
Solving stochastic programs with

integer recourse by enumeration:

a framework using Gröbner basis reductions

Rüdiger Schultz
Mathematical Institute, University of Leipzig

Augustusplatz 10/11, D-04109 Leipzig, Germany

Leen Stougie
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Maarten H. van der Vlerk
Department of Econometrics, University of Groningen

P.O. Box 800, NL-9700 AV Groningen, The Netherlands

May 15, 1995

Abstract

In this paper we present a framework for solving stochastic programs with
complete integer recourse and discretely distributed right-hand side vector, us-
ing Gröbner basis methods from computational algebra to solve the numerous
second-stage integer programs. Using structural properties of the expected
integer recourse function, we prove that under mild conditions an optimal so-
lution is contained in a finite set. Furthermore, we present a basic scheme to
enumerate this set and suggest improvements to reduce the number of function
evaluations needed.

1 Introduction

In this paper we are concerned with two-stage stochastic integer programs of the
type

min{cx + Q(x) : x ∈ C} (1)

where

Q(x) = Eξv(Tx − ξ) (2)

and

v(s) = min{q̃y : Wy ≥ s, y ∈ ZZm
+}. (3)

Here c is an n-dimensional vector, C = {x ∈ IRn
+ : Ax ≥ b} is a non-empty

polyhedron with A a q×n matrix and b a q-dimensional vector, T is a p×n-matrix,
q̃ is an m-dimensional vector, and W a p × m-matrix. All matrices/vectors have
real elements except for W , which is a rational matrix. ξ is a random vector in IRp

1

and Eξ denotes the expectation with respect to ξ. For the moment, we assume that
both Q and v are well-defined; conditions ensuring that will be given later on.

The stochastic program (1) is designed to finding optimal first-stage decisions x
in an optimization problem under uncertainty where the first-stage decisions have
to be made before knowing the outcome of the random vector ξ, and where second-
stage decisions y serve to compensate possible infeasibilities after having fixed x
and observed ξ. For an introduction to two-stage stochastic programming we refer
to [14, 21].

In contrast to the many algorithms for stochastic programs with continuous
second-stage variables (see e.g. [11, 14, 21]), only few methods have been developed
that deal with integer second-stage problems. They usually are restrictive, either
in a theoretical sense, or in practical applicability. There are two main difficulties
in solving stochastic integer programming problems. The first one is that, in order
to compute one function value Q(x), one has to solve many different (but similar)
integer programs, which are in general NP-hard.

The other difficulty is that, due to the integer requirements on the second-stage
variables y, the value function v in (3) is in general only lower semicontinuous (see
[2]) instead of convex for continuous variables y. This destroys the convexity of Q
met in the continuous case and solving (1) amounts to minimizing a non-convex
and possibly discontinuous objective. The latter is a fairly recent field of research
with promising first results [10].

In this paper, we present a framework for solving (1) where the second-stage
integer programs are handled via Gröbner basis methods from computational al-
gebra. Employing traditional stochastic programming methodology, the algebraic
techniques are embedded into an algorithmic framework that reduces solving (1) to
inspecting finite sets of candidate points.

The latter is the main contribution of this paper. Studying the structure of the
stochastic integer problems we show that at least some of the optimal first-stage
decisions belong to an explicitly given countable set. Under some mild additional
assumptions this set can be further restricted to a finite one. To this end we apply
certain level sets, which are constructed by solving the continuous relaxation of (1)
(i.e., the stochastic program where the integer requirements in the second stage are
dropped).

Applying Gröbner bases to solve integer linear programs was first proposed in
[7] (see also [31]). It yields additional information at a possibly high computational
cost, so that usually it is an inefficient method to solve the problem for a fixed right-
hand side. However, the additional information turns out to be highly beneficial
when an integer linear program needs to be solved many times, where each time
only the right-hand side parameters are different. Therefore, this method does seem
particularly useful for solving stochastic programs with integer recourse. Computing
the Gröbner basis related to the second-stage integer linear program is in general
very time consuming, but has to be done only once. The reason is that the Gröbner
basis does not depend on information corresponding to the varying right-hand side,
i.e., the realization of ξ and the choice of x.

The existence of the Gröbner basis approach justifies the assumption that it
is computationally feasible to evaluate the expected value function Q many times.
This assumption is essential for the practicability of our algorithm. However, our
algorithm is independent of the actual method used to perform these calculations.

If ξ follows a discrete distribution, problem (1)-(3) is representable as a large-
scale mixed-integer linear program with dual block angular structure. If, contrary
to our assumptions, all variables are continuous then the equivalent problem is a
structured LP, which can be solved by decomposition algorithms related to classical
Benders’ decomposition, such as the L-shaped method [35], regularized decomposi-
tion [23], or stochastic decomposition [12]. In this case the above mentioned con-

2

vexity of v is crucial. On the other hand, for mixed-integer dual block angular LP’s
equivalent to (1)-(3) no practicable decomposition methods are known. This paper
makes a step forward in the search for such methods: for the complicated lower
semicontinuous master problem we work out an enumeration scheme, and for the
numerous but similar slave problems we employ an efficient procedure (reductions
using a Gröbner basis). Such a decomposition idea, although simple, considerably
widens the ability to solve stochastic programs with integer recourse. Indeed, in
Section 7 we report on experiments with our method and with the CPLEX 4.0
Mixed-Integer Optimizer (applied to the large-scale block angular MILP version of
(1) - (3)). It appears that problems with a second stage of moderate size can be
solved by our method, while CPLEX ended up with gaps of about 25% after 50.000
nodes of branching.

The main body of research on two-stage stochastic integer programming has
been devoted to structural properties of the second-stage expected value function
Q. In [25, 26] complete recourse models are treated, whereas in [16, 19] the focus
is on simple integer recourse. For the latter model approximate solution methods
based on convex approximations are presented in [15, 34].

First proposals of methods to solve stochastic integer programs are described
in [17, 18]. The former approaches the problem by dynamic programming, and
can be used only for problems of relatively small size. The approach in the latter
paper is based on the assumption that the first stage variables are also integral,
thereby obtaining countability of the set of feasible solutions. Moreover, it is im-
plicitly assumed that computation of the second-stage integer problems provides no
hardship. An L-shaped method for linear stochastic programs with integer recourse
is proposed in [5]. The authors show finiteness of the method but admit that no
practicable method for the lower semicontinuous master problem is known. The
branch and bound method with stochastic bound estimation, which is developed
in [24], can be applied to stochastic programs with integer recourse too. Naturally,
this method converges in a stochastic sense (with probability one). Therefore, for
a given problem it has to be run several times to produce a reliable solution.

Applicability of Gröbner bases for solving stochastic programming problems has
been noticed independently by Tayur et al. In [30] an algorithm for optimiza-
tion problems under probabilistic constraints is proposed and applied to a real-life
scheduling problem. Moreover, Tayur outlined a gradient type algorithm for inte-
ger recourse models with continuously distributed parameters in [29]; like in this
paper, Gröbner techniques are used as a computational tool. For an overview of
the literature on stochastic integer programming we refer to [27, 28].

In Section 2 we describe briefly how a Gröbner basis can be used to evaluate the
objective function of a stochastic integer program.

In Section 3 we show that, if the random vector ξ is discretely distributed as
we will assume, an optimal solution of (1) is contained in a certain countable set.
Under some mild conditions this set of points can even be reduced to a finite set,
as exposed in Section 4.

For an effective method the above set of points is to be enumerated completely.
In Section 5 we propose a basic enumeration scheme that does this job.

Having presented all ingredients, they are put together in Section 6 which con-
tains a short description of the basic algorithm. This is followed by two improve-
ments, both directed at reducing the number of points to be evaluated .

In Section 7 we illustrate computational possibilities of our algorithm on a few
examples of moderate size.

Finally, conclusions and directions for future research on this topic are presented
in Section 8.

3

2 Function evaluations using Gröbner bases

Solving the integer programs behind the function values of the expected recourse
function Q is the key problem in stochastic programming with integer recourse.
Here, we have to solve

min{q̃y : Wy ≥ s, y ∈ ZZm
+}

for arbitrary right-hand sides s ∈ ZZp (we assume that W is an integer matrix,
hence if s 6∈ ZZp then it can be replaced by its componentwise integer round up dse).
Without loss of generality we can assume that, after introducing slack variables,
the problem (with properly adjusted q̃, W and y) is in equality form

(P) min{q̃y : Wy = s, y ∈ ZZm̄
+},

with m̄ = m + p.
For problems of this type, recently a solution technique has been developed

based on Gröbner basis methods from computational algebra [7].
For a brief exposition of the method we introduce the problem

(IP) min{cy : Ay = b, y ∈ ZZn
+},

where A is an integral d × n-matrix and c, b are integral vectors of dimensions n
and d, respectively. To keep the exposition simple we assume here that all entries
in c, A and b are non-negative.

Buchberger Algorithm for Integer Linear Programs

Step 1: Let k be any field and fix the polynomial ring k[x1, . . . , xd, y1, . . . , yn],
written also as k[x, y].

Step 2: Specify a monomial order ≺ in k[x, y] that is compatible with c and
guarantees x > y.

Step 3: Form the ideal I = 〈xa1 − y1, . . . , x
an − yn〉., where ai is the i-th column

of A, and xai

denotes the monomial xa1i
1 · xa2i

2 · . . . · xadi

d .

Step 4: Compute the (reduced) Gröbner basis G of I with respect to ≺ using
Buchberger’s algorithm.

Step 5: Divide xb by G, resulting in the remainder rG(xb).

Step 6: If rG(xb) ∈ k[y] then the remainder is a monomial whose exponent vector
is an optimal solution to (IP), otherwise (IP) has no feasible solution.

An introduction covering the algebraic concepts in this exposition can be found
in [8], which also contains a description of Buchberger’s algorithm to determine a
Gröbner basis (originally presented in [3]). For the background and details of the
specific application to solving integer linear programs, as well as for the extension
to the case in which negative entries are allowed, we refer to [7, 13, 31].

In our integer recourse setting, the interesting feature of this method is that
the right-hand side only enters in Step 5, i.e., after computing the Gröbner basis.
Solving the integer linear program with any given right-hand side then amounts to a
single generalized division. In other words, after computing the (reduced) Gröbner
basis corresponding to (P) only once, each evaluation of the value function

v(s) = min{q̃y : Wy ≥ s, y ∈ ZZm
+}

is cheap!

4

The computation of Gröbner bases is however of exponential complexity and
solving large instances of integer programs using this approach is far from today’s
possibilities. Nevertheless, for problems of moderate size Gröbner bases can be
found (see [13]). They contain the essential information to efficiently organize the
repeated solution of (P) for varying right-hand side. To our knowledge, no other
method can supply comparable information.

To prepare computational experiments on which we will report in Section 7,
we computed the reduced Gröbner basis corresponding to the following knapsack
problem:

max{16y1 + 19y2 + 23y3 + 28y4 :
2y1 + 3y2 + 4y3 + 5y4 ≤ s1,

6y1 + y2 + 3y3 + 2y4 ≤ s2, yl ∈ {0, 1}, l = 1, . . . , 4}
Algebraic calculations were performed with the general purpose computer algebra
package CoCoA (Release 3.0b) [4]. For computation times, this created some over-
head since no advantage is taken from specific features that are inherent to our
application in integer programming, in particular that the ideal I is generated by
binomials. On the other hand, there is active research directed to exploiting these
features (see [13, 31, 32, 33]). Any progress along this line can be used directly to
speed up or widen applicability of our algorithm for stochastic integer programs.

With CoCoA the reduced Gröbner basis related to the above knapsack problem
was found in 0.34 seconds (on a SPARCstation 4 with 110 MHz microSPARC II
CPU). The basis consists of 55 elements. Using this basis to solve the knapsack
problem for all relevant right-hand sides, i.e., for all 182 integer 2-vectors s ∈
[1, 14]× [0, 12], took 4.19 seconds of CPU time.

3 A countable number of function evaluations

In this section we show that the set of points in which evaluation of the objective
function is required is countable in case right-hand sides ξ follow a discrete distri-
bution. We first state general assumptions, also known from continuous recourse
modelling, that assure that our model is well defined, followed by a condition that
allows application of the Gröbner basis method for evaluations of the function Q.
Then we present resulting properties of the function Q and the model (1), that lead
to a countable number of operations required by our method.

3.1 Assumptions

We assume that

(i) For any s ∈ IRp there exists a y ∈ ZZm
+ such that Wy ≥ s.

(ii) There exists a u ∈ IRp
+ such that W ′u ≤ q̃.

(iii) The random vector ξ has finite first moment.

Assumption (i) says that, for any possible value of Tx− ξ, there exists a feasible
second-stage (or recourse) decision y. Following the continuous-recourse terminol-
ogy, we say that (1) has complete integer recourse. By assumption (ii), the dual to
the continuous relaxation of (3) has a feasible point. Therefore, (i) and (ii) together
imply that v(Tx − ξ) ∈ IR, for all x ∈ IRn and all ξ ∈ IRp (Proposition I.6.7. in
[20]). Moreover, there exist constants a1, a2 ∈ IR such that for all s1, s2 ∈ IRp

|v(s1) − v(s2)| ≤ a1||s1 − s2|| + a2

5

(Theorem 8.1, [1]; Theorem 2.1, [2]). Therefore, assumptions (i) - (iii) imply that
Q(x) ∈ IR for all x ∈ IRn, and (1) is well-defined.

The model (1) is a special case of the mixed-integer recourse model studied in
[26]. As a consequence of Proposition 3.1 in [26] we obtain

Lemma 3.1 Assume (i) - (iii). Then Q is a real-valued lower semicontinuous func-
tion on IRn, i.e. lim infx→xo Q(x) ≥ Q(xo) for all xo ∈ IRn.

We assume throughout the paper:

(iv) The random vector ξ follows a discrete distribution with finite support Ξ, say
Ξ = {ξ1, ξ2, . . . ξr} and pi = Pr(ξ = ξi).

Due to this assumption the expected value function Q (and hence the objective
function of (1)) is discontinuous, as we will see in the following subsection.

Thus, our results below do not apply to models with continuously distributed
ξ. However, it is shown in [26] that, under mild assumptions, local optimal values
and sets of local optimal solutions to (1) behave stable if the distribution of ξ is
perturbed with respect to the topology of weak convergence of probability measures
(Proposition 4.1, [26]). Therefore, it is possible to resort to discrete distributions
of ξ when solving (1). If ξ has a continuous distribution then, according to the
mentioned stability result, solutions to (1) can be approximated with any given
accuracy if a discrete distribution is taken for ξ that is sufficiently close to the
original one in the topology of weak convergence.

To be able to apply the Gröbner basis algorithm for function evaluations we
assume:

(v) All elements of W are integers.

Actually, it is sufficient if W is rational. Integrality is then obtained by scaling.
Moreover, assumption (v) serves to facilitate specification of the sets where the

function Q is constant, as discussed in the following subsection.

3.2 Countability

To establish countability of the number of function evaluations required under the
above assumptions, we first analyze the structure of the expected value function.
In the following, d·e and b·c denote (componentwise) integer round up and round
down, respectively.

For all non-negative integer vectors y, Wy ≥ t implies Wy ≥ dte. Therefore, the
second-stage value function v is constant on subsets

{s ∈ IRp : dse = k} = {s : k − (1, . . . , 1)′ < s ≤ k} ∀k ∈ ZZp,

and the function Q is constant on intersections of such subsets. For every x̄ ∈ IRn,
the function Q is constant on

C(x̄) =
r⋂

i=1

{
x : dTx − ξie = dT x̄ − ξie}

=
r⋂

i=1

p⋂
j=1

{
x : dTjx − ξi

je = dTj x̄ − ξi
je

}

=
r⋂

i=1

p⋂
j=1

{
x : dTjx̄ − ξi

je + ξi
j − 1 < Tjx ≤ dTjx̄ − ξi

je + ξi
j

}
. (4)

6

0 1 2 3 4 5

0

1

2

3

4

5

Figure 1: Example of the partition of [0, 5]× [0, 5] in sets C(·) if T and Ξ are given
by (5).

Here Tj is the jth row of the matrix T and ξi
j is the jth component of the ith vector

in the support of ξ.
From (4) we see that every set C(·) is obtained by intersecting rp sets of the

form {x : ki
j + 〈ξi

j〉 − 1 < Tjx ≤ ki
j + 〈ξi

j〉}, where ki
j ∈ ZZ and 〈s〉 = s − bsc denotes

the fractional part of s ∈ IR. Using this structure, in principle we can construct a
partition of the feasible set C = {x ∈ IRn

+ : Ax ≥ b} in sets where the expected
value function Q is constant. See Figure 1 for an example with

T =

.4 .2
1 1
.5 1.25
0 1

 Ξ =

.25

.3

.2

.1

 ,

.98
0
.8
.5

. (5)

Notice that, since each of the constituting sets is the intersection of an open and a
closed half-space, in general the sets C(·) are neither open nor closed.

Below we will show how the fact that Q is constant on every set C(·) ∩ C can
be used to locate an optimal solution of (1), at least if such sets have vertices. The
following condition guarantees this. By 0+C we denote the recession cone of the
convex polyhedron C, i.e., the set of all directions w ∈ IRn such that x + tw ∈ C
for some x ∈ C and all t ≥ 0. If

0+C ∩ {x : Tx = 0} = {0} (6)

then each of the sets C(·) ∩ C is bounded and has vertices.
In the next section we will show that, under a mild additional assumption, we

can restrict the search for optimal solutions to a bounded subset of C. In that case
existence of vertices is no longer a question and the condition (6) can be dropped.

In the following theorem we show that the countable set of all vertices of the
sets C(·) ∩ C contains an optimal solution of (1).

Definition 3.1 The countable set V , given by

V = {x ∈ IRn : x is a vertex of C(x) ∩ C},
is called the set of candidates; an element of V is called a candidate point.

7

Example 3.1 Consider an integer recourse model with feasible region C = {x ∈
IR2 : 0 ≤ xj ≤ 5, j = 1, 2}, technology matrix T =

(
1 0
0 1

)
and random right-hand

side vector ξ with support {5, 5.5, . . . , 15} × {5, 5.5, . . . , 15}. Then, for x̄ ∈ IR2,

C(x̄) =
121⋂
i=1

{
x :

ki
1(x̄) + 〈ξi

1〉 − 1 < x1 ≤ ki
1(x̄) + 〈ξi

1〉
ki
2(x̄) + 〈ξi

2〉 − 1 < x2 ≤ ki
2(x̄) + 〈ξi

2〉
}

,

where ki
j(x̄) = dx̄j −ξi

je+bξi
jc is an integer for all i and j. Since 〈ξi

j〉 ∈ {0, 1/2}, j =
1, 2, we see that x is a vertex of some set C(·) if and only if x = (k1/2, k2/2), k1, k2 ∈
ZZ. Hence in this case the set of candidates is

V =
{

x ∈ IR2 :
xj = kj/2, kj ∈ ZZ
0 ≤ xj ≤ 5 , j = 1, 2

}
,

which has cardinality 121. /

Theorem 3.1 Let V , the set of candidates, be non-empty. If argmin{cx + Q(x) :
x ∈ C} 6= ∅ then

V ∩ argmin{cx + Q(x) : x ∈ C} 6= ∅.
Proof. Let x̄ ∈ argmin{cx + Q(x) : x ∈ C}. For all x ∈ C(x̄) ∩ C we have
Q(x) = Q(x̄). Consider minimizing the linear function cx + Q(x̄) on the closure
of C(x̄) ∩ C, denoted by cl(C(x̄) ∩ C). Since the minimum over this polyhedral
set is attained, it is attained in one of its vertices, say x̂. If x̂ ∈ C(x̄) ∩ C we are
done, since in that case Q(x̂) = Q(x̄) and cx̂ ≤ cx̄, implying that the vertex x̂ is
an optimal solution. Otherwise, if x̂ ∈ cl(C(x̄) ∩ C) \ C(x̄) ∩ C consider the set
C(x̂) ∩ C which trivially contains x̂ as a vertex. It holds

Q(x̂) ≤ lim
x→x̂

Q(x) = Q(x̄) ∀x ∈ C(x̄) ∩ C,

where the inequality is valid by the lower semicontinuity of Q. Since also cx̂ ≤ cx̄,
it follows that x̂ ∈ V is an optimal solution.

Thus, in order to find an optimal solution of (1), it is sufficient to consider only
elements of the countable set V . In the next section we present conditions that
allow to define a finite subset of V that still contains all optimal candidate points.
Notice that finiteness of V itself would be implied directly by boundedness of C.

4 Finiteness using level sets

The purpose of this section is to show how the continuous relaxation of (1) can be
used to reduce the set of candidates defined in the previous section to a finite set.
The continuous relaxation is obtained by dropping the integrality conditions on the
second-stage variables in (3):

min{cx + QR(x) : x ∈ C} (7)

where

QR(x) = Eξ vR(Tx − ξ)

and

vR(s) = min{q̃y : Wy ≥ s, y ∈ IRm
+}.

8

By (i) - (iii), the problem (7) is well defined. Its optimal value is obviously a lower
bound to the optimal value of (1).

The following result is the basic tool that allows the use of the continuous re-
laxation to restrict the set of candidate points.

Lemma 4.1 Let X be a non-empty set, and f and f̄ real functions on X such that
f̄(x) ≤ f(x) for all x ∈ X . Then, for all x̄ ∈ X ,

argmin
x∈X

f(x) ⊂ {x ∈ X : f̄(x) ≤ f(x̄)}.

Moreover, the difference between these sets is smaller according as f̄ is a better
approximation of f and f(x̄) is a better approximation of infx∈X f(x). In particular,
if f̄(x̄) = f(x̄) and x̄ ∈ argminx∈X f̄(x) then x̄ ∈ argminx∈X f(x).

Proof. For any x̄ ∈ X

argmin
x∈X

f(x) =
⋂

y∈X

{x ∈ X : f(x) ≤ f(y)}

⊂
⋂

y∈X

{x ∈ X : f̄(x) ≤ f(y)}

⊂ {x ∈ X : f̄(x) ≤ f(x̄)},
where the tightness of each inclusion clearly depends on the indicated properties of
f and x̄, respectively.

The last claim follows directly from the assumptions. We have f(x̄) = f̄(x̄) ≤
f̄(x) ≤ f(x) for all x ∈ X , which precisely means that x̄ ∈ argminx∈X f(x).

Since QR is a lower bound for Q on IRn, this lemma implies that for any feasible x̄
the corresponding level set of the objective of the continuous relaxation, given by

L(cx̄ + Q(x̄)) = {x ∈ C : cx + QR(x) ≥ cx̄ + Q(x̄)},
contains all minimizers of the integer recourse problem (1). Moreover, each time a
feasible point with a lower objective value is found, the level set can be reduced,
thus decreasing the number of points that have to be enumerated even further.

It is clear now that if there is a bounded level set then an optimal solution of
(1) is contained in the finite intersection of this level set and the set of candidates.
To arrive at conditions under which this is the case, we first review a well-known
dual representation of the function QR, to be used in the subsequent discussion of a
(partial) description of the level sets L(·). In the next section, where we discuss how
to actually enumerate the set of candidates, these level sets also play an important
role.

By linear programming duality, we obtain

vR(s) = max{su : W ′u ≤ q̃, u ∈ IRp
+}.

Assumptions (i) - (ii) together imply that the set MD = {u ∈ IRp
+ : W ′u ≤ q̃} is a

non-empty compact polyhedron. Denoting its vertices by dl, l ∈ No, where No is a
finite index set, we obtain

vR(s) = max
l∈No

dls.

Hence

QR(x) =
r∑

i=1

pivR(Tx − ξi) =
r∑

i=1

pi max
l∈No

dl(Tx − ξi),

9

from which it is easy to see the well-known fact that QR is a piecewise linear convex
function on IRn.

As explained above, approximations of lower level sets of the objective function
cx + QR(x) are used in our algorithm. These sets are constructed as follows.

Let N ⊂ No denote the index set of a subset of the vertices of MD, and ξ̄ =∑r
i=1 piξi. Then the function

Q̄R(x) = max
l∈N

dl(Tx − ξ̄)

is a lower bound for QR. Indeed, by the convexity of QR and Jensen’s inequality,
we have for all x ∈ IRn

QR(x) ≥ vR(Tx − ξ̄)
= max

l∈No

dl(Tx − ξ̄)

≥ max
l∈N

dl(Tx − ξ̄)

= Q̄R(x).

Thus, a collection of (outer) approximations of the lower level set

L(α) = {x ∈ C : cx + QR(x) ≤ α} (8)

is given by

L̄N(α) = {x ∈ C : cx + dl(Tx − ξ̄) ≤ α, l ∈ N}, N ⊂ No. (9)

Obviously L̄M (α) ⊂ L̄N (α) if M ⊃ N .
For problems of very moderate size, the complete list of vertices of MD can be

obtained via stochastic programming pre-processing techniques as in [14, 36], or
by general vertex enumeration methods (cf. [6] for a comfortable implementation).
In general, however, one has to live with a partial list of vertices. Algorithms for
(non-integer) stochastic programs like the regularized decomposition method [23]
yield such a list in the course of computation. For this reason the first step of our
algorithm will be to solve the continuous relaxation of (1), so that we can assume
that at least a partial list of vertices of MD is available.

It is clear that to obtain finiteness of our method we need to restrict the enu-
meration to a finite number of candidate points. Due to Lemma 4.1 finiteness is
guaranteed if, for some N ⊂ No and α ∈ IR, the (approximate) level set L̄N (α) is
bounded and non-empty. By Corollary 8.7.1 in [22] it then follows that L̄N(α) is
bounded for every α, and by construction the same is true for L̄M (α), M ⊃ N . In
particular, it holds that if the solution set of the continuous relaxation (which is
a level set, say L̄No(α

∗)) is bounded and non-empty, then L̄No(α) is bounded and
non-empty for all α ≥ α∗. Using (9) we see that boundedness of this set is implied
by

{w ∈ 0+C : (c + dlT)w ≤ 0, l ∈ No} = {0}.

However, in the description of this condition some constraints may be redundant.
In that case we only need a subset of |N | < |No| vertices of the dual feasible region
to construct a bounded approximate level set L̄N (α).

In order to avoid superfluous notational burden, in the sequel we will simply use
L to denote an (approximate) level set whenever no confusion can arise.

10

5 Enumerating the set of candidates

In the previous sections we have shown that the set of candidates V , intersected
with a level set L of the continuous relaxation, contains an optimal solution of (1).
To obtain an optimal solution we need to completely enumerate this set, which is
finite by assumption. In this section we show how such a complete enumeration can
be organized in a way that takes advantage of the structure of the set of candidates.

By definition every candidate point v ∈ V is a vertex of C(v)∩C, which can be
represented as{

x ∈ IRn :
ki

j + 〈ξi
j〉 − 1 < Tjx ≤ ki

j + 〈ξi
j〉, i = 1 . . . r, j = 1 . . . p

Ax ≥ b, x ≥ 0

}
, (10)

where ki
j = dTjv − ξi

je, i = 1 . . . r, j = 1 . . . p. Since v is a vertex of this set, it
satisfies n independent inequalities from this system with equality.

Remark 5.1 By Lemma 4.1 we only need to consider candidate points that are
contained in the level set L. However, the inequalities defining L are not represented
in (10), since their role differs from the inequalities in terms of the rows of T and
A, and the non-negativities. Indeed, a vertex of C(·) ∩ L that is not also a vertex
of C(·)∩C is not a candidate point as defined in Definition 3.1, and therefore need
not be evaluated.

We can obtain a complete list of all candidate points in L by considering all choices
for ki

j ∈ ZZ such that {x : Tjx = ki
j + 〈ξi

j〉} ∩ L is non-empty, and for every such
choice considering all combinations of n independent equalities. This idea is the
basis of our enumeration method. As will be explained in Section 6, it appears to
be beneficial to consider subsets of candidate points that all lie on a common line
segment defined by n−1 out of n equality constraints as mentioned above. On such
a line segment, groups of candidate points are determined by one more independent
equality whose right-hand side is varied. In order to give a detailed description of
our enumeration method, we first need to introduce some notation.

For j = 1, . . . , p, we define

tuj = max{Tjx : x ∈ L}
tlj = min{Tjx : x ∈ L},

and

Rj =
r⋃

i=1

{
k + 〈ξi

j〉 : k ∈ ZZ, tlj ≤ k + 〈ξi
j〉 ≤ tuj

}
.

Each set Rj contains all right-hand side values such that the inequality Tjx ≤ rj ,
rj ∈ Rj , may appear in the description (10) of some set C(·) that has a non-empty
intersection with L. To enable uniform treatment of all (in)equalities in (10), we
also define Rj = {bj−p}, j = p+1, . . . , p+q, and Rj = {0}, j = p+q+1, . . . , p+q+n,
to denote the singleton sets of possible right-hand side values for the inequalities
defining the set C = {x ∈ IRn : Ax ≥ b, Ix ≥ 0}, where I is the n × n identity
matrix.

Next we define the (p + q + n) × n matrix S = (T ; A; I). Finally, let J ⊂
{1, . . . , p + q + n}, |J | = n− 1, be an index set such that the matrix SJ , consisting
of the rows Sj , j ∈ J , has rank n− 1, and let RJ ⊂ IRn−1 be the cartesian product
of Rj , j ∈ J .

Now we are ready to define the line segments that we have in mind. For a fixed
r ∈ RJ , consider

HJ (r) = {x : SJx = r} ∩ L.

11

Either HJ(r) = ∅, or it is a line segment whose endpoints are given by

xu
J (r) = max{cx : x ∈ HJ(r)}

xl
J (r) = min{cx : x ∈ HJ(r)}.

(if c ⊥ HJ(r) any other objective vector can be used). Now consider a row Sj with
j 6∈ J (and Sj not perpendicular to HJ (r)). If, for some right-hand side rj ∈ Rj , the
hyperplane Sjx = rj intersects HJ(r), then this intersection is a candidate point;
we will say that this candidate point is generated on HJ(r) by Sj . To obtain all
candidate points on HJ (r) generated by Sj we determine the intersections of HJ (r)
with all hyperplanes Sjx = rj , where rj ∈ Rj only needs to be considered if rj is
in between Sjx

u
J (r) and Sjx

l
J (r). Repeating this procedure for every row Sj with

j 6∈ J , and including xu
J (r) and/or xl

J (r) if it is on the boundary of the feasible set
C, results in a list of all candidate points on HJ(r).

By repeating the procedure above for every family of parallel line segments, i.e.,
for every possible subset J and every r ∈ RJ , all candidate points in the current level
set L will be found. In fact, since every candidate point is on a line segment HJ(·)
for n different sets J , it would be listed n times. This redundancy is easily removed
by considering only candidates generated on HJ (r) by rows Sj with j > maxJ j.

In Section 6.2 we will present some ideas to reduce the number of candidate
points in which function evaluations are required. In particular, we will explain
how to take advantage of the way we organized the enumeration.

6 Algorithm

We now have all but one of the ingredients that make up the algorithm to be
presented in this section. The last ingredient concerns the determination of an
appropriate (initial) level set. For this purpose we could choose any point in the
feasible region C, evaluate the objective function in this point, and determine the
level set using the continuous relaxation as described in the previous section. Since
we need to solve the continuous relaxation to obtain a (partial) description of the
level sets anyway, it seems reasonable to use one of its optimal solutions, say xR, as
initial point and L(cxR + Q(xR)) as the initial level set.

6.1 Basic form of the algorithm

The presentation of the algorithm is merely a summary of the ingredients exposed
in the preceding sections. The algorithm consists of the following parts.

1. Compute a Gröbner basis for the second stage integer linear programming
problem as explained in Section 2.

2. Solve the continuous relaxation (7) and obtain a (partial) list of vertices of
the dual feasible region. Let xR be an optimal solution.

3. Compute the objective value cxR + Q(xR) (using the Gröbner basis), and
construct the (partial) level set L(cxR + Q(xR)).

4. For every candidate point in L(cxR +Q(xR)) evaluate the objective function,
using the Gröbner basis to compute the expected value function Q. The
candidate points are enumerated according to the scheme proposed in Section
5. A candidate with smallest function value is an optimal solution to the
problem.

Under our assumption that the set L(cxR + Q(xR)) is bounded, the number
of candidate points to be evaluated in step 4 is finite. Therefore, the algorithm
determines an optimal solution of (1) in finite time.

12

6.2 Improvements of the algorithm

In this section we propose two improvements of the algorithm presented above.
They both aim at reducing the number of candidate points for which the objective
function has to be evaluated. In general, this number can be enormous. Moreover,
every function evaluation takes r evaluations of the second stage value function
v, where we recall that r is the number of mass points in the support Ξ. Thus,
although each evaluation of v by means of the Gröbner basis is cheap, it is still
worthwhile to try to minimize the number of function evaluations needed.

The first idea relates to the use of the level set L. By Lemma 4.1 all minimizers of
(1) are contained in every level set L(cx̄+Q(x̄)) for every feasible solution x̄. Since
we only need to evaluate candidate points that are in the level set, it seems to be
advantageous to choose the level set as small as possible. This can be implemented
as follows. Recall that the initial level set is L(cxR + Q(xR)), where xR is an
optimal solution of the continuous relaxation (7). As before, we start evaluating
function values in candidate points according to the enumeration scheme presented
in Section 5. However, as soon as we find a candidate with a lower objective value
than xR, say x̂, we can use it to reduce the level set to L(cx̂ + Q(x̂)). This is of
course a subset of L(cxR + Q(xR)), so that in general the number of remaining
candidates is decreased. Clearly, this procedure can be repeated each time a lower
function value is obtained.

Thus, repeatedly updating the level set has the benefit of reducing the number
of candidates to be evaluated. However, this benefit should be set off against the
additional work that the updating brings about. Updating the level set itself comes
virtually free, since only the right-hand sides in (9) are changed. Considering the
enumeration scheme, only the sets Rj , j = 1, . . . , p, have to be updated. For each j,
this boils down to recomputing tuj and tlj by solving an LP problem of size (N+q)×n,
where N is the number of inequalities in the polyhedral description of the (outer
approximation of the) level set, and q is the number of rows of the matrix A. Our
tentative conclusion is that it seems to be beneficial to update the level set, either
every time a better solution is found or only if a significantly lower objective value
is found. See Section 7 for some first results.

The second improvement motivates the organization of the complete enumera-
tion as presented in Section 5. Based on the identification of common directions
of increase of the first-stage objective cx and the expected value function Q(x), we
show that certain groups of candidate points can not be optimal solutions.

Lemma 6.1 Let HJ(r), r ∈ RJ , be a line segment with endpoints xl
J (r) and

xu
J (r) as defined above. Let the candidate point v, not equal to xl

J (r) or xu
J (r), be

generated on HJ(r) only by rows Tj, j ∈ I ⊂ {1, . . . , p}. Assume that

(i) c(xu
J (r) − xl

J (r)) > 0,

(ii) Tj(xu
J (r) − xl

J (r)) > 0 for all j ∈ I.

Then v is not an optimal solution of the integer recourse problem (1).

Proof. Let v̄ be the neighboring candidate point of v on HJ(r) in the direction
−(xu

J (r) − xl
J(r)), and for λ ∈ (0, 1) define xλ = λv̄ + (1 − λ)v (see Figure 2). It is

sufficient to show that for λ small enough xλ ∈ C(v), so that Q(xλ) = Q(v). Since
cxλ < cv by assumption (i), this proves the result.

Using (4) we have

C(v) =
p⋂

j=1

Cj(v)

13

H

xu
J

xl
J C(v)

v
v̄ L

xλ

r

xl
J v̄ xλ v xu

J

r

r

r

r

r

r

Figure 2: Illustrations by the proof of Lemma 6.1. The right figure shows the
function cx + Q(x) on H ; the function value in candidate points is depicted by a •.

where

Cj(v) =
r⋂

i=1

{
x : dTjv − ξi

je − 1 < Tjx − ξi
j ≤ dTjv − ξi

je
}

.

Depending on the different roles that a row Tj may play, we distinguish three cases
and each time show that xλ ∈ Cj(v).

If j ∈ J then Tjv = Tj v̄ = Tjxλ, so that trivially xλ ∈ Cj(v).
If j ∈ I then by assumption (ii) we have Tj v̄ < Tjxλ < Tjv. Since v̄ is a neighbor

of v we have Tj v̄− ξi
j ≥ dTjv− ξi

je− 1 for all i. Hence dTjv− ξi
je− 1 < Tjxλ − ξi

j <

dTjv − ξi
je, which means that xλ ∈ Cj(v).

Finally, if j ∈ {1, 2, . . . , p} \ {I ∪ J} then dTjv − ξi
je− 1 < Tjv − ξi

j < dTjv − ξi
je

for all i, where the second strict inequality follows by construction. Hence for λ
small enough it also holds dTjv − ξi

je − 1 < Tjxλ − ξi
j < dTjv − ξi

je for all i, so that
again xλ ∈ Cj(v).

In our algorithm we may use Lemma 6.1 as follows. Consider a family of line
segments HJ (r), r ∈ RJ . If for some r ∈ RJ it holds that c(xu

J (r)−xl
J (r)) > 0, then

this is true for every r ∈ RJ since all these line segments are parallel. Similarly, if
a row Tj, j 6∈ J , satisfies Tj(xu

J (r)− xl
J (r)) > 0 for one r ∈ RJ , then this inequality

holds for all r ∈ RJ . Therefore, given a family of line segments HJ (r), r ∈ RJ , and
a row Tj , j 6∈ J , we check for an arbitrary r ∈ RJ if both c(xu

J (r) − xl
J(r)) > 0 and

Tj(xu
J (r) − xl

J(r)) > 0. If these conditions are satisfied, we may skip all candidate
points that are generated by this row on any line segment HJ(r), r ∈ RJ , since by
Lemma 6.1 none of them can be optimal for (1) if they are generated only by this
row Tj . Note that any candidate point that is also generated by a row Ti, i 6∈ J ,
i 6= j, such that Ti(xu

J (r) − xl
J(r)) ≤ 0 will still be considered; hence, no possible

optimal solutions will be discarded.
This improvement is very cheap to implement and may result in a significant

reduction of the number of function evaluations needed.

14

7 Computational Results

In this section we provide some results to indicate computational possibilities of our
algorithm and its improvements. All computations are done on a SPARCstation 4
with 110 MHz microSPARC II CPU. Subsequent examples all fit into the following
frame

max{3
2
x1 + 4x2 + Q(x) : x ∈ C} (11)

where

Q(x) = Eξv(ξ − Tx)

and

v(s) = max{16y1 + 19y2 + 23y3 + 28y4 :
2y1 + 3y2 + 4y3 + 5y4 ≤ s1,

6y1 + y2 + 3y3 + 2y4 ≤ s2, yl ∈ {0, 1}, l = 1, . . . , 4}.
The random vector ξ has a uniform discrete distribution on {5, 5.5, . . . , 15} ×

{5, 5.5, . . . , 15}, so that the support Ξ of ξ has cardinality 441 and pi = 1/441 for
i = 1, . . . , 441. To test our algorithm we will create instances of (11) by specifying
the set C ⊂ IR2 and the 2 × 2-matrix T , respectively. The second stage of (11)
coincides with the knapsack problem for which we computed a Gröbner basis in
Section 2.

Our test problem (11) can be interpreted as a two-stage investment problem.
Its first-stage decision x has to be selected from the set C and yields an immediate
revenue 3

2x1 + 4x2. Further revenue is gained from projects for which investment is
done in the second stage after having observed the random vector ξ ∈ IR2 leading to
the budget ξ−Tx. Entries in T are always non-negative so that spending money in
the first stage decreases possibilities in the second stage. We will also consider an
instance where negative x1, x2 are permitted, in this way modelling the possibility
to contract loans in the first stage to enlarge possibilities in the second stage.

For the feasible set C we will consider two instances, C = {x ∈ IR2 : 0 ≤ xi ≤
5, i = 1, 2} and C = {x ∈ IR2 : xi ≤ 5, i = 1, 2}. For the matrix T we will consider
T =

(
1 0
0 1

)
and T =

(2/3 1/3
1/3 2/3

)
. Since Ξ ⊂ {ξ ∈ IR2 : 5 ≤ ξj ≤ 15, j = 1, 2} we then

have ξi−Tx ≥ 0 for all outcomes ξi and all x ∈ C in either instance of C. Therefore,
y = 0 is always a feasible second-stage decision, and we end up with Q(x) ∈ IR for
all feasible x in either instance of C. Although weaker than Assumption (i) in
Section 3, this relatively complete recourse property is sufficiently strong from the
viewpoint of numerical testing, since our algorithm works with feasible points only.

Because of its clear interpretation, we selected the maximization problem (11)
to present numerical results. Although we presented our theoretical results in a
minimization setting, this provides no hardship since transformation of the relevant
statements is straightforward and will not be discussed here.

Let us now investigate computational possibilities of our algorithm for various
instances of (11). In all cases function values of the expected value function Q are
computed using the formula

Q(x) =
1

441

441∑
i=1

v(bξi − Txc). (12)

Here, function values of v are taken from a list generated in advance by computing
the Gröbner basis and performing all relevant reductions (cf. Section 2). Again we

15

stress that our algorithm in no way depends on the method used to compute these
function evaluations. For example, in the case of a second-stage problem whose
size is prohibitive for Gröbner basis computations, it could still be possible to use a
standard (mixed-)integer solver if the right-hand side parameters ξ can only attain
a few distinct values.

Example 7.1 Let C = {x ∈ IR2 : 0 ≤ xi ≤ 5, i = 1, 2} and T =
(
1 0
0 1

)
.

As mentioned in Section 3, the set V of candidate points then equals the finite
set {(k1/2, k2/2) : k1, k2 ∈ ZZ} ∩ C, which has cardinality 121. Complete enumer-
ation using formula (12) yields the optimal solution x1 = 0, x2 = 4, with value
61.3288. /

Example 7.2 Let C = {x ∈ IR2 : xi ≤ 5, i = 1, 2} and T =
(
1 0
0 1

)
.

Here, the constraint set is unbounded and ‘negative investment’ in the first stage
is possible. Since the set of candidate points is not a priori finite, we employ the
results from Section 4 to bound the set of candidate points using level sets of the
continuous relaxation. Because the second-stage knapsack problem is of moderate
size, all vertices of the dual feasible set MD of its continuous relaxation can be
computed using the vertex enumeration code PORTA ([6]). After less than 0.01
seconds of CPU time a list of 13 vertices was found. From the list we extracted the
vertices

d1 = (0,
8
3
, 0,

49
3

, 15,
68
3

)

d2 = (0,
23
3

, 0,
34
3

, 0,
38
3

)

d3 = (
28
5

, 0,
24
5

,
11
5

,
3
5
, 0)

and formed an outer approximation of the upper level set L(α) = {x ∈ C : cx +
QR(x) ≥ α} given by

L̄(α) = {x ∈ C : cx + dl

(
ξ̄ − Tx

e

)
≥ α, l = 1, 2, 3}, (13)

where e = (1 1 1 1)′ (corresponding to the relaxed binary constraints). Note that
since we have a maximization problem the function QR provides a concave upper
bound and the set (13) is an upper level set.

Using formula (12) we find for x = 0 the objective function value 55.2517. This
provides the initial level set L̄(55.2517) which turns out to be bounded (this check
as well as the extraction of proper vertices of MD are still done by hand in this
initial phase of numerical testing). Table 1 reports progress of our algorithm for
the present example. Choosing J = {2}, enumeration of candidate points was
performed on some of the line segments

H{2}(r) = {x ∈ IR2 : T2x = r} ∩ L̄(α)

= {x ∈ IR2 : x2 = r} ∩ L̄(α), r ∈ R{2},

where R{2} = {−9.5,−9, . . . , 5} since tl2 = −9.9178 and tu2 = 5.
Enumerations started with x2 = 0 followed by x2 = 0.5, 1, 1.5, 2. Table 1 shows

that points with increased objective function values were found during each enumer-
ation along such a line segment. This would have permitted updates of L̄(α) after
each enumeration. We decided to update only after enumerations with x2 = 0 and
x2 = 2. The impact on the number of candidate points is shown in the fourth col-
umn. After having found the point (−4, 2) we ended up with a level set containing
427 candidate points of which 125 were already evaluated in previous enumerations.

16

x2 α # candidate points # candidate current current
in {IR × {x2}} ∩ L̄(α) points in L̄(α) best point best value

0 55.2517 38 872 (-5,0) 62.2959
0.5 62.2959 27 521 (-5,0.5) 62.7744
1 62.2959 29 521 (-3.5,1) 63.2528

1.5 62.2959 31 521 (-4,1.5) 63.8163
2 62.2959 33 521 (-4,2) 64.4218
– 64.4218 – 427 – –

Table 1: Numerical results for Example 7.2.

Complete enumeration of the remaining 302 points did not result in an improvement
of the objective function value so that (−4, 2) turned out to be optimal. (Note that
here ‘negative investment’ in x1 really paid!) Altogether a total of 460 candidate
points had to be inspected. We conclude that in this case reduction of the level set
yields a reduction of the number of objective function evaluations to almost 50%.

Adapting Lemma 6.1 to the maximization setting of our example, leads to pos-
sible elimination of candidate points along joint directions of decrease of cx and
Q(x). The function Q decreases along any direction in which Tx = x increases, i.e.,
along any direction in IR2

+. The intersection of IR2
+ with directions of decrease of

cx = 3
2x1 + 4x2 is obviously {0}, so that in this case Lemma 6.1 does not yield any

reduction of the number of candidate points. /

Example 7.3 Let C = {x ∈ IR2 : 0 ≤ xi ≤ 5, i = 1, 2} and T =
(2/3 1/3
1/3 2/3

)
.

The purpose of this example is to illustrate the effect of a priori elimination of
non-optimal candidate points, as reflected in Lemma 6.1. Since C is bounded, we
simply use the level set L = C.

Consider the family of line segments H{2}(r), r ∈ R{2}, given by

H{2}(r) = {x ∈ IR2 : T2x = r} ∩ C

= {x ∈ IR2 : x1 = 3r − 2x2} ∩ C.

For x ∈ H{2}(r) we have cx = 9/2r + x2 and T1x = 2r − x2, from which we see
that cx is strictly decreasing on H{2}(r) along the direction where T1x is strictly
increasing. By Lemma 6.1 (adapted to the maximization setting at hand) it follows
that, for each r ∈ R{2}, only the endpoint of H{2}(r) with minimal value of T1x
can be an optimal solution. All other candidate points generated by T1 on H{2}(r)
can be eliminated right away.

Every intersection of lines in Figure 3 depicts a candidate point for the present
example. Beside the points mentioned above, only those not on a line defined by
T2x = r, r ∈ R{2} ⊂ {k/2 : k ∈ ZZ}, have to be inspected. In this way, enumeration
was restricted to 19 out of 53 candidate points. Computing objective function
values with the help of formula (12), the point x = (0, 4.5) was identified as optimal
solution (objective function value 61.4444). /

The examples above indicate proper performance of the algorithm provided that
the many computations of the second-stage value function, using a Gröbner basis or
any other method, are computationally feasible. This is mainly a question of prob-
lem size. Despite this limitation the algorithm widens our abilities to solve integer
stochastic programs. The only alternative deterministic algorithm that existed up
to now is to tackle the large-scale mixed-integer equivalent with general purpose
mixed-integer LP solvers. This approach already fails for problems still tractable

17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3: Remaining candidate points (depicted by ◦) after applying Lemma 6.1.

by our method. For example, the large-scale equivalent to (11) reads

max{3
2
x1 + 4x2 +

1
441

441∑
i=1

(16y1i + 19y2i + 23y3i + 28y4i) :

T1x + 2y1i + 3y2i + 4y3i + 5y4i ≤ ξi
1,

T2x + 6y1i + y2i + 3y3i + 2y4i ≤ ξi
2,

yli ∈ {0, 1}, l = 1, . . . , 4, i = 1, . . . , 441, x ∈ C}.
This problem has 1764 Boolean and 2 continuous variables and 882 constraints
(plus the number of constraints represented by C). To the instances specified in
Examples 7.1 – 7.3 we applied the CPLEX Mixed-Integer Optimizer (version 4.0)
[9]. We imposed an upper limit of 50.000 on the number of nodes in the branching
tree. In all three cases we ended up with gaps around 25%. The x-parts of the
corresponding feasible points were far off the optimal ones given in the Examples
7.1 – 7.3. In particular, we obtained the following results: For Example 7.1, the
first feasible point (gap 24%) found after 1106 nodes was the best available. For
Example 7.2, a first feasible point (gap 46%) was found after 350 nodes and the
best available (gap 26%) after 32.249 nodes. For Example 7.3 again the first feasible
point (gap 27%) found after 1778 nodes was the best available.

8 Concluding remarks

The main contribution in this paper lies in using structural properties of stochastic
programming problems with integer recourse to construct a countable c.q. finite set
containing an optimal solution. As a result, the integer recourse problem can be
solved using an (implicit) enumeration scheme that is guided by the structure of
the set of possible optimal solutions. Improvements to speed up the enumeration
are proposed and tested on small example problems.

The algorithm presented in Section 6 is one of the first general purpose algo-
rithms devised for two-stage stochastic integer programming. Compared to the

18

L-shaped method of Laporte and Louveaux [18], our setting is more general since
we do not assume integral (binary) first-stage variables to obtain a countable (finite)
solution set. The stochastic branch and bound method of Norkin et al. [24] can be
applied to our model, but yields a stochastic solution.

At this point we wish to stress the modular framework of our algorithm. In the
first place, we propose to use (approximate) level sets of the continuous relaxation
(7) in order to obtain finiteness c.q. iteratively reduce the number of remaining can-
didate points. As indicated in Lemma 4.1, any convex lower bound of the objective
function can be used for this purpose, and the resulting level sets will be smaller
according as the approximation is better. For example, it would be interesting to
study the use of bounds that may be obtained from Lagrangian relaxations of the
second-stage problem.

Secondly, we propose to use Gröbner bases techniques to perform the many
evaluations of the expected value function Q. This choice is motivated by the fact
that, at least in theory, the use of Gröbner bases justifies our assumption that
function evaluations are relatively inexpensive from a computational point of view.
However, the course of the algorithm is not changed if the function evaluations
are performed by any other means. Indeed, when using a Gröbner basis in the
actual computations for our examples we obtained no significant speedup compared
to using CPLEX to solve each instance of the second-stage integer problems from
scratch. To some extent this may be due to our implementation, in which we used
the general purpose package CoCoa to do the generalized divisions (cf. Step 5
of our algorithm). It is reasonable to expect that the advantage of using Gröbner
bases becomes more apparent as the second-stage problems become larger, but this
is beyond the capabilities of the current version of CoCoa.

Several research groups are working on special purpose variants of Buchberger’s
algorithm for solving (deterministic) integer programs, and have obtained some
very promising first results (see [13]). Any algorithmical progress in this field can
be incorporated directly in our algorithm.

It would be interesting to further investigate the performance of our algorithm
on larger problems, which will become feasible when computer codes that can de-
termine Gröbner bases for moderately sized problems become available to us.

Acknowledgement

We wish to thank Rekha Thomas (Texas A&M University College Station) and
Günter Ziegler (Technische Universität Berlin) for beneficial discussions, and two
anonymous referees for their constructive comments.

References

[1] B. Bank and R. Mandel. Parametric Integer Optimization. Akademie-Verlag,
Berlin, 1988.

[2] C.E. Blair and R.G. Jeroslow. The value function of a mixed integer program:
I. Discrete Mathematics, 19:121–138, 1977.

[3] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal
theory. In N.K. Bose, editor, Multidimensional Systems Theory, chapter 6.
D. Reidel Publishing Company, 1985.

[4] A. Capani and G. Niesi. CoCoa User’s Manual. Dept. of Mathematics, Uni-
versity of Genova, release 3.0b edition, 1995.

19

[5] C.C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic pro-
grams with integer recourse. Technical report, Institute of Mathematics, Uni-
versity of Copenhagen, 1995.

[6] T. Christof. PORTA - a polyhedron representation transformation algorithm.
Available via
http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/PORTA/readme.html.

[7] P. Conti and C. Traverso. Buchberger algorithm and integer programming.
In Proceedings AAECC-9 (New Orleans), Lecture Notes in Computer Science
539, pages 130–139, Berlin, 1991. Springer-Verlag.

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer-
Verlag, New York, 1992.

[9] Using the CPLEX Callable Library. CPLEX Optimization Inc., 1995.

[10] Y.M. Ermoliev, V.I. Norkin, and R.J-B. Wets. The minimization of semi-
continuous functions: mollifier subgradients. SIAM Journal on Control and
Optimization, 33(1):149–167, 1995.

[11] Yu. Ermoliev and R.J-B. Wets. Numerical Techniques for Stochastic Optimiza-
tion. Springer-Verlag, Berlin, 1988.

[12] J.L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage
linear programs with recourse. Mathematics of Operations Research, 16:650–
669, 1991.

[13] S. Hosten and B. Sturmfels. GRIN: An implementation of Gröbner bases for
integer programming. In Integer Programming and Combinatorial Optimiza-
tion, Lecture Notes in Computer Science 920, pages 267–276. Springer-Verlag,
Berlin, 1995.

[14] P. Kall and S.W. Wallace. Stochastic Programming. Wiley, Chichester, 1994.

[15] W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk. An algorithm
for the construction of convex hulls in simple integer recourse programming.
Annals of Operations Research, 64:67–81, 1996.

[16] W.K. Klein Haneveld and M.H van der Vlerk. On the expected value function
of a simple integer recourse problem with random technology matrix. Journal
of Computational and Applied Mathematics, 56:45–53, 1994.

[17] B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, and L. Stougie. Stochastic
integer programming by dynamic programming. In Yu. Ermoliev and R.J-B
Wets, editors, Numerical Techniques for Stochastic Optimization, chapter 21.
Springer-Verlag, Berlin, 1988.

[18] G. Laporte and F.V. Louveaux. The integer L-shaped method for stochastic
integer programs with complete recourse. Operations Research Letters, 13:133–
142, 1993.

[19] F.V. Louveaux and M.H. van der Vlerk. Stochastic programming with simple
integer recourse. Mathematical Programming, 61:301–325, 1993.

[20] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley, New York, 1988.

[21] A. Prékopa. Stochastic Programming. Kluwer Academic Publishers, Dordrecht,
1995.

20

[22] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
New Jersey, 1970.

[23] A. Ruszczyński. A regularized decomposition method for minimizing a sum of
polyhedral functions. Mathematical Programming, 35:309–333, 1986.

[24] A. Ruszczyński, Y. Ermoliev, and V. Norkin. On optimal allocation of indivis-
ibles under uncertainty. Operations Research, to appear.

[25] R. Schultz. Continuity properties of expectation functions in stochastic integer
programming. Mathematics of Operations Research, 18:578–589, 1993.

[26] R. Schultz. On structure and stability in stochastic programs with random
technology matrix and complete integer recourse. Mathematical Programming,
70:73–89, 1995.

[27] R. Schultz, L. Stougie, and M.H. van der Vlerk. Two-stage stochastic integer
programming: a survey. Statistica Neerlandica, 50(3):404–416, 1996.

[28] L. Stougie and M.H. van der Vlerk. Stochastic integer programming. In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies
in Combinatorial Optimization, chapter 9, pages 127–141. Wiley, 1997.

[29] S.R. Tayur. A new algorithm to solve stochastic integer programs with ap-
plication to plant management. Technical report, Carnegie Mellon University,
Pittsburgh, in preparation.

[30] S.R. Tayur, R.R. Thomas, and N.R. Natraj. An algebraic geometry algorithm
for scheduling in the presence of setups and correlated demands. Mathematical
Programming, 69(3):369–401, 1995.

[31] R.R. Thomas. A geometric Buchberger algorithm for integer programming.
Mathematics of Operations Research, 20:864–884, 1995.

[32] R.R. Thomas and R. Weismantel. Truncated Gröbner bases for integer pro-
gramming. Applicable Algebra in Engineering, Communication and Computing,
8:241–256, 1997.

[33] R. Urbaniak, R. Weismantel, and G. Ziegler. A variant of Buchberger’s al-
gorithm for integer programming. SIAM Journal on Discrete Mathematics,
10:96–108, 1997.

[34] M.H. van der Vlerk. Stochastic programming with integer recourse. PhD thesis,
University of Groningen, The Netherlands, 1995.

[35] R. Van Slyke and R.J-B. Wets. L-shaped linear programs with applications to
control and stochastic programming. SIAM Journal on Applied Mathematics,
17:638–663, 1969.

[36] S.W. Wallace and R.J-B. Wets. Preprocessing in stochastic programming: the
case of linear programs. ORSA Journal on Computing, 4:45–59, 1992.

21

