal by Proposition 12.2.1 Parts 2 and 3.

j =, at + e clearly has no solution for j odd. For j evenl' dividejTal'e and n by
two. Since a is singly evenT'a/2 is invertible. For a fixed even ;T there is a unique: modulo
n/2 or exactly 2 i’s modulo n. Hencel'C? hits every even column twice. Similarlyl'C? hits
every odd column twice. (If j is oddI’ subtracto from both sides of j =, ai 4+ 0. 7 — o0 is

even and we can again divide the whole equation by 2.) O
Proposition 16.1.3. B, is invariant under pandiagonal symmetries.

Proof. Under toric translationsI’ the cyclics of a particular step are iwariant and the
parities of the starts of a bicyclic temain the same or switch. Hencel' the bicyclics are

invariant under toric translations.

175
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The linear symmetries are

for all a odd.

Given the cyclic CFT'x(j =5 @i+ r)I the first matrix gies us x(a™j =, aa~li+r)
or x(J =n at+ar)l'i.e.l' the start is mltiplied by . Since o is 0oddT the pariy is unaffected.

The second matrix gives us x(—a™'j =, aa~li+7) or x(j =, —ai — ar). The step
is multiplied by —1 and the start is multiplied by —c. Since a is singly evenI' then so is
the new step —a. « is odd which implies that —« is too; hence the parity of the start is
unaffected.

The other matrices are just the composition of a previously considered case and

the matrix

0 1
10

which transposes the matrix. Since transpose cyclics are included in our spacel’ we get

closure under these matrices too. a

16.2 The bicyclic squares of order 8

The step of an order 8 bicyclic can be either 2 or 6. Once the step is chosenT there
are 4 choices for e and 4 choices for 0. We need to find the relations among the bicyclics
and transpose bicyclics.

Solving simultaneously

J=n 247
j=n 6l 4+ s,
we get
0 4 fr—s;
(CE,C%) = ! (16.2.1)

4 djr —s.
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As a consequencel’ ve get
0 4 fe1 —e2,4 fo; — 0y;
(3621,01’B22,02. =194 4 fe1 —e3,4|01 — 05 o1 4]e; — e3,4 Jor — 0g; (16.2.2)
8 4ley — eq, 4|01 — 0s.

As was done for the linear span of the cyclicsT we define compound objects which we
extract firstI' leaving a compound-free part. Each of the compound objectsT' whih we shall
call a compound bicyclicl' can be thouglt of either as the sum of 2 compound cyclics of
different parity or as the sum of 2 bicyclics. We shall call such a pair of bicyclics compound

complements.

Definition 16.2.1. The compound cyclic modulo 4 with start r and step 2 is
CCr=x(j=4ai+r).

The compound bicyclic modulo 4 with starts ¢ and o and step 2 is
CBeo=CCe +CC,.

Recall that
CCr=CF + Chyy,
for r =0,1,2,3I'a = 2,6. In a similar veinl' ve get

CBe,o = Bg,o + Bg+4,o+4
CBeo = Be s + Bera o

fore =0,2T0o = 1,3I'a = 2,6.
An order 8 compound bicyclic is 4 copies of an order 4 bicyclic juxtaposed to get
an order 8 matrix. Hencel' ve can use Theorem 8.7.2 for the generating function of the

space of compound bicyclics and compound tbicyclics. What’s left is compound-free.
Proposition 16.2.2. The bicyclics of order 8 in a compound-free set are independent.

Proof. For a fixed bicyclicl' the conditions of divisibiliy by 4 in (16.2.2) will be the same
for a bicyclic of a different step and its complementI’ alloving us to apply the collection of
each bicyclic minus its complement as linear functionals to separate the bicyclics of step 2

from those of step 6. Lemma 8.5.3 allows us to separate the bicyclics from the transpose
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bicyclics using the same linear functionals. Hencel it suffices to shov the independence
of the compound-free within one step. The entire set of bicyclics for a particular step is
none other than the direct product of the space of odd cyclics and the space of the even
cyclics for that step. A basis for this space is the tensor product of bases for each of the
spaces. The cyclics of a fixed step are orthogonal. Since the compound-free are a subset

of this setl’ they are certainly independert. O

Corollary 16.2.3. The generating function for the compound-free subset of Bg is

Hae{2,6}, e€{0,2}, 0€{1,3,5,7} (1 - X(CBg,o)X(CBea+4,o+4)) (1 - X(tCBZ,o)X(tCB§+4,o+4))
Hae{z,e}, e€{0,2,4,6}, 0€{1,3,5,7} (1 - X(CBg,o)) (1 - X(tCBg,o))

Specializing to the indez, we get

(11432 (1+t2)32_

(1—¢2)84  \ 1 —¢2

Combining with the compound-cyclicsT" ve get
Corollary 16.2.4. The generating function specialized to the indez for Bg is

3 g _ 1 140\ [1442\®
T 18\l 1—¢t2/) °

AEBg

16.3 P-squares and most-perfect squares

Our methods have not yet yielded decompositions for Ps and P;. Computer exper-
imentation reveals that each space has several 100’s of thousands of extreme rays. Up to
symmetryl’ the mmber reduces down in both cases to around 1000 with a wide spectrum
of orders. For order 6I' there are 265I'536 extreme 1ps. Up to pandiagonal symmetriesD’
there are 960 completely fundamental elements. Enumerating the completely fundamental

element representatives with regards to the size of the stabilizerl’ ve get

order of stabilizer [ 1 2 4
# | 889 61 72.

As a check[" 265536 = 889+ 288 4+ 61 x 144 + 10 * 72. Enumerating with regards to the

indices[’

index | 6 12 18 24 30 36
# [384 385 145 36 8 2.
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Most perfect squares are magic squares that are both W-squares and P-squares.
By Corollary 4.4.61 only an additional equation whid links two diagonals with index of
different parity is needed to obtain the space of most-perfect squares from W-squares.
Hencel the dimension of the space of most-perfect squares of ordern is 2n — 3. Computer
experimentation has shown that there are 918 extreme rays for n = 6 and 10568 extreme
rays for n = 87" with 250 and 2496 extreme rs in a facetl’ respectiely. For order 6I there

is an additional symmetry which is not pandiagonal.

Proposition 16.3.1. An order 6 most perfect square which has 8 consecutive columns

(rows) reversed remains a most perfect square.

Proof. Using the torus transformationsT’ ve can assume that the first 3 columns have been
reversed. Use ”'” to indicate the objects in the transformed square. The transformation
leaves the sets of rows and columns invariant. The blocks of 4 squares will still have equal
sumsI" e.g.T' the 3rd upper bldc is an alternating sum of the first 3 original blocks. By
Corollary 4.4.6T it suffices to shav that 1 diagonal has a sum equal to a previous diagonal.

In terms of the entries of the original squarel' P is

/

By Lemma 4.4.4Ta’ + ¢’ is equal to the a + ¢ of the diagonal Py

of the original square. O

Up to symmetryl including this new most perfect symmetry¥' there are 5 extreme rys for

order 61 with indicesI" 6I'6I'12I'12 and 24:



180

R ON O N O
e e

el e
DN NN
O NN O N
[ e T =)
O N O N
[ =]

T
=N O N =
[ i S S S S )

1

012112212 0812028

0 03 3 3 3 0 2 3 23 2
3 5020 2 330303
003 333 0 23 2 3 2
4 41111 3303603
0 03 3 3 3 0 23 2 3 2
53 20 2 0 6 03 0 3 0
01014243144252 010293166
0 056 76
7 92 30 3
0 056 76
7 9 2 30 3
0 0 56 76
10 6 5 0 3 0
010223554677592(10).

16.4 Jump W-squares of order 6

Recall that in P-squares of order 41" nonadjacert elements in a diagonal sum to half
the index. We say that a square of order nI' eenl isdiagonally jump or jump for short
if elements that are located a distance n/2 along any diagonal sum to % times the index.
Let gW,, denote the set of jump W-squares of order n with nonnegative integer entries.
For order 6I" there is only one completely fundamenal square up to torus translation and

dihedral operations:

[en TR T e D B = B ]
e S T
N OO N O NN O
o N NN
O T T e
N SN O N O

We classifly the completely fundamental squares by whether the rows of 1’s are horizontall’

as abovel or ertical. There are 6 of each type.
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To decompose a jump W-square Al proceed as usual ly finding the minimal value
of the entriesI'mI’ and subtractingm.J from A to get A°. With at least one entry 0T A°
will be on at least one of the facets. The cross section polytope is a hexagonxhexagon
centered at J; each hexagon is a composed of one type of completely fundamental square.
Fach facet of the cross section polytope is a tetrahedron with 2 horizontal and 2 vertical
completely fundamental squares. Instead of a Schiegel diagramI’ ve depict the figure by
cutting one of the hexagons and straightening it out on the y-axis. The other hexagon is

left undistorted but projected onto the zz-plane. (See Figure 16.1). If we now connect

Figure 16.1: 2 perpendicular hexagonsI' one “straighened” onto the y axis.

each vertex in one of the hexagons with the vertices of the other hexagonI' v get 30 of the
facets (see Figure 16.2). The other 6 facets are formed by rejoining the hexagon which has
been cut. Denote the 6 horizontal completely fundamental squares by {Hp1,..., H32}T
where indices indicate respectively the locations of the first 0 and and the first 2 in row
0. The example is Hzg. Similarly list the 6 vertical extremes as {Vp1,..., H2o}I where
the indices correspond respectively to the locations of the first 0 and the first 2 in column
0. Two extremes of the same type are adjacent iff one of their indices is the same. Two

extremes of the same type are opposite iff their indices are the reverse of one another.

Proposition 16.4.1. The generating function for diagonally jump W -squares of order 6
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Figure 16.2: 30 of the 36 facets of the hexagon x hexagon.

BN
AE%%G X(4) = 1—-X(J)
( 1 + X(Hy ) +
(1= X(Hon))(1~X(Hoo)) (1-X(Ho2))(1-X(Hyg) =
n X(Hj,1) n X(Ho1)X(Hap) )
(1 = X(Hz0))(1 - X(Hz3)) (1= X(Hon))(1- X(Hz,))
( 1 n X(Vi2) +
(1=X(Vo))(1-X(Vopo))  (1-X(Vo2))(1—-X(Vig) '
X(ngl) X(V(),l)X(szl)
TR ) (549

A= X (001 - X(Va))

In particular, the generating function specialized to the indez is
S 1 (14415 4412\ 7
1—1¢8 (1 —18)2
A€dPs
(1418 4 12)?
B (1—1¢8)°

Proof. It remains to check whether there are any other fundamental squares within a facet
besides the completely fundamental. Restricting to a facetI' the index of the subgroup

generated by the completely fundamental jump squares in the group of all jump squares is
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the GCD of all the 4 x 4 subdeterminants of the 4 completely fundamental which define a
facet written as row vectors. A quick look at a group of 4 completely fundamental squares

which define a facet

2 10 2 1 001 201 2 2
2 01 2 010 2 10 2 1 2
2 0 2 0 2 0 0 2 0 2 0 21
2 0 20 2 01111110

reveals that the GCD is 1T e.g.T'lwose columns 2I'6I'7 and 13. O

16.5 Jump W-squares of order 8

For jump W-squares of order 8T the completely fundamental squares up to dihedral

operations and torus translation are

11010010 11110000
001 01101 00001111
11010010 11110000
00101101 000 0 1111
and ’
11010010 11110000
00101101 00001111
11010010 11110000
00t 01101 00001111
: : 3 o : .
but the pandiagonal symmetry defined by the index operator is an involution which
0 3

transforms each matrix above into the other. Hencel' up to pandiagonal symmetriesI’ there
is again only one completely fundamental square.

Denote the 8 completely fundamental squares with horizontal blocks of 1’s of size 2I'
such as the first one abovel with{ H2, ..., H27} and the 8 completely fundamental squares
with horizontal blocks of 1’s of size 4T suh as the second one abovel' with{ H4o, ..., H47}T
the index in each case identifying the start of the block of consecutive 1’s in row 0. The
remaining 16 fundamental elements have vertical blocks of 1’s of size 2 and 4 and are
denoted with {V2,...,V27} and {V4o,...,V47} respectielyl’ the index in eah case
identifying the start of the block of consecutive 1’s in row 0. . To decompose a square AT
extract a multiple of the trivial J to get AT a square whid is located on the boundary.

Each facet of the cross section polytope is the direct product of a cube with 8 horizontal
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extreme rays and a cube of 8 vertical extreme rays. For an example of the extreme rays

of such a cubel’ ve have
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01101001 01 001011
10010110 10110100
01101001 01 001011
12, = 100 10110 Ho = 10110100
01101001 01001011
100106110 10110100
01 101001 01001011
10010110 10110100

The squares have been presented above so that adjacencies are preservedl” see Figure 16.3.

Notice that any 2 opposite vertices of the cube sum to

Figure 16.3: A horizontal cube in a facet for jump W-squares of order 8.
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By removing any multiples of CT ve are assured of being on the boundary of the cube.
The GCD of the 4 x 4 subdeterminants formed from 3 adjacent vertices of the cube and
(’is 1. To get the generating function for the facetl it remains to shell the cube. Instead
of getting an explicit form for the generating functionl’ T will instead sktch the process
and derive the generating function specialized to the index. Since the index is always a
multiple of 4T letu = t*I" where the paver of ¢ is keeping track of the index. We begin
the shelling with the top of a cubel’ whid is a square: (11_45‘)5 Triangulating the sides of
the cube so that the triangles adjacent to the top have no common edgesT’ v add (13—1;)3.
The remaining 4 triangles of the sides and first triangle of the bottom contribute (1%“%3-
The last triangle in the bottom contributes ﬁ Adding C back into the picture and
remembering that we are looking at only half of a direct productl’ ve conclude that the
generating function specialized to the index for a facet of jump W-squares of order 8 is
1 (14 5u + 5u? + u?)?
A=wyp  d-wp

with u replaced by ¢%.
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