SOME EXAMPLES OF THE USE OF DISTANCES
AS COORDINATES FOR EUCLIDEAN GEOMETRY

TIMOTHY F. HAVEL*

Abstract. Distance geometry provides us with an implicit characterization of the Euclidean
metric in terms of a system of polynomial equations and inequalities. With the aid of computer
algebra programs, these equations and inequalities in turn provide us with a coordinate-free
approach proving theorems in Euclidean geometry. This paper contains a brief summary of the
mathematical results on which this approach is based, together with some examples showing
how it is applied. In particular, we show how it can be used to derive the topological structure
of a simple linkage mechanism.

1. Introduction. Distance geometry may be defined as the classification and study of
geometric spaces by means of the metrics that can be defined on them [Blumenthal, 1953,
1970]. It has been used to characterize Euclidean spaces [Menger, 1928, 1931; Schoenberg,
1937; Blumenthal, 1961], hyperbolic and elliptic spaces [Seidel, 1952, 1955], and Riemannian
manifolds of constant curvature in general [Berger, 1981, 1985]. The Euclidean version also
has a number of interesting applications to multidimensional scaling [Gower, 1982, 1985] and
to molecular geometry [Crippen & Havel, 1988]. One of the key results on which all this
work is based is Menger’s intrinsic characterization of the Euclidean metric [Menger, 1928],
which has the form of a system of polynomial equations and inequalities in the interpoint
distances squared. If one understands the geometric interpretations of these polynomials,
they can also be used to express a variety of common geometric conditions algebraically, and
hence to use the distances as coordinates to prove theorems in Euclidean geometry. At least
in principle, all of the theorems of Euclidean geometry can be derived in this way [Dress &
Havel, 1987].

These polynomials can be written most succinctly as certain type of determinant. If
D(ay,az) denotes the squared distance between a pair of Euclidean points labeled a;, a; € A,
and [b1,...,bm], [c1,...,cm] € A™ denote two m-element sequences of points, the Cayley-
Menger bideterminant of these sequences is:

D(by,....,bm; c1,-.es¢m)

0 1 1 1
(1) 1 m 1 D(bl,cl) D(b1,62) D(bl,cm)
= (%) det 1 D(bz,cl) D(bz,Cz) D(bz,cm)
1 D(bmrc1) D(bmycz) - Dlbm,cm)/
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(The reason for the constant factor in this definition will become clear when the geometric
meaning of these determinants is explained below). Since in many cases of interest the
two sequences are the same, it will be convenient to abbreviate D(ay,...,am; a1,...,am)
by D(ay, ..., as), which is called simply a Cayley-Menger determinant. Observe that the
Cayley-Menger determinant of a pair of elements a;, az € A is the same as the squared
distance between them; thus our use of the symbol “D(a;,a2)” for both their squared
distance and their Cayley-Menger determinant is consistent.

Let us now state Menger’s characterization itself in two algebraically distinct but equiv-
alent forms. Their geometric meanings are explained below.

THEOREM 0. Let A be aset and D : A x A — R be a function such that for all a,b,c € A:
(i) D(a,a) =0;
(ii) D(b,c) 2 0;
(iii) D(b,c) = D(e,b).
Then the following statements are equivalent.
(1) There exists a function p : A — R™ such that D(b,¢c) = ||p(b) —p(c)||? for all b, c € A.
(II) For any positive integer m and sequence [ai,...,a,) € A™ we have D(ay, ...,an) >0,
and D(ay,...,a,m) = 0 whenever m > n + 2.
(I1I1) For any positive integer m and two sequences [by,...,bm],[c1,...,¢m] € A™, we have
D?(by,....;bm; €1y.eyCm) < D(b1,...,bm)D(ca, ..., ¢ ) With equality holding whenever
m=n+1.

Hence [D(ai,a;)|1 <1,j < #A] is a matrix of squared distances among a set of points in a
Euclidean space if and only if either (II) or (III) (and hence both) are satisfied. For a proof
of this theorem, the reader is referred to either [Blumenthal, 1970] or [Crippen & Havel,
1988].

To make these determinants seem more familiar, let us use the Pythagorian theorem for
the plane D(2,3) = (2(2) — z(3))? + (y(2) — ¥(3))? to translate D(1,2,3) into Cartesian
coordinates:

D(1,2,3) = %(21)(1,2)1)(1,3) +2D(1,2)D(2,3) + 2 D(1,3)D(2,3)
— D*(1,2) — D*1,3) — D*(2,3))
(2) = (2(1)y(2) — 2(2)y(1) + =(3)y(1) — 2(1)y(3) + =(2)y(3) — z(3)y(2))*

1 1 1
= det? (z(l) z(2) $(3))
y(1) ¥(2) ¥(3)

Thus we see that D(1,2,3) is four times the squared area of the triangle with side lengths
d(1,2) := D%(1,2), d(1,3) := D¥(1,3) and d(2,3) := D¥(2,3). On performing this substi-
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tution in D(1,2,3) and factorizing, we also find

D(1,2,3) = 1/4-(d(1,2) + d(1,3) + d(2,3))-
(d(1,2) + d(1,3) — d(2,3)) -

(d(1,2) — d(1,3) + d(2,3)) -

(=d(1,2) + d(1,3) + d(2,3)) ,

(3)

This is known as Heron’s formula [Coxeter, 1969]. More generally, D(ai,...,am) is (m — 1)!
times the squared hypervolume of the simplex spanned by the points a,, ..., an, of a Euclidean
space.

Similarly, on applying the Pythagorian theorem to the Cayley-Menger bideterminant
D(1,2; 1,3), we obtain

(4)  D(1,21,3) = (2(2) — (1)) («(3) — (1)) + (¥(2) —y(1)) - (¥(3) = y(1))

i.e. the dot product of the vectors from 1 to the other two vertices of the triangle. In terms
of the lengths of its sides, we get

(5) D(1,2;1,3) = 1/2(D(1,2) + D(1,3) — D(2,3)) ,

which is just the law of cosines for the dot-product. More generally, for four points {1, 2, 3,4}

in a Euclidean space D(1,2; 3,4) is the dot product of the vectors 13 and 511, and analogous
geometric interpretations hold for the higher-order Cayley-Menger bideterminants [Havel &
Dress, 1987; Crippen & Havel, 1988]. These interpretations are already enough to enable us
to show that a rather wide variety of geometric conditions are equivalent to the vanishing
of polynomials in the interpoint distances (squared). In Table 1, we provide a short list of
common geometric conditions and their algebraic expression in terms of both planar generic
Cartesian coordinates and distances.

Table 1
Geometric Condition Cartesian Expression Distance Expression
1234 (2(1) —2(2))" + (¥(1) — y(2)) D(1,2) — D(3,4)
(congruence) —(2(3) = 2(4))* = (¥(3) - y(4))?
12113 (2(2) — =(1))(z(3) — =(1)) D(1,2) + D(1,3) - D(2,3)
(perpendicularity) +(¥(2) — y(1))(¥(3) — y(1)) '




2 D(1,2)D(1,3) + 2 D(1,2)D(2,3)

(1(11'23)) ) x(i)y(? - x(z)y(;) + x(z)y(;) +2D(1,3)D(2,3) — D*(1.2)
(llincarity)  —=(Df9) + SO ) T

121134 (2(2) —2z(1))(y(4) —y(3))  4D(1,2)D(3,4) - (D(1,3) +
(parallelism) —(y(2) — y(1))(=z(4) — z(3)) D(2,4) — D(1,4) — D(2,3))?

It can be seen from the table that certain geometric conditions (e.g. congruence and
perpendicularity) can be expressed more simply in terms of the distances than in terms of
Cartesian coordinates. Of course, by a suitable choice of coordinate system the Cartesian
expressions can be simplified substantially; for example, by placing point 1 at the origin and
point 2 on the y-axis, perpendicularity becomes merely y(2)y(3). When many polynomials
in the Cartesian coordinates are needed to express a number of simultaneous geometric
conditions, however, it is not always possible to find a single coordinate system that reduces
them all to their simplest forms, especially in more than two dimensions. Moreover, when a
polynomial describing a given geometric condition can depend upon our choice of coordinate
system, it is more difficult to recognize it when it occurs among our results, and hence to
understand the geometric meaning of those results. Since the distances are independent
of our choice of coordinate system, they are also free of this particular problem. The use
of distances as coordinates in fact offers the same advantages in Euclidean geometry that
invariant formulations of geometric problems have more generally, as described in [Whiteley,
1989).

The drawback of using distances as coordinates is that the number of variables occurring
in the polynomial equations is usually substantially higher than it is with Cartesian coor-
dinates, because it is rarely possible to use only a small subset of the (];] ) distances among
N points in the course of a proof. In addition, because the vanishing of Cayley-Menger
determinants of n + 2 points is necessary to ensure that the configuration is n-dimensional,
the total degree of the equations is at least n + 1 in the squared distances. Nevertheless,
it is reasonable to hope that there exists a canonical Grébner basis for the ideals gener-
ated by these polynomials, as is known for the analogous ideals in projective geometry;
by the results of [Sturmfels & White, 1989], reduction versus this projective Grobner basis
corresponds to the classical straightening algorithm for the Grassmann variety. If such a
system of Grobner bases can be found for Euclidean geometry, it is likely that in many
cases the approach outlined here will become competitive with traditional approaches based
on Cartesian coordinates. Because of its generality, it is also possible that the “distance
geometry approach” would then provide a convenient framework in which to automate the
proofs of theorems in Euclidean geometry, as has been done using Cartesian coordinates in
e.g. [Chou, 1987; Kutzler, 1989; Kapur & Mundy, 1989]. We make no claim, however, that

the proofs given in this paper are either automatic or automatable.
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2. Examples. We now consider several examples which show how the distance geometry
approach can actually be put into practice. In all of these examples, we have used the
computer algebra program MAPLE [Char et al., 1986] to perform the computations.*

2.1. ISOSCELES BISECTORS: As a first, very simple example, we show that the line between
the odd vertex of an isosceles triangle is perpendicular to the base if (and only if) it bisects

the base. If we number the vertices of the triangle 1,2,3, where 1 is the odd vertex, and let
a be the point which bisects the base, the hypotheses are:

(I) 4D(1,2,3,a)=0 (the triangle is coplanar with the point a);
Iy D(1,2)-D(1,3)=0 (the triangle is isosceles);
(III) 4D(2,3,a)=0 (the point a is on the base 23);
(IV) D(2,a)— D(3,a)=0 (the point a bisects the base).
By the Pythagorean theorem, the desired conclusion is:
(V) 2D(1,a; 2,a) = D(1,a)+ D(2,a) — D(1,2) =0 (Ta L 2a).
Figure 1.

Illustration of Example 2.1.

Note that, when the distance function VD is non-Euclidean, the vanishing of the three-
point Cayley-Menger determinant D(2, 3, a) does not imply the collinearity of {2, 3, a}, since
these may span a degenerate subspace (cf. [Snapper & Troyer, 1972]). Hence condition (I)
is algebraically independent of (III). It can be derived from (III) only if we make use of the
inequalities characteristic of the Euclidean metric (cf. Theorem 0). This is most easily done
by using Seidel’s identity:

(6) D(2,3)D(1,2,3,a) = D(1,2,3)D(2,3,a) — D*(1,2,3; 2,3,a)

Since in a Euclidean space D(2,3)D(1,2,3,a) > 0, it follows that D(2,3,a) = 0 implies
D(1,2,3,a) = 0 (unless D(2,3) = 0, i.e. the triangle is degenerate). Nevertheless, in ap-
plying these methods it is often very convenient to assume an elementary knowledge of
Euclidean geometry, in order to avoid the more difficult task of arguing with inequalities.
To prove now our claim, we consider the Cayley-Menger determinant in hypothesis (I):

0 1 1 1 1
. 1 0 D(L,2) D®1,3) D(Q,a)
) 4D(1,2,3,a) = =det| 1 D(1,2) 0  D(2,3) D(2,a)
2 1 D(1,3) D23 0 D30

1 D(l,a) D(2,a) D(3,a) 0

*This program and its documentation are available from the Symbolic Computation Group at the Univ. of
Waterloo, Ontario. Those interested in a general introduction to the theory and applications of computer
algebra programs are referred to [Davenport et al., 1988).
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Observe that by subtracting the third row from the fourth in this matrix and then expanding
the determinant along the fourth row, it can be written in the following form:

(8) D(1,2,3,a) = E;-D(2,3) + E,-(D(1,3)—- D(1,2)) + E3-(D(3,a) - D(2,a)),
where E;, E2 and E; are polynomials. Hence if we use conditions (II) and (IV) to substi-

tute D(1,3) by D(1,2) and D(3,a) by D(2,a) then, assuming the nondegeneracy condition
D(2,3) # 0, we obtain an equation

0 1 1 1 1
. 1 0 D2 D@12 DQ,a)
| E, =————det|1 D1,2) 0  D(2,3) D(24)
9) ' 2D(2,3) 0 0 D23 -D23) 0

1 D(l,a) D(2,a) D(2,a) 0
= 4D(1,2,a) - D(2,3) D(1,a) = 0

that is linear in D(2,3). Assuming D(1,a) # 0, this may be used to eliminate D(2, 3) from
condition (III) by taking the pseudoremaindert of 4 D(2,3, a) by E; with respect to D(2, 3),

1.e.
(10) prem(4D(2,3,a),E,,D(2,3)) = 16 D(1,2,a)- D*(1,a;2,a) = 0.

Thus, assuming the nondegeneracy condition D(1,2,a) # 0, the conclusion (V) follows.

To prove the converse (obtained by exchanging the conclusion (V) with the hypothesis (IV)
above), we use (II) together with (V) to substitute for D(1, 3) and D(1, 2), respectively, and
then take the resultant of (I) and (IIT) with respect to D(2, 3), obtaining after factorization:

(11) D*(2,a)-(D(2,a) — D(3,a))* = 0.

The details are left to the reader.

2.2. THE CONGRUENCE OF OPPOSITE SIDES OF A PARALLELOGRAM: As a slightly less
trivial example demonstrating the use of Grobner bases [Buchberger, 1985] in solving these
problems, we prove that opposite sides of a nondegenerate planar parallelogram are pairwise
equal in length. As hypotheses, we have:

(I)  P(1,% 3,4) := 4D(1,2)D(3,4) - 4D*(1,2; 3,4) =0 (12 || 34);

(II) P(1,4; 2,3) := 4D(1,4)D(2,3) —4D?*(1,4; 2,3) =0 (14 || 23);

(III) 4D(1,2,3,4)=0 (coplanarity).
The conclusions we wish to derive are:

(IV) D(1,2) - D(3,4)=0 (12 = 34)

tSee [Chou, 1987] for a definition and examples of the use of the pseudoremainder function. In this simple
case, it is the same as the resultant.



and
(V) D(2,3)-D(1,4)=0 (23 = 14).
Conditions (I) and (II) are the parallelism conditions given in Table 1. Once again, these

conditions imply (III) whenever the metric is Euclidean, but the arguments required to
establish this fact are relatively difficult.

Figure 2.
Ilustration of Example 2.2.

In order to eliminate the “diagonal” squared distances D(1,3) and D(2,4), we compute
the Grobner basis of (I) — (III) with respect to the lexicographic monomial order induced
by the variable ordering [D(1,3),D(2,4), D(1,2), D(2,3),D(3,4),D(1,4)]. The resultant
Grobner basis G contains 11 polynomials, one of which does not depend on either D(1,3)
or D(2,4), as desired (for a detailed account of how one uses Grobner basis computations
to perform eliminations, see [Buchberger, 1985]). This polynomial R(1,2,3,4), which is
homogeneous of total degree 4 and has 35 terms, cannot itself be factored. If we define
the polynomial map D(z,7) — d?(:,7) V1 < i < j < 4, however, R(1,2,3,4) becomes a
polynomial of total degree 8 in the d(¢,j) that factors into a product of linear terms:

r(1,2,3,4) := —(d(3,4) + d(1,2) + d(2,3) + d(1,4))-
(d(3,4) — d(1,2) — d(2,3) — d(1,4))-
(d(3,4) — d(1,2) + d(2,3) + d(1,4))-
(d(3,4) + d(1,2) — d(2,3) + d(1,4))-
(d(3,4) + d(1,2) + d(2,3) — d(1,4))-
(d(3,4) + d(1,2) — d(2,3) — d(1,4))-
(d(3,4) — d(1,2) — d(2,3) + d(1,4))-
(d(3,4) — d(1,2) + d(2,3) — d(1,4)) .

(12)

Interestingly enough, this polynomial is (up to sign) also obtained by taking the resultant
of 4D(1,2,3) and 4 D(1, 3,4) with respect to D(1,3). It vanishes if and only if at least one
of the following holds:

(1) One or more of the first five factors f; through fs in the above equation vanishes;
(2) The sixth factor fe vanishes;
(3) Either seventh factor f7, the eighth factor fs or both vanish.

Case (1) obviously implies that the parallelogram is degenerate (i.e. collinear or copunctual),
and hence need not be further considered. :

To take care of case (2), we consider another one of the polynomials s(1,2,3,4) in our
Grobner basis G' after the transformation D(z,j) — d?(z,5) (which we have chosen simply
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because we are able to derive the desired conclusion from it). Since f¢ = 0, we may substitute
d(1,4) :=d(1,2) + d(3,4) — d(2,3) in s(1,2,3,4) to obtain

5,(1’ 233’4) = (d(1,2) + d(3’4))2 : (d(2v3) - d(3v4)) ) (d(1,2) - d(2a3)) )

(13) ;
(d(2,3) — d(3,4) — d(2,4))* - (d(2,3) — d(3,4) + d(2,4))* .

It follows that if the parallelogram is nondegenerate (i.e. noncollinear) then either d(3,4) =
d(2,3) = d(1,4) =d(1,2) or else d(1,2) = d(2,3) => d(1,4) = d(3,4). If we substitute
d(3,4) := d(2,3) and d(1,4) := d(1,2), however, then we find another polynomial ¢(1,2,3,4)
in our transformed Grobner basis G’ which becomes

(14) t'(1,2,3,4) = —4d(2,4)* - (d(1,2) +d(2,3))* - (d(1,2) — d(2,3))%.

Hence our parallelogram is an equilateral quadrilateral, and in particular conclusions (IV)
and (V) hold. The same result can be proved by an analogous argument if d(1,2) = d(2,3)
and d(1,4) = d(3,4).

Finally, to handle case (3), suppose fg = 0. Then on making the substitution d(1,4) :=
d(2,3) +d(3,4) — d(1,2) in s(1,2,3,4) we get

s"(1,2,3,4) = (d(2,3) +d(3,4)) - (d(1,2) —d(2,3)) - (d(1,2) — d(3,4))*
(d(2,3) +d(3,4) — d(2,4))? - (d(2,3) +d(3,4) + d(2,4))* .

Hence if the parallelogram is not degenerate either d(1,2) = d(2,3) = d(1,4) = d(3,4)
or else d(1,2) = d(3,4) => d(1,4) = d(2,3). As shown in the previous paragraph, in the
former case the parallelogram must be equilateral, whereas in the latter case opposite sides
are congruent, as desired. The case f7 = 0 is handled by an analogous argument.

It is worth noting that the well-known Law of Parallelograms is an immediate corollary of
this result. For if we set D(1,4) := D(2,3) and D(3,4) := D(1,2), we find that every poly-
nomial in our untransformed Grobner basis G which does not vanish after this substitution
has 2D(1,2) +2D(2,3) — D(1,3) — D(2,4) as a factor; in particular we obtain

(16) —~8(D(1,2) - D(2,3))* - (2D(1,2)+2D(2,3) - D(1,3) - D(2,4)) = 0

(15)

Hence either the desired result holds or else the parallelogram is equilateral. In the latter
case, however, on setting D(1,2) := D(2,3) := D(3,4) := D(1,4) in our Grobner basis, we
obtain a polynomial

(17) D?*(2,4)(D(1,3) + D(2,4) -4 D(1,2)) = 0,

which proves the same thing.

2.3. SIMSON’s THEOREM}: Given three points {1,2, 3} in the plane together with a fourth
point 4 which lies on their circ_urricjrcle, the feet of the perpendiculars a, b, ¢ from the point
4 to the sides of the triangle 12, 13 and 23, respectively, are collinear.

tAfter R. Simson; the theorem is actually due to W. Wallace, see [Johnson, 1929].
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Figure 3.
Illustration of Example 2.3.

This theorem has become a favorite example for demonstrating automated proofs of ge-
ometric theorems (cf. [Chou, 1987]). The following proof, although it is not automatic,
nevertheless provides a good illustration of how one translates geometry into algebra by
using the distances as coordinates. To do this, we shall need one little-known fact about the
Euclidean metric, together with its geometric interpretation: This is known as the Ptolomeic
inequality [Johnson, 1929; Apostol, 1967], and states that given any four points in the plane
{1,2,3,4} and the distances d(7,7) (¢,7 = 1, ...,4) among them, we have
(18) d(1,2)d(3,4) < d(1,3)d(2,4) + d(1,4)d(2,3)
with equality if and only if {1,2,3,4} are cocircular with {1,2} separating {3,4} on their
mutual circumcircle. Since this is effectively a triangle inequality involving the products of

pairs of distances, by substituting these products for the distances given in equation (3) we
obtain a completely general and symmetric cocircularity condition:

0 =C(1,2,3,4)
:= 2D(1,2)D(3,4)D(1,3)D(2,4) + 2D(1,2)D(3,4)D(1,4)D(2, 3)+
2D(1,3)D(2,4)D(1,4)D(2,3) — D*(1,2)D?*(3,4)—
D*(1,3)D*(2,4) — D*(1,4)D?*(2,3)

The hypotheses of the theorem may now be formulated as follows:

(19)

Iy ¢€Qq,2,3,4) 0 (points {1,2,3,4} are cocircular);
(II) D(1,4,a,b) 0 (points {1,4,a, b} are coplanar);
(III) D(2,4,qa,c¢) 0 (points {2,4,a,c} are coplanar);
(IV) D(3,4,b,¢) 0 (points {3,4,b, ¢} are coplanar);

cool il

(V) D(1,2,a) = (points {1,2,a} are collinear);
(VI) D(1,3,b) = (points {1,3,b} are collinear);
(VII) D(2,3,¢c) = (points {2,3,c} are collinear);
(VIII) D(1,a) + D(4,a) — D(1,4) =0 (1a L 4a);

(IX) D(2,a)+ D(4,a) — D(2,4) =0 (2a L 4a);

(X) D(1,b)+ D(4,b) — D(1,4) =0 (10 L 4b);

(XI) D(3,b)+ D(4,b) — D(3,4) =0 (3b L 4b);

(XII) D(2,¢)+ D(4,¢) —D(2,4)=0 (2¢ L 4c);
(XIII) D(3,c)+ D(4,¢) ~ D(3,4) =0 (3¢ L 4c).

The conclusion is simply:

(XIV) D(a,b,c) = 0 (the points {a,b,c} are collinear).

Note that we do not need to make explicit use of all of the coplanarity conditions.
The proof will be simplified substantially if we make use of our knowledge of Euclidean
geometry together with conditions (V) — (VII) to derive a preliminary result:
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LEMMA. Given a triangle {1,2,3} and two points a and b on the lines 12 and 13, respectively:
(20)  Q(1,2,3,a,b) := 4D(1,2)D(1,3)D(1,a,b) — 4 D(1,a)D(1,5)D(1,2,3) = 0

PROOF: If the angle at the point 1 in the triangle {1,2,3} is 8, the angle at the point 1 in
the triangle {1, a, b} is either 8 or else 7 — §. Hence by the law of cosines, we have

| D(1,2) + D(1,3) — D(2,3) D(1,a) 4+ D(1,b) — D(a,b)
(21) = +
v D(1,2)D(1,3) v/D(1,a)D(1,b)

By rearranging this equation, squaring both sides and collecting terms appropriately, one
obtains equation (20). (We note that, although we have made use of the Euclidean concept
of angle in proving this Lemma, it is possible to prove it using only the cospatiality condi-
tion D(1,2,3,a,b) = 0, the coplanarity conditions D(1,2,3,a) = D(1,2,3,b) = 0 and the
collinearity conditions D(1,2,a) = D(1,3,b) = 0.)

In a similar fashion, one finds that

(22) Q(2,3,1,c,a) := 4D(1,2)D(2,3)D(2,a,c) —4 D(2,a)D(2,c)D(1,2,3) = 0
and
(23) Q(3,1,2,b,¢) := 4D(1,3)D(2,3)D(3,b,¢c) —4 D(3,b)D(3,¢)D(1,2,3) = 0

Proceeding now with the proof of the Theorem, we start by substituting for D(4,a),
D(4,b) and D(4,c¢) in D(1,4,a,b), D(2,4,a,c) and D(3,4,b,c) using the perpendicularity
conditions (VIII) through (XIII), obtaining polynomials which vanish by conditions (II)
through (IV), and which may be factorized as:

(24) P(1,4,a,b) := 4D(1,4)D(1,a,b) —4D(1,a)D(1,b)D(a,b) = 0
(25) P(2,4,a,c) := 4D(2,4)D(2,a,c) —4D(2,a)D(2,c)D(a,c) = 0
(26) P(3,4,b,c) := 4D(3,4)D(3,b,c) —4D(3,b)D(3,c)D(b,c) = 0

Combining this result with equations (20), (22) and (23), we get:

0 =4D(1,2,3)P(1,4,a,b) — 4D(a, 5)Q(1,2,3, a, b)

(27) = 4D(1,a,b) - (4D(1,4)D(1,2,3) — 4D(1,2)D(1,3)D(a, b))
(28) = 4D(1,2,3)P(2,4,a,c) — 4D(a,c)Q(2,3,1,c,a)

= 4D(2,a,c) - (4D(2,4)D(1,2,3) — 4D(1,2)D(2,3)D(a,c))
(29) 0 =4D(1,2,3)P(3,4,b,¢) — 4D(b,¢)Q(3,1,2,b,¢c)

= 4D(3,b,c) - (4D(3,4)D(1,2,3) — 4D(1,3)D(2,3)D(b,c)) .
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Assuming the nondegeneracy conditions D(1,a,b) # 0, D(2,a,c) # 0 and D(3,b,¢) # 0, we
obtain:

(30) R(1,2,3,4,a,b) :=4D(1,4)D(1,2,3) —4D(1,2)D(1,3)D(a,b) = 0
(31) R(2,3,1,4,c,a) :=4D(2,4)D(1,2,3) —4D(1,2)D(2,3)D(a,c) = 0
(32) R(3,1,2,4,b,c) := 4D(3,4)D(1,2,3) - 4D(1,3)D(2,3)D(b,c) = 0.

Finally, we solve these equations for D(1,4), D(2,4) and D(3,4), respectively and use them
to eliminate point 4 entirely from our cocircularity condition (I), obtaining:

(33) D*(1,2)- D*(1,3) - D*2,3)- D*(1,2,3) - D(a,b,c) = 0.

Hence, assuming the nondegeneracy condition D(1,2,3) # 0, the Theorem follows.

2.4. TOPOLOGY OF THE EQUILATERAL PENTAGON LINKAGE: One of the most promising
areas for the application of the distance geometry approach is to the study of linkages, i.e.
mechanisms obtained by fastening together fixed length bars at flexible joints (and allowing
the bars to pass through each other). Examples of this approach to the study of linkages
may be found in [Schoenberg, 1969] and [Dress, 1982]. Here we shall present a new example
in which we use distance geometry in conjunction with Morse theory to determine the
topology of the configuration space of the linkage which is obtained by allowing the angles
at the vertices of an equilateral planar pentagon to vary freely while preserving the lengths
of its sides.

DEFINITIONS. The configuration space of the equilateral pentagon linkage consists of all five-
point subsets {1,2,3,4,5} of the Euclidean plane such that d(i,s +1)=1forall: =1,...,5
(1 + 1 computed mod 5). It can be defined analytically as the set of all possible Cartesian
coordinates for such five-point subsets, with those members thereof which differ only by a
translation and/or proper rotation identified. Let M be a smooth manifold (embedded in
R", say) and let f : M — R be a smooth function. A critical point of f is any point of
the manifold at which its gradient Vf = 0. The function f is called a Morse function* if
its Hessian V2 f is nonsingular at all its critical points. The indez of such a nondegenerate
critical point is the number of —1’s in the signature of its Hessian. A well-known result
in Morse theory states that the Euler characteristic xas of the manifold is related to the
number N; of critical points of index i by the formula x3r = 33(=1)'N; . In the case of a
compact orientable two-dimensional manifold of genus Gy, the Euler characteristic is just
XM= 2-2G M -

THEOREM. The topological structure of the configuration space of the planar equilateral
pentagon linkage is that of a compact, connected and orientable two-dimensional manifold
of genus 4.

*For a detailed account of Morse theory, the reader is referred to [Morse & Cairns, 1969).
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Figure 4.
Illustration of Example 2.4.

To prove this theorem, we first show that the real algebraic variety that is obtained by
setting the distances around the pentagon to unity is in fact a smooth manifold. To do this,
let p = [p1, .., Ps] € R'® denote a set of coordinates for the linkage, where p; = [p:?,p;?] €
R? for ¢ = 1,...,5, and denote by voly(i,j, k) the oriented area of the triangle [p;,p;, P&,
which is given by

1 1 1

1
(34) 3 det Pi; Pj: Pk:
Di Dy Pk

We now define an atlas on the configuration space, whose coordinate patches are given by
(35) Pi(n) := {p € R' | sign(volp(é,i + j,i +j + 1)) = n;}

fori =1,...,5and j = 1,2,3, wheren € {-1, +1}3 and the index sums are computed mod 5
as before. Since each coordinate patch is the inverse image of an open set in the range of
a smooth function, it follows that each is open in R'® and hence is likewise open in the
appropriate quotient topology. It is easily seen that these 23 - 5 = 40 open sets completely
cover the configuration space. Using the method of triangulation, it can further be shown
that the two squared distances D(z,¢+ 2) and D(¢,¢+ 3) determine the configuration of the
pentagon uniquely on each of the eight coordinate patches P;i(n) (n € {—1,+1}?), and so
constitute a local parametrization of each. From this, one sees that the configuration space
is a compact, connected, two-dimensional manifold, and what remains is to determine its
genus.

We shall do this by applying Morse theory. The exact choice of Morse function is not
critical, but the oriented area V(1,...,5) of the pentagon as a whole turns out to be com-
putationally convenient. We recall that the oriented area of a polygon is the sum of the
oriented areas of the triangles in any triangulation thereof [Klein, 1939], while the absolute
area of a triangle |V (a,b,c)| with vertices a, b, c is given in terms of the lengths of its sides
by Heron’s formula (Equation (3)), i.e. by |V(a,b,¢)| = 1/2D%(a,b,¢). Hence on a given
coordinate patch P;(7), the oriented area of our pentagon is given by

(36) 2V(1,...5) = m+/D@E,i+1,i+2)
+n2/D(i,i + 2,5+ 3) + 13/ D(G,i +3,i +4) ,
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where D(i,i + j,2 + j + 1) denotes a three-point Cayley-Menger determinant and the in-
dex sums are computed mod 5 as always. In the case that ¢ = 1, the derivatives of this
expression are

ov(1,....5)
8D(L,3)
m 8D(1,2,3) 7 8D(1,3,4)
(37) = 3pir(1.2,3) 8D(1,3) | 2DV%(1,3,4) OD(1,3)
_ m(D,3)-2) m(D(1,3) - D(1,4) = 1)
v D?*(1,3) — 4D(1,3) Vv1-2(D(1,3)+ D(1,4)) + (D(1,3) — D(1,4))?
and
av(1,....5)
3D(1,4)
T2 dD(1,3,4) 13 dD(1,4,5)
(38) = 3pia(1,3,4) 8D(L,4) ' 2D'/2(1,4,5) 0D(1,4)
_ 72(D(1,4) — D(1,3) - 1) 1(D(1,4) - 2)

J/1-2(D(1,3) + D(1,4) + (D(1,3) — D(1,4))  /D*(1,4)—4D(1,4)

If we set these derivatives to zero, rearrange and square both sides, we get

(39) (D(1,4) - 1)-(D*(1,3)-2D(1,3) - D(1,4)+1) = 0
and
(40) (D(1,3) - 1)-(D*1,4) —2D(1,4) - D(1,3)+1) = 0

respectively (note the signs n; cancel on squaring). Thus, if D(1,4) # 1 and D(1,3) # 1, we
have

(41) D(1,3) € {1-D'?*1,4), 1+ DY*(1,4)}
and
(42) D(1,4) € {1-D'?*1,3), 14 D'/?*(1,3)}

respectively, so that the only nonzero simultaneous solutions of equations (39) and (40) are

V5+1

D(1,3) = D(1,4) = 5=,

(43) D(1,3) = D(1,4) = \/52‘ L

and D(1,3)=D(1,4)=1.
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The first two solutions are the squared diagonal distances in the convex and inverted
regular pentagons, respectively. Examination of the Hessian of V at these configurations
establishes that for = —1 and +1 the convex pentagon corresponds to critical points of
index 0 and 2, respectively, which lie in all of the coordinate patches Pi(n,7n,7) (i = 1,...,5).
Similarly, for n = —1 and +1 the inverted pentagon corresponds to critical points of index
2 and 0, respectively, which lie in all of the coordinate patches Pi(n,—n,7) (¢ = 1,...,5).
These observations show that Ng = N, = 2. The last solution occurs in only two of the
coordinate patches, namely P,(+1,—1,+1) and P;(—1,+1, —1). In this case, evaluation of
the Hessian reveals that these are nondegenerate critical points of index 1. Since there is one
such critical point in each coordinate patch of the form P(n,—n,n) (n € {£1},:=1,...,5),
the total number of such critical points is N; = 10.

We now plug these numbers into our equation for the Euler characteristic and get:

(44) XM = 2-10+2 = —6

which corresponds to a manifold of genus 4 as claimed. Since the only nonorientable manifold
of this genus has two cross-caps, orientability can be established by a symmetry argument.
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