The Edge-flipping Distance of Triangulations

Sabine Hanke
(Institut fiir Informatik, Universitét Freiburg, Germany
hanke @informatik.uni-freiburg.de)

Thomas Ottmann
(Institut fiir Informatik, Universitdt Freiburg, Germany
ottmann@informatik.uni-freiburg.de)

Sven Schuierer
(Institut fiir Informatik, Universitét Freiburg, Germany
schuiere @informatik.uni-freiburg.de)_

Abstract: An edge-flipping operation in a triangulation T of a set of points in the plane is a local
restructuring that changes T into a triangulation that differs from T in exactly one edge. The edge-
flipping distance between two triangulations of the same set of points is the minimum number
of edge-flipping operations needed to convert one into the other. In the context of computing the
rotation distance of binary trees Sleator, Tarjan, and Thurston show an upper bound of 2n — 10
on the maximum edge-flipping distance between triangulations of convex polygons with n nodes,
n > 12. Using volumetric arguments in hyperbolic 3-space they prove that the bound is tight.
In this paper we establish an upper bound on the edge-flipping distance between triangulations
of a general finite set of points in the plane by showing that no more edge-flipping operations
than the number of intersections between the edges of two triangulations are needed to transform
these triangulations into another, and we present an algorithm that computes such a sequence of
edge-flipping operations.
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1 Introduction

Triangulations of point sets play an important role in many applications. It is often de-
sirable to compare two triangulations of the same point set. One way to measure the
similarity between two triangulations is to compute the edge-flipping distance between
them. If S is a set of points in the plane and T" a triangulation of S, then an edge-flipping
operation f in T replaces an inner edge e of T' with the other diagonal of the quadrilat-
eral () which surrounds e if @} is convex (Fig. 1). So f transforms 7 into a triangulation
of S that differs from T in exactly one edge. If another edge-flipping operation is used
that is not the invers to f, then a triangulation of S is generated that differs from T in
exactly two edges, and so on. In this way a triangulation can be changed gradually by a
sequence of edge-flipping operations. In the literature this method is used to construct
particular triangulations from any starting triangulation, where certain criteria (like the
min-max angle criterion to construct the Delaunay triangulation [Lawson 77]) decide
which edges are flipped.

The edge-flipping distance is now defined as the least number of admissible edge-
flipping operations to qmnmmoﬁa one Smumamnos into another. Of course it must cm




Figure 1: An edge-flipping operation replacing e.

that there exists a perfect matching between the edges of the triangulations that intersect:
[Aichholzer et al. 96]. ‘ ‘

Already in 1936 Wagner discussed a problem very similar to computing the edge-
flipping distance in the context of arbitrary triangulated planar graphs [Wagner 36]:
Wagner defines a diagonal transformation in any quadrilateral of a planar graph, and
he shows that it is possible to transform any triangulated planar graphs with the same
number of nodes into each other by a sequence of those diagonal transformations. In
1973 Dewdney extended Wagner's result to toriis graphs [Dewdney 73].

In 1987 Pallo established a O(n?) algorithm for computing efficient lower and upper
bounds of the rotation distance between binary trees [Pallo 87]. Because there is a 1-1-
relationship between edge-flipping operations in triangulations of convex polygons with
n+ 2 vertices and rotations in binary trees of size n [Sleator et al. 88], Pallo's results are
also interesting for the study of edge-flipping distances. Every binary trée with n inter-
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Figure 2: An edge-flipping operation and the corresponding rotation



node in the tree with father P and let e and ¢ Rmcooﬁ:\% be En oonnmwocaEm edges
in the triangulation. If we rotate at p, we get the triangulation representing the generated
tree by flipping e. Then the new edge represents ¢, and e’ represents p (Fig. 2). There-
fore, rotation distances of binary trees and edge-flipping distances of triangulations of
convex polygons are equivalent.

In the context of computing the rotation distance of binary trees Sleator, Tarjan, and
Thurston showed in 1988 that a transformation of triangulations of convex polygons
into each other by using edge-flipping operations is always possible and they prove a
tight bound of 2n — 10 on the admissible edge-flipping operations, where n > 12 is
the number of points of the polygon [Sleator et al. 88]. Furthermore they showed that
if it is possible to flip one edge in a triangulation T creating 7 so that an edge of a
triangulation m._m 1s generated then there exists a sequence of edge-flipping operations
ilrthat transforms 7} into 7% in which the first edge-flipping operation

.,,Hmdms and r\

hey give an
upper and lower bound for this problem, and analogous to Sleator ef al. they show that
in the case of triangulations of the annulus the flip distance decreases by one through a
flip operation which creates a common edge.

In a recent paper Hurtado, Noy, and Urrutia E.HE.SQO et al. 96] study the problem of
flipping edges in triangulations of polygons and point sets. They prove that if a polygon
has k reflex vertices, then any two triangulations of this polygon can be transformed
into another by flipping at most O(n + k2) edges. They give examples of polygons with
triangulations 7" and 7" such that to transform T into 7" requires O(n?) edge-flipping
operations, and they extend these results to triangulations of point sets. Furthermore
they show that any triangulation of n points in the plane contains at least (n — 4)/2
edges that can be flipped.

Let us now examine our initial problem, whether it is always possible to trans-
form two triangulations 7, and T3 of the same set of points in the plane by a sequence
of edge-flipping operations. Every triangulation (in particular Ty and T%) can be trans-
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formed into a Delaunay triangulation with O(n?*) edge-flipping operations [Bern, Eppstein 92],

where n is the number of points. The resulting Delaunay triangulations may be different,
if more than three points lie on a circle, but then these points form & convex polygon,
which triangulations can be transformed into each other with at most 2n — 6 edge-
flipping operations [Sleator et al. 88]. Since edge-flipping is reversible, it is possible to
construct 7 from nJ with at most O(n?) edge-flipping operations.

In Section 2w prove n:m Ho:mw estimate of En mamw,?w?nm Bmﬁm:oo by mr

, 2<m say that two dif-
ferent mmmmm Eﬁoammoﬁ iff Em% Eﬁnamnﬁ in their interiors. v In Section 3 we also present
an algorithm that computes a sequence of edge-flipping operations that is no longer than
the number of intersections.
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2  An upper bound on the edge-flipping-distance

In the following we show that the number of intersections between the edges of two
triangulations is an upper bound on the edge-flipping distance between these triangula-
tions.

Let Ty and 75 be two triangulations of the same set of n points in the plane. We
denote by # (7%, T5) the number of intersections of Ty with 75 and by flipdist(Ti,Ts)
the edge-flipping distance between 77 and 5.

Theorem 1: If T} and T} are two triangulations of the same set of n points in the
plane, then
flipdist(Ty,Ty) < #(T1, Tz) < (3n — 2n; — 3)%,

where ny, is the number of boundary points of both Ty and T5.

such kinds of mﬁm we can easi v\ transform m,_H into Hm ‘with at most %GJEHMV edge-
flipping operations since two triangulations are the same iff the number of intersections
is zero.

In order to find such an edge-flipping operation we consider the edges of 7y that
have a maximal number of intersections with the edges in 5. In the following # (e, T')
denotes the number of intersections between the edge e and the triangulation T', #(e1, es, T')
the number of edges in T that intersect the edge e; as well as edge ez, and #,(e, T') the
number of edges in T' adjacent to p that intersect the edge e.

Lemma 1: T} contains a convex quadrilateral abed with diagonal ac so that ac has
the maximum number of intersections with Tp, ie. #(ac,Tx) = maz{#(e,Ts) |
e is an edge of Tt }.

Proof: Let () = abed be a quadrilateral in T} with diagonal ac so that ac has a maximum
number of intersections with T5. Assume that ¢} is not convex and that the angle at point
a inside the quadrilateral is larger than 7. We claim that all edges that intersect the edge

V ac also intersect both edges bc¢ and cd.

Figure 3: All edges that intersect ac also intersect bc or ¢d or both

The proof is by contradiction. Clearly, all edges that intersect the edge ac also in-
tersect at least one of the edges bc and cd since the angle at a is larger than 7 (Fig. 3),




and we obtain J .qmﬂ y
o

#(ac, To) = #(ab,cd, To) + #p(cd, Ts) + #(be, cd, Ts) +
#4(bc, m._mmv\.*. #(da,be, Ts) v

Assume w.lo.g. there is one edge ef in T5 that intersects ac and ecd but not be. This m
implies that either e f intersects ab or one of the end points of ef equals b, and also that |
ef separates da from be. Hence, there is no edge in 7 that intersects both da and bc (or
d and be), i.e. #4(be, Tx) = #(da, be, Ty) = 0. Therefore,

%Abnu NJMV = %ADF n&u M._wv + ummvﬁn&u MJMV + %Awnu ﬁ&“ M._wvu

i.e. all the edges that intersect ac also interséct cd.

Because ef is an edge of T5, and because T5 contains the points a, b, ¢, and d as
well, there exists an edge adjacent to a in T3 that intersects the edge cd. This edge
- ‘does not intersect ac and, therefore, #(ac, T%) < #(cd,T5) — 1 which contradicts the

maximality of #(ac,Th). < fiife .
, Hence, all edges which intersect ac also intersect the edges bc and ¢d and

#(be, To) = #(cd, Tz) = #(ac, Tr) = maz{#(e,T>) | e isanedge of T1 } .

In particular, bc and cd cannot be boundary edges of the triangulation.”"Now consider
the quadrilateral Q' in 77 with diagonal be. @' is either convex or there is again a
neighbouring quadrilateral " which has a diagonal D’ with the maximal number of
intersections and, in addition, D" is intersected by the same edges as ac and bc. Con-
tinuing this process we finally reach the convex hull of the point set. As we observed
before a quadrilateral that contains a boundary edge of the triangulation and a diagonal
with the maximal number of intersections is convex. w_ ir&.w r y O
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Lemma 2: Let abed be a convex quadrilateral in Ty with diagonal ac so that ac has
the maximum number of intersections with Ty. If Ty contains an edge eb that intersects
da or cd (or an edge dg that intersects ab or be respectively), then the edge-flipping
operation ac — bd decreases the number of intersections of Ty with Ts.

Proof: Without loss of generality let eb be an edge of T that intersects da. This implies
that all edges of 15 that intersect bd intersect the edge da as well, because otherwise
at least one point of the set S lies inside the triangle bds, where s is the intersection
point of eb with da (Fig. 4), “and thus lies inside the quadrilateral abed. Since eb does
not intersect bd, and because of the assumption that ac has the maximum number of by ¢ B C
intersections with T5, it follows that 1 y ;

#(bd, Ts) < #(da, Tz) < #(ac, T»)

So the edge-flipping operation ac — bd decreases the number of intersections of T}
with T5. O

Lemma 3: Let Q = abed be a convex quadrilateral in Ty with diagonal ac so that
ac has the maximum number of intersections with Ts. If there is no edge eb in Ty that
intersects da or cd and there is no edge dg in Ts that intersects ab or be, then either

1. the edge-flipping operation ac —+ bd reduces the number of intersections between
the triangulations Ty and T3, or



Figure 4: Definition of bds in Lemma 2

2. there is a different quadrilateral @' in Ty such that the diagonal of Q' has the
maximum number of intersections with Ty and Q' fulfills the conditions of Lemma
2.

Progf: 1f the edge-flipping operation ac — bd decreases the number of intersections
between the triangulations 77 and 75, then we are done. So in the following we assume
that ac — bd does not decrease the number of intersections.

Because the triangulation T5 does not contain edges eb and dg as assumed in Lemma
2 above, there exists a triangle ebf adjacent to b, where e f intersects ab as well as be,
and a triangle dgh adjacent to d, where gh intersects da as well as cd (see Fig. 5).
Therefore, ef and gh do not intersect the edge ac. Because of the assumption that

AREW I

Figure 5: If T does not contain edges eb and dg as in Lemma 2 and ac — bd does not reduce
the number of intersections, then there exist eight points e, . ..,y such that the edges between @
and e, ...,y intersect as displayed.

#(ac, Tz) > maz{#(ab, Tr), #(be, T»), #(cd, T2}, #(da,T>)} T also contains tri-
angles apg and czy, where pg intersects ab as well as da and analogous zy intersects
be and cd, because otherwise there is a contradiction: Assume that none or only one
of these triangles exist, then without loss of generality 75 contains an edge ag that in-
tersects be. This implies that all edges of 75 that intersect the edge ac intersect be as



well (analogous to the proof of Lemma 2). Because ag does not intersect ac, it follows
#(ac,Ty) < #(be,Ty) — 1, which contradicts the maximality of #(ae, Ts).

Without loss of generality let 15 contain an edge uv that intersects the edges da and
be (see Fig. 5), then follows #(ab, ed, T») = 0, and

%Am_nq H._Mv = n}mmm_@u &QJH..MV + %A@mq n&“ H._MV + %A&Dv vnum._mV AHV
#(be, To) = #(ab, be, To) + #(be, cd, Ts) + #(da, be, Ts) @)
iPum&DJ HN._mv = %AQF RQJ MJNV + %ARQJ Q&u MJMV + %A&QJ @Qu N._MV (3)
%A@&u HNJNV = %AD\G“ @GVM,_NV + %A&Du O&v N;wv + %A&Du @Ou MJMV An_.v
Because of the maximality of #(ac, T), #Ho:oim that
AHV N AMV : #ADF &QJ MJMV N %AD\P vng MJMV AmV
AHV N va : #\HA@OV n&“ N._wv N %A&QJ n&u MJMV Amv

Because the edge-flipping operation ac —+ bd does not decrease the number of inter-
sections between 77 and 715,

#(ab, da, Ts) + #(be, cd, Ts) < #(ab,be, Tb) + #(da, cd, Ts), @)
and so by (7) and (5) + (6):
#(ab, da, Tz) + #(bc, cd, To) = %?F be, Ts) + #(da, cd, T5). (8)
Therefore, by (8) and (5)
#(ab,be, Tb) + #(da, cd, Ta) — #(be, cd, To) = #(ab, da, Ts)
2 #(ab, be, T») €)]

By addition of #(be, c¢d, T2) in (9), it follows that #(bc, cd, T2} < #(da,cd,T) and
using (6) we obtain #(be, ed, To) = ##(da, cd, T>). Analogous we obtain
#(ab,da, Ts) = #(ab, be,T). So

#(ac, Ty) = #(bc, Tz) = #(da, Tz) = #(bd, T2).

Now consider the triangle bct of the triangulation 73 that neighbours on abed, then
the quadrilateral abtc has a diagonal with a maximal number of intersections, too. If
the edge-flipping operation that replaces bc decreases the number of intersections, then
we are done, else next take the quadrilateral of 77 with diagonal bZ, and so on. In the
end, such a quadrilateral with maximal diagonal contains a boundary edge, and the
conditions of Lemma 2 are fulfilled so that an edge-flipping operation replacing this
diagonal decreases the number of intersections between 71 and 75. a

Proof of Theorem 1: It is clear that # (71,75} < (3n—2n;, —3)2, because 3n—2n; — 3
is the number of inner edges of both 11 and T5.

By Lemma 1, 2, and 3 imply that for all triangulations 77 and 75 which are not
equal there is an edge-flipping operation in 77 that decreases the number of intersec-
tions between these triangulations. Therefore, if we use such kinds of flips, we can
easily transform T3 into T3 with at most # (T}, T3) edge-flipping operations, since two
triangulations are the same iff the number of intersections is zero. O



3 The Algorithm

In the case of triangulations of convex polygons Sleator, Tarjan, and Thurston [Sleator et al. 88]
show that if it is possible to flip one edge in a triangulation T creating 7 so that an
edge of a triangulation 75 is generated, then there exists a sequence of edge-flipping
operations of minimal length that transforms T into 7% in which the first edge-flipping
operation creates Ty. Therefore, if we want to transform two given triangulations of
a convex polygon into each other by using only a minimum number of edge-flipping
operations, we start to flip edges such that an edge of the other triangulation is created
by each operation. But what to do, if at least two edge-flipping operations are needed to
generate a common edge, is still an open question.

The simple algorithm implied by the proof of Theorem 1 gives a heuristic what to
do in this case. The strategy to create common edges, whenever possible, seems to be a
good heuristic in the case of triangulations of point sets as well. So in the following we
present a combined algorithm to transform two given triangulations of the same point
set into each other.

The algorithm we present makes use of the following lemma.

Lemma 4: Let T and T' be two triangulations of the same point set. If €' is an edge
of T' which is intersected by exactly one edge e in T, then €' is an edge that can be
created by one flip, i.e. by flipping e — €.

Proof: Assume that T' and T” are two triangulations of the same point set and e’ is an
edge of 7" that has only one intersection with the triangulation T'. Let e be the edge of
T that intersects e’. Then e’ is not contained in 7. Let ¢’ = a/c’, that means a’ and ¢’
are the endpoints of the edge €', and let abed be the quarilateral around e = bd in 7.
Because the boundary edges ab, be, cd, and da of the quadrilateral do not intersect the
edge e, and because the endpoints of e’ cannot lie in the interior of the quadrilateral, it
follows that ac = a'c’. Since e = bd intersects ' = a'c¢’ = ac, abed is convex, and thus
e’ is the second diagonal of the quadrilateral around e in the triangulation 7. O

Using pseudo code we can now describe the algorithm as follows:

flip_sequence(7;, T3)
{

init stack S;

M._H\ = HN._HW HNJM\ = N._mw

while (T # T3) do
t while (there exists an edge €' in T} with #(e’, 7)) = 1,4, € {1,2})do
{ Let e be the edge in T} that intersects e’;
flipe — &' inT¥;
if (j = 1) then output(e — &');
else S.push(e’ — e);

}

if (T # T%) then
{Let e be an edge of T}, ¢ € {1, 2}, such that flipping e decreases # (T}, T%)
by the greatest amount; -
Let e’ be the second diagonal of the quadrilateral around the edge e in 77;



flipe — €' inT7};
if (i = 1) then output(e —» €');
else S.push(e’ — e);
}

}

while (S not empty) do output(S.pop);
}

In order to prove the correctness of the algorithm we have to show that the outer
while-loop terminates. Observe that:

1. By each execution of the inner éEHmLoow a common edge of the triangulations
Ty and T} is generated, and so the number of intersections is decreased by at least one.

2. The if-statement is executed if and only if T{ # T3 and all edges that 7] and T,
do not have in common are intersected by at least two edges of the other triangulation.
By Lemma 1, 2, and 3 we have shown that for all triangulations 7} and T which are
not equal there is an edge-flipping operation that decreases the number of intersections
between these triangulations.

Therefore, the outer while-loop of the presented algorithm terminates after at least
#(T7,Ty) steps, because 77 = T4 iff # (7, T3) = 0. Then T} and T4 have been trans-
formed to the same triangulation 7", where the sequence of edge-flipping operations that
transforms 7 into T" has been written on the output during the transformation. Now the
sequence that transforms T3 into 7" is put out in reverse order by the last while-loop of
the algorithm. So the given algorithm computes a sequence of edge-flipping operations
with length of at least # (7}, T4) that transforms 77 into 77.

4 Conclusion

‘We introduce the edge-flipping distance between two triangulations 77 and T3 of the
same set of points in the plane, and we give an algorithm that computes a sequence of
edge-flipping operations to transforms T} into T5 which is no longer than the EE&Q.

of intersections between 7} mSm Ts. ,.

convex polygons the &moﬁnﬁd oonEom the beginning and end of an optimal sequence
of edge-flipping operations until the first occurrence of the if-statement. And, therefore,
because of the 1-1-relationship between edge-flipping operations in triangulations of
convex polygons with n+ 2 vertices and rotations in binary trees of size n this algorithm
is also interesting for the computing of an upper bound on the rotation distance between
two given binary trees.

Note that in a sequence of edge-flipping operations with minimal length that trans-
form two triangulations into each other, the number of intersections between the gener-
ated triangulation during the transformation and the final triangulation does not neces-
sarily decrease after each step. There are some examples of pairs of triangulations and
oEmEm_ sequences of edge-flipping operations where the number of intersections even
anmmmmm by some n&mn-?@@ﬁm operations during the qmzmwoaamﬁoz

n NP even if we. restrict oﬁmo?mm to: no=<ww p %monm H: wNﬁSEB e structure of

a minimal length sequence of edge-flipping operations is unknown.
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1. INTRODUCTION,

A rotation in a binary tree is a local restructuring -of the trée that-changes
it into another tree. One can ‘execute a rotation by collapsing an internal edge
fof the tree’to a point,.thereby obtaining a node with three children, and then
" re-expanding the node of order three in the alternative way into two nodes of
“order 2. The rotation distance between a pair of trees is;the minimum number
of rotations needed to convert one tree into the other. The problem addressed
in this paper is: what is' the maximum fotation distance between any .pair of
nnode ‘binary irees? We show that for all n > 11 this distance is at i
21 — 6 and that for all sufficiently large »n_this bound is tight. . Culik -and
"Wood [2] showed that the maximum rotation distance is at most:2n = 2. Tom
‘Leighton:(private communication). showed that there exist trees - whose, rotation
' distance is at least 7n/4—0(1) . Pallo [7] proposed a heuristic search algorithm -
- to compute the rotation distance between two given trees; e e
Our interest in this problem stems from:our attempt ‘to solve the dynamic
optimality conjecture concerning the performance of splaying {8,10}.-Splaying
is ‘2 heuristic for modifying:the structure of a binary search tree in such a way
' that repeatedly accessing and updating the information in the tree is efficiént.
—Although-our-solution-to 5the~pi'oblem~-ofvf-,maximum,rotaﬁon.distance,’.did,,nop
‘resolve the conjecture about splaying, the results in this paper are interesting
for at least two other reasons. First, the combinatorial system of trees and their
rotations is a fundamental one that is isomorphic to other natural combinatorial
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N R .system.s. Results concerning this system are of interest frém a 'pUrely maﬂ{ 5
;ca] pon_lt,of view. ‘Sec‘o;nd, the méthod we use to solve the problem isnovcf,:lr'nat
* interesting.in 1ts own right and can potentially be applied to vrelated proble;:
. ,.A syste.m that-is-isomoiphic to binary trees related bj" rotations is 1hat‘
< triangulations of a polygon related by the diagonal ﬂip operation.  This is ﬂ?

operation that converts one triangulation of a p in ;
oper at ver . polygon:into another by re i
a.diagonal-in the triangulation ‘and e b

: gt -adding the ‘diagonal th ivi ;
resultmg“quadrilateral’in the opposite waf. This tﬁpe of Tz:nf: lz’vd;:lgfusdlth
by ,Wagner [14]:in the context of arbitrary triangﬁlated planar graphs and 0
: Dewdne){ [3] in the case of graphs of genus one. They showed that an such
graph can-be transformed to any other by diagonal flips, but did lio‘txc e
-accurately estimate how-many flips are necessary. ~, i

i Our approa‘ch 'to solving the rotation’ distance problem is based c;n the ob.
servation tpat any. sequence of ‘diagonal ﬂipS'COnvéning one triangulation 0;.
a polygon into another gives a way to dissect (into tetrahedra) a :
formed from the two triangulations. -

rotation‘at X

rotation at Y

- rotation at e

~ rotation atb

in §2.4.) These polyhedra can be used to exhibit pairs of n-node trees (for all
sufﬁmently large. n)ysu’chthat t‘he’.ro‘taktiion distance between them is 26 ~ , 3 T S e

, * of a larger tree. (b) A rotation in a seven node tree. o
to obtain a lower bound on the num _External nodes are not.shown. T :
: any polyhedron. . We then construct B
© . tetrahedra to triangulate.them. §4 con

symmetric order perr”nutb ion of the nodes (or simiply‘thye“ symmetric order of -
the modes). . e T T M
°In a common computer-related application of binary trees the tree is used -

2. DEFINITIONS AND EQUIVALENCES

to ‘sfore“‘an ordered collection of ‘pieces of information  (called items). Each
internal node of the tree is labeled with an item, and_the‘order of the items is
represented by the symmetric order of the nodes. : B .

A rotation is an operation that changes one binary tree into another. Ina

tree of size n there are n — 1 possible rotations, one corresponding to each
nonroot ‘internal node. Figure 1 shows the general rotation rule and the effect
of ‘a particular rotation on-a particular tree.: The rotation corresponding to.a "

21 Binary trees. A.binary treé isa collectidn 6f

o ; kEvery node: except a‘special one called the root ‘has
—>nternal node has a left and a right child. External nodes have no children. A
~treeis said to bg of size n ifit has -n -internal nodes. A tree of size n has n'—'i-fl
external ‘130des, (See [5,10] for a'more complete description of binary trees and
:;eeiermmolqu,) The number of steps required to walk from the Toot of the
orfe(iet:oc ;ﬂl:lc::;.;s the depth' of that nodp. ;(I%aCh stcp moves from a node to one
S A symmetric order traversal of the tree visits all of 'th‘e nodes exactly once
: '.I_'hls order can be described by a recursive algorithm as follows: If the node lsan
internal node, traverse its left subtree in symmetric order, visit the node itself;
then traverse its right subtree in ‘symmetric order. If the node is an externai
pode, merely visit it The order in which the nodes are visited is called 'thCl

‘elsewhiere intact.” A rotation maintains the symmetric;orderiof the nodes; but
‘changes the depths of some of them. Rotations are the primitives used by most -
schemes that maintain “balance” in binary trees [5, 10]. =

A rotation is an invertible operation; that is; if tree T ‘can be changed into
~T' by 4 rotation, then T" can be changed back into T by a rotation. The
‘rotation graph for trees of size n (denoteéd RG(n) ) 'is an undirected graph with "

v

node changes the structure of . the tree near that node, but leaves the structure



-FIGURE 2.-An example

FI _ of a tree and its corres'ponding'
 triangulation. B (T

. gulatrons of the (n+2)-gon with no interior vertices. We refer to the n+2 sides -
“of the polygon as edges and the chordsthat divide it into triangles as‘diagonals. .
" Any triangulation of the’ (n+2)-gon has ‘n—1 diagonals and  n " triangles. We
" regard the polygon as havmg a dlstmgmshed edge and orientation.

- -of the one rémoved, restoring the dlagram to'a: tnangulatlon of the polygon.

2.2 Polygon triangulations. Problems concerning rotation distance cdn be for-~

mulated with respect to a-different system of combinatorial objects and their

: transformatlons This alternative formulatlon is perhaps more natural and also
' ‘seems to-supply more insight. :

Suppose we are given a binary tree T of size . Take a collection of triangles

“indexed by the internal nodes of 7. Now glue the triangles together along their

edges-according to the’pattern -of the tree, i.e;; according to the parent—chﬂd

- relation: 'The resultmg surface is homeomorphic to a disk. - In fact, we can

choose a standard convex (n + 2)-gon and choose one of its edges to be the-

. “root” edge. Label the'n vertices of the (n+ 2)-gon that ‘are not endpoints of .~

the root edge: by the n internal nodes-of ‘T, counterclockwrse in’symrietric. -

. order. Now the triangles can be inductively mapped into the (n'+ 2)-gon by.

gluing one edge of .each triangle to the appropriate edge. of its parent triangle k'

- -and sending the remaining vertex 1o the vertex labeled by its node. As a special
case, the root’ trrangle is attached to the root edge and the root vertex. See
“ Figure 2.

. In-this way, we obtam a -1 correspondence between bmary trees and trian-

A diagonal flip is an operation that transforms one tmangulatton ofa polygon

irito another. The effect of a ‘diagonal flip-is shown in Figure 3 and can be

described as follows: A’ dragonal inside the polygon is removed; creating a face
with'‘four sides. The opposite diagonal of this quadrilateral is inserted i in place

Let TG(n +2) be a graph with-one node for each triangulation’ of -an
{n+ 2)-gon and an edge between two nodes 1f the two nodes are related by

‘a dragonal flip. We see that

Lemma Y- The graph . TG S 2)‘1§‘zsam pth ‘tothe rotatzon graph “RG(n)“'“— e

~ FIGURE 3. A dragonal ﬂ1p m a tnangulatron of dn oc-
" tagon. L

one vertex for each tree of size n and an edge between vertices T and T if
‘“there is a rotation that changes T into ‘T o :
Any bmary tree of size # can be converted. into’ any other by performmg an
appropriate sequence of rotatrons Therefore the rotation: .graph is connected.
We can define the ryotatzonpa’zstanceb etween two trees as the length of the shortest .
,path in the rotation graph between the two' trees; i.e. th rmmmum number of
rotations required- to convert one tree into the other:

ot equivalently of RG(n —2)-
“fourteen triangulations of a hexagon. The preatest  distance between ‘a pair of
‘ triangulations is four; there are seyeral pairs that achieve this distance.

The proof of this lemma is a stralghtforward application of the correspon-
dence described above. A‘moie detailed discussion of the relationships between

“trees, tnangulatrons and Catalan- nnmbers can. be found in Chapter 20 of [4].

2:3. Results of polygon tnangulatlons. As we sawin §2.2; a study of the rotatlon -
d1stance between trees can- be formulated: as. a:study of the distance’ between

: tnangulatlons under the diagonal flip operation. Let d(t;,7;) bethe minimum

number of diagonal flips needed to transform trlangulatlon 7, into triangulation

.~"For convemence we shall now change our use of the variable “n.” ‘We
consrder triangulations of an n-gon -and let d(n) be the maximum distance
between any pair of such triangulations. Thatis, d(n) is the diameter of TG(n) -
Figure 4 shows.TG(6) ; whose ‘vertices are the -
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Assume that t #* r We shall: construct anew sequence of adjacent triangula--
uons S’ also connectmg 7, and 1, whose length'is:no-longer than the length .
of S and in whlch the ﬁrst ﬂ1p creates rx Thxs w111 suﬁice to prove (a) of the
emma,

‘Let I and r be the endpomts of the d1agona1 that 71 and’ rz 'have in common -
ut 7, and 7, do not have in common “Any tnaugulatlon 7 canbe normalized
with respect to the diagonal (/;r) to credte ‘a new. triangulation. NV (-c) The -
diagonals of :N(r) are of three types: (1) N(z) contains the d1agona1 (lrys
(2):N(z): contains every:diagonal:of T ‘that does not cross the diagonal. (/,r)
(two diagonals with an endpoint in common ‘are not: sa1d to cross),’ (3)'if T ‘ W
contains a diagonal (a,b) that crosses the dlagonal (I,r) then N(z contains S W
the dlagonals (a r) and (b;r) : (See Figure 5) : ‘

The added symmetry revealed in the ‘triangulation. system that is: h1dden ‘in
he binary tree system enables us to merove Cuhk and Wood’ ]
d (n) from 2n

p.

can produce the umque tnangulatlon all of whose

dlagonals have one end at x. It follows that given any two tna.ngulatlons T, and
1

U Ty we candconvert 7, into 'rz in 2n—6—deg, (x)— —deg, (x) flips, where x is any
;:,Ae::\,ea:l ~the- degree of xis degl(x) In 7, and deg,(x) in: 7, The average k ; ‘
2 Ic foll Cgls x-of deg;(x) is 2 6/n; and of deg; (x)+deg2(x) is 4 “12/n. Consu'ler the sequence of tnang nons :
It ows at 1f n> 12 there1 ‘ avertex x such that deg (x)+deg (x) >4 ' . ).

. 1 2 ‘N—to,N(t) N(t)

o“’"%i fol o s th
e followmg lemma about sequences of di
agonal ﬂJps shows that in some
suruatmns it'is easy to find the ﬁ:st ﬂ1p in'an optnnal sequence of flips.

A strmghtforward case analysts shows that success1ve tnangulatlons of, thls se- -
quence are either 1dent1ca1 or adjacent. Ehmmatmg all but one of each group: of
Lemma 3. (a) Ifit is osszbl . : _ ;1d,entlcal consecutive tnangulatlons in this 'sequence gives the desired sequeuce o
has onte o diagom 51 o e to. ﬂlp one dlagonal of T creatzng TI S0 that 1,-1 S . A'priori: S ‘ might contain I'c+2 tnangulatxons but thlscannot be the > case
slzortest i P 4 common with 75 than does i . then there exists a for the, followmg reason. Consider the triangulations tl. and ;- :
hove's dgonad Ty toiT, zZ which the first flip creates "1 (b)Ift, and ©, the property that 1, ‘does not contain diagonal (/,r) and #,; does. (There Vit
- diagonal. 1 foct 4 rcl‘omntzzn;lt en da shortest path from T, 'to T, never flips this ust be such a pair since the final triangulation contains the dlagonal .n
a shortest path y patn & atﬂlps this diagonal i isat Ieast two _ﬂzps Ionger than 1d the initial one ' does not. ) 1t is easily verified that the tnangulatxons N(t, ) ‘
: : nd N(t +l) must be equal and therefore occur only once in S Thus S’

contains at most k + 1 triangulations. Venfymg that S starts and ends with
T, .and 7,,-and that its second ttiangulation 1s Tx ;18 stralghtforward This
completes the proof of (a) of the lemma. .

Proof Let S be a sequeénce of adjacent triangulations conn’ecting'k'rl‘ to fzﬂ. k

S=ty(=1).0,/8p. .0t (=1,).




U . ~The sa ic RPN : . - y . o pe
. me technique serves 1o prove (b) of the lemma: Let S = to(=1 J-chains of K . Using the above relation we can récuce dp A=thHdiilal ¢t MU L R d K

o 1111 Ve 'istége 512){ fll)e a sequence 1ha§ transforms- 7, -into 7, in which the ﬁlr) slent one in which each simplex of ‘K occurs at most ornce. S = C 3 C
“ this sequence \;thlps a diagonal (/,7) common to both 7, and ,. Normaliy . “The boundary map- S - C K41 "4 ‘
SURTRRI -res i ; e 2 : e : : - .
~ ‘ ; pect to'the diagonal (/,r) and eliminate redundancieg { ' 91 Co = Croe . |

is a linéar map from k-chains 1o (k = 1)-chains. Because it is linear, its value
‘on’an ‘arbitrary k-chain is a linear combination of its values.on each simplex
of the given k-chain. The boundary map is defined on an oriented simplex to
be its oriented boundary: to determine the orientation ona (k= 1)-face § of
a k-simplex a; choose.an ordering of the vertices of o compatible with the

_ orientation and such that the vertices of f come last. The induced:ordering of
the vertices of #is the correct orientation. As a special case, we define 8, -as
:a-trivial map to a ‘trivial vector space consisting of 0 alone. L L
" Elements of the kernel of 9, (that is, chains whose boundary is 0) are called.
k-cycles.. . The image of 9, automgtically is contained in the kernel of 8,
Decause the boundary of a simplex is a‘cycle. (Elemerits of this image are called
‘k-boundaries. The quotient space of k-cycles by k-boundaries is called the ‘kth

create a sequerice: S’ . Then' S’ tr i i i
g, orenes 5. Th ' ransforms T into 7, in two fewer flips tha
» -1 The on is that neither the first flip'of S ; which misaligns (1 -
nor a later flip that aligns (/,r), occurs in S oo Do ")

ahg arztinemetnt:of th; lower bound proéf in Lemma 2 for‘””smaﬂ values (;f
A mputer search have produced 3 of d(in) 1 :
S e e o K
n 34567
dn)l0 1 2 4.5

9 10 11 12 13 14 15 16 17 18
9 11 12 15 16- 18 20 22 24 26

8
7

?jtzt;:l'n,s“;‘p“."ia; complexes. This section is a digression into the notation an‘
inology of simplicial’ co: ol o ~
in at ‘most three dimensic'ms,'111 vl:éeif;e géi?:g:dv?heﬁui; I;‘ﬁily thzsie soncept homology of K, H(K;R)- “THis does tiot depend on the structure of. K asa
generality. ‘The sole purpose of this and m.in 1l n -dimensional implicial complex but only on the underlying space of K. ; .
- required to-prove Lemma 7. At the ehlil 6?;21155 ézy';;ctlon’, ls‘ito dEV(?lop tool : Af) k-simple: is s;id to bé?eo‘dés itis ggn%aiﬁéd iman aﬁ)'me k -dimensional
* many of the concepts about to be introduced. - - erampie that illustrate  subspace of R" (butnotinany (k— 1)-diménsiona1'§ulis1p‘ ce of R"), and all of
: its' (k— 1)-faces are also geodesic, A map " is said tobe g na k‘-simplex
if the image of the simplex under f is geodesic. RS S e
Let f be an afﬁné‘msz‘ ‘that maps an: A-simplex- s into an n-simplex vs’ in
" R".-We may assume that the domain of f is simplex s, placed in R" inthe .-
canonical fashion. (The canonical placement of an n-simplex in R" is obtained
by taking the convex body formed by:convex pombin'atiOns,of the origin and
the » unit-vectors. To label the canonical placement, place the 1abels ’in sorted
~order.on the origin, then on each of the unit vectors of |R" ‘respectively.) Each

-An: n-simplex is the ‘n-dimensional ization of a triangl

A plex is 1-di 1l generalization of a triangle. It has g

;eex‘:lh;::s z;lr;d 1:1+ 1 lt;ace,s éach of which is an n - 1-simplex. The simple;: (—::i
ught of as a list of the'r f its vertices (in sorted ords ;

oty ; list. ’f' the_ names of its vertices (in sorted order by vertex

P

: dﬁeizﬁ;@g li‘o('rinpl;’lx {gv 11'15 the union ofa collecﬁon of!sirhplic‘e‘s of asSbftéd
: ; called cells. Whenever ‘o is an' n-simplex in the i '
is'ak -face of o then f isalsoin Sllostion T totetesstion o oot

: f f o) the collection: The intersecti i
i a7k Aface of B ‘ : ion of any two
-simplices in the collection is also a simplex in the collection. The dimensi};n of

structure as a simplicial complex. :
. ;:;3 ltiré;zsngultati(;;z of ahspace X is-a simplicial cbmplex K anda mép' I ‘from
. ] onto X such that the i 81 ices in X i sect e
e 1'mages‘of the,s;mphces in X intersect exactly
: . n:\;ezr:ﬁztsation .f(t)r ‘a% k-simplex is an ordering of its verti‘cés “An oriented
consists of ‘a sorted list of the names of its vertic ition
lex thu 1 ] s vertices, in addition to
a permutation - of itsvertex names. Thi i ion is-sai - posit
, ation tex . I'he orientation is-said to be positive if the
per:lufta’flqn of jthe ver:t1ce§ is an éven permutation,"an‘d"n'egative otherwise.
o ;s-ogzzc;l vgt?lg mfx"nplg:xal lfqmplex K of dimension n is a collection of
: ces C, (K),-for 0 < k< n;where C, is defined to consi ite
formal linear combinations i ¢ implic e
’ ns of oriented k=-simplices of X with Fea i
subject to the relation that two oriented ‘k-si { i
; ; “two oriented  k-simplices whose ori i iffe
t h ! hat : - entations differ
by a:single inversion are negatives of each other.: Elements of € are called

K is the maximum dimension of a simplex of K. The k-skeleton K. of K

is ion R : ; ‘
the union of the simplices of dimension not exceeding 'k ; with its inherited < . ; P P ;i :
i S “ ¢ in R"™:can be transformed to's :via a'continuous family of affine embeddings

“vertex of ‘s’ may be labeled according to which vertex-of s is mapped to it by |
“f-The map~ f—~is~~saidr-to—be—orientationpreser:ving_.iithQ,CAI,\QILiQQLPléQQWFDt of -

ot possible, then .~

of s in R" so that the labels on the vertices match. If this isn
fis said to be orientation inverting. g

+2.5. The volume of an ‘(n Z1)-cycle. “We shall,ndw- develop the tools necessary

to define the volume of an (n—1)-cycle embedded in . R" : ‘

“Suppose that we have a simplicial complex K, an n-chain ¢'in C,(K), and
‘amap [ of K into 'R" that is affine on each simplex. Choose a basis ¢,
0y, of C,(K) such that the orientation of ; is positive if - fis orientation

preservingon o, and negative otherwise. (This definition of orientation hasthe

property that all the basis simplices have the “same” orientation. For example;

-:if we are working in two ‘dimensions, then‘thekorientzltion' of each triangle is.

either clockwise or.counterclockwise, and in this case our basis has the property
that all the basis triangles are counterclockwise.) ' i




Lo mene DTS a cerlain siep Tunction degree (¢ +f) on R, as follows,
Write ¢ = 2. a;o;. First suppose that i -is any point-in"R" wluch 15’0t in
the image o the n= l skeleton of K. To compute the degree at .x; we add.

“-the [} e es whose image contalns the point. x If X:isin:

- the image of the 7 =1 skeleton; we define degree (c, S )(x) to be the maximum
value of the degree that occurs in arbitrarily small ne1ghborhoods of x.

"~ The degree miap we have defined satlsﬁes the followmg lemma, which make:
st useful in deﬁnmg volumes .

: : 4 : is step function only depends on’
: a' ee Lemma 4 tells us that this step :
ma;x’lotei’n tl(te v{/ly zis expressed as a boundary. Thus. we can rewrite it as o
Wiz, /)(x) = degree(c, f)(x) and call it the wrapping number of z about o
: whe algebraic volume enclosed by S ( ) is dﬁfmed to be w ud\\a" '1
number, .
A sgecxal case that will become 1mportant later is the volume of a threet
dimensional polyhedron. A triangulation ¢ of the sphere is a way'to dlSSClC
"'the sphere into curvilinear triangles. ‘Each'such o has a fundamenial 2-cycle,
:l ?inZd to be the sum of the triangles of ¢ with orientation coming from the
v € the sphere from the
Furthermore if d:and e are any chains such that 8d = 8e then degree (d f) = counterclockwise-ordering of the LrerthCS (whenhloohﬂgt;:t ezcﬁ simplex of &
degree(e f). - ey outside). If /' maps the sphere 11nto R’ 11n S‘tlicby W?}[Bé be the volume enclosed
he volume enclose
Proof The degree functlon deg; ee (c f) is constant ev rywhere except possxbly is geodesic, then we deﬁnel k fv : lf
by the fundamental 2-cycle of . - 3. (23 4)
in the i Lmage of the iinion of the boundaries of the o, ! We' shall first show that licial complex K with 15 sunphces (12 ) (
crossing these: boundames also leaves this function constant Let @ and o be F;gur? 6)1 nu?;gz;tes(a s;mp( 24) ;- {34y, (35), (25}, (1) (2), (3), (4, (5)-
-two 51mplxces from the basis that have a boundary simplex £ in common. If (235) b brackets are the vertices of the simplex in"sorted
o and o :are mapped by f to the same side of B then the coeﬂiment of ﬂ (Here the. numbers ey d into R by a map.-f is shown in (a} of the
1 92 i the e a i conicint o . 1n 00 11 5 4 ' e i el 1 5 e ool S € oy ot £ B
1o opposite sides of B, then the coefficients - are negatlves of each other. Smce ﬁgzu re.. The can fis oricntation inverting on simplices (123)
¢ is a.cycle; the boundary vanishes, so ‘the- coefﬁment of g in the boundary i is R” is shown in (b). tTEz;nas: e iving on: sxmplex (235). ,
- ‘zero. . Therefore the sum of the coefficients in .C..over those n-51mphces that' and (234), and orienta P uld use the following basis for: C, (K) a,
map to one side of B equals the sum of the coelﬁments in ¢ over those that To define the qegrggz)f(z,im;ve (;0 = (235)(235). (The permutation- for an
map to the other. ThlS shows that the degree is the same on hoth s1des of B. 23)(132) > o3 = { natheses after the sorted vertex list of the sim-
o If fidsa genenc ‘map’ (where f-does not have degenerames such as map sicnted simplex is shown mbllarel‘or example we could have chosen o 1o be
rpmg ‘several (n= l)-stmphces to the same. place) this-is enough to show that plex) Otlher bases are possivie: k
degree (c.f)is continuous everywhere (andther'efor'e cc)nstant)¢ This is becaus (I?I?‘:)t(g'? Le the chatn L(123)(132) + (234)(243) ¥ 2(235)(235) Part, (C) °f
Figure 6 shows the value of degreC(C ) in R Note that

genéral case, when f S = 6(123)(132) (12)(21) + (13)(13) + (23)( ;2)
out’ changing the degrex :

Lemma 4 0fclisan. ‘n-cyele in aszmplzczal complex K then degree (c, f)

crossmg the unage of a single’ (n=1)- :
near mﬁmty, the degree must be zero everywhere In the
might not be generic, f canbe perturbed a little, with

..at. most points.-The- -degree-for-the- perturbatlons s
 degree (¢,.f) =0 in this case as well.
As for the second assemon of the lemma;, if d and ¢ are chams such that

od = ae then 'd ~e ‘is' a cycle, 'so - by the ﬁrst part of the lemm:
.degree(d ~e;f) =0, Because the degree operator is linear, degree d, f)—
2 degree (e.f)= degree(d e, f) which gives the result o

: and’
el s, 80 S (12>(21)+(13>(13)+(34)(34)+<z4)(42)+2(23)(23)+2<35)(35)+2(25)(52)

26. Tnangulatmns of the sphere and the ball. In this section we show that - ’
the quantity d(n) is related to the number of tetrahedra that are required to ‘,
triangulate certain polyhedra e
Le%c o be a triangulation of the sphere and let z bea fundamental 2-cycle
of ‘o Then T isan exposed triangulation of the ball extending o . if (1)th 5
isa tnangulatlon of the ball, (2) there exists a 3-chain Icl' 1;1 ﬂf (Tz-t sz;:hof ;

of ‘the vertic
which there are chains ¢ for which z = : Oc . The easiest way is to define X' z=18c and-all the coefﬁcxer;ts lof c ar:atil;;w :;dhgg)dzﬁmnon o i
Simpis . f i nkon e e o e o for oo o e ‘f(': Zmbcll extending "o -is the three dlmenswnal
51mplex o of .dimension” k. there is an additional -(k 4 1)-Slmplex with one “An-exposed tnangulanon of the ba e o contrast sional.
“face on-o and'its extra vertex at v .. The 'mdp of K into R" easily extends - analogue of a tr:iangulalt:)cr)lxsl (t)}t; ;—2 a:-:gg();; s mangummns A
| -situation in two dimens:
m : map Of K determmEd by S to Send " NOW ronsieg e taining - different numbers; of tetrahedra. - Although it happens to be true that

~If z is‘an n= l cycle in'a 51mpl1c1al complex K and 1f f is'a map of
K into"R"; it'is always possible to enlarge K:toa 51mphc1al complex K’ in




a-diagonal in common. Nonetheless,  U(t;5.74) desCrides @ 1Halipliatom = @
slightly more general sort; which we shall not discuss.) - :

For any o there isan exposed tﬁang\i}atioh of the ball-extending o Thisal-
lows us to-define #(¢) 10 be the minimum numberof tetrahedra in any exposed:
‘triangulation of the ball extending o . The following lemma: relates triangula-
tions to rotation distance. . : o :
Temma 5. If T, and 1, have no diagonal in common; then

i : ‘ ((U(ry. 1,)) S d(77:75)-
Proof . There exists a sequence of d(t,,7,) diagonal flips that changes 7, into :
1, We shall describe how to extract from this sequence an exposed triangula-
‘tion of the ball extending U(t;,t,) containing d(7,.7,) tetrahedra. - B
Imagine that there is-a planar base with triangulation 7, drawnon it."Suppose -,
the first diagonal flip replaces diagonal (a,c) ‘with diagonal (b,d). Createa
flat quadrilateral that is the same shape as quadrilateral (a, b;c,d).-Onthe
‘back side of the quadrilateral draw diagonal (a,¢). On the front draw diagonal
(¢, d). Now place the quadrilateral onto the base in the appropriate place with
diagonal (a,c) down and (b,d) up. Looking at the base we see a-picture of
a triangulation which is the result of making the first diagonal flip. -For each
 successive move we create another quadrilateral and place it onto the base. After.
placing d(7,,7,) such quadrilaterals we, ill see T, when we view the base.

- The triangulation of the ball that we construct has one tetrahedron for each
. quadrilateral. The tetrahedra are glued ,tggcther according to the way the quadri-
aterals are stacked:. . Two triangles are identified with’ each o‘thcr'if they “faCe :

each other in the stack of quadrilaterals.

WL Sy -

 FIGURE 6. (a) shows the way 2 P e To finish the proof we need only verify’that it‘hé resulting ‘triangul’ation isan -

“fifteen simplices is mapped}],ga Zlmphgla; ?omple;""lm . exposed triangulation of the ball extending U(t,, 7,) . The fact that itis atrian- o
: ‘ yamap f into R".-(b)  gulation of the ball is made clear by inflating each quadrilateral so that it turns e

shows the’ carionical ‘i di T oA
©{(234),and (235) iﬁtonzgedilﬁg of simplices (123), - : into a tetrahedron. The resulting collection of tetrahedra is homeomorphic to a
- inverting on simplicesﬁ(ﬁlﬂ?g( : e"mapA’ﬂils'onem.aﬁon""“r ““““““ - ball. (This is where we use the assumption that 7 and 7, have no diagonalin-.
- tion preserving on simplex )2;;1 d ,(234) » and: orienta- common.) The fact that the triangulation extends U(7 7;) 1§ obvious because
" of degree (c,'f)‘ e Rzp { | ) ) (c) shows the yglue - the bqundary triangles gire_ exactly those of 7, and 5. O B o

What the proof of Lemma 5 tells-us is:that for every sequence of diagonal
flips from 7, to 7, -there is an exposed triangulation of the ball extending
U(z,1,) - In fact, the same triangulation of the ball may- result from many ‘
different sequences of moves from 7, -t0 7,. Tt is-not the case that every
exposed triangulation of the ball extending U(z, ;7,) comes from a sequence
- of diagonal flips.-In Tact, it is possible to construct exposed triangulations of -

the ball with the property that no tetrahedron touches the boundary on more
than one face, whereas in q triangulation obtained by the. construction-in:the '
proof of Lemma 5 some tetrahedra touch the boundary on at least two faces.

Let ¢(n) be the maximum of the quantity t(o) over all n-vertex four- -
connected triangulations ¢ of the sphere. (A triangulation is, said to be -

every triangulation of S? S T o : : i
faces, the situation is qui is homeomorphic to a triangulation with geodesi £ covv
it is even possible t;chultte different from exposed triangulations of the ball ~ f
: : onstruct-exa Wi : i

-forcibly curvilinear. : mples it kn otted edges, so that they are

The union of two triangulati ; ; . '
boundary, usually gives ag traiiztalr(l)gnusia:ilor?n df 1:}21 OffLD i oo il
oy ly give I : of the sphere, which we denote by
sagislf yrtzge. d('ghc?r.e are certain Flt?geperate cases in which the union does nost' !

S ‘the definition of a simplicial complex; This happens:if v and 7, have
. o : B L . ! 2 ‘




TeClea'graph 1s - k- connected if d oy e e AT Und
eleu i
_connected.) ‘ on of any k -1 Vertlces leaves the graph

Lemma 6. tn) < d(n)

g;zytoy; ; UL}etlsa be an’ n-vertex four-connected tnangulahon
i maximized. By a theorem of Hassler Whitn

ization, Tutté’s Theorem {13, any four
~must have a Hamiltonjag circuit, Draw 1
‘sphere along the edges of ‘the Hamiltoni
mto two disks, each of which i 1s triangul
7 and 7, Now g'= U(zy,1,). By the

of the sphere such

ated.  Let these two triangulations be
precedmg drscussmn and Lemma 5

t(n)—t(a)~t(U(Tl.12))<d(rl,, )<d(n) D

- To make these concepts more concrete; consrde
cand 7, of a. hexagon whose ‘diagonals form'a 't
- triangulation obtamed by -gluing ‘z_‘and ¢ H
octahedron. There are six paths of llength fohr
3)5‘ Each of these paths gives 1i

~-ditierent - triangulations of: the octahedron are-obtaine, i
,,(I)’ll;céglllgevc‘ilhbyhtwo different paths from 7, 1o 75.) Thegeltl:'l:llllllgsulzz}on (Beiia

ich a single edge has been added between a pair of 6pposite Sv:;tict:se

. The octahedron can
. not be triangulated with fe
ewer than f
no tetrahedron can contact more than two faces of the b‘c))‘lllln:;;yahedra because

r the two tnangulatlons T,

ey [15]-orits generQ
connected triangulated planar graph’
he mangulatlon ona: sphere Cut the"
an- circuit; This separates the sphere

vious section into: geometric. obj

Thefourtenhedn 3615 3621 3642 3654

, FIGURE 7. A se :
, quence of diag onal
spondmg tnangulanon . ,,lhps and the corre-

d(n) =21 = '10 for all ksuﬂicrently large n.

3. LOWER BOUNDS ON -£(n1) .
Our approach.to derrvmg accurate lower bounds on t(n) 1s geomctnc rather

than combinatorial. ato: ect
We then infer propertres of th combina-

torial objects from the properties. of the geometric GIb_]CCtS The followmg two
paragraphs summarize our approach :

“Let ¢ be an n-vertex triangulation of the sphere that is. four-connected
Suppose o is the boundary of a polyhedron P in R® such that the vertices’
of 'P-aré on the unit sphere. Let T be an exposed triangulation of the'ball
extendmg o .- For each- tetrahedron A of T there'is a geodesrc tetrahedron -
A" whose vertices are the appropnate vertices of “P.. The sumis ‘of ‘the volumes
‘of these geodesrc tetrahedra must be at least the a.lgebram volume enclosed by
P Let-V, be the volume of the largést tetrahedron that can be inscribed in a

sphere. Let vol(P) be the volume of P. We conclude that at least. voI(P) /V

etrahedra are requrred to cover. P In other: words

‘Vol()
A <t()

“volume of a tetrahedron is bounded above by a constant V while the: volume -
ofa polyhedron can grow hnearly as'a function of the nurnber ‘of vertices. Our

problen is thus reduced.to ﬁndmg a polyhedron P with: nvertices m hyperbolrc

}spacethaLhas large volume..

- First'we present the: necessary fundamentals of hyperbolic geometry. These
1deas are described in'more detall in Coxeter’s-book [1]; Mllnor s paper [6], and

an exposxtory article by Thurston and Weeks [11].

=30 Hyperbohc geometry In hyperbohc geomerty there are many hnes through
a given pomt parallel to a given line; the sum:of the angles of a triangle is less
“than 180 degrees, and:the circumference of a circle is‘greater than 7 times the
.diameter. There are various ways of ‘mapping hyperbolic space into Euclidean
space. These mappings enable us to draw pictures on Euclidean. paper of hy-
perbolic polygons, but these prctures are-distorted; two' congruent.hyperbolic
“triangles 1 may not look congriient when mapped into Euclidean'space: : :
One mapping of two—dlmensmnal hyperbollc space into the Euclidean plane -

is called the upper half plane model. In this model all .of hyperbohc space is -
mapped 1nto the upper half ‘of the complex plane (the pomts ‘with positive
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" that the volume of an 1deal tetrahedron is: finite. Le{ this volume be denoted:
z), from which it can be seen’

by v(z) There .are explicit formulas forv(

‘-tpat the ‘maximum is attained at the pomt z.= @, where @"is defined as e —_
Ca=e e < (See [6] for a discussion of how to compute hyperbolic volumes.) ‘ o
" The tetrahedron of maaximum volume:is the most symmetrical -one. Its base

triangle (0, 1, @) 1s equllateral its dlhedral angles are all 60 degrees, and its

yolumeis v(w) =¥y =1L 014941606 e i L j

3.2. Thé volume of hyperbolxc polyhedra Let o bea tnangulatlon of the sphere

For concréteriess think of o.as though it is embedded in the sphere in-some

partrcular way. -For any mapping of . the vertices:of ‘¢ ' 10. ‘distinct- points in -
three-dimensional hyperbohc space:(or Eunclidean space for the purposes of this .-
discussion), theré is 2 continuous map f from the sphere into hyperbolic space
that (1) maps the vertices.of ‘¢ to the appropnate places, and (2) maps every
tnangle of & one-to-one onto'a geodesw ‘triangle in hype-rbohc space.: (Just as
in Euclidean space; a simplex is: geodesic in hyperbolic space if it ‘and all of
its subsxmphces are in geodesic. surfaces of appropnate dlmenswn) In other .
~words, f. maps the surface of the sphere mto the surfa«,e of. some hyperbohc :

The ar = :

the mter;:l Zflgl tnangle in hyperbolic space is P Z, where E is the sum of ol hedron

real axis or at in ; s. An ideal triangle is one with three distinct vertices on the . B

are congruent, thmty ‘All ideal triangles have area 7. In factall ideal triangles

- rigid motion: (Thitlfrsglczlm A lflleal iangle can be transformed to atty other by &

motions of the space form :
of ;Eematlon-presemng isometries.) a group lcnown as the grou
e X
of the ::ri;fl el;calfl space ‘model of three-dlmenswnal hyperbohc space consists -
space plis a pogta:f lﬁgls all ‘the points above ‘the: plané in Euchdean three- o : v 1( P
sometimes called the sph:rlet};zt 'l;lhe complex plane plus the point at infinity is e e By <t (“ )
‘mapped ‘to a semicircle perpen:hﬁnllty A geodesic in hyperbolic three-space is s -
‘line perpendicular to the complexi)ul:;em the complex plane or a straight half Proof . Let T be an exposed tnangulauon of the ball extendmg o contammg
are mapped to hemispheres ‘with centersg cl)lllntghto infinity. The geodesic surfaces . (o) ciratiedra, Tet f beamapfromr ‘the.verticesof_ g to the vertices of P as
 orthogonal to the complex plane. € Complex plane and half planes - described above, with the additional property that f maps all of the triangles
An ' ideal hyperboli ‘of all of the tetrahedra of T to geodesw triangles in hyperbolic space.

* are distinct arj:fi’ ) tltfe t:gg;zd;ztinlgn at tetrAaIllledron in whlch all the vertlces " By the definition of T, there is a 3-chain ¢ -on T such that dc =-2,
transformed by a rigid motion to one 1ixy h g ‘hyperbolic tet.r&fhedfon can be and ‘the coefficients of i¢ are #1% The algebraic volume of P is'the mtegral
‘and oo and the other vertex js at a pomt: 11311 l;nhree oflthc wllemces are at' 0,1, of ‘the wrapping number w(z,f) = degree(c, f) . Since the degree map is'a

--is possible: because all ‘four of the triangles of ?ﬂfortnp = pdrane (Thls motion g hnear operatof on ‘¢ and mtegranon is'a linear operator, we may separate: thls v

any ideal triangle can be moved to any other, N f e;rah: oft are ideal and - ‘calculation into the sum of several terms, one for each tetrahedron of T . The

all ideal hyperbolic tetrahedra are con ote that despite this fact, not contribution to this sum of cach tetrahedron of T is its coefficient times the
three vértical flat ‘walls above the Eucﬁg;:f t)n;rrl:;l tetgahlcdronbthen looks like ‘volume of the tetrahedron (degree is *1 inside, 0 outside). No term exceeds
by 'IPEH of a hemispherical bubble. ¢ (0,1.2), bounded below ¥, , hence the lemma is true. O : :
scalese:;yiez?:hi 1<1;ross section of the vertical chimney, in the hyperbolic metnc :
of Hyserblic :/a at Adecrease‘s with increasing height. - (Most of the volume
B lic space 1s near the complex plane.) It can be seen by integrating

imagi R LTl

presixrlzzaeij 1?}:15) This mapping is conformal, which means that-angles are

thie S icieel e geﬁdesms (straight lines) in hyperbolic: space are mapped.into

ot thé real axfsw&oc:n;el;s on the real axis'and the vertical half lines with ends
stof t eareaofh erb

near the real axxs See Flgure 8. yperbolic space is‘mapped into the regmn

amdeal hexagon Ll anldealma.nglc HEREEE atnuhglye‘: ‘

FIGURE §. The upper half
plane model of twO'dlm -
" sional hyperbohc Space. -

Lemma 7. Let o bea trzangulatlon of the sphere Let z be the. ﬁmdamental .
2-cycle of o (the sum of all its tnangles with counterclockwise orientation). Let
f. be'a-map from:a into hyperbolic 3-space that maps each triangle of o znto
a geodesic triangle. ‘Let “Pbe the hyperbolic: polyhedron defined by. f(o). Let

: vol(P) be the hyperbalzc algebrazc valume enclosed by: f (z) Then :

SRR >‘QQ°
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n . : A\ .
; A natural sequence of mangulanons for this purpose can ‘be denved from a’
- regular icosahedron: DlVldC edch face of the 1cosahedron into k equilateral .-
~ triangles, giving 20i2. triangles in alland n = 10k2 2 vertices." :
We need to map the vertices of the triangulation of the sphere defined above
-into hyperbolic space in such-a way that the resulting polyhedron has a large
volume The Riemann mapping theorem gives a way 1o do this. Corresponding
o-the jcosaliedron, there is.a-subdivision of the sphere into tnangles bounded

3.3.°A fand g
onts Cg:-::rsrtrzlngag; légund ?n 0(17" ). There is a tessellatlon of hyperbohc
n pies of the simplex of maximal volume. Thi n
can-be constructed b starting w Xy o ]ns tessc”"‘tulo
Y g with some max1mal simpl 1l hrough
-its faces; reflecting these throu; o ecntl S uon gn
gh their faces, arnd so on. F y fi
- of these tétrahedra whose boundary Wi 200 nlten n
V aryisa sphere, we obtain a polyhed Th
tnangulatlon we have is automa n i rOun rye h
tically a minimal exten f bound
since ‘all: the simplices are disj Vi vSlo Ve e t . obtain
joint and. have maximal vol
h olume. Indeed it is"
the unique mlmma] extensmn in anymuumal ftnangulatlon eve. : by segments of great circles, obtained by prmectmg the edges of the icosahe- -
dron-out to the sphere. The Riemann mapping theorem implies that thereis a

hence 1t is determined b S
y any- of its faces T :
. oty hls wmnformal map of the faces of the icosahedron ttmw :

detérmmes ‘one-by-one, where the tetrahedra have 1o be.
onsider the SPccral caseé in which all the simplices Kave a ‘common ver. sending vertices of the lcosahedron to the correspondirig ver of the spher-
gl_nla\gzlis By symmetry the maps determined on individual triangles piece

~ tex. (In general, we call a triangulation that is obtai
' vertex a cone-type triangiilation. ): We may assume t}?;bi; L conmg 10 same together to give a map h of the entire ‘surface of theicosahedron to the sphere. "
thehpomt at infinity in the upper half space model. ‘When ijf:iﬂiznﬂizux ’ This map is conformal everywhere ‘except at the vertices of the 1cosahedron
f}?: cc?iqﬁt«ir t;gige]?;a hes1 a;bo;e an equilateral’ triangle in the tessellanon ag} Note that it is conformal even on the edges of the icosahedron because they can .
equilater; triangles. Any set of tnan es whose be flattened out (locally) in the plane Define the 1dea.l hyperbohc polyhedron, 7
ke Gl e s G e R 1 T L e
tains 6k° tnangles hence the pol he dr ges on a 51de The hexagon coﬂ_ sp Ps.
9.) The hexagon has 3%+ 3 4 ly vert::;:c:::;:s Gic htgtrrahedxa (See Flgure ' Lemma 8. The volume of P(k) is 2nV O(log(n)) where n=10k> +2.
= VCI'thCS (mcludmg the one at mﬁmty) In; Partlcul:rovze thc:; has 3k° +3k+2 Proof. To make the estimate of volume, ‘pick 2 vertex of ‘P(k) " of degree six
t(n) 56 R 2(3 2 n e i “that is as far as p0551ble from vertices of degree five and ‘arrange: this vertex -
+3k +2) o (k) 2n— O(nl/ 2) i to be at infinity in'the upper half-space ‘model.: (Th1s is'a rigid rotation of
o P(k) in hyperbolic space.) Triangulate .P(k) as the union of cones from the.
wvertex-at infinity to the triangles with all vertices ﬁmte (Thisis'a  cone-type
triangulation.) Call a vertex of P(k) “bad” if it is a vertex of the icosahedron
or if it is the vertex mapped toinfinity. Now A can be thought of as a map from.= -
the icosahedron to C (the complex plane).that is confi ormal everywhere except
at the bad vertices. For large ‘k the triangles far away. from bad vertices get
“mapped by k to triangles that are nearly équilateral (becaiise 7 is conformal)————————=
' Figure 10 shows how the ‘vertices of P(k) near a vertex of the icosahedron - - ,
get mapped to'the complex plané by k. If the vertwes were vertices of true
eqmlateral triangles then the tetrahedra formed by coning them to infinity would
“4ll be congruent to the tetrahedron of maxlmal volume: We must show that the
deficit caused by the fact'that the triangles are not’quite equilateral is small:
The shapé of a triangle A with vertices .p. 4T is convemently described by/
- a complex number s(A) = (r= n/ (g = p), its shape parameter. (The triangle .
{0,1;5(A)) is congruent ta A.) The volume of the hyperbolic tetrahedron C(A)
formed by coning A' to the point at mﬁmty is‘a function‘of the shape parameter
of A, vol(C(A)) = v(s(A)). Note that z, /(1= z),and (z—1)/z describe

similar friangles; so v takes the same value:at these three ‘points. Smce v

attains its maximum at o , the first derwatlve of v at @is 0, andthe second
mmietry. Thus, by Taylor’s

derivative is the same in every dlrectxon because of sy :
‘ theorem, the vohime deficit of C(A) deﬁned as ¥ —vol(C (A)) (where ¥ is

Note that by using other trian, :
gulatlons we can actually get ex :
for each n, not Just ‘those 1 of the form 3k2 + 3k-|)-, g Pt 10W81' bOUDdS

- FIGURE 9 The bounda
ry of the pol hed
show that t(n) > 2n ~ 0(n1/2) Y ron used 1o

34.Ab 7
Al ;tg;:cleoswgrbguzg, : jn Ob(log(?)) To construct polyhedra that requ1re '
number of -vertices we mist eli
A o (ROughly ! eliminate the vertex
peaking polyhedra in which the ve ;
- rtices are spread
over the: sphere at infinity as umformly as p0551ble have the largest volulr)nes)




and solve for the coefficients of the power series expansion of the shape param-
eter 's(t)= f(ewt)/ f() of the image triangle. We can write .- R

s()=w+At+Bl 4+
= awt + bt + e’ + - -
S at bl e
and :solve for the coefficients. We obtain

wb+Aa=bw’
and : o e
SR wc +Ab+ Ba=co’.
“The term of real interestis =~~~

 A=—ba==7"OLSO

since’ > — == —1: The next term is.

S s b, _ c et

F{GURE 10. The way P(k) (near a vertex of the icosa-

‘. hedron) gets mapped to the plane by 4 in the proof of

Lemma 8. This is also the way that the boundary of a
.‘blemish of type (c) gets ex;jbéddéd in the plane in the

‘Thus',"t‘h,e shape of the image triangle is~

‘ s(t)=w—17"(0)/2f'(0) +O()).

‘How doees the error term depend on f? First, we claim that the error is -
uniformly bounded by O(t%) independent of f defined on a fixed disk of radius -
R . In'fact, the set of all holomorphic embeddings of the disk of radius R into
Cis 'compaét in the appropriate topology; that is, any.sequence of .embe’dding's ,
has a subsequence thiat converges to an embedding. ' The errors could n}o‘t” get
* worse and worse, or else the limit function would not have an estimate of the
“form O(¢%). s ' e S
—--Fhe-dependerice
of radius’ R can be mapped to a:disk-of radius: S by a.complex affine map
—_ that is, a complex linear map followed by a-translation: -The parameter. ¢
‘is multiplied by the ratio of the radii of the disks urider ‘such an affine map.
_Consequently, the érror term above is O((t/RY). B
. Now we return to the estimate of the volume deficit. For any point pon
“the icosahedron define inj(p), the injectivity radius at p , to be the maximum
- 'radius of a disk in-the Euclidean plane that can be iscmetrically embedded on
 the icosahedron with its center at p . Suppose we have a triangle in some subdi--
vision of the icosahedron that has no vertices in common with the icosahedron -
and no vertex mapped to infinity. Let & be the size of a'side of thg triangle (in
_the metri¢ of the icosahedron). Thenits volume deficit is not more than

’ . : - . 3 h/l . c 3 -
’(1) o K, (e fh_’l ) +0 ((—-———mj(p)) )

- pljdof of Theorem 1. .0 )

’ themaxunum yolufﬁg ofa tétrahedrdn), satisfies

%o volC) =K (58 <o)+ Osta) o),

for a certain constant K. . Our is * : s e
: 1= ur goa. _to... W th n
dcﬁCiF 5 Olios(n) 1 I g 1is to show that.-the~eumqlati1v¢->volumcy‘

’ érﬁ‘iYs now ‘digiess o estimate the deficit of a tﬁangle 6btai;1ed by applying an’
_ arbltrary complex analytic function 7 to the vertices o ilateral ‘

lex a ! g ices of an equilateral triangle.

Subsequently we will- apply this result using the map k. : £ m‘al'lg]e.

of the-errorferm-on—R-can-now-be-easily deduced A disk .~ |

A, under /7 . -

o In general ‘we'may chan e 3 L
I ge /by postcomiposing with a translati:
. . A o ; a
fixes the origin. Let us expand f-as a power series” - - k tlor;rso that f

. f(?)=ﬂz+b224:cz3+...




rcan be‘épproximated by an-integral:

o - - e =y MR A bid o
R K o ; -\,\-\ e FARSANy AR WL A RURSIUN

L PR 2 > : - . ; . . : . ! : ‘
-Since '¢".is-proportional to'the area of the triangle, the total volume ‘deficit

WULTATIUIN Lo AN L A A e v o

T that have no face on the boundary then there are at least ‘m+6 tetrahedra of
7 tHat have two faces on the boundary. Since this quantity is O(log(n)), we

good triangles

: Bg good tﬂarfgl.es' w3e mean those that have no badkvertex.f' Thé ‘COkntl'ibly.’ltiOIi
,?.' the 0.(((?/1111(‘17)) ). termin (1) 1§ at most a constant because on ‘the good
riangles inj(p) 'is at least . This has been included’in the O (1):term in’(2)

- g}o‘n(sitzl_n; Thg contribution of the part of the icosahedron that'is farther than a
2 e ;stancﬁe & away.from a bad vertex is also bounided by a constant.” This i
~because the integrand is continuous and bounided except near the bad vertices

l"-[;hdt;‘onlY,;COnt‘ribu'giOn‘ left to evaluate is that of the annular regions of inner
us & and ‘outer radlus:'s0 centered- on ‘the bad vcrtié‘ s (where ¢ is the

~ triangle mesh size). T :
Near the bad vertices & behaves like z° where f = 6/5 if the bad'vel;féi

is an icosahedron vertex and f'= -1 if the bad vertex is the one mapped -

tomﬁmty (The. loqal cc:)or'dinates are.chosen so that the bad point is at the
origin.) The entire deficit is estimated to within an ‘additive constant by the
sum (over bad vertices) of the integrals of K (1/4)(B—- %1y |z]2)' over annular

 Tegions centered at the bad vertices with fixed outer radius &, and inner radius
; gpprgpmate}y ¢gqal to thg mgsh size ‘£ . The value of each 'of these integrals'is

K348~ 1)*2n(loge, — loge) .

'0(log(n)() : ihis complf:tes the proof that vol(P(k)) =nVy—O(log(n)). O

; 5) (Iccc)) ﬁ?als ta 1'»ro(liuime deficit that is small compared to the number of tetrahedra
“to completely determine the minimal extensions of P(k) to the ball; provided
- ‘that k- is sufficiently large. s of P(k) to the bau’ pl'OYldédy

Theorem 1. For sufficiently large k, any exposed triangufatian'of the ball ‘ex-

: cone-type triangulation.

i :)x}g ]twl?i:sgzqafy;?f P(lk) . ‘l;’lor)any fixed ¢, at most O(log(n)) - of the simplicies
. vevolume less than V< ¢ In particul of its sim-
of me less f : ar, only:O(log(n)) of its sim~
: phcesjvcan touch the boundaryon two faces, since such simplices hzwc volume
roughly (2/3)%,. : N s el
: Sx;xce. T ’;IS minifnal iftycakn have no more tetrahedra thén“ any COne~fype frl-‘
;guG anox}q. “By coning to'a '\rertex of degree six we obtain a tﬁangulatidn with
= tetrahedrg, where Fis the number of faces. If there are m tetrahedra in

The contribution of the bad triangles (those with a bad vertex)'is also only &
_pentagon. It is convenient to color the faéesof o, red or white; according to

Jif T is an apple with'a red
‘red. - : :

Since: =loge = log(1l/e) = O'(lbg(n)),"we /have bounded the déﬁéit by :

3.5. The structure of minimal triangulations. _We,;sha]Lndwuépply‘ﬂié.fact.that |

tending the boundary of P(k) - having the minimum number of tetrahedra is a

Proof .- Suppose that' T .is any minimal exposed triangulation of the'bayll“éitend~ ‘

x (2)' L R UNEE conclude that m = O(log(n)) - Thus, most of the tetrahedra of T have exactly
e SR e / K, 0 'd4+0(1). \ one face on the boundary. : , : e
S T " The three-dimensional triangulation near a vertex v has several possibilities.

To analyze the possibilities, let B, be the union of tetrahedra that have v . as

a vertex. B, is a ball and its boundary is composed of two parts:s N, , the
Linion of the triangles of P(k) containing v asa vertex, and . Q; , the union of .
{he remaining triangles. N, and O, ‘are joined-along a polygon p, whichis-a -
‘hexagon unless v is one of the twelve verti

ces of order 5, in which case itisa

hether they are faces of the boundary P(k) of T . (This happens naturally:
skin and a white interior.) All the faces of N, are

vertex v-isan ordinary vertex if ,the‘triangiﬂation of Q, is isomorphic to
hat of N, with exactly one interior vertex and all triangles having one corner
in the interior and an edge along p. It is a cone vertex if B, = T, so that"
he entire triangulation is a cone-type triangulation to'.v. If v 'is neither an-.
rdinary vertex nior:a cone vertex, it is an extraordinary vertex.
' We shall show that if v is extraordinary, then either (1) at least one pair
f triangles of . NV, belong to a common ‘tetrahedron, or (2) there is at least
ne white triangle of @, that:does not have an edge on. he boundary of @,.°
Suppose that v is extraordinary and that (2) is false; that is, all white triangles -

; The ve

of Q, have an edge on the boundary of Q, . There is at least one white triangle
of :Q, (otherwise v. would be a cone vertex). If one of these white triangles has "
two edges on the boundary.of @, ‘then two of the other sides of its tetrahedron
are triangles of N, . In this case statement-(l)‘ holds. - A S
It.remains.to consider the case in which all of the white triangles of 0, have.
exactly one of their edges on the boundary of @, . Two white triangles are said
10 be adjacent if they share an edge. Consider a maximal set of adjacent white
trianglés of ' @, This set is either a cycle of whitettiaanés_ot it'is'a sequence"
of white triangles bounded at each end by a red triangle. If the former: case
occurs it shows that v must have been an ordinary vertex. In the latter case,let
e-be the edge on one end of the sequence of white triangles separating it froma.
red triangle and let f be the edge on the other end of the sequence separating
it from a red triangle. A cycle of length four on the boundary of polyhedron
P(k) is formed by e and f along with two edges incident on v. In:P(k)
e only cycles of length four are the boundary of the union of two adjacent
triangles. Therefore, the only possibility is that the length of the sequence of -
white triangles is either 1 or order (v)'=1. In the first case, the single white
triangle would actually have been red (all of its edges arz on the boundary of
P(k)), contrary to assumption. In the latter case, O, would have had one red

t'ria'ngltna and order{v)~1 white triangles; making it an ordinary vertex after all. -
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' 'We shall show that none of these four blemishes can actually exist. That .
~is.-the unique minimum way to triangulateeach of :the blemishes is to cone to
vertex v We- shall use four proofs, one for each of the blemish types.: The
“Let-m be the map from the faces of the polyhedron to'th impossibility of (b) and (d) follows from that of (a) and (¢).: The‘proofs that (a)
bblyhedronthat associates 10 a S e POy Lo e Vngccs of the : and (c) are impossible are hyperbolic volume argumients similar to those used to
T Having: [ as:a face. If fo :ndac;, afreﬂ; fcil‘;r;#;yengx o]fvth; ‘tetrabgd,r(?y Of prové the bounds of §§3.3 and 3.4. Each proof describes how the blemish-is to
Cvertex v 5 then m( N=m(g). P v : ac¢s m v wor 3“ y ordinary © he embedded in hyperbolic three-space, evaluates the volume of the embedding, -
‘ oy RO S e L , o . and finally shows that the volume is so large that any other triangulation besides
L“ tConspdekr the partition of the faces ofthe polyhedron according to. m(f) C(v") uses more simplices SR T : , _—

& . . . R e o e : g S o
s l;sea::uzz tﬂilatfthgrg is no cone vertex. Any two distinct partition elements ~ Case (a) is the easiest to resolve. We can embed the boundary of the blemish .
" axiraon din;; eﬁ' {omAea'ch other by a cycle of edges passing only through o that all its vertices except v* agree with the vertices of the equilateral trian-

the surface gt?t ices. A simple curve of length m on the icosahedron separate gulation of the plane and v" is mapped to the point at infinity.’ (The boundary
wo regionis, at least one of which hasarea 4 less than the area . of the blemish is the same as the boundary of one of the partial tessellations

i oot follows t}1ai there are at. most O(log(n)) ekiraordiﬁéry vérlices; since at
each extraordinary vertex lhere isat least one corner of a simplex either touching ‘
aT on two faces or on no faces; and there are only  O{log(n)) ‘such simplices,

‘ tolfaztl' gg:li):iiiil;iugg;:z‘f m 1?}11'the Pla\lile;.that‘is; 34 < mz/ 47, -1t follows of space with-‘maximal 'simplit:ei described in §3.3.) The triangulation of the
Dsa ) sk sl must have 7 — 0((10g(211)) ) faces, and the othe blemish obtained by coning to v contains only simplices of maximal volume,:
- O(log(n)) partition elements are of size O((log(n))7) . S and these are nonoverlapping. Therefore, any triangulation of this blemnish that
‘ uses a simplex of less than maximal volume would use at least one more sim-
‘ “plex. The only way to-avoid using a simplex of less than maximal volume is
’ .FOr ez}ch,,ffiangle of the big o poner Ciheiois Siorahadion SF T oo fha , l.J,y coni}-lg 10 'v*; ,It;is eas)t,tq see t'his by considering a :simplex; s .w'ith one (?f W
t‘rfangle to a common vertex v*. Thus T is almost a cone-type triangulation its vertices at v ;,anq,havmg a face Qn‘the bqudary;ot'; the ~b¥er{115h. Ifsis
~ with just a few possible bad spots. The places where T ‘may disagree with the - of max;mg} 'kvolum.e,‘lts fp}lrth’ vertex must be at the 1aytty1c.cpo1.nt‘on lthqcom-
Qone-typfe trigggulatiqn : C(v‘ ) are in the volumes bounded by'~the tﬁangﬁlaﬁdh plex plape nea;est its ‘gthe‘r AtWOVVﬁCIftICe’s_" Remqv.mg 1 s:‘and}tgyx:au‘ng fth1§ process .
- of the big comporient and the blemishes. We know the triangulations of the sh.'qws‘t‘haj[ the onl*y triangulation exclusively usmgma?umal slmphcgs: 15 a cone
boundaries of these volumes, but the interior triangulations are unknown. To tangulationto v*..
- complete the analysis, we shall show that the triangulations of the volumes o - Case (b) can be haidled in & similar fashion. Again. embed the boundary of
: these’ bl¢mishes in fact miust also agree with C(v{*‘) , given that they are minima ’ the ble;msh s0 that all its vertices ‘?XCBI{F V' agree W‘l,th‘lhe ‘\{emgcs pf t%le equi-
triangulations. SR o ST T T e lateral triangulation of the plane and v" is mapped to:the point at infinity. The -

-The boundary of P(k)} minus the large component is a cdlleé_tiod of éimpiy ,

conneé‘ted;regidns.f Call each of these components a blemish. '

resulting object resembles an annular cylinder in which the hole is hexagonal.
~Now each simplex of the cone triangulation. C(v") has maximal volume, and.

eofbgnl_n :

ary they have. Here are the four types. o

- /“(a‘)

The blemishes can be sorted into four types,Jdependiwngfgg_fgbei_tﬁp

L L ) : . T these simplices :are nonoverlapping. ‘Again, this is the only -possible minimal
The blemish contains no vertex of degree five, and does not contain v’ triangulation extending the boundary of the blemish. -
In'this case the boundary is a portion of the tessellation of the plane by  There is another approach to eliminating type (b) blemishes. Let B bea
~equilateral triangles, with the boundary of these triahglés et ~ type (b) blemish. By gluing six implices to the boundary of B around v we
(b) The blemish contains no vertex of. degree five, and v* is among the obtain a blemish B' of type (a).” Suppose there were an alternative method
- vertices of the blemish. The boundary of the blemish is not a sphere; of triangulating B that used no more simplices than coning to v". Then this
.it ' may be chosen to-be homeomorphic to-a sphere with' the north pole alternative triangulation could be-made into a noncone-type triangulation of
: and south pole identified. S N B’ using no more simplices than the cone-type triangulation of B'. We have
~(c) The blemish contains a vertex of degree five, and v*' is not among the  already shown that such alternative triangulations do not exist.. e
. vertices of the blemish. The boundary triangulation is obtained from a It remains for us to deal with the twelve possible blemishes of types(c).and
regular pentagon by first subdividing into five triangles; thénsubciividiﬂg ~(d). The same argument used above implies that if we can show that-a blemish

: of type (c) must be triangulated with a cone-type triangulation then one of type-

(d) must also. Thus it only. remains to deal with the type (c) blemishes. ‘

 these into congruent subtriangles, repeating this process, taking a subset
~ We can embed the boundary of any such blemish in hyperbolic space as
follows. ‘First we construct artiling pf the plane with nearly equilateral triangles

of this, and then coning its boundary to one extra vertex " . :
The. blemish contains- a vertex of degree five, and.'v* is among the
vertices of the blemish. This case islike (b) and. (c) combined.




L e T DT T A e 2 R0 A8 RVAL WY AHOUU YIRE -1NE 1esse€iation ol the
& plane; b): equilateral lriang_les.‘ First remove a wedge (with'its apex at the origin)
o co,rflammg one sixth of the triangles. Now raise every point 1o the power 6/5 .-

: ‘which-closes the gap left by removing the wedge.  (Figure 10 shows .a portior;
‘of Ihi.s tiling.) - Now' select. a connected ‘subset of this tiling -of the planie that -
cont;ams the vertex-of degree five; such that this subset is 1somorphic ‘to the
: ,g?nlonhof the boundary. of the blémish cornihg from the bbundary of “Plky.

ace the vertex v* at infinity tc ‘ ddi " f
e Slatta ’ y to coTnplete thé‘ cmbeddmg of tﬂhe bogpdary of
~In ‘this embedding, the simplices of ‘the cone iriaﬁgulation C(v*‘) are not:
- regular,but they are nearly regular; ‘To evaluate the deficit of this structure one
~can QO a numerical calculation. To simplify matters we embed the blerish in
alarger :v,tructurc, one in which:the portion of the tiling of the complex plaheA is
shaped like a regular pentagon: Let J-bethe numberof edgesin the subdivision
of each edge of .the pentagon, so that the pentégon has' 5 jz‘ triénglés. We shalll
show-that the only way to minimally triangulate this extended blemish istoconé’

Consider a triangulation- 7"-of the blcmish that lias exactly one simplex with™
two faces on the base of the blemish; exacily one simplex with no faces on the -
~ base, and all other simplices coned from the base of -the blemish to- ¥" .- In
~order for this triangulatiofi to use no more tetrahedra than the canonical'one,’
the blemish must be large eriongh so that the deficit of the entire structure is
at least 0.3333. Table 1 shows that the radius must therefore be at least 64.

" Because T has only iwo deviant tetrahedra (tetrahedra that are not conéd to
y*), it has at-most eight. extraordinaryvertices. It therefore must ‘be possible

" 6 embed this blemish in a pentagon of radius at most eight. Since-eight isless

than 64 ,-such a triangulation - T is impossible. ‘ S

Before there is enough volume deficit for.a second simplex’ touching two
‘faces, the radius of the blemish-would have to double at least eight more times,
to more than 4000, Such a triangulation could be embedded in a pentagon of
‘radius at'most 16 The reasoning used above shows that this too'is'impossible..
In general, no matter how many of these deviant simplices there are, the radius
required to achieve the necessary deficit is much bigger than required to absorb
that many simplices, This completes the proof of Theorem 1.c .0~

ot 5 e . ,
¢ When wcﬁeia‘pply the volume qstimate of §3.4 to the above mappiﬁgan‘d e\‘r‘al-‘
‘uate the constants, we obtain the following fo;fmula for the deficit. :
Lo DN =gh()+0). ‘
Numerical calqulation.Can be used to determine the behavior of the 0( 1) term
The results are shown in Table 1. The deficit increases by about .0363 each time
s d(_)ubh?d,‘ and the. Q(l) term is approaching .08538--. . (Our formula
: for estimating the deficit did not take into account the deficit from the five
o ’tgtrahedra around the core of the blemish; note ‘that the error term is’ alWay
less than the deficit accounted for by these central tetrahedra.) . S

-If the sizes of the deficits were not quite so small, this argumnent would not
work for small j, and we could only deduce'that the minimal -number of sim-
plices was within an additive constant of the number for C(v"). For example,
consider the sequence of subdivisions of the tetrahedron or of the octahedron
instead of the icosahedron. For a tetrahedron, the numbers do not work out:
in fact, the cone-type triangulations of subdivisions of the tetrahedron can be
improved: by first cutting off the corners:: Thisfact manifests itself in Table 2 -
in which the deficit is more than 1 even for small values of j. S

{ Tdanglés' Deficit  Estimated Error I Triangles Deficit * Estimated Error
- 5 - =5—087935--000000~ ~:087935 | 3 1.014042 0.000000 1.014942
al 20 122353 .036293  .086060 2 12 1520982 0.544397  0.976585
8 80 .158141 .072586  .085554 4| - 48 2054948 1.088793 0.966155
e ~~~i320‘-194304 108879 085424 . “8 1924 2596627 1:633190  0.963437
2 Slgg'“gggggg wigfigé 085391 . 16 768 3.140336 2.177586 0.962750
o 266849 . 085383 - 32| - 3072 3.684560 2.721983 0.962578
64 | 20480 .303140 217759 i

.085381

L : 641 12288 4228914 3.266379 = 0.962535 P
mal triangulation of ‘the For .an ‘octahedron, the numbers work easily to prove that the cone-type ‘tri-
‘rnpllix with two faces on. ‘angulation is minimal: a blemish with deficit P} must have radius more than -
i i . simplices 1s-no more than 11, at which size it is easy to see that one can replace it with smaller blemishes:
g:nrgm;bgggoff::g: (t)é‘ tI;e/gaie_ Ogl;; ;i eﬁcvlvt, of ? S;mplex touching two faces See Table 3. However, in this case, the cone-type triangulation of the blemish is
for simplices having two faces sharin i éde calcu a}‘led values of the deficit not unique. Already the blemish of radius 1 has deficit 0.395904. This blemish
smallest deficit of any such tetrahedroi e 3g3€3§1ear the vvertex‘ of order 5; the s the octahedron, which admits three diﬁ'ergnt minimal triangulations (related

. Ve : : ’ : .by the symmetry of the octahedron). This-octahedron is contained within the "
; : - cone-type triangulations of all the larger blemishes; so nonie of them are unique.

: If there were ahy extraordinary vertices in‘a mini
‘ bIe;msh, the‘n‘there’ would have to be at least oné 'si
the base of the blemish; since the total number of. s
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we obtain as quolicnt space a p‘olyhedron"lhat has
coming from 0, v, vy, and v, + v ) while -all
It can be realized in'space as'a tetrahedron,

plane by the group action;
four vertices of order three (
the other vertices are of order SiX.

TABLE3

Triangles = Deficit. - Estimated ~ Error

J

1 -4--0:395904-0.000000 . 0.39 5904 with a finer triangulation by equilateral triangles drawn on its surface. Its area

?- 16 . 0.566991 . 0.181466 0.385525 is the sum of the area of the black and the white parallelograms. The number

4 .64 0.745656 0.362931 0.382725 ~of vertices is the area of the tetrahedron, divided by the area of the smallest lat-
82567 0.926398 . 0.544397 - 0382002 " tice parallelogram, plus two. Using this information, it'is not hard to comstruct.
UL 484 1.009655 - 0.627768 " 0.381887 an example of this type with any even number of vertices bigger than two and -

16 | 1024 1.107681 0.725862  0.381819 where the vertices of order three are fairly far apart. LI
32 - 4096- 1.289101 0.907328- 0.381774 A A slight modification of this construction gives rise to triangulated polyhedra
641 16384 1470555 1088793 = 0.381762 with n vertices for any n > 8. In the new construction superimpose on the

‘ ‘original equilateral triangulation'a triangillation by equ‘ilateral triangles of half
jginis in the middle of an edge of a°

‘the edge length, arranged so that the ori|
‘larger triangle. ‘Call the vertices of the larger triangles coarse. vertices, and- all
the remaining vertices fine vertices. et the equilateral triangles formed by three.
neighboring coarse vertices be called coarse triangles, and define fine triangles
analogously. Choose v, and v, S0 ";hat Vs Vi and. v, +v, are all fine vertices.
‘Mark out the lattice generated by v; and v, . Itis again the case thata rotation .
by 180° about any lattice point preserves both the coarse and the fine vertices. - -
Now cuf_out from the plane all coarse triangles that touch a lattice point; The -
‘picture is now the plane minus a collection of ‘parallelograms (each formed

by a pair of missing coarse triangles). Form the quotient space by the group
nts, as before. The four edges of -

generated by 180° rotations about lattice poi
each of the missing parallelograms fold up to form a'bi-gon. Glue ‘together the
“two edges of the bi-gon to form a single edge. The desired triangulation is that -
‘obtained by considering the coarse vertices and the coarse triangles. Each vertex
is.of ‘order six except those near the missing parallelograms. Each of the four
missing_parallelograms creates a vertex'of order five and a vértex of order four.
(The process ‘described here breaks down if ‘n 18 1€85
these smiall niimbers the deleted parallelograms are not disjoint.) Figure'11(a)
shows the first stage of the constructure of a polyhedron of nine vertices.: The
fine triangles are not shown. Figure 11(b) shows the triangulation that results
from this choice of lattice vertices. - : e o
“The number of vertices ina triangulation formed by this process is just twice

‘the area of a lattice parallelogram as measured in units. of coarse parallelograms
“/(each of which is two ‘coarse triangles). 'To prove that we can obtain trian-
gulations with any number of vertices, we need to show that there is'a basis
parallelogram for the lattice that has any desired half-integral area: The follow-- -
" ‘ing paragraph describes how 1o do-this in such a way that the lengths of the )
“basis vectors are G(nm) g0 e ' SR

Choose afine vertex as th
.-axes such that (1) they go through: the origin,:
(3) they are ‘parallel to one'of the -sides of each

. Theorem 1 applies to°a far wider variety of triangulations than P (k). Our
~pr‘oofs of ‘both Lemma 8 and Theorern 1 apply with-almost no changes to any
tnangulz.mon’ satisfying the following conditions: (1)-All the vertices are of order :
ﬁye or'six. (2) Ihe triangulation can be drawn with equilateral trianglés on the
g iurface of .a"convex polytope whose shape is distorted from-a sphere by only a
constant amount.” (3) Within a radius'of O{logn) of any vertex of order five
thc,tnangulation is isomorphic to Figure 10,‘ and elsewhere it is isdrhorphic‘ 'tc;
the standard tessellation of the plane by equilateral triangles. - *
- To prove a result analogous to Lemma 8 for this class of ti’iangulziﬁéns we
,ﬁrst’need to map the triangulation to a sphere, with a ‘map that is conformal '
 everywhere except at the vertices of order five: In the proof of Lemma 8 we
*-used the'Riemann mapping theorem. Here we must use-a more general theorem -
called the ‘uniformization’ theorem. - It tells us that there is a map from the
surf?ce «of any polytope to a sphere that is conformal everywhere except at the
vertices: of the polytope. "Furthermorer the fact that the polytope is distorted
-~ from-a sphere by: only a constant amount allows this map to have its derivative
e n’ded;below«and-itsllsecond-:‘der-ivative~boundediab0\fe‘away from:-the:-vertices.

bou

Thes.e‘are the bot;nds required for the proof. ‘ :
Given condition (3) on the triangulation and the O(logn) bound on the
deficit of the embedding, the same reasoning employed in the proof of Theorem
1 show; that the cone-type triangulation is the minimal for these triangulationé.
To prove t.hat d(n).=t(n) = 2n — 10 for all sufficiently large values of ' it

- only remains to show hHow to constriict an appropriate triangulation‘for ev:ary
sufﬁf:lenﬂy large n. We shall now give this construction. - Sl
F;;'st ‘COL'lSidEI' the triangulation of the plane by equilateral triangles affanged
~ so that one vertex is at the origin. Pick any other two vertices v, ‘and ,v so that
the three are not collinear and mark off the sublattice they geiierate. 'zThere 1s
a:group of symmetries of the triangulation generated by 180 rotations about
0, v :‘md v, . Each of these rotations preserves the lattice we have marked
T—of.i’.f Ihls group preserves not only ‘the tessellation of the plane by equilateral
 triangles, but-also a tessellation by parallelograms congruent to the one spanned

’ by.v; “and v, .- If the parallelograms are colored black and white in a checke
board pattern; the coloring is also preserved by the group. : If “we fold up the

he origin. Then choése‘nyo,n(irthogonal x and ky
(2) they-avoid all coarse vertices,
coarse triangle; and (4) the x.

s thian eight;-because-for-- -~ -



- the area of the resulting parallelogram, (in the metric of this coordinate system)
-{s the desired value n and the paralleiogtam is nearly square. Let

a=1, b=[n'?]) e=[E-1], d=cb-n.
The area of the parallelogram'is bc —ad = bc — (cb ~n) = n. It is also easy to
' see that all the sides are ©(n'/?) in length. ‘ : R V
A further modification gives rise to triangulations with twelve order five ver-
tices and all others of order six, as follows.” First, consider a triangle 7" with
coarse vertices and with sides a ;b ,'and ¢ in counterclockwise order. Let p
be the vertex between sides ‘@ and . Around the vertex p, one can arrange six
triangles, alternating between equilateral triangles and-congruent copies of - T°
arranged so that one of the other corners is at” p: The union of ‘the six triangles
covers a hexagon H with sides of type,a; b, ¢, a, b,and ¢ in counterclock-
~ wise order, with opposite sides parallel. The hexagon admits a 180 ° symmetry.
The ‘point of symmetry is always on"a coarse or fine vertex; which type de-
pends on the original triangle 7 . For present purposes, it'is desirable that T
“be ne‘arly_ equilateral and that the point of symmetry be a fine vértex. We can.
construct such a ‘7" by starting ‘Wwith a large’ equilateral triangle on the coarse
vertices and moving one of the vertices of this triangle to one of the six nearby
coarse vertices. Figure 12'shows how the hexagon is formed. from three copies -
of a triangle-a ;- b, ¢, and three equilatéraltriangle& ‘ e :
-~ Use H and T to construct the desired triangulation as follows. As in the
previous construction, let the origin be a fine vertex, and choose vectors v, and -
v, on fine vertices so that. v, 4 v, is also a fine vertex.: Fo’rm*thé lattice from -
these two ‘vectors. Now, instead of removing the two coarse triangles near each :
lattice point; remove a copy.of H centered there. Form the quotient by the ' !
same group of symmetries, generated by order two rotations about lattice points. -~ g
: Thesefsymmet-ries—carry—the-copiés‘»of¥H‘~tov~themselves—so-‘tﬂhat—the-quétient—i's~a~-~ e
shrfacé with boundary; where each boundary component has three edges of types
a, b, and c. Glue a copy of T to each one. (In the previous construction,
~each: missing p’arall‘elogram'bvecame 4 bi-gon, which ‘wé then closed up. Here
the missing Hexagon becomes a missing triangle, and we. patch the hole with a.
copy of T':) The polyhedron we obtain has twelve vertices of degree five.(one
- at each corner of each copy of T'' that is inserted); and all the other vertices.
“"have degree six: S S : I

-FIGURE 11. Constructing a triangulation of nine ver-
tices, ‘one of order six; four, of order five, and four of
order four.  (a) shows the coarse triangles, the lattice
- points, and the lines between: the Jattice p(ﬁnté@ The
shaded ‘parallelograms are the ones that are removed
(b) 'shows’ the triangulation thai resulis. S

B ]
. 5

. :1};:;51; ;531 : 1L:locl‘c(;‘visef"of the y-axis. In the % ‘dll'rection let the unit distance be
: a side of a coarse triarigle. In the y directi e unit di
b ihe ot oy oA , -y 10n let the unit distarnce

“io Tt is easy to obtain such:a polyhedron ‘for any;suﬁicicntiy“ large . First
construct a* T that'contains about. an coarse vertices, where « is'some small
- frac’tion,‘s‘ay 1/20. Let |T| bethe numbér of coarse vertices in'T", not counting
~boundary vertices. Construct H ,and define |H| similarly. Let n" = n—2|H|+
4|T|. Now choose v; and v, such that they would give a construction with 7.
vertices withOut'replacing,the'hexagons'by triangles. ‘When this replacement is
done, the number of vertices left IS L :
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éleven or less, hén ofie can begin by constructing the cone triangulationto v, .
The:union'of tetrahedra that touch v, ” side of- p-form a sibpolyhedron :Q,~

which-has a cone-type triangulation 1o v;— but-on the boundary of @ v has :
order-the {ength of p, which is'not:more than eleven; Replacing the triangula-
tion of Q' by the cone to v, ‘reduces the number of tetrahedra.-This idea can

be iterated. There are sometimes situations where several ‘moves of this type

that'do not reduce the number of tétrahedra; but maintain it at a constant, are
necessary before a move of this type ‘can reduce the number. Tt is possible to
get from any triangulation to any other if we allow moves of this type that may
increase the number of tetrahedra. We know of no instance, however, where in

Grder to decrease the number of tetrahedra; it is first necessaryto increase the

number. : B , : : . :
A more complete ‘development -of ‘our method would allow other types of = °
blemishes that are not nearly round and that touch the boundary triangilation
: is not necessarily a disk: The estimates would be ruch stronger -
method :would show:thatif there:aremo: -
: e , ; ir; he‘mjectxmtyffradxus,lsalwaysﬁbiggcn~thai1‘ S
 Fioure 1 2. The way thfee‘copies o tﬁangle o " L me _constant, thé’é‘_the pdne— ype-triangulation‘is :ifmiqimal‘tﬂaﬁgula;iOn. ;
“:glued together, along with three‘équilatera[tg?; 'i) are The role that geometry ;p}ays ir'rthis‘ 'prob'lem may seem mysterious. .There: :
form a hexagon. Note that the hexagon has 1 8(])J§ es, to S ~ ‘should be an analysis that is entirely combinatorial. - It may help clarify the ..
Cmetry. ' i e BT 88 AOL L YT S relation to combinatorics if we point out the relation of this question to network
' " flow problems, and to the “max flow min cut” principle.. e
To develop this idea, consider the (n— 1)-simplex A""! . which has n ver-.
tices vy, ..., ¥, ;- This circular order defines a Hamiltonian circuit in the
1-skeleton of A~%, which we can think-of as identified with the boundary of
our original polygon.  The sum of the oriented edges of this circuit is'a 1-cycle
oA triangulation of the disk def;riés a'2-chain ¢ such that dg = a,isincg oo
each triple of vertices of o spans a unique triangle in the 2-skeleton of AT
- Consider two different triangulations of the-disk; giving two-different 2-chains -
g; and 0,. Then z=0;-0, i a 2-cycle. Define the quantity g(z) to be the T
minimum L' norm of a 3-chain T such that 8T = z. (The L' norm of a:
chain is the sum of the absolute values of its coefficients.) Both the minimum.
numbcr of elementary moves to get from o, to o, and the minimum npmber
est-possible extens :‘ id be mice of 3-simplices it takes to extend th_e trian'gulation they define to the ba}lvgive
ati criterion qf-y\ihen this is the case. Even when coné-type' sriafEn ~ upper bounds for g(z). Geometrically, if z comes from a triangulation of
ations are ~}101: the best possible, they provide a seemi R angw the boundary of a ball; then any 3-chain T such'that 8T = z can be mapped -
ﬁndm*gfa minimum triangulation: begin with a cone-tylpig?lzi eﬂic}le at method of into the ball,'giving a possibly multiple-valued triangulation of the ball, where
tex v* of maximal .prder. Now look for subpoiyhédra wherzriiz Zggn foaver tetrahedra with fractional weights are alldwcd;fbut the weights of overlapping
et Tt e el for the botadary Yiangilation Spnbhite terahedra must add up 0 L ateach point. e
'if one begi € subpoly gdrqn bya dlﬂ'grent cone-triangulation. For instance, th fin al-tria gulg tions, theiprqbleﬁ,‘ of finding -
begins with a triangulation of the sphere having vertices v , and v ‘of" e at 0 with minimum. L! linear problem:+it -
2308 ~

orders ; - 3 } I ey : e : . : s
s say liifteen and tWCIYC, separated by a simple cycle of edges "p of length - ““isa’question’ of minimizing a convex function subject to a linear constraint.
: . ‘ S PR : T:herefore there isa Qual problem. The dual space of kthe space C, . of k-chains. -

/

/,

by
"

“in a'surface that

a .

e (;:I ea:;' tf? S;e that the resulting triangulation has all the properties required.
for, proof of Theorem 1 to apply, and it has any SuﬁiCienﬂy Jarge numberﬁ .

; kof vertices. Thus we have proved the following theorem.

'. 'rhe"?e“" 2. tn)y=d (ﬁ);‘= 2,”_ 10 for all suﬁci‘ently;la‘rge’ values OJ; n

- = - L ._f4:WR,EMARAKS..AND«QWSTI‘ONSN,.w,,,;..,.ﬁ, G
" —p;'ore;ult:;ay nothing about small values of 1. We conjecture that #(n) =
i Pmb(;;l 7> 12, but we have been unable to extend our proof to show

k y.some more concrete calculations of voliimes and: trianguiationS'

i-=for polyhedra with low values of ‘n ; would show this




of a simplicial complex is denoted C the space of k cochains, A k-cochain.

115 a‘linear function onthe k-chains, and it'is determined by its values on the

oriented simplices; since they s span‘the space (and a choice. of an orientation oi-
each: sxmplex gives a-basis). The coboundary map ¢ ‘maps ck ito ckrt . ;'when k

-fB-is:an onented k+ 1-simplex and ¢ is'a k-cochain, 6(ﬁ) is'e apphed to'the
Ssum 31,8 ‘of the onented faces of ﬁ A cochain whose coboundary 15 O is called
a cocyle

The dual problem is tlus given z, what is’ the mmlmum L°° ‘norm - h(z) 'of ‘

‘a3- ~cocycle: V- such that: (V,T)= 1, where T:is ‘any chain such-that. 9T

Here, (-, ) is'the dual pairing of cochams with chains. This formulatronf
depends on’ the fact that the simplex A"l g acyclzc that is, in any dtmensxon :

f}:l(cept 0 ’ every cycle is a boundary. Therefore if. T is any other chain such
at 8T nth,e drﬁ‘erence T~ T isa 3-cycle so there exists.a- 4—cham a
: Therefore - e

The solutions to the. dual p oblems satisfy..; (z) h(z), ,

ofa chamr_ T. gives an upper bound for 'g(z s
. ‘gives a lower bound The quantlty &(z).

1 /Iz(z) is.

i AT ! mto hyperbohc space deﬁnes a 3-cocycle V-

o asmgns to_any 3- cham -thealgebraic. volume of its image. (We: should (h de

al olume to. make it hterall / fit the formulation above.) If w
rselve to push -the tnangl S around so that they wer curyed, we

k \ angle s the bes ocycle: roblem
Pre mably some convex ¢o bmatlon of S T :
A cocycles - V. of th ,form
‘would give a cocycle of norm even’ . ' = used

- made use “of the’ fact that we only allowed mtegral cycle_s__h_, wit no.fractlonal

werghtmg :
'The quantlty g(z) was mtroduced and studred in a more general topologlcal

context by Gromov (see [12]) He proved that fo
mamfom M" e e : ra closed onented hyperboh

: of a hyperbohc n-srmplex To approach the best bound in this’ case of a closed
;mamfold itis ‘definitely . necessary toiuse 51mphces of fractronal Welghts Pe

haps this’ work w111 be useful m‘anal zing be
ést :
3—rnamfolds e s i g poss1b1e actual trlangulan ns
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ABsTRACT. A rotation in'a bmary tree is a local restructuring that changes
tree into another tree. Rotations are usef n the desxgn of tree-based data'struc
“*'tures. The rotation dtsrance between.a pzur of trees is the minimum number of
rotatlons needed 1o ‘convert one tree into the other In this paper we estab:
“lish a tight bound ‘of ‘27 =6 on the maxlmum rotation distance between  twi ; C s h 4. ;
i n:node trees for all large n. The: ‘hard and novel part of the proof is the lowe Lamine oo
e bound, which makes use of : volumetnc arguments in hyperbohc 3-space. Our e i ) b 0 0\
falso gives a tight:bound on the mmunum number ‘of tetrahedra needed- TME " o
i 'to dissect.a po Case and reveals conngctions among binary ‘

trees, triangulavions; ponEeHra, and Eyperbolic‘geornetry. :
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