1 710 078
AR

SIAM J. ComMPUT (© 1999 Society for Industrial and Applied Mathematics
Vol 28, No. 6, pp. 2285-2299

COMPUTING TWO-DIMENSIONAL INTEGER HULLS*

T P R WARWICK|HARVEY!

Abstract. An optimal algorithm is presented for computing the smallest set of linear inequalities
that define the integer hull of a possibly unbounded two-dimensional convex polygon R. Input to the
algorithm is a set of linear inequalities defining R, and the integer hull computed is the convex hull
of the integer points of R. It is proven that the integer hull has at most O(nlog Amqz) inequalities,
where n is the number of input inequalities and A4z is the magnitude of the largest input coefficient.
It is shown that the algorithm presented has complexity O(n log Amaz) and that this is optimal by
proving that the integer hull may have Q(nlog Amaz) inequalities in the worst case.

Key words. integer convex hull, linear inequalities, continued fractions
AMS subject classifications. 52C05, f!_Af)S, 68Q25, 90C10

PII. 8009753979528977X - — f

1. Introduction and motivation. In this paper we present an algorithm for
finding the integer hull of a possibly unbounded two-dimensional (planar) convex re-
gion in polynomial time, given the set of linear inequalities defining the region. By the
integer hull of a region we mean the convex hull of the integer points contained in that
region. This algorithm grew out of work in the field of constraint logic programming
(CLP) [11], specifically integer solvers for CLP. As a result, the algorithm is presented
in an incremental formulation (that is, the input is processed one inequality at a time
with the integer hull being updated fully after each) because that is what is most suit-
able for use in a CLP language. While a nonincremental formulation of the algorithm
can likely be made to run faster in practice, it will not improve the (worst case) time
complexity, since in section 7 we prove our algorithm is optimal.

We see this two-dimensional algorithm as a first step and hope to generalize it
to an algorithm for efficiently finding the integer hulls of systems in an arbitrary
number of dimensions. There are several reasons why being able to compute the
integer hull of a system is useful. The integer hull provides a convenient and concise
description of the set of all integer solutions of the input set, which is particularly
useful if the number of such solutions is large or even infinite. It also implicitly answers
the satisfiability question, which is the basis of constraint solvers for CLP. Thus
if incrementally computing the integer hull is efficient enough, it may provide an
interesting alternative to the partial solvers for integer CLP used to date (e.g., [7, 4,
10]). Finally, the integer hull allows integer linear optimization to be performed in
polynomial time by using real optimization algorithms, though this is likely to be of
limited utility unless a number of such optimizations are to be performed on the same
feasible set.

In section 2 we discuss existing and related work. In section 3 we discuss some
assumptions and notation. Section 4 shows how to find the integer hull of a single
pair of inequalities, while section 5 uses this technique to compute the integer hull of

“Received by the editors August 1, 1995; accepted for publication (in revised form) September
18, 1997; published electronically August 16, 1999.
http://www.siam.org/journals/sicomp/28-6 /28977.html
TDepartment of Computer Science, University of Melbourne, Parkville 3052, Australia. Present
address: School of Computer Science and Software Engineering, Monash University, Clayton 3168,
Australia (wharvey@cs.monash.edu.au).

2285

2286 WARWICK HARVEY

a full set of inequalities. In section 6 we prove a time bound on the algorithm, and in
section 7 we prove optimality. Finally, in section 8 we describe areas for future work.

2. Existing and related work. The only other existing algorithm for comput-
ing the integer hull of a polyhedron of which we are aware is presented in Schrijver [16,
Chap 23]. The algorithm works by successive approximation of the integer hull and
is guaranteed to terminate after a finite number of such approximation steps. Each
step involves finding the minimal total dual integral system describing the current
approximation. Since such a system can be exponentially large, clearly each step can
take exponential time. Moreover, Schrijver presents an example which shows that,
even when restricted to the two-dimensional case, the number of steps taken may be
exponential in the size of the problem. Our algorithm solves the given example in
linear time.

Kannan [12] gave an algorithm for two-dimensional linear integer optimization
in polynomial time (assuming the variables are nonnegative). Lenstra [13] showed
that linear integer optimization in any fixed number of dimensions could be done in
polynomial time. An interesting question is whether a similar result can be found for
the problem of computing the integer hull, i.e., whether if ¢an be done 1n poTynomlaI' :
time for any fixed number of dimensions. R

There exist a number of algorithms for computing the convex hull of a finite set
of points. Several algorithms and a review of others can be found in [9] and [15].
They include algorithms specifically for two dimensions, as well as algorithms for an
arbitrary number of dimensions. Attempting to use these algorithms to help find the
integer hull still leaves the problem of constructing the point set to give them and
does not allow the handling of infinite solution sets.

Quite a number of algorithms have been developed for finding a (precise) finite de-
scription of all solutions of linear Diophantine equations and inequalities. For example,
there are algorithms which focus on finding minimal solutions (e.g., [8]), algorithms
which focus on finding nonambiguous solutions (e.g., [1]), and algorithms which focus
on avoiding introducing slack variables (e.g., [2]). All of these algorithms resort to
complete enumeration when the solution space is finite, which is inefficient if it is
particularly large. Whether this matters, and whether the integer hull would be a
better representation, depends on the end use for the algorithm.

3. Preliminaries. In the following, we assume that the coefficients of the input
mequalities are integers; rational coefficients can be handled by appropriate multipli-
cation. Because we are working in two dimensions, any given inequality C; (for some
t) can be written in the form

a;r + biy <.

For each such inequality, we assume that ged(|a;], |b;]) = 1. If this is not the case (say,
ged(lag), |b:]) = k;), then it can be made so by replacing it with

2_1_4_2. &
EETRYS R

Note that the set of integer points satisfying this replacement inequality is exactly
the set of integer points satisfying the original inequality.
We also use C;° to denote the supporting line of C;, namely,

a;x + by =¢;.

TWO-DIMENSIONAL INTEGER HULLS 2287

We make use of a number of results from the theory of continued fractions. For
an introduction to continued fractions, see, for instance, [6] or [3, Chap. 32]. Briefly,
any quantity X can be written as

ay+ 1
as+ 1
as+ 1 ’

where the ax’s (called partial quotients) are integers and all denominators are positive.
The expansion terminates exactly when X is rational. The principal convergents of X
are rational approximations px /qx to X, obtained by truncating the continued fraction

expansion of X after the kth term. p; and gx can be computed using the recurrence
relations

po=1, p1=ai; Pr=0agPr-1+DPr-2, k>2;
9=0 q@=1 q=arqr-1+qr-2, k> 2.

The principal convergents are “good” approximations in that no simpler fraction is
as close to X in value as any particular principal convergent. If any ax > 1, then
between py_2/qk—_2 and pi/qr we define intermediate convergents

Dk—2 + JPk—1

- =1---ap—1.
Qe—2 + Jqk—1"

4. Finding the integer hull of a pair of inequalities. Before we look at the
full integer hull computation, we first show how to compute the integer hull of a pair
of inequalities that are adjacent on the (real) hull. This is a key step in computing
the integer hull of an arbitrary set of inequalities, which is described in section 5.

Assume the two inequalities are

sz +biy<ca (Cy),
asx + boy < e (Co).

Let A be the determinant of the coefficient matrix (i.e., A = a by —biasz). Without
loss of generality, assume that the (counterclockwise) angle between Cy and C, is less
than 180 degrees so that A > 0 (otherwise, swap C; and C,).

We now compute the intersection point of CT and C5°, which will be an extreme
point of the (real) feasible region. If this point is integral, then clearly we already have
the integer hull and we are done. Otherwise, we need to perform cuts to obtain the
integer hull. and we now describe how to compute exactly which cuts are needed to
completely define the integer hull.

First, we perform a unimodular' transformation from z and y to X and Y such
that one of the inequalities is transformed into an inequality in only one variable
(say, X), specifically, an inequality of the form X < ¢. We would also like the other
transformed inequality to have a nonpositive X coefficient and a positive Y coefficient
to ensure a standard orientation for later parts of the algorithm. The unimodularity of
the transformation ensures that computing the integer hull in XY space is equivalent

! A unimodular matrix (transformation) is an integral matrix with determinant £1. The main
property of interest to us here is that both the transformation and its inverse preserve integrality:
they both map integer points to integer points.

2288 WARWICK HARVEY

to doing it in xy space. To determine the transformation matrix, we thus need to
solve

a; b a g t u
w1 FRAIFRIE I

such that

(4.1b) (unimodularity) aé — By = %1,
(4.1¢) t<o0,
(4.1d) u > 0.

The transformed inequalities will then be

(4.2a) tX +uY <g¢,
(4.2b) X < e

LEMMA 4.1. The transformation matriz

[0} ,3 _ Qg + kbg by
vy o6 Yo ~ kaz —ay

satisfies the conditions (4.1), where ag and vy are any integral solution of azap+bayy =
N —=b
Land k = | =uegchin

Proof. It is straightforward that (4.1a), (4.1b), and (4.1d) hold. For (4.1c) we

have

t=a1a+ b1’)’ , L [(z ‘ — ¢
= ajog + kaybs + byyg — kbja, = a)0(0 + b, X) + K l'bl l)‘ 2~
—A {GIO‘OZ bivo +‘T—alaoA— bl'YO‘Il } = O o by, - A
. e " .
<0, since A > 0. a = A a ol 8s kN

A

We now find the integer point on the supporting line of (4.2a) that is immediately
on the feasible side of the supporting line of (4.2b), i.e., the point on the line with
the largest X coordinate while still being feasible (call it (x1,¥1)). Given an arbitrary
integral point (zy,yo) on the supporting line of (4.2a) (which we can find by using,
for example, a modified Euclid’s algorithm), the point we are after is given by

C— I c— T
(z1,11) = ($0+ [2 9 Uu, Yo — l-—z OJ t)-
u | U

We now translate the coordinate system so that this point becomes the new origin:

KR

This means the inequalities (4.2a) and (4.2b) now become

(4.3a) tX' +uY’' <o,
(4.3b) X' <ep -z

TWO-DIMENSIONAL INTEGER HULLS 2289

o<
P
A
fa—y
—

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4+ o+ 4

9» + o+ + o+ 4+ 4+ o+ o+ o+ o+ 1+ 4
81 + o+ + o+ o+ 4+ o+ o+ o+ o+ 4 L A
71 + o+ o+ o+ o+ o+ o+ 43 + o+ o+
6 ~12X' +19Y' <0

T + + + 4+ + o+ o+ 4+ x4 + o+ o+
51 + o+ o+ o+ o+ o+ o+ + o+ + o+ o+
4] + o+ + o+ 4+ 2T+ o+ 4 + o+ o+
3 + o+ o+ o+ + o+ o+ o+ o+ + o+ o+
24 + o+ + o+ o+ o+ o+ o+ o+ + o+ o+
11» + D+ o+ o+ o+ o+ o+ 4 4 + o+ o+

M2 3 45 6 7 8 0 W0RL121314X

F1G. 4.1. Two inequality integer hull ezample: the transformed initial inequalities.

For example, if the initial inequalities are 5z + 2y <8 and —2z + 3y < 4, the
transformed inequalities are —12X’ 4+ 19Y’ < 0 and X’ < 11, as shown in Figure 4.1.

We are now up to the “interesting” part, where we actually start computing the
integer hull. If we think of the boundary of the real region as being a piece of string,
and assume each integer point on the plane has a peg in it, finding the integer hull can
be thought of as pulling the string tight. To compute this, we essentially need to find
the points where the string bends. Due to our construction, there are no integer points
on (4.3a) between the origin and where it meets (4.3b), so the first of these articulation
points is the origin itself. The main task in finding the next one is determining the
gradient of the next segment of “string.” This involves rotating this “slack” section of
(4.3a) (between the origin and where it meets (4.3b)) clockwise about the origin until
it hits the first integer point(s) which satisfy (4.3b). The requirement that it satisfies
(4.3b) means we only consider points with X’-coordinate no greater than co — . If
we look at the problem in terms of the gradients of lines passing through the origin,
the feasible integer points correspond to gradients p/q such that ¢ < ¢y — ;. Thus
we are looking for the fraction p/q which is as close to ~t/u as possible (on the “less

than” side) with a denominator no greater than ¢2 — ;. To find it, we make use of
the following theorem.

THEOREM 4.2. Suppose we are required to find the fraction, whose denomina-
tor does not exceed D, which most closely approzimates, but is no greater than, the
quantity X. If we construct a sequence of fractions containing all the odd principal
convergents of X with their corresponding intermediate convergents (if such conver-
gents exist), then the fraction we desire is the element of this sequence with the largest
denominator no greater than D.

Proof. See, for example, [3, Chap. 32, sects. 12-16]. 0

Thus the fraction we are looking for can be found by searching the sequence of
odd principal convergents for ~t/u and the corresponding intermediate convergents
(these convergents correspond to the circled points in Figure 4.1). Since the inter-

2290 WARWICK HARVEY

mediate convergents, if any, have denominators in arithmetic progression hetween
the denominators of the principal convergents on either side, we actually only (con-
struct and) search the sequence of odd principal convergents and then compute the
appropriate intermediate convergent directly.

Let p/q be the fraction found by the search. Then this is the gradient of the line
from the origin to the first integer point encountered when sweeping the hull segment
around. Thus the next segment of the integer hull is given by

(4.4) -pX'+4Y' <0.
Transformed back to the original coordinate system, it is

(4.5) (Pé + qv)z — (pB + qa)y < —pz1 + qys.

As the next step in our algorithm, we determine whether this new inequality (4.4)
intersects (4.3b) (the vertical inequality) at an integer extreme point. If it does, then
we have finished computing the integer hull of the original pair of inequalities. If it
does not, then we need to proceed with computing the next cut. If we stay in X'Y”’
space, this is just the first cut of the integer hull of (4.4) and (4.3b). The inequalities
are already oriented appropriately, so we just need to translate them to bring them
into our standard form. This involves finding the integer point on the supporting line
of (4.4) that has greatest X’ coordinate while still being feasible with respect to (4.3b)
and moving it to the origin. Note that the “hard” part of finding this integer point,
namely, finding an arbitrary point on the line, can be skipped because we already
have one: the origin. Thus computing the translation is trivial. We also note that we
need not compute the list of convergents for the gradient of (4.4) because it is a prefix
of the list of convergents we already computed for —t/u (p/q was basically formed by
truncating the continued fraction expansion of —#/u).

5. Constructing the full two-dimensional integer hull. We now describe
how to find the full two-dimensional integer hull of a set of inequalities in an incremen-
tal fashion. Adding the first inequality (to an empty existing set) is straightforward
and obvious, so we concentrate on what happens when we add an inequality to an
existing integer hull. We keep the inequalities sorted based on orientation (e.g., using
the counterclockwise angle between the z-axis and the normal vector of the inequal-
ity). The question of what data structure to use to store the inequalities is deferred
to section 6, where we analyze the computational complexity of the algorithm.

Since the existing system is an integer hull, we may assume that it is satisfiable and
contains no redundant inequalities. Let the inequality being added be C = az+by < c.
The first thing we do is check whether the augmented system is (real) unsatisfiable.
This is equivalent to checking whether ax + by > ¢ (or equivalently az + by > ¢+ 1)
is (real) redundant with respect to the existing system.

An inequality is (real) redundant if every point that is feasible with respect to
every other inequality is also feasible with respect to this inequality. This means that
if it is redundant, its supporting line lies on or outside the convex hull of the other
inequalities and it is either parallel to the closest edge of the feasible region or there
is a closest vertex. For the first case (parallel), we can just check whether there is
another inequality with the same orientation and compare right-hand side constants.
Otherwise, for the second case, we can find the inequalities that belong just before
(Ci—1) and just after (C;y1), the inequality being checked (C;) in the sorted sequence,
and see whether these form a vertex which is both feasible with respect to C; and

TWO-DIMENSIONAL INTEGER HULLS 2291

also the closest feasible point to C;=. This is the case if the (counterclockwise) angle
between C,_; and Cjy is less than 180 degrees and the intersection of Ci-,and C
is feasible with respect to C;.

If we have discovered that the augmented system is unsatisfiable, then there is no
integer hull and we stop. Otherwise, we proceed by checking whether the inequality
we are adding is redundant. If it is, then we have nothing to do and the integer hull is
unchanged. Otherwise, we proceed to check the inequalities immediately before and
after it for redundancy. If the inequality immediately before (after) it is redundant,
the redundant inequality is discarded and the next inequality before (resp., after) it
is checked. This process continues until an irredundant inequality is found.

Note that at this point the set of inequalities define a convex hull (though most
likely not an integer hull), and since all but one inequality (C) was part of the existing
integer hull, all the vertices that are not on C= are guaranteed to be at integral
locations.

We consider two cases, depending on whether or not the new inequality has a
feasible integer point on its supporting line. The first case is where it does. We can
Just compute the integer hull of C pairwise with each of the adjacent inequalities, as
per section 4 (as long as the relevant angle is less than 180 degrees; if it isn’t, the
region is unbounded between the inequalities and there are no cuts to compute), and
add the resulting cuts to our description of the integer hull. Note that since the new
inequality contains a feasible integer point, the pairwise integer hulls are guaranteed
not to overlap. This is because at worst there is only one feasible integer point on the
supporting line of the new inequality and the two pairwise integer hulls meet at this
point. Note that any inequality involved in a nonintegral intersection before the cuts
were made may have become redundant (if it only had one feasible integer point on
its supporting line to begin with), so this must be checked for and the inequalities
must be discarded if they are indeed redundant.

The second case is where there is no feasible integer point on the supporting line
of the new inequality. In this case, computing the pairwise integer hulls of the new
inequality with the inequalities on either side of it will generate cuts which overlap,
and the new inequality is guaranteed to be redundant with respect to the final integer
hull. The method described here shows how to deal with these overlapping cuts in a
way which ensures that no more than one redundant cut is ever generated.

Let C; be the new inequality with C;_; and Ci41 the inequalities immediately to
the clockwise and counterclockwise sides of C;, respectively. We commence computing
the cuts that form the integer hull of C;_; and C;, as per section 4, and continue until
we make a cut (call it C}) that causes C; to become (real) redundant.? ‘At this point,
we now have at most one vertex remaining which is nonintegral, namely, the one at
the intersection of C} and C; ;. Thus to complete the integer hull, we simply compute
the pairwise integer hull of C} and C;y;. As before, some of the inequalities need to
be checked for (real) redundancy. These are C;_;, Ciy1, and C] (C; is guaranteed to
be redundant and thus need not be checked, just discarded).

This completes the integer hull algorithm.

6. Computational complexity. We now demonstrate that the algorithm pre-
sented has complexity O(nlog Apqz). The time analysis is presented in terms of basic
arithmetic operations (+, —, X, /).

“We start with C;_, and C; rather than C; and C; 41 so that the pairwise hull algorithm generates

culs in an appropriate order (“outside in”), beginning with those adjacent to C;_; and working
toward C,.

2292 WARWICK HARVEY

We start with the following definitions. Let A4, be the maximum absolute value
of any coefficient of z or y in any original inequality added to the system.

We start by obtaining bounds for the coefficients of the inequalities that define
the integer hull.

In the following, we assume all fractions p/q are in lowest terms (i.e., ged(p, q) =
1). Let p*/q* (p~/q™) be the smallest (resp., largest) rational that is greater than
(resp.. less than) p/q with a denominator no larger than gq.

LEMMA 6.1. Ifp;_1/q;-1 and p;/q; are consecutive principal convergents of p/q,
then pjq, 1 — pj_1q; = (=1)7.

Proof. See, for example, [3, Chap. 32, sect. 8]. 0

LEMMA 6.2. If p/q and p'/q’ are two fractions such that pg’ — p'q = 1 and
q > 0, then no fraction can lie between them unless its denominator is greater than
the denomanator of both of them.

Proof. See, for example, {3, Chap. 32, Sect. 12]. o

LEMMA 6.3. Consider the two fractions

Pn-1 DPn — Pn-1

Gn-1 dn — Qn-1

If 0 < p/q < 1, then one of these is the closest above approzimation (p*/q*) of
P/q4 = Pn/qn and the other is the closest below approzimation (p~ /q~), depending on
whether n is odd or even.

Proof. 0 < p/q < 1 implies that ¢ > 0, and also that n > 1, so that p,_; and
qn—1 are defined. Thus, using Lemmas 6.2 and 6.1, it is straightforward that these
are the closest above and below approximations with denominators no greater than
q. If n is odd, then p,_/gn_; is the above approximation; if n is even, it is the below
approximation. 0

COROLLARY 6.4. pg* —ptg=-1andpg” —p~qg=1if0<p/g<1.

Proof. This is obvious from Lemmas 6.3 and 6.1. a

LEMMA 6.5. Consider two inequalities Cy and C,, with C ---C,,_1 being the cuts
required to form the pairwise integer hull. Consider any cut C; (1 <i<n-—1). If the
magnitude of the larger of the coefficients of C; is greater than 1, then it is strictly
smaller than the largest magnitude coefficient appearing in C;_; and Ciyy.

Proof. If C; = a,x+ by < ¢;, then we can assume, without loss of generality, that
0 < a; < b;,. However, b; > 1 implies b; # a; and a,; # 0 (since ged(a;, b;) = 1), so we
have 0 < a; < b;. Let aff /b and a; /b be closest above and below approximations to
a,/by, respectively. Let Py = (zo,y0) and Py = (z3,y1) be the (integral) intersection
points of €7 with C;=, and C7 |, respectively, so that o > z; and yo < y; (see
Figure 6.1).Note that zo — z; = kb; and y; — yo = ka,; for some integer k > 0. Also
note that C; is the cut required to form the integer hull of C;_; and C;;; and that
there are no integer points which are infeasible with respect to C; that are feasible
with respect to C;_1 and C;y; (i.e., the introduced cut excludes no feasible integer
points). Consider the integer point P = (z2,y2) = (zo — b, y0 + a;"). P, is infeasible
with respect to C;, so it must be infeasible with respect to at least one of C;_; and
Ci+1. We consider two possibilities:

1. Suppose P, is infeasible with respect to C;_;. This means that the gradient of
C;_1 must be between a;/ —b; and a} /—b} . By Corollary 6.4 and Lemma 6.2,
any gradient that lies between these two has a denominator of magnitude
larger than b;. Since b; > a;, this means C;_; must have a coefficient (namely,
b;—1) larger in magnitude than both a; and b;.

TWO-DIMENSIONAL INTEGER HULLS 2293

Gist

FI1G. 6.1. Determining bounds on the coefficients of adjacent cuts.

2. Suppose P, is infeasible with respect to Cit+1. This means that the gradient
of Ciy, must be between a;/ — b; and

Vi—vy2 _ ka;—af

—(z1 ~22) —(kb; - b})

Again by Corollary 6.4 and Lemma 6.2, any gradient that lies between these
two has a denominator of magnitude larger than b;, which in turn means Cit1
must have a coefficient (namely, b;4;) larger in magnitude than both a; and
b,.

Since at least one of these two possibilities must be true, we have that at least
one of C;_; and C;4; must have a coefficient larger in magnitude than those of C;,
as long as at least one of the coefficients of C; is greater than 1. a

THEOREM 6.6. For the integer hull of a pair of inequalities, the coefficients of
the generated cuts are no larger in magnitude than the largest of those of the original
mequalities.

Proof. Let the two inequalities be Cy and C, with the generated cuts being
Cy---Cy_1. Let A; be the magnitude of the largest coefficient of C;, i = 0.-.n.
We note that no A; = 0, since that would imply that C; = 0z + Oy < ¢;. Let j be the
smallest i such that A; is minimal, so that Vi, 4; > A;. If 7 > 0, we have A1 > A,
so A;—1 > 1. If j > 1, Lemma 6.5 implies Aj_o > Aj_; since Aj < Aj_1. Further
applications of Lemma 6.5 yield, in turn,

AJ'_Q < Aj_g,Aj_g < A]‘-4, LA Ap.

Thus Vi < 4, 4; < A,.

Let £ = min{i : ¢ > j A A; > A;}. If k is not defined (e.g., 7 = n), then
A, = A4 =+ = A,. Otherwise, we have Aj=Ajp1 == Ag_yand A; > Ap_;.
As before, repeated applications of Lemma 6.5 yield, in turn,

A < Agy1, Aky1 < Agg2y-- 0, Anoy < An.

Thus vi > 5, 4; < A,,.

This means that all A; are no larger than the larger of Ay and A,,, and the
theorem is proved. 0

THEOREM 6.7. The coefficients of the inequalities defining an integer hull are no
larger in. magnitude than the largest coefficient of the input inequalities.

Proof. Since all the inequalities in the system at any given time are either original
nput inequalities or are part of a pairwise integer hull of some combination of original

2294 WARWICK HARVEY

inequalities and inequalities already in the system, the result follows by a simple
induction argument on Theorem 6.6. a

Now that we have an upper bound on the size of the coefficients in the system,
we can obtain an upper bound on the number of inequalities in the system.

LEMMA 6.8. The integer hull of a pair of inequalities with largest magnitude
coefficrent Amag requires at most O(log Amaz) inequalities to define it.

Proof. Each cut generated in the transformed space corresponds to either an odd
principal convergent of the gradient (—t/u) of the main transformed inequality or to
an intermediate convergent between two such odd principal convergents. To achieve
the bound, we start by showing that even if there are many intermediate convergents
between two odd principal convergents, only one can correspond to a cut of the integer
hull. Consider an intermediate convergent that is used for a cut. If pog_; /q2k-1 and
Dok+1/Gok+1 are the odd principal convergents it lies between, then it is of the form
Z;—::—E% for some j. Note that j is chosen as large as possible subject to the bound
on the denominator, so the “slack” between the denominator and the bound must
be less than go. Since the translation in preparation for the next cut reduces the
bound by {at least) the size of the denominator selected, this means the new bound
must be less than gg. This, in turn, precludes any other intermediate convergents
between pax_1/qak—1 and pak41/qor+1 from being used to generate cuts, since such a
convergent must have a denominator of at least gax_1 + gax.

Thus we can generate no more than two cuts for each odd principal convergent:
one for the odd principal convergent itself and one for a corresponding intermediate
convergent.

The number of principal convergents is the same as the number of steps in the
Euclidean algorithm for finding g.c.ds, applied to |t| and u. This is O(log(min(|¢|, u)))
15, p. 811], but

min(Jt|,u) < u=a108+ b6 = a1by — biag = O(A?naa:)
(this last step by Theorem 6.7). So we have O(log Aaz) principal convergents and
thus O(log A,,,4.) cuts generated. a

LEMMA 6.9. When computing the integer hull of n (initial) inequalities with largest
magratude coefficient Apay, at most O(nlog Apmas) cuts are added.

Proof. Each time we add a new inequality to the integer hull, we perform at
most two pairwise integer hull computations. By Lemma 6.8, each of these generates
O(log Arnaz) inequalities, and so after adding n (initial) inequalities, we can have
added no more than O(nlog Apmqz) inequalities. 0

LEMMA 6.10. The integer hull of a set of any number of inequalities with coef-
fictents of magnitude no larger than A, requires at most O(A2,) inequalities to
define it.

Proof. If the largest magnitude of an input coefficient is Amqz, then by Theo-
rem 6.7, the magnitudes of all coeflicients in the integer hull are no greater than
Amaz- This means there are at most O(A2,,,) different possible combinations of coef-
ficients. Since there are no redundant inequalities in the integer hull, there can be no
more than one inequality with a given combination of coefficients, and the result
follows. 0

We now proceed to analyze the time complexity of the algorithm. We start by
analyzing the pairwise integer hull, and then we use that analysis to derive a time
bound for the full algorithm.

TWO-DIMENSIONAL INTEGER HULLS 2295

'THEOREM 6.11. Computing the pairwise hull of two inequalities with largest
magnatude coefficient Apae 1 O(log Armaz).

Proof. To compute the integer hull of a pair of inequalities, the following steps
are performed:

L. If the intersection point is integral, we stop. Finding the intersection point
and determining whether it is integral is O(1).

2. Determine the transformation matriz. The main step in determining the
transformation matrix is finding a solution to asa + byy = 1; everything else is O(1).
Thus this step is O(log Apmas), using, for instance, a modified Euclid’s algorithm to
solve the equation.

3. Compute the odd principal convergents. We just compute all the principal
convergents of |t/ul; this is O(log(min(|t|, |u|))) = O(log Amaz)-

4. Repeat the following steps until the intersection point is integral. Each pass
through this loop generates one cut, and so by Lemma 6.8, we loop no more than
Oflog Ayyee) times.

(1) Determine the appropriate translation. The first time we perform this trans-
lation we must find an initial integer point on the supporting line of the “main” in-
equality, which is O(log Apas), and then find the correct integer point, which is 0(1).
All subsequent translation computations start with an integer point given, so we just
require the O(1) adjustment.

(ii) Search for the appropriate principal convergent. If we do a simple linear
search backwards in the list of principal convergents, this is O(log Apaz). However,
no principal convergent checked in one pass needs be checked again in a subsequent
pass, s0 we can amortize the search cost for a total of O(log Ayez) over all passes
through the loop.

(iii) Compute the appropriate intermediate convergent. This is o(1).

(iv) Transform the new cut back to the original coordinate system. This is 0(1).

The result follows directly from the above analysis. 0

We now turn to the full integer hull algorithm.

THEOREM 6.12. Incrementally computing the integer hull of n inequalities with
largest magnitude coefficient Amaz is O(nlog Amaz).

Proof. For this analysis, we assume the inequalities in the system are stored in
a level-linked (a,b)-tree, sorted based on their orientation. Level-linked (a,b)-trees
are described in [14], along with proofs of the complexity results used here. Some
modification of the standard operations on level-linked (a,b)-trees is required for our
purposes, since our data is inherently circular in nature and wraps around from largest
to smallest, but these do not affect the results.

Let N, be the number of inequalities defining the existing integer hull just before
we add the jth inequality (C; = a;2 + bjy < ¢;). By Lemma 6.10, N; is O(A2,,). In
particular, this means that log N; is O(log Az), and thus we have bounds for various
tree operations (search, split, concatenate) which are independent of the number of
inequalities added so far.

To add the inequality to the system and recompute the integer hull, we perform
the following steps:

1. Tighten the inequality being added. This step consists mainly of computing
the g.c.d. of |a;] and |b;], which is O(log(min(|a;|, |b;]))) = O(log Amaz)-

2. Check satisfiability of augmented system. This requires searching the data
structure to find where the complement of C; would go and accessing at most two
adjacent items. This is O(log Amaz), and the actual check is O(1).

2296 WARWICK HARVEY

3. Eliminate initial redundancy. This requires searching the data structure to
find where C; would go (O(log Apaz)) and then performing a series of redundancy
checks. Since no inequality can be found to be redundant more than once, and at
most O(nlog Ap,..) inequalities are added to the system for m input inequalities
(Lemma 6.9), we have a total of O(nlog A,,q.) eliminations performed, summed over
all n incremental steps. Since all but a constant number of redundancy checks at
each incremental step result in an elimination, this means O(n log Anaz) redundancy
checks are performed in total. Accessing the adjacent inequalities to perform one of
these checks is O(1), as is the actual check, which means the total cost of redundancy
checks over all n additions is O(nlog A,.44)- Since all the inequalities to be eliminated
due to redundancy are adjacent to each other, we can delete them all at the same
time by performing two splits of the tree, which is O(log Apmaz) (We leave it split until
we are ready to insert the new inequalities). Thus this step as a whole, summed over
all n additions, is C(nlog Amax)-

4. Compute the cuts. We treat this as two instances of finding the integer hull
of a pair of inequalities. This is not strictly the case when there are no integer points
on the feasible segment of the supporting line of the inequality being added, but the
extra redundancy checks required have no bearing on the computational complexity.
Thus this step is O(log Amez), by Theorem 6.11.

5. Add the cuts to the system. Since all the inequalities added will be adjacent
to each other, and will be inserted at the point the existing tree was split, we can
insert them all at the same time. Constructing a new tree from a sorted set is linear
in the number of items in the tree, so this is O(log Amaz) by Lemma 6.8. Then we
just perform two concatenation operations to add the new tree between the two parts
created in step 3. This is also O(log Amaz), 50 the step as a whole is O(log Amaz).

6. Eliminate final redundancy. This requires at most three redundancy checks
and three deletions and hence is O(log Amaz)-

Each step is either O(log Ap,qz) for each inequality added or is O(nlog Amaz)
summed over all n inequalities. Outputting the inequalities is linear in the number
output, which is O(nlog Amez) by Lemma 6.9. The result follows. 0

7. Proof of optimality. We now show that our algorithm is optimal by demon-
strating a worst case lower bound complexity of Q(nlog Ayqez). We do this by con-
structing a family of examples which generate Q(nlog A,.4.) output constraints.

LEMMA 7.1. The integer hull of

(7.1a) -2z 4y < 1,
(7.1b) —Fopysz + Forqay < -1

has k cuts, where F,, is the nth Fibonacci number (with Fy =0, F; = 1).

Proof. Let ¢ = 5323@ be the golden ratio. The continued fraction representation
of ¢ is infinite with all partial quotients 1. Thus the sequence of closest below approx-

imations to ¢ are given by paji1/q2;41 for j > 0, where p;, g; satisfy the recurrence
relations

po=1 p1=1 pi=pi_1+pi_2,i>2;
g@=0, @=L ¢=q¢-1+q_21>2.

Clearly, the p;’s and ¢;’s both form the Fibonacci sequence with p; = F;;1 and ¢; = F;.
The below approximations are thus given by Fy;2/F2;41,5 > 0.

If we were to compute the (infinite) integer hull of —¢z+y < 0 and —z < —1 (see
Figure 7.1}, then these below approximations clearly define the vertices of the integer

TWO-DIMENSIONAL INTEGER HULLS 2297

4 —-px+y <0

(as, ps)

+ o+
(g3, p3)
+ o+ o+

@:14- o+ o+ o+
(QIylpl),

Fic. 7.1. The infinite integer hull of —¢z + y < 0 and—z < —1.

hull. The inequality defining the jth edge (the edge between the jth and (j + 1)th
vertices) is then

—(p2y=3 -~ P2;+1)2 + (G243 — g254+1)y < —-(P2j+3 "p2j+1)Q2j+1 + (QZj+3 - 42j+1)P2j+1,
Le., —P2542T + G2542Y < —P2jy2G2i4+1 + Q2542P25+1,

Le., ~F2j+3CE + F2j+2y <-1

{(the last step by Lemma 6.1).

Note that we can select any two of these inequalities (say, j = jo and j = J1)s
and the cuts needed to form the integer hull of the selected pair consist simply of all
the inequalities between them in the above integer hull (namely, j = jo +1...7; —1).
In particular, we can choose jo = 0 and j; = k + 1 and have the integer hull contain
k cuts. The result follows. a

LEMMA 7.2. It is possible for a system with 2m inequalities with largest magnitude
coefficient O(m@?*) to require at least mk cuts to complete the integer hull.

Proof. We note that we can perform both translations and unimodular transfor-
mations on the integer hull used in Lemma 7.1 without altering its basic structure.
Applying the unimodular transformation [! 0] , we obtain

—1 1
(7.2a) -2+ +y < -1,
(7.21) ~(Fogys + iFop44)T + Fopyqy < 1.

Note that, since Fpgys5/Fak44 > 1, both the inequalities (and all the cuts) have
gradients larger than 1 + ¢, and no greater than 2 + i, which means that the range
of gradients for one value of i does not overlap with that of another. This means
that, with appropriate translation, we can construct a system of 2m inequalities,
by including a “copy” of (7.2) for all values of i from 0 to m — 1, such that the
integer hulls of each component do not interfere with each other. By Lemma 7.1,
cach component has & cuts, so with m noninterfering components, we have (at least)

mk cuts (depending on the exact translation used, there may be cuts between each
“block™).

The magnitude of the largest coefficient of the system is Fopys + (m — 1).F2k+4'
Using the closed form expression for F; in terms of ¢ (Fj = -\}—g(qﬁj ~ (=¢)77)), we

2298 WARWICK HARVEY

have that this is O(m¢?**4) = O(me¢?*), and the result follows. il

THEOREM 7.3. It is possible for a system of n inequalities with coefficients of
magnitude no larger than Ames to have an integer hull consisting of Q(n log Anaz)
inequalities.

Proof. Consider Lemma 7.2 with k = Q(logm). Then n = 2m, Apmer = O(m¢?F),
and we have mk cuts. Thus nlog Apme; = O(m(k + logm)). But k = Q(logm), so
nlog Apmg, = O(mk). This means mk = Q(n log Apmqz) and we have the result. O

THEOREM 7.4. Our algorithm for computing two-dimensional integer hulls is
optimal.

Proof. By Theorem 7.3, any algorithm must be Q(nlog Apmqz) on some problem

instances. By Theorem 6.12, our algorithm is O(n log Apnez) on all problem instances,
and the result follows. 0

8. Future work. We have done some work toward developing an integer hull
algorithm that works in three dimensions, but we have yet to establish whether this
algorithm can be made to be polynomial time. If it can, then we hope to generalize to
an arbitrary number of dimensions and tackle the very interesting question of whether
such an algorithm is polynomial time for any fixed number of dimensions.

At some stage we also hope to determine whether such algorithms can be usefuily
employed in a constraint solver for a CLP language by buying enough of a reduction

in domain sizes to offset the extra overhead incurred on more than just a few select
problem classes.

Acknowledgments. The geometrical interpretation of continued fractions and
their convergents used in this paper is from [6, Chap. IV, sect. 12] and appears to be
due to Smith [17, Art. 20].

The author would like to thank Peter Stuckey for his comments on many drafts
of this paper. The author would also like to thank the anonymous referees for their
feedback, advice, and suggestions. In particular, credit must be given to one anony-
mous referee for a suggestion on how to obtain improved bounds on the coefficients
of generated cuts (the bounds presented in an earlier version of this work were messy
and not particularly tight, with the proofs hard to follow). While the ideas proposed
by the referee are not used in the paper, the bounds yielded were sufficiently good for
the whole question of optimality to be addressed and provided the motivation to find
the proof of even tighter bounds that is presented in this version of the paper.

Finally, the author would like to thank Gary Eddy for his help in selecting an
appropriate data structure for storing the inequalities.

REFERENCES

{1] H. ABDULRAB AND M. MAKSIMENKO, General solution of systems of linear diophantine equa-
tions and inequations, in Rewriting Techniques and Applications—6th International Con-
ference, RTA-95, J. Hsiang, ed., Lecture Notes in Comput. Sci. 914, Springer-Verlag, Berlin,
1995, pp. 339-351.

[2] F. Asiui AND E. CONTEIEAN, Complete solving of linear diophantine equations and inequations
without adding variables, in Principles and Practice of Constraint Programming—CP '95,
U. Montanari and F. Rossi, eds., Lecture Notes in Comput. Sci. 976, Springer-Verlag,
Berlin, 1995, pp. 1-17.

(3] G. CHRYSTAL, Algebra-An Elementary Text-Book-Part II, Adam and Charles Black, Edin-
burgh, 1889.

(4] P. CoDOGNET AND D. Diaz, Compiling constraints in clp(FD), J. Logic Programming, 27
(1996), pp. 185-226.

5]

(9]
(10]

15]

TWO-DIMENSIONAL INTEGER HULLS 2299

T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, The MIT
Electrical Engineering and Computer Science Series, MIT Press, Cambridge, MA, 1990.

1. DAVENPORT, The Higher Arithmetic, 6th ed., Cambridge University Press, Cambridge, UK,
1992.

M. DiNcBaAs, P. vAN HENTENRYCK, H. SIMONIS, A. AGGOUN, T. GRAF, AND F. BERTHIER,
The constrawnt logic programming language CHIP, in Proceedings of the International
Conference on Fifth Generation Computer Systems FGCS-88, Tokyo, Japan, Springer-
Verlag, New York, 1988, pp. 693-702.

i. DoMENJOD AND A. P. ToMAs, From Elliott-MacMahon to an algorithm for general linear
constraints on naturals, in Principles and Practice of Constraint Programming—CP ’95,
U. Montanari and F. Rossi, eds., Lecture Notes in Comput. Sci. 976, Springer-Verlag,
Berlin, 1995, pp. 18-35.

. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.

W. HARVEY AND P. J. STUCKEY, A unit two variable per inequality integer constraint solver
for constraint logic programming, in Proceedings of the Twentieth Australasian Computer
Science Conference (ACSC’97), Sydney, Australia, Macquarie University, Sydney, 1997,
pp. 102-111.

J. JAFFAR AND M. J. MAHER, Constraint logic programming: A survey, J. Logic Programming,
19/20 (1994), pp. 503-581.

R. KANNAN, A polynomial algorithm for the two variable integer programming problem,
J. ACM, 27 (1980), pp. 118-122.

H. W. LENSTRA, JR., Integer programming with a fized number of variables, Math. Oper. Res.,
8 (1983), pp. 538-547.

K. MEHLHORN, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, Berlin, 1984.

. P. PREPARATA AND M. I. SHAMOs, Computational Geometry—An Introduction, Texts
Monogr. Comput. Sci., Springer-Verlag, New York, 1985,

- SCHRIIVER, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete

Mathematics, Wiley-Interscience, New York, 1986.
H. J. S. SMITH, A note on continued fractions, in The Collected Mathematical Papers of Henry

John Stephen Smith, vol. 2, J. W. L. Glaisher, ed., Clarendon Press, Oxford, UK, 1894,
pp. 135-147.

b=

